Detection of Cracks and Corrosion for Automated Vessels Visual Inspection

Authors Francisco Bonnín Pascual | Alberto Ortiz Rodriguez
In Artificial Intelligence Research and Development, IOS Press, vol. 220, pp. 111-120, 2010.
ISBN 978-1-60750-642-3


Vessel maintenance entails periodic visual inspections of internal and external parts of the vessel hull in order to detect cracks and corroded areas. Typically, this is done by trained surveyors at great cost. Clearly, assisting them during the inspection process by means of a fleet of robots capable of defect detection would decrease the inspection cost. In this paper, two algorithms are presented for visual detection of the aforementioned two kinds of defects. On the one hand, the crack detector is based on a percolation process that exploits the morphological properties of cracks in steel surfaces. On the other hand, the corrosion detector follows a supervised classification approach taking profit from the spatial distribution of color in rusty areas. Both algorithms have shown successful rates of detection with close to real-time performance.

RELATED PROJECTS

Uso de cookies

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.

ACEPTAR