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Abstract— Calibrating an evolutionary algorithm (EA) means
finding the right values of algorithm parameters for a given
problem. This issue is highly relevant, because it has a high
impact (the performance of EAs does depend on appropriate
parameter values), and it occurs frequently (parameter values
must be set before all EA runs). This issue is also highly
challenging, because finding good parameter values is a difficult
task. In this paper we propose an algorithmic approach to
EA calibration by describing a method, called REVAC, that
can determine good parameter values in an automated manner
on any given problem instance. We validate this method by
comparing it with the conventional hand-based calibration and
another algorithmic approach based on the classical meta-GA.
Comparative experiments on a set of randomly generated prob-
lem instances with various levels of multi-modality show that
GAs calibrated with REVAC can outperform those calibrated
by hand and by the meta-GA.

I. INTRODUCTION

Calibrating an evolutionary algorithm (EA) means finding

the right values of algorithm parameters for a given problem

[8], [10]. This issue is highly relevant for two reasons. First,

because it has a high impact. The performance of EAs does

depend on appropriate parameter values that depend on the

given problem instance. Second, because it occurs frequently:

Before any run of any EA on any problem instance the

parameter values must be set and the values must suit the

instance at hand, cf. the previous point. This issue is also

highly challenging, because finding good parameter values

is a difficult task. This difficulty comes from the complexity

of an evolutionary process in general, and the yet unknown

effect of EA parameters on this process, in particular. To

make things worse, parameters interact with each other. For

instance, the appropriate level of selection pressure (e.g.,

tournament size) can depend on the intensity of mutation

(e.g., mutation rate pm or mutation step-size σ).

In contemporary practice, EA parameters are set by com-

mon “wisdom”, e.g., mutation size should be 1 divided by

the chromosome length, or by statistical hypothesis testing,

e.g., parameter sweeps comparing EA performance for a

number of different setups. This is typically a laborious

ad hoc procedure involving much handwork and heuristic

choices. So far, no procedure has been established that can

explore the full combinatorial range of possible parameter

settings in a systematic and efficient way. Another problem

is that studies on design aspects like confidence intervals

for good parameter values and a sensitivity analysis for

parameter robustness are scarce. Related work includes meta-

GAs after Grefenstette as an early attempt to automate GA

calibration [13]. Czarn et al. [4] discuss current problems

in EA design and use polynomial models of a response

curve to estimate confidence interval for parameter values.

François and Lavergne [11] estimate response curves for

EAs across multiple test cases to measure generalizability.

Regarding general issues of methodology, the paper of Eiben

and Jelasity [6] and the book of Bartz-Beielstein (partly

inspired by this paper) [1] should be mentioned.

In this paper we discuss the merits of the REVAC method

that calibrates the parameters of an EA. For each parameter,

the method produces a distribution over the parameter’s range

that gives high probability to values leading to good EA

performance. In this scheme a distribution with a narrow peak

indicates a highly relevant parameter whose values largely

influence EA performance and must be selected carefully

from a small range of good values. A distribution with

a broad plateau indicates a moderately relevant parameter

whose values do not matter too much. In this study we apply

REVAC to a genetic algorithm (GA) and seek answers to the

following research questions:

• How good are the parameter values found by REVAC?

That is, how do they compare to values found by

traditional alternatives, like hand-calibrated values and

values found by a meta-GA?

• How robust are the parameter values found by REVAC?

That is, how do parameter values found for problem

perform X on a different problem Y?

The goodness of parameter values is measured by the

performance of the GA using those parameter values. The

methodology we use is experimental. Our answers to the

research questions are based on comparing the performance

of genetic algorithms calibrated by hand, by meta-GA, and

by REVAC. The problem generator, source code and demon-

strations can be found at

• http://www.few.vu.nl/∼wadlandg/pcma

• http://www.few.vu.nl/∼gusz/resources

• http://www.complexity-research.org/revac

The remainder of the paper is organized as follows. In

the following section we discuss existing approaches to

calibrating EA parameters, including meta-GAs. In Section

III we describe the REVAC method. Thereafter, in Section

IV, we present the experimental setup including details of

• the problem instances to be solved (by a GA),

• the GAs to be calibrated (by a method), and

• the calibration methods themselves.

The experimental results are shown and discussed in Section

V, the conclusions are summarized in Section VI.
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II. CALIBRATION METHODS

The term “parameter calibration” is in fact an umbrella

term that includes various ways of obtaining and using values

for EA parameters. For a clear positioning of the REVAC

method, we briefly review the main categories as offered in

[8], [10].

The first distinction to make is whether the chosen pa-

rameter values are fixed during an EA run, or subject to

changes on-the-fly. The name parameter tuning stands for

the first case. Here, the values are determined before the

“real” EA run – typically requiring many runs with the

same EA under different settings. Calibrating parameters

with possible runtime changes is called parameter control

that is further divided into three sub-categories:

• Deterministic parameter control This takes place

when the value of a parameter is altered by some deter-

ministic rule. This rule modifies the parameter values in

a fixed, predetermined (i.e., user-specified) way without

using any feedback from the search. Usually, a time-

varying schedule is used, e.g., the rule is applied after

every period of N generations.

• Adaptive parameter control This takes place when

there is some form of feedback from the search that

provides inputs to a mechanism used to determine the

new parameter values. This input may involve credit

assignment, i.e., the goodness of a parameter value

based on the quality of solutions discovered by using it,

or statistical data on the development of the population,

e.g., population diversity, or fitness improvement over

a given period. The important point to note is that the

updating mechanism used to control parameter values

is externally supplied, rather than being part of the

“standard” evolutionary cycle.

• Self-adaptive parameter control In this case the pa-

rameters to be adapted are encoded into the chromo-

somes and undergo mutation and recombination. The

better values of these encoded parameters lead to better

individuals, which in turn are more likely to survive

and produce offspring and hence propagate these better

parameter values. This is an important distinction be-

tween adaptive and self-adaptive schemes: in the latter

the mechanisms for the credit assignment and updating

of different strategy parameters are entirely implicit, i.e.,

they are the selection and variation operators of the

evolutionary cycle itself.

Traditionally, much attention has been devoted to tuning

EA parameters. In particular, the rates for crossover and

mutation have been studied extensively, although there are

indications that manipulating parameters regarding the selec-

tion mechanism(s) and the population can be more rewarding,

see [7] for a review. It has been repeatedly noted that

parameter control is preferable over “simple” tuning, but it

is safe to say that the large majority of EA practitioners uses

EAs where the values of the EA parameters do not change

during a run. Putting it differently, the large majority of EA

practitioners is in need of a good tuning method.

There have been numerous attempts to offer algorithmic

support for parameter tuning. A recent example is [20],

where a framework has been constructed for parameter

sweeping across the search space using a cluster of machines.

Parameter sweeps, although useful for automating a process

that is still done manually very often, can cover only a small

portion of the entire search space due to the granularity and

the need to artificially tone down the amount of parameters

over which the framework sweeps.

The irony of the problem of GA parameter calibration is

that it belongs to the class of problems that can be handled

very well by a GA: there is a vast search space with a high

degree of complexity, interaction among the variables and

local optima. Using a GA for calibrating the parameters

of a GA was first done by Mercer and Sampson in 1978.

In their research they used a GA for determining the best

crossover and mutation operator probabilities. Their research

was however limited due to the large computation costs at

that time and based on a single run with a limited search

space. A more elaborate experimentation was conducted by

Grefenstette [13] and his approach has since been dubbed

“Meta Genetic Algorithm”, or meta-GA. The main difference

with his approach is that the second GA, the “lower-level”

algorithm of which the parameters are being calibrated, does

not have to be changed for the application of a meta-GA.

The search space for Grefenstette’s meta genetic algo-

rithm consisted of 218 parameter combinations. The results

consisted of an optimization of 3% using slightly better

parameters than previously known. However, only 20 meta-

generations were evolved and only 2000 lower-level evalua-

tions were performed. Nowadays this could be completed in

a matter of minutes. It is therefore our opinion that the use

of meta genetic algorithms is worthy for reconsideration.

Research however didn’t stop after these first steps. In the

early 1990s a number of studies were conducted on meta-

GAs. Shahookar and Mazumder used a meta-GA approach

in [22] for solving a cell placement problem for industrial

circuits, which resulted in a decrease of 20 to 50 times in the

number of configurations which had to be evaluated. Lee and

Takagi [15] used a meta-GA similar to that of Grefenstette in

studying the effects of a dynamic adaptive population size,

crossover and mutation rates on the De Jong [14] set of test

problems. Their results confirmed recent theoretical results

on optimal mutation rates [12].

More recent research on meta-GAs has been infrequent

and results have been varying at best. In [2] the conclusion

was that although meta-GA is able to produce reasonable pa-

rameters for various problems, these parameters are far from

optimal. The meta-GA approach was: ”Jack of all trades,

master of none”. Other researchers however have found more

positive results for this type of black-box optimization. In [3],

a meta-GA was used for time-series forecasting. The results,

when compared to existing techniques, showed an all-around

improvement on existing forecasting packages and similar

results to an algorithm specifically designed for the domain.

The researchers remarked that the strengths of the meta-GA
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approach is clearly seen for problems with a complex non-

linear behavior.

In a recent study [21], Samsonovich and De Jong took a

numerical approach to the “free lunch” that meta algorithms

and meta-GAs seemed to offer. They attempted to calibrate

GAs on three problems (2D optimization, the eight puzzle

and binary dendritic tree reconstruction) and concluded that

meta-evolution “may improve the performance of an evolu-

tionary algorithm, if the fitness is appropriately defined at

the meta-level(s)”. They also remarked that the search space

that the meta algorithms look at must be chosen carefully,

and that more levels of evolution could be useful, as long as

fitness improved.

A different use of a meta-GA is to use it for dynamic

fitness landscapes; ie. problems that change over time. In [25]

Stanhope and Daida used a similar meta-GA as Grefenstette

for determining the mutation and crossover rates for a

dynamic fitness function. When the required mutation and

crossover rates were found the fitness remained constant.

They do note that it would have been possible to use self-

adaptation (as discussed above) instead, but they regarded

self-adaptation as not fitting for their particular experiment,

as they were trying to achieve a baseline and insights for

future research.

There has been healthy criticism regarding the use of meta-

algorithms for finding parameters. For instance, in [1]:

Meta-algorithms for evolutionary algorithms have

been proposed by many authors. But this approach

does not solve the original problem completely,

because it requires the determination of a param-

eter setting of the meta-algorithm. Additionally,

we argue that the experimenter’s skill plays an

important role in this analysis. It cannot be replaced

by automatic rules.

The first argument can be refuted in a number of ways.

First, the parameters used for the meta-algorithm can already

be determined to function perfectly well; the parameters that

are to be calibrated can be of a completely different order.

Second, there is nothing that stands in the way of a meta-

algorithm calibrating itself. This has been our approach in

[18].

The second argument is a more vague one. The back-

ground of the argument lies in the opinion that insight

into the behavior of an algorithm is more important than

finding only (near-)optimal parameters. We would like to

note that the approach taken in [1] is a valuable one and its

methodology based on DOE is a very useful tool. However,

even though less insight might be obtained through meta-

algorithms, this does not mean that meta-algorithms would

provide lesser results. The benefit of automatic parameter

calibration is of a very different nature, namely to save the

researcher from performing tedious manual testing. In many

occasions the researcher is perfectly content with having

parameters that provide near-optimal results.

The “Grefenstette” meta-GA

The classic meta genetic algorithm works by optimizing

parameter-values. Like a normal genetic algorithm, these

values are encoded using a binary representation. We will

use Gray encoding for this in our experiments in order to

minimize the distance between mutations.

For every set of parameter-values the meta genetic al-

gorithm sees a single individual. In order to evaluate the

fitness of this individual the lower-level genetic algorithm

is executed with the set parameter-values that belong to the

individual. The value the lower-level algorithm returns (most

often the highest fitness reached) is the fitness with which the

meta genetic algorithm will determine if the individual will

be selected for the next generation and/or the possibilities of

the individual to reproduce.

When being selected for the following generation, there is

a chance that the individual will undergo either mutation or

crossover. These two operators respectively either flip a bit in

the binary representation of a parameter value or combines

the bit-string with that of a different individual in order to

produce two new child-individuals with each containing half

of the values of their parents.

III. RELEVANCE ESTIMATION AND VALUE CALIBRATION

(REVAC)

The REVAC method calibrates the parameters of an

evolutionary algorithm. That is, the REVAC method is to

establish good values that will be used without changing

them during a run of the EA. The REVAC method is

based on information theory to measure parameter relevance.

Instead of estimating the performance of an EA for different

parameter values or ranges of values the method estimates

the expected performance when parameter values are chosen

from a probability density distribution C with maximized

Shannon entropy. This maximized Shannon entropy is a

measure of parameter relevance. In information theoretical

terms we measure how much information is needed to reach

a certain level of performance, and how this information

is distributed over the different parameters. In these terms

the objectives of the REVAC method can be formulated as

follows:

• the entropy of the distribution C is as high as possible

for a given performance

• the expected performance of the EA in question is as

high as possible

Technically, the REVAC method is an Estimation of Distri-

bution Algorithm (EDA) [19] that is specifically designed to

measure maximized entropy in the continuous domain. Given

an EA with k (strategy) parameters the REVAC method

iteratively refines a joint distribution C(~x) over possible

parameter vectors ~x = {x1, . . . , xk}. Beginning with a

uniform distribution C0 over the initial parameter space X ,

the REVAC method gives a higher and higher probability

to regions of X that increase the expected performance of

the associated EA. This is to increases the EA performance.

On the other hand, the REVAC method maximizes entropy
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by smoothing the distribution C. For a good understanding

of how REVAC works it is helpful to distinguish two views

on a set of parameter vectors as shown in Table I. Taking a

horizontal view on the table, a row is a parameter vector

and we can see the table as m of such vectors X =
{ ~x1, . . . , ~xm}. Taking the vertical view on the columns,

column i shows m values for parameter i from its domain.

These values naturally define1 a marginal density function

D(x) over the domain of parameter i, hence we can see

the k columns of the table as k marginal density functions

X = {D(x1), . . . ,D(xk)}.

D(x1) · · · D(xi) · · · D(xk)

~x1 {x1
1 · · · xi

1 · · · xk
1}

.

.

.
. . .

~xj {x1
j · · · xi

j · · · xk
j }

.

.

.
. . .

~xm {x1
m · · · xi

m · · · xk
m}

TABLE I

A TABLE X OF m VECTORS OF k PARAMETERS

Roughly speaking, REVAC works by iteratively improving

an initial table X0 that was drawn from the uniform distri-

bution over X . Creating a new table Xt+1 from a given Xt

can be described from both the horizontal and the vertical

perspective. From the horizontal perspective we can identify

two basic steps:

1) Evaluating parameter vectors: Given a parameter

vector ~x we can evaluate it: the utility of ~x is the

performance of the EA executed with these parameter

values.

2) Generating parameter vectors: Given a set of param-

eter vectors with known utility we can generate new

ones that have higher expected utility.

Step 1 is straightforward, let us only note that we call

the performance that an EA achieves on a problem using

parameters ~x the response. Response r is thus a function r =
f(~x); the surface of this function is called a response surface.

As for step 2, we use a method that is evolutionary itself,

(but should not be confused with the EA we are calibrating).

We work with a population of m parameter vectors. A new

population is created by selecting n < m parent vectors

from the current population, recombining and mutating the

selected parents to obtain a child vector, replacing one vector

of the population.

We use a deterministic choice for parent selection as

well as for survivor selection. The best n vectors of the

1Scaled to the unit interval [0, 1] we define the density over the m + 1
intervals between any two neighbors (including limits) xa, xb as D(x) =
(m+1)
|xa−xb|

with
∫ 1
0 D(x) = 1 and differential entropy

H(D) = −

∫ 1

0
D(x) logD(x)

with H(D) = 0 for the uniform distribution over [0, 1]. The sharper the
peaks, the lower the entropy.

population are selected to become the parents of the new

child vector, which always replaces the oldest vector in the

population. Only one vector is replaced in every generation.

Recombination is performed by a multi-parent crossover

operator, uniform scanning, that creates one child from n
parents, cf. [10]. The mutation operator—applied to the

offspring created by recombination—is rather complicated,

it works independently on each parameter i in two steps.

First, a mutation interval is calculated, then a random value

is chosen from this interval. To define the mutation interval

for mutating a given xi
j all other values xi

1, . . . , x
i
n for this

parameter in the selected parents are also taken into account.

After sorting them in increasing order, the begin point of the

interval can be specified as the h-th lower neighbor of xi
j ,

while the end point of the interval is the h-th upper neighbor

of xi
j . The new value is drawn from this interval with a

uniform distribution.

From the vertical perspective we consider each iteration

as constructing k new marginal density functions from the

old set Xt = {Dt(x
1), . . . ,Dt(x

k)}. Roughly speaking,

new distributions are built on estimates of the response

surface that were sampled with previous density functions,

each iteration giving a higher probability to regions of the

response surface with higher response levels. Each density

functions is constructed from n uniform distributions over

overlapping intervals. In this context, the rationale behind the

complicated mutation operator is that it heavily smoothes the

density functions. Like all evolutionary algorithms, REVAC

is susceptible for converging on a local maximum. By

consistently smoothing the distribution functions we force

it to converge on a maximum that lies on a broad hill,

yielding robust solutions with broad confidence intervals. But

smoothing does more: it allows REVAC to operate under

very noise conditions, it allows REVAC to readjust and relax

marginal distributions when parameters are interactive and

the response surface has curved ridges, and it maximizes

the entropy of the constructed distribution. Smoothing is

achieved by taking not the nearest neighbor but the h-

th neighbors of xi
j when defining the mutation interval2.

Choosing a good value for h is an important aspect when

using the REVAC method. A large h value can slow down

convergence to the point of stagnation. A small h value can

produce unreliable results. We prefer h = n/10.

Because the REVAC method is implemented as a sequence

of distributions with slowly decreasing Shannon entropy,

we can use the Shannon entropy of these distributions to

estimate the minimum amount of information needed to

reach a target performance level. We can also measure how

this information is distributed over the parameters, resulting

in a straightforward measure for parameter relevance. This

measure can be used in several ways. First, it can be used

to choose between different operators [17]. An operator that

needs little information to be tuned is more fault tolerant in

2At the edges of the parameter ranges are no neighbors. We solve this
problem by mirroring neighbors and chosen values at the limits, similar to
what is done in Fourier transformations.
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the implementation, easier to calibrate and robuster against

changes to the problem definition. Second, it can be used

to identify the critical parts of an EA. For this we measure

relevance as the absolute difference between the entropy of a

distribution and the entropy of the uniform distribution over

the same interval, calculating the absolute amount informa-

tion needed to calibrate the particular parameter. When an EA

needs to be adapted from one problem to another, relevant

parameters need the most attention. With this knowledge,

the practitioner can concentrate on the critical components

straight away. Third, it can be used to define confidence

intervals for parameter choices. Given a distribution that

peaks out in a region of high probability (except for the

early stage of the algorithms the marginal distributions have

only one peak), we give the 25th and the 75th percentile of

the distribution as a confidence interval for the parameter.

That is, every value from this range leads to a high expected

performance, under the condition that the other parameters

are also chosen from their respective confidence interval.

In [17] a similar approach to a meta-GA is used in calibrat-

ing the parameters for energy-policy multi-agent simulations.

In [18] this approach to calibrate the parameters is further

developed and tested on a number of abstract and real

benchmark problems.

The method for relevance estimation and value calibration

uses search methods based on information theory for op-

timization. By estimating the model complexity using the

Shannon entropy from the distribution of the results, the

less-relevant parameters of the model are discarded. For the

remaining parameters a search algorithm similar to a meta-

GA is used for calibrating the parameters (where a model is

a list of parameters for the simulation).

A. Estimation of Distribution Algorithms

The REVAC method is a type of Estimation of Distribution

Algorithm (or EDA). EDAs are a relatively new search

algorithms that maintain a population of possible solutions

and as such are similar to evolutionary algorithms, however

the population is used to “estimate a probability distribution

over the search space that reflects what are considered

to be important characteristics of the population” [26]. A

new population is generated by sampling this distribution,

which replaces traditional crossover and mutation in genetic

algorithms.

EDAs can be seen in the light of the principle of maximum

entropy. Without losing what is known, the algorithm by

this principle should maximize the information entropy. The

population of an EDA is adjusted in order to learn as much

as possible about the fitness landscape.

In [23] one of the main problems with EDAs is in-

vestigated, namely the lack of diversity over time. Like a

conventional evolutionary algorithm without mutation, EDAs

are prone to stagnation; they will then not be able to find

any better solution, even if it exists. The amount of diversity

within the population appears to be a major problem for

EDAs.

B. Workings of REVAC

EDAs work through the use of probability functions, and

in such are grounded on existing information theory for

optimization. By estimating the model complexity using the

Shannon entropy from the distribution of the results, REVAC

finds and discards the less-relevant parameters of the model.

For the remaining parameters an EDA search algorithm was

used for calibrating the parameters (where a model is a list

of parameters for the simulation).

The main difference between the Relevance Estimation

and Value Calibration method used in [17] and a traditional

genetic algorithm is thus the lack of separate crossover

and mutation (in [17] termed as imitation and innovation).

Instead of these two operators, the new parameters are

selected by first selecting an individual randomly from the

population. From this individual the two closest neighbors

are determined. The new parameter-value becomes a value

between the parameter of both of these neighbors. This is

done for every parameter, thus the end result is that REVAC

combines x parents and mutates the result. As such, this

operator is similar in nature to a combination of multi-parent

crossover and mutation; each offspring has a different parent

for each parameter. The REVAC method solely uses this

instead of the traditional crossover and mutation operators

in genetic algorithms, however the question remains if such

an approach for parameter calibration is more successful than

a meta-GA (or other methods) in finding effective parameters

for a GA.

The REVAC method only has a few parameters with which

it can be tuned, namely: the size of the initial population, the

number of entities to replace at each round and the amount

of smoothing. The smoothing parameter is the distance of the

two neighbors. A smoothing of 1 means that the two nearest

neighbors on both side are chosen, while a smoothing of 4

means that two neighbors are chosen that have 3 intermediary

entities.

IV. EXPERIMENTAL SETUP

To describe the experimental setup it is helpful to dis-

tinguish three different layers, as shown in Figure 1. The

problem layer contains the particular fitness landscapes or

problem instances that have to be solved by a GA. The

elementary objects in this layer are bit-strings that form

the search space for the GA. In turn, the algorithm layer

also contains a search space. Assigning values to all GA

parameters we obtain a parameter vector that specifies a

given GA instance. The set of all parameter vectors is the

search space for the methods on the design layer.3

The basic approach to our experimental validation is to

monitor three GA performance measures for each run of a

given GA on all problem instances and use these results to

assess the quality of the method that delivered the parameter

vector for the given GA. GA performance is measured by

the mean best fitness (MBF), being the fitness of the best

3Obviously, the methods on the design layer also have parameters, but
we do not iterate this hierarchy any further.
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Fig. 1. Hierarchy of Experiments

individual at termination, averaged over a given number of

runs.

A. Problem Layer

We have created instances with the Spears multi-modal

problem generator [5], [24] as the problem instances to be

solved. Although we share some of the criticism concerning

this generator, cf. [16], we have chosen to use it because

it allows for a systematic study on a number of landscapes

with various levels of multi-modality. Furthermore, we have

experimental data available on the performance of a simple

GA on such landscapes, where parameter values have been

established through traditional tuning [9]. This makes these

results suitable as benchmark in our comparative assessment

of REVAC.

For the details of the problem instance generator we refer

to [24]. Our specific set of landscapes is generated for

n = 100 bits, and 10 different number of peaks as shown in

Table II. All landscapes are to be maximized, and the height

of the global maximum is 1.0.

TABLE II

PARAMETERS USED FOR GENERATING THE PROBLEM INSTANCES

Number of bits 100
Number of peaks 1, 2, 5, 10, 25, 50, 100, 250, 500, 1000

B. Algorithm Layer

We deliberately selected an algorithm used in earlier publi-

cations in order to make the results comparable. In particular,

we use a Simple Genetic Algorithm as a benchmark after

[9]. The attributes of the genetic algorithm are shown in

Table III, the parameters to be calibrated, together with their

benchmark values can be found in Table IV.

TABLE III

ATTRIBUTES OF SIMPLE GA

Population model Steady-state
Crossover Uniform
Mutation Bit-flip
Parent selection Tournament selection
Survival selection Delete-worst
Termination Fitness of 1.0 or 10000 evaluations

TABLE IV

PARAMETERS OF SIMPLE GA TO BE CALIBRATED

Parameter Benchmark value

Crossover rate 0.5
Mutation rate 0.01
Population size 100
Tournament size 2

There are to more important factors to complete the defi-

nition of the calibration problem: the range of the parameters

and the granularity of their range we use in the search space.

For both the crossover and mutation rate we assume a range

of 0.0 to 1.0 and a 16-bit granularity. For the population

and tournament size we assume a range of 2 to 1025 and a

10-bit granularity. When the tournament size is larger than

the population size, the algorithm is defined as having a

tournament size that is equal to the population size.

C. Design Layer

For our design layer we use the two meta-algorithms

described earlier: the meta genetic algorithm and REVAC.

The attributes and parameters of the meta genetic algorithm

[13] can be found in Table V, the details for REVAC [17],

[18] are shown in Table VI.

TABLE V

PARAMETERS OF THE META GENETIC ALGORITHM

Fitness measure MBF of SGA
Population model Generational
Crossover One-point
Crossover rate 0.5
Mutation Bit-flip
Mutation rate 0.001
Population size 100
Parent selection Fitness-proportional
Survival selection Generational
Termination 3000 evaluations

TABLE VI

PARAMETERS OF THE REVAC ALGORITHM

Fitness measure MBF of SGA
Pool size 100
Best size 50
Smoothing 5
Termination 3000 evaluations

Let us note that the 3000 evaluations for the meta-

algorithms, the meta-GA and REVAC, mean 3000 runs of

the Simple GA (on one given problem instance). After these

runs, the meta-algorithms put forward the best parameter

vector found for that particular problem instance.

V. EXPERIMENTAL RESULTS

The experiments have been performed on 4 4-CPU AMD

Opteron machines over the course of two weeks. Calibration-

runs on landscapes with a low number of peaks were

typically completed within a few hours. After the meta-

algorithm had calibrated the parameters, the best parameters

from the last meta-generation were obtained. In the case of a
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tie, the parameter-vector that occurred the most was selected.

This was done for every problem instance for both meta-

algorithms.

First we show the parameter values “optimized” by the

meta-algorithms. Those obtained by the meta-GA can be

found in Table VII, the ones found by REVAC are given

in Table VIII.

TABLE VII

SIMPLE GA PARAMETERS AFTER META-GA CALIBRATION

Cr. Rate Mut. Rate Pop. Size Tour. Size

1 0.226 0.0114 830 355
2 0.175 0.0151 333 333
5 0.241 0.0496 82 82

10 0.160 0.0325 121 121
25 0.104 0.00107 871 706
50 0.310 0.00371 685 162

100 0.149 0.0223 255 255
250 0.536 0.000549 620 578
500 0.489 0.00485 402 402

1000 0.749 0.0279 480 480

TABLE VIII

SIMPLE GA PARAMETERS AFTER REVAC CALIBRATION

Cr. Rate Mut. Rate Pop. Size Tour. Size

1 0.349 0.000840 147 147
2 0.304 0.00114 788 788
5 0.224 0.000372 101 101

10 0.495 0.00515 83 83
25 0.294 0.00796 758 380
50 0.554 0.00347 514 100

100 0.419 0.00221 723 723
250 0.517 0.00739 634 634
500 0.457 0.00949 578 578

1000 0.533 0.00498 679 679

Comparing these values with the values “optimized” by

hand, cf. Table IV, it is remarkable that population sizes and

the tournament sizes recommended by the meta-algorithms

are consistently and significantly larger that the (rather

conventional) 100 used in the benchmark GA. It is also

noteworthy that both meta-algorithms recommend extreme

high levels of selection pressure (tournament sizes equalling

population sizes). It is quite obvious that human designers

would not likely come up with such a GA. This shows one

advantage of the meta-algorithms: they are insensitive to

common wisdom and conventions among EC practitioners.

To establish whether these unconventional settings are

good or not each of these parameter-vectors have been

tested by 25 independent runs of the GA using the given

values. The benchmark results, as found in [9], together

with those for the meta-algorithms are shown in Table IX.

From these results we calculated the statistical significance

using ANOVA, however the results from these runs weren’t

provably significant.

To get a better picture we also make a comparison based

on robustness. This is based on the mean error on a given

landscape, which is defined as 1.0 minus the MBF. To

measure robustness we cross-test the parameter vectors, by

TABLE IX

GA RESULTS (MBF) USING DIFFERENT TUNING METHODS

Peaks hand-tuned meta-GA REVAC

1 1.0 1.0 1.0
2 1.0 1.0 1.0
5 1.0 0.988 1.0

10 0.9961 0.993 0.996
25 0.9885 0.994 0.991
50 0.9876 0.994 0.995

100 0.9853 0.983 0.989
250 0.9847 0.992 0.966
500 0.9865 0.989 0.970

1000 0.9891 0.987 0.985

running the GA on landscape X with parameters found for

landscape Y. The mean error in permille of these results are

shown in Table X and Table XI.

Besides the per-landscape optimized parameters, we also

take the averages of the parameters from Table VII and

Table VIII. These were then used to obtain the mean error

against all landscapes, comparable with the method above.

The results for the averaged parameters of meta-GA were

poor. However the results for averaged parameters of REVAC

show a more interesting picture, as can be seen in Table

XII. The average mean error of the hand-tuned parameters

and the parameters calibrated by meta-GA are comparable

(85.0 and 88.9 respectively), yet the average mean error

of the parameters calibrated by REVAC and the average of

those parameters score slightly better (73.3 and 63.0). Even

so, these results were also inconclusive in their statistical

significance. However, both Table X and Table XI contain

results from various well-performing parameter vectors (1

and 50, 1 and 25 respectively) that do show a significantly

lower error compared to the hand-tuned results.

TABLE X

MEAN ERROR WHEN USING THE META-GA CALIBRATED PARAMETERS.

THE ROW SHOWS THE LANDSCAPE FOR WHICH THE PARAMETERS WERE

“OPTIMIZED”, THE COLUMN SHOWS THE LANDSCAPE ON WHICH THE

PARAMETERS ARE CROSS-TESTED.

1 2 5 10 25 50 100 250 500 1000
∑

1 0 0 0 0 6 0 1 14 14 12 47
2 0 0 0 0 0 20 23 19 9 2 73
5 23 20 0 34 13 13 41 42 37 42 265

10 0 0 0 0 30 20 25 8 12 5 100
25 0 0 0 0 6 17 11 14 6 13 67
50 0 0 0 0 0 0 6 15 3 18 42

100 0 0 0 0 0 3 15 26 8 3 55
250 0 0 0 0 13 3 5 30 14 30 95
500 0 0 0 0 13 13 8 10 7 10 61

1000 0 0 0 18 0 20 15 5 8 18 84∑
889

VI. CONCLUSIONS AND FURTHER WORK

Comparative experiments on a set of randomly generated

problem instances with various levels of multi-modality show

that GAs calibrated with REVAC and meta-GA perform

comparable or better, compared to those calibrated by hand.

The differences, analyzed using ANOVA, are found to be on

W.A. de Landgraaf, A.E. Eiben, V. Nannen / 2007 IEEE Congress on Evolutionary Computation (CEC 2007) 71–78



TABLE XI

MEAN ERROR WHEN USING THE REVAC CALIBRATED PARAMETERS.

THE ROW SHOWS THE LANDSCAPE FOR WHICH THE PARAMETERS WERE

“OPTIMIZED”, THE COLUMN SHOWS THE LANDSCAPE ON WHICH THE

PARAMETERS ARE CROSS-TESTED.

1 2 5 10 25 50 100 250 500 1000
∑

1 0 0 0 0 10 10 2 10 6 9 47
2 0 0 0 0 15 17 15 12 3 11 73
5 0 0 0 0 26 17 10 12 29 29 123

10 0 0 0 0 0 5 26 11 7 5 54
25 0 0 0 0 10 2 6 6 12 4 40
50 0 0 0 0 0 25 10 9 7 5 56

100 0 0 0 0 5 7 20 14 20 8 74
250 0 0 0 0 10 15 25 13 10 12 85
500 0 0 0 13 5 25 20 8 1 32 104

1000 0 0 0 0 0 12 6 4 25 30 77∑
733

TABLE XII

MEAN ERROR WHEN USING THE AVERAGED REVAC CALIBRATED

PARAMETERS.

1 2 5 10 25 50 100 250 500 1000
∑

0 0 0 0 4 14 8 24 6 7 63

average not significant enough, however certain parameter

vectors do show a statistically significant improvement. On

average, REVAC found better parameter vectors than meta-

GA.

The robustness-analysis of REVAC, obtained by using

calibrated parameter vectors on other problem landscapes,

show that REVAC on average finds slightly better parameters

compared to the meta-GA. It also shows that automatically

calibrating algorithms, even those with hand-tuned param-

eters known for years, can provide both new insights and

better settings.

In further work we will look at using other problem

landscapes and algorithms upon which we apply parameter

calibration, optimizing the optimizers.
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