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Abstract

The main objective of this paper is to present and
evaluate a method that helps to calibrate the param-
eters of an evolutionary algorithm in a systematic
and semi-automated manner. The method for Rel-
evance Estimation and Value Calibration of EA pa-
rameters (REVAC) is empirically evaluated in two
different ways. First, we use abstract test cases
reflecting the typical properties of EA parameter
spaces. Here we observe that REVAC is able to
approximate the exact (hand-coded) relevance of
parameters and it works robustly with measure-
ment noise that is highly variable and not normally
distributed. Second, we use REVAC for calibrat-
ing GAs for a number of common objective func-
tions. Here we obtain a common sense validation,
REVAC finds mutation rate pm much more sensi-
tive than crossover rate pc and it recommends intu-
itively sound values: pm between 0.01 and 0.1, and
0.6 ≤ pc ≤ 1.0.

1 Introduction

Appropriate calibration of evolutionary algorithm (EA) pa-
rameters is essential to good EA performance. Nevertheless,
current practice in EA calibration is based on ill-justified con-
ventions and ad hoc methods. Without exaggeration, one
could state that one of the canonical design problems in evo-
lutionary computing (EC)is: How to choose operators and
parameters for an evolutionary algorithm to ensure good per-
formance? The related questions can concern relevance of
operators and parameters as well as the values of (relevant)
parameters. For instance, the question whether crossover is a
relevant operator is still open, or rather, the answer depends
on the application at hand [Eiben and Smith, 2003]. Rele-
vance of parameters is also an issue, e.g., tournament size
can be a highly relevant parameter whose value must be cho-
sen well for good performance, while mutation rate could be
less relevant in the sense that its values do not affect EA per-
formance too much.1

In contemporary practice, EA parameters are set by com-
mon “wisdom”, e.g., mutation size should be 1 divided by the

1These examples are purely hypothetical.

chromosome length, or by statistical hypothesis testing, e.g.,
comparing EA performance for a number of different setups
[Eiben et al., 1999]. This is typically a laborious, ad hoc pro-
cedure involving much handwork and heuristic choices. So
far, no procedure has yet been established that can do this
systematically, exploring the full combinatorial range of pos-
sible parameter settings. Another problem is that studies on
design aspects like confidence intervals for good parameter
values and a sensitivity analysis for parameter robustness are
scarce. In this paper we discuss a design method that cali-
brates the parameters of an EA in a robust way, regardless of
the distribution of the results. For each parameter the method
produces a distribution over the parameter’s range that give
high probability to values leading to good EA performance.
In this scheme, a distribution with a narrow peak indicates a
highly relevant parameter (whose values largely influence EA
performance), while a broad plateau belongs to a moderately
relevant parameter (whose values do not matter too much).

Related work includes meta-GAs as an early attempt to au-
tomate GA calibration [Greffenstette, 1986], and [Eiben et
al., 1999] that established parameter control in EAs as one
of the big challenges in EC. Czarn et al. [2004] discuss cur-
rent problems in EA design and use polynomial models of
a response curve to estimate confidence interval for parame-
ter values. François and Lavergne [2001] estimate response
curves for EAs across multiple test cases to measure general-
izability. The groundwork of statistical experimental design
was laid by R.A. Fisher in the 1920s and 1930s. Response
surfaces methods that exploit sequential sampling were intro-
duced in Box and Wilson [1951]. A paradigm shift that em-
phasizes parameter robustness is due to G. Taguchi [1980].
A survey of optimization by building probabilistic models is
given in [Pelikan et al., 2002].

2 The REVAC Method

The REVAC method is based on information theory to mea-
sure parameter relevance. Instead of estimating the perfor-
mance of an EA for different parameter values or ranges
of values2, the method estimates the expected performance
when parameter values are chosen from a probability density
distribution C with maximized Shannon entropy. This maxi-

2In the jargon of statistical experimental design a parameter is
called factor. A range of parameter values is called level.
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mized Shannon entropy is a measure of parameter relevance.
In information theoretical terms we measure how much infor-
mation is needed to reach a certain level of performance, and
how this information is distributed over the different parame-
ters. In these terms the objectives of the REVAC method can
be formulated as follows:

• the entropy of the distribution C is as high as possible for
a given performance

• the expected performance of the EA in question is as
high as possible

Technically, the REVAC method is an Estimation of Distri-
bution Algorithm (EDA) [Pelikan et al., 2002] that is specif-
ically designed to measure maximized entropy in the contin-
uous domain. Given an EA with k (strategy) parameters the
REVAC method iteratively refines a joint distribution C(�x)
over possible parameter vectors �x = {x1, . . . , xk}. Begin-
ning with a uniform distribution C0 over the initial parameter
space X , the REVAC method gives a higher and higher prob-
ability to regions of X that increase the expected performance
of the associated EA. This is to increase the EA performance.
On the other hand, the REVAC method maximizes entropy
by smoothing the distribution C. For a good understanding of
how REVAC works it is helpful to distinguish two views on a
set of parameter vectors as shown in Table 1. Taking a hori-
zontal view on the table, a row is a parameter vector and we
can see the table as m of such vectors X = { �x1, . . . , �xm}.
Taking the vertical view on the columns, column i shows m
values for parameter i from its domain. These values natu-
rally define3 a marginal density function D(x) over the do-
main of parameter i, hence we can see the k columns of the
table as k marginal density functions X = {D1, . . . ,Dk}.

D1 · · · Di · · · Dk

�x1 {x1
1 · · · xi

1 · · · xk
1}

...
. . .

�xj {x1
j · · · xi

j · · · xk
j }

...
. . .

�xm {x1
m · · · xi

m · · · xk
m}

Table 1: A table X of m vectors of k parameters

Roughly speaking, REVAC works by iteratively improving
an initial table X0 that was drawn from the uniform distribu-
tion over X . Creating a new table Xt+1 from a given Xt can
be described from both the horizontal and the vertical per-
spective.

3Scaled to the unit interval [0, 1] we define the density over the
m+1 intervals between any two neighbors (including limits) xa, xb

as D(x) = (m+1)
|xa−xb|

with
R 1

0
D(x) = 1 and differential entropy

H(D) = −

Z 1

0

D(x) logD(x)

with H(D) = 0 for the uniform distribution over [0, 1]. The sharper
the peaks, the lower the entropy.

Looking at the table from the horizontal perspective we can
identify two basic steps:

1. Evaluating parameter vectors: Given a parameter vec-
tor �x we can evaluate it: the utility of �x is the perfor-
mance of the EA executed with these parameter values.

2. Generating parameter vectors: Given a set of parame-
ter vectors with known utility we can generate new ones
that have higher expected utility.

Step 1 is straightforward, let us only note that we call the
performance that an EA achieves on a problem using param-
eters �x the response. Response r is thus a function r = f(�x);
the surface of this function is called a response surface. As for
step 2, we use a method that is evolutionary itself, (but should
not be confused with the EA we are calibrating). We work
with a population of m parameter vectors. A new population
is created by selecting n < m parent vectors from the current
population, recombining and mutating the selected parents to
obtain a child vector, replacing one vector of the population.

We use a deterministic choice for parent selection as well
as for survivor selection. The best n vectors of the popu-
lation are selected to become the parents of the new child
vector, which always replaces the oldest vector in the popu-
lation. Only one vector is replaced in every generation. Re-
combination is performed by a multi-parent crossover opera-
tor, uniform scanning, that creates one child from n parents,
cf. [Eiben and Smith, 2003]. The mutation operator—applied
to the offspring created by recombination—is rather compli-
cated, it works independently on each parameter i in two
steps. First, a mutation interval is calculated, then a random
value is chosen from this interval. To define the mutation in-
terval for mutating a given xi

j all other values xi
1, . . . , x

i
n for

this parameter in the selected parents are also taken into ac-
count. After sorting them in increasing order, the begin point
of the interval can be specified as the h-th lower neighbor of
xi

j , while the end point of the interval is the h-th upper neigh-

bor of xi
j . The new value is drawn from this interval with a

uniform distribution.
From the vertical perspective we consider each iteration as

constructing k new marginal density functions from the old
set Xt = {D1

t , . . . ,D
k
t }. Roughly speaking, new distribu-

tions are built on estimates of the response surface that were
sampled with previous density functions, each iteration giv-
ing a higher probability to regions of the response surface
with higher response levels. Each density functions is con-
structed from n uniform distributions over overlapping inter-
vals. In this context, the rationale behind the complicated
mutation operator is that it heavily smoothes the density func-
tions. Like all evolutionary algorithms, REVAC is susceptible
for converging on a local maximum. By consistently smooth-
ing the distribution functions we force it to converge on a
maximum that lies on a broad hill, yielding robust solutions
with broad confidence intervals. But smoothing does more:
it allows REVAC to operate under very noise conditions, it
allows REVAC to readjust and relax marginal distributions
when parameters are interactive and the response surface has
curved ridges, and it maximizes the entropy of the constructed
distribution. Smoothing is achieved by taking not the nearest
neighbor but the h-th neighbors of xi

j when defining the mu-
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tation interval4. Choosing a good value for h is an important
aspect when using the REVAC method. A large h value can
slow down convergence to the point of stagnation. A small h
value can produce unreliable results. We prefer h ≈ n/10.

Because the REVAC method is implemented as a sequence
of distributions with slowly decreasing Shannon entropy, we
can use the Shannon entropy of these distributions to estimate
the minimum amount of information needed to reach a target
performance level. We can also measure how this information
is distributed over the parameters, resulting in a straightfor-
ward measure for parameter relevance. This measure can be
used in several ways. First, it can be used to choose between
different operators [Nannen and Eiben, 2006]. An operator
that needs little information to be tuned is more fault tolerant
in the implementation, easier to calibrate and robuster against
changes to the problem definition. Second, it can be used to
identify the critical parts of an EA. For this we calculate rele-
vance as the normalized entropy, i.e., the fraction of total in-
formation invested in the particular parameter. When an EA
needs to be adapted from one problem to another, relevant
parameters need the most attention. With this knowledge,
the practitioner can concentrate on the critical components
straight away. Third, it can be used to define confidence inter-
vals for parameter choices. Given a distribution that peaks out
in a region of high probability (except for the early stage of
the algorithms the marginal distributions have only one peak),
we give the 25th and the 75th percentile of the distribution as
a confidence interval for the parameter. That is, every value
from this range leads to a high expected performance, under
the condition that the other parameters are also chosen from
their respective confidence interval.

Further documentation, a Matlab implementation and
graphical demonstrations are available on the web sites
of the authors: http://www.few.vu.nl/∼volker/revac and
http:/www.few.vu.nl/∼gusz

3 Empirical Assessment of REVAC

For an elaboration on how to evaluate the REVAC method
method we can distinguish 3 layers in using an EA:

Application layer The problem(s) to solve.

Algorithm layer The EA with its parameters operating on
objects from the application layer (candidate solutions
of the problem to solve).

Design layer The REVAC method operating on objects from
the algorithm layer (parameters of the EA to calibrate).

A real in vivo assessment requires that we select a prob-
lem, or a set of problems, and execute real runs of an EA on
this problem(s) for each evaluation of given parameter vec-
tors. This can lead to excessive running times for REVAC
and would deliver information on how REVAC works on the
given problem (s). As a second stage, we would need to make
a generalization step to claim something about how REVAC
works in general. Alternatively, we can make the general-
ization step first and create an abstract response surface that

4At the edges of the parameter ranges are no neighbors. We solve
this problem by mirroring neighbors and chosen values at the limits,
similar to what is done in Fourier transformations.

is representative for EA parameter spaces. Hereby we ab-
stract from the application and algorithm layers and reduce
run times enormously. Either way, there is a generalization
step involved.

In this paper we perform both types of experiments, but
put the emphasis on the second option. To define abstract
response surfaces resembling the response surface of a typical
EA we identify five essential properties:

1. Low dimensionality: The number of parameters to cali-
brate is in the order of magnitude of 10.

2. Non-linearity (epistasis, cross-coupling): Parameters in-
teract in non-linear ways, implying that the response
curves are non-separable, values for one parameter de-
pend on the values of other parameters.

3. Smoothness: Small changes in parameter values lead to
small changes in EA performance.

4. Low multi-modality (moderate ruggedness): The re-
sponse surface has one or few local optima, i.e., few re-
gions of the parameter space have high EA performance.

5. Noise: Depending on the application, the performance
of a GA can be highly variable and can follow a distri-
bution that is far from the normal distribution.

In section 4 we present experiments on abstract response sur-
faces having these five properties. Thereafter, in section 5
results obtained with concrete objective functions are given.
In all cases REVAC is used with a population of m = 100 pa-
rameter vectors, from which the best n = 50 are selected for
being a parent. We smooth by extending the mutation interval
over the h = 5 upper and lower neighbors. In all experiments,
REVAC is allowed to perform 1000 evaluations. For a test
with a concrete objective function f this means 1000 runs of
the EA on f (evaluating 1000 different parameter vectors).

4 Results on abstract EA response surfaces

We present three experiments: two on the accuracy of the
relevance estimation (without noise) and one on the resistance
of the method to noise. We use k = 10 parameters that can
take values from the range [0, 1].

Experiment 1: hierarchical dependency. In this exper-
iment we pre-define and hard-code the dependency between
parameters. The response r = f(�x), showing the utility of
�x, is calculated as the sum over the responses per parameter.
For the first parameter value x1 the response r1 is equal to 1
minus the distance to a target value, randomly chosen at the
start of the experiment. The response of each consecutive pa-
rameter value is ri = ri−1(1 − |xi − xi−1|) ∈ [0, 1]. The
response of parameter i is higher if its value is closer to that
of parameter i − 1. But because it is multiplied by the re-
sponse of that parameter, we have hierarchical dependencies.
The better the first parameter is calibrated, the more the cali-
bration of the second parameter can contribute, and so forth.
Knowledge of such a hierarchy of dependency and the associ-
ated hierarchy in relevance is very useful for the practitioner,
and we are interested if the REVAC method can reveal it.

Figures 1 and 2 show the results for one run of REVAC
(1000 evaluations). The main quality indicator for REVAC is
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Figure 1: Utility and relevance of parameters. The left graph shows the relevance (normalized entropy) per parameter at the
end, after 1000 REVAC evaluations. The middle graph shows how the measured response (parameter utility as the abstract EA
performance) increases through the calibration process. The rightmost graph shows the development of entropy for parameters
1, 4, and 7. For both, the x-axis shows evaluations 101–1000 (the first 100 concern the initial population).
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Figure 2: Calibration of parameters illustrated. The y-axis shows the value for the 25th, 50th and 75th percentile of the
distribution. The calibration effect is achieved by taking parameter values from the range between the 25th and 75th percentile.
Note that the length of this confidence interval indicates parameter relevance: narrow/broad = highly/moderately relevant. Here
parameter 1 shows highly relevant, parameter 7 does not.

the leftmost histogram in Figure 1 that shows how the rele-
vance estimates for consecutive parameters approximate the
predefined linear relationship. The rightmost graph of Figure
1 and the three graphs of Figure 2 show various aspects of the
calibration process for parameters 1, 4, and 7.

Experiment 2: predefined relevance distribution. In this
experiment we control the response contribution of each pa-
rameter directly to see whether the REVAC method can re-
veal arbitrary relationships in relevance. To this end we cre-
ate a response curve by placing 1 peak randomly in the 10-
dimensional unit space. Again, total response is a sum over
individual responses, which is 1 minus the distance to this
peak per parameter (i.e., Hamming distance). We weight each
distance with a predefined target relevance. In this way, an
irrelevant parameter has no contribution to the response, no
matter how close its value is to the peak. On the other hand,
the higher the target relevance of a parameter, the more its
calibration contributes to the overall response.

Using three sets of weights we specify three predefined rel-
evance distributions. These are given together with the exper-
imental results in Figure 3, cf. black vs. white columns. The
shown outcomes are from single runs of REVAC (1000 evalu-
ations). The accuracy of results can be improved by averaging
over the results of several runs. As can be seen in Figure 3,
the REVAC method can reproduce a predefined relevance dis-
tribution quite accurately. The relationship in the right graph
of Figure 3 is the most typical situation when calibrating real
EAs, also known as the sparcity of effects principle: rele-
vance is concentrated on only a few parameters. As can be

seen, the REVAC method can identify the more relevant ones
and also reproduce the correct order in relevance. However, it
does not reproduce the fact that the most relevant parameter
is twice as relevant as the follow up. This can not be repaired
by averaging the results of several runs of REVAC.

Experiment 3: measurement noise. In this experiment
we study how the reliability of a relevance estimation changes
with noise of increasing variance. To measure the quality
of the estimate we use the mean squared error between a
relevance estimate to the target distribution, which we plot
against the variance of the noise.

The abstract response surface we use here is the third one
(non-linear increase) from experiment 2, see Figure 3, right.
Addition of noise turns the abstract response curve into a
stochastic equation r = f(�x) + η, where η is an i.i.d. ran-
dom value. The noise is drawn from a Pareto distribution

P (X > x) = cx−γ , x > logγ c

with exponent γ = 2.3. c is a normalization value and also
controls the variance σ2 of the noise. Such a distribution is
also called a power law distribution and can be found in many
physical and social systems. It has frequent outliers, a slowly
convergent variance, and is generally incompatible with sta-
tistical methods that require a normal distribution.

The variance of i.i.d. noise can be reduced by averaging
over multiple evaluations. The REVAC method however does
not average over multiple evaluations. Rather, if allowed
more evaluations, it uses them to get a better cover of the sam-
pling space. Noise effects are only treated during the smooth-
ing of the distributions.
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Figure 3: Comparing the relevance estimation of the REVAC method (white) to the hard-coded target relevance (black).

mean squared error with noise
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Figure 4: Impact of noise. The left graph shows the mean squared error of the relevance estimate as a function of the variance
of the noise. The x-axis shows the increasing variance, from 0 to 5. (5 is very high for a function with a range between 0 and 1).
The y-axis shows the results of 1000 different runs of the REVAC method over these noise levels. (The expected mean squared
error of a completely random relevance estimate is 0.29.) The middle graph shows the estimate voor σ2 = 5. The right graph
is averaged over the last 10 evaluations. Note how averaging over multiple runs of REVAC recovers the main features of the
target distribution (black columns in the rightmost graph of Figure 3, right above it).

Figure 4 shows the results of this experiment. As we
increase the variance of the additive noise term, the mean
squared error of the REVAC estimate increases roughly lin-
early with the variance. This error can be reduced by aver-
aging over multiple runs of REVAC. That means that under
noisy conditions REVAC can give a quick first approximation
that can be refined by averaging over repeated calibrations.
This leads to an effective use of all evaluations. The fact that
the noise follows a non-normal distribution does not form a
significant obstacle.

5 Results on concrete objective functions

Here we present the outcomes of in vivo experiments, as dis-
cussed in section 3. To this end we need to define an EA
and some specific objective functions. For both purposes we
rely on [Czarn et al., 2004] who apply rigorous statistical ex-
ploratory analysis to a simple GA to study the effect of cal-
ibrating the mutation and crossover operators. The EA here
is a generational GA with 22 bits per variable, Gray coding,
probabilistic ranked-based selection, single point crossover
with pc, bit flip mutation with pm, and a population of 50
chromosomes. The four test functions are rather standard:
sphere, saddle, step, Schaffer’s f6. Our results are summa-
rized in Table 2 and Figure 5. These can be considered from
two perspectives, compared with the “usual” GA settings, and
with the work of Czarn et al. As Table 2 shows the values
found by REVAC are consistent with the conventions in EC:
pm between 0.01 and 0.1, and pc between 0.6 and 1.0.

f1(x) =
∑3

i=1
x2

i , −5.12 ≤ xi ≤ 5.12 (1)

f2(x) =
100(x2 − x2

1)
2 + (1 − x1)

2,

− 2.048 ≤ xi ≤ 2.048
(2)

f3(x) =
∑5

i=1
�xi�, −5.12 ≤ xi ≤ 5.12 (3)

f6(x) =
0.5 +

(sin
√

x2
1 + x2

2)
2 − 0.5

(1 + 0.0001(x2
1 + x2

2))
2
,

− 100 ≤ xi ≤ 100

(4)

Table 2: REVAC results after 1000 evaluations.
optimum confidence entropy rele-

value interval vance

f1 pm 0.012 0.011 – 0.013 -8.6 0.82

pc 0.90 0.77 – 0.96 -1.9 0.18

f2 pm 0.0146 0.0143 – 0.0148 -9.4 0.82

pc 0.82 0.77 – 0.86 -2.1 0.18

f3 pm 0.0338 0.0334 – 0.0342 -9.0 0.72

pc 0.98 0.82 – 0.99 -3.5 0.28

f6 pm 0.0604 0.0635 – 0.0641 -6.9 0.86

pc 0.60 0.48 – 0.68 -1.1 0.14

A direct comparison with [Czarn et al., 2004] is diffi-
cult, because of the different types of outcomes. As for the
method, they use screening experiments to narrow down the
space of feasible parameter settings, partition this space into
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Figure 5: Calibrating Schaffer’s f6. The left graph shows the development of entropy for pm and pc. The entropy of pm

shows significant decrease, indicating its relevance; that of pc does not. The other two graphs show the final probability density
function (pdf) over the parameter values. Note the extremely sharp needle (high sensitivity) for pm.

equally spaced discrete levels, repeatedly measure the perfor-
mance for each level and use ANOVA to calculate the signif-
icance of mutation and crossover rates. Then they procede to
approximate the response curve for both parameters by fitting
low order polynomials to the performance measures, suggest-
ing to calculate confidence intervals from these approxima-
tions. As a main result, Czarn et al find that the marginal
response curves for crossover and mutation are linear and
quadratic and that mutation is more significant than crossover.

By contrast, the REVAC method uses no screening and
does not partition the parameter space into discrete levels. It
studies the complete and continuous parameter space. We
can narrow the solution space to any arbitrarily small sub-
space and can directly read off confidence intervals for any
given level of performance. Our global outcomes, however,
are in line with those in [Czarn et al., 2004]: pm is much more
peaked and relevant than pc.

6 Conclusions

In this paper we propose and evaluate a specialized Estima-
tion of Distribution Algorithm (EDA) that estimates param-
eter relevance by normalized Shannon entropy. The method
finds a distribution (marginal density function) for each EA
parameter simultaneously such that parameter values yield-
ing higher EA performance have higher probabilities. The
method shows the relevance of a parameter graphically by
the width of the peak(s): a distribution with a narrow peak in-
dicates a highly relevant parameter (whose values have great
influence on EA performance), while a broad plateau belongs
to a moderately relevant parameter (whose values do not mat-
ter too much). Parameter calibration is achieved in a straight-
forward way, the values with a high probability are the ones to
be used. In particular, for each parameter we choose choose
the 50th percentile as the robust optimum and the 25th and
75th percentiles as the confidence interval.

Our empirical validation is twofold. First, we use abstract
test cases representing typical response surfaces of EA pa-
rameter spaces and observe that estimates reproduce the tar-
get values to a satisfiable degree. We also show that REVAC
can work with significant levels of highly variable noise. The
error of relevance estimates increases roughly linearly with
the variance of the noise and can be reduced by averaging
over several estimates. Second, we use REVAC to calibrate
a GA on four common test functions and find that the rec-
ommended values are much in line with the usual settings,
“optimized” by collective experience of the field.

Ongoing research is carried out along two lines. The first
one concerns real-life testing, where we use the method to
evaluate policies in complex economic simulations. The sec-
ond one is a comparative study, where we calibrate genetic al-
gorithms on a number of objective functions by REVAC and
compare it to a meta-GA [Greffenstette, 1986].
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