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Abstract— Calibrating the parameters of an evolutionary
algorithm (EA) is a laborious task. The highly stochastic nature
of an EA typically leads to a high variance of the measure-
ments. The standard statistical method to reduce variance
is measurement replication, i.e., averaging over several test
runs with identical parameter settings. The computational cost
of measurement replication scales with the variance and is
often too high to allow for results of statistical significance.
In this paper we study an alternative: the REVAC method for
Relevance Estimation and Value Calibration, and we investigate
how different levels of measurement replication influence the
cost and quality of its calibration results. Two sets of experi-
ments are reported: calibrating a genetic algorithm on standard
benchmark problems, and calibrating a complex simulation in
evolutionary agent-based economics. We find that measurement
replication is not essential to REVAC, which emerges as a strong
and efficient alternative to existing statistical methods.

I. INTRODUCTION

One of the big challenges in evolutionary computing

is the design and control of evolutionary algorithm (EA)

parameters [1]. Part of the problem lies in the fact that

most EAs are non-deterministic and highly path-dependent,

which makes it difficult to obtain a reliable measure of

EA performance on a given problem. On the other hand,

performance can be very sensitive to parameters that control

for example mutation, and such parameter need a careful and

reliable calibration if the EA is to perform well.

The standard statistical method to reduce variance and

improve measurement reliability is measurement replication.

With measurement replication, a set of parameter values

is chosen and the performance (also called response) of

the EA with these values is measured several times on

the same problem to get a good estimate of the expected

response. A classical example of this approach is Analysis of

Variance (ANOVA), which provides a clear set of rules how

to optimally combine a number of carefully chosen parameter

values, how to calculate the number of replications needed to

decide whether one combination of values has a significantly

better response than another, and how to infer parameter

interaction. An exhaustive overview of how to apply ANOVA

to EA calibration is given in [2].

There are a number of disadvantages with this approach,

particularly when applied to an EA with several sensitive

parameters. First, the choice of parameter values is far from
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trivial and experiments in this vain often allow for no other

conclusion than that a given choice was wrong. Second, the

variance of an EA can easily be so high and its distribution

so bad-behaved that the number of replications needed to

produce significant results is not feasible. Third, there is

disagreement in the statistical community on how to treat

non-numerical results, for example when an EA does not

find an acceptable solution within given computational con-

straints. Fourth, replications divert computational resources

that could otherwise be used to obtain a better cover of the

search space. This is a serious drawback, since it is virtually

impossible to infer from a small number of measurements in

a multi-dimensional search space, reliable as they might be,

important measures of robustness like sensitivity to small

changes and the range of values for which a certain EA

performance can be achieved. This problem has been clearly

recognized since [3]. As [2] points out, with ANOVA it is

difficult to fit anything more sophisticated than a cubic curve

to the response curve of an EA.

[4] proposes to use an Estimation of Distribution Algo-

rithm (EDA) for the parameter control of an evolutionary

algorithm: REVAC, which stands for Relevance Estimation

and Value Calibration. REVAC was designed to a) calibrate

the parameters of an EA in a robust way and b) quantify the

minimum amount of information that is needed to calibrate

each parameter in a robust way. REVAC, like Meta-GA [5],

is an evolutionary method, a Meta-EDA, that dynamically

explores the complex response surface of an evolutionary

algorithm. Starting from a wide distribution over the possible

parameter values, REVAC progressively zooms in on the

more promising regions of the parameter space, avoiding

ANOVA’s problem of choosing the correct parameter values

right from the beginning. And unlike ANOVA, REVAC only

uses rank based statistics to decide where to zoom in. Instead

of measuring EA-performance for the same parameter values

again and again to increase the reliability of a few estimates,

REVAC uses these measurements to get a better cover of

the response curve. The resulting distribution is a robust

estimate of which regions of the search space give the highest

performance. The Shannon entropy of the resulting marginal

distributions over each parameter can be used to estimate the

relevance of that parameter in an intuitive way.

In [4] we have tested REVAC on calibration benchmarks

and have shown that REVAC can indeed calibrate an EA

of highly variable performance, and that it can give good
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estimates of parameter variance and robustness intervals.

In [6] we have compared REVAC to Meta-GA and found

hat REVAC performance is roughly comparable to that

of Meta-GA, if not better. This paper addresses the open

question whether REVAC can do away with the computation-

ally expensive replication of measurements, or, conversely,

whether measurement replications improve the speed and

quality of the REVAC estimate. This question is particularly

pressing since REVAC is intended for calibration problems

where established methods like ANOVA are inefficient, and

where a maximum of information has to be extracted from

every available run of the EA. We formulate two research

questions:

1) How does the replication of measurements affect the

quality of REVAC estimates?

2) How does the replication of measurements affect the

computational efficiency of the REVAC search pro-

cess?

A detailed description of REVAC can be found in Section

II. REVAC performance with different levels of measurement

replication is studied in Section III: Section III-A tests

REVAC on the same calibration problem as used in [2].

Section III-B reports on extensive testing of REVAC as part

of ongoing research in evolutionary agent-based economics.

A summary and conclusions can be found in Section IV.

Related work includes [7], which estimates response

curves for EAs across multiple test cases to measure gen-

eralizability. [8] uses a Gaussian correlation function to

dynamically build a polynomial regression model of the

response curve. Estimation of Distribution Algorithms, in

particular those based on univariate marginal distributions, to

which the present type belongs, were pioneered in [9]. The

relationship between Shannon entropy and EDAs is discussed

extensively in [10]. A different approach of using EDA as a

meta method to refine a heuristic can be found in [11].

II. RELEVANCE ESTIMATION AND VALUE CALIBRATION

REVAC uses information theory to measure parameter

relevance. Instead of estimating the performance of an EA

for specific parameter values or ranges of values, REVAC

estimates the expected performance when parameter values

are chosen from specific probability density distributions. As

these density distributions are meant to approximate the max-

imum entropy distribution for a given level of performance,

their Shannon entropy can be used to measure the amount

of information needed to reach this level of performance1.

We define the differential Shannon entropy of a distribu-

tion D over the continuous interval [a, b] as

H(D[a,b]) = −

∫ b

a

D(x) log2 D(x) dx,

1The entropy of a distribution can be understood as the amount of infor-
mation needed to specify a value drawn from this distribution. The difference
between the uniform distribution and a maximum entropy distribution for a
given level of performance can be understood as the minimum amount of
information needed to achieve that performance.

with H(D[0,1]) = 0 for the uniform distribution over [0, 1]
and negative for any other distribution over [0, 1]. The sharper

the peaks, the lower the entropy. When a joint distribution

C can be separated into marginal distributions for each

parameter, we can take the absolute value of the entropy

of each marginal distribution as an indicator of parameter

relevance: how much information is needed to calibrate the

particular parameter. In these terms the objectives of REVAC

can be formulated as follows:

• the entropy of the joint distribution C is as high as

possible for a given level of performance,

• the expected performance of the EA in question is as

high as possible for a given level of Shannon entropy.

A. Algorithm Details

Since REVAC is intended for the continuous domain, the

choice of suitable EDAs is limited. The present algorithm is

a variation of the Univariate Marginal Distribution Algorithm

[9]. For efficiency, only a single parameter vector is replaced

every generation, and not the whole population.

Given an EA with k parameters REVAC iteratively refines

a joint distribution C(~x) over possible parameter vectors ~x =
{x1, . . . , xk}. Beginning with a uniform distribution C0 over

the initial parameter space X , REVAC gives a higher and

higher probability to those regions of X where the associated

EA performs best, increasing the expected performance of

the generated EAs. On the other hand, REVAC continuously

smoothes the distribution C, to reduce the variance of stochas-

tic measurements and to prevent premature convergence. It is

the unique combination of these two operators, selection and

smoothing, that make REVAC an estimator of the maximum

entropy distribution.

For a good understanding of how an EDA works it is

helpful to distinguish two views on a set of parameter vectors

as shown in Table I. Taking a horizontal view on the table,

a row is a parameter vector and we can see the table as m
of such vectors X = { ~x1, . . . , ~xm}. Taking the vertical view

on the columns, each of the k columns shows m values from

the domain of the associated parameter i.

TABLE I

A TABLE X OF m VECTORS OF k PARAMETERS

D(x1) · · · D(xi) · · · D(xk)

~x1 {x1

1
· · · xi

1
· · · xk

1
}

.

.

.
. . .

~xj {x1

j · · · xi
j · · · xk

j }

.

.

.
. . .

~xm {x1
m · · · xi

m · · · xk
m}

These m values allow us to define a marginal density

function D(xi) over the domain of parameter i, scaled to

the unit range [0, 1]: provided there are no equal values, the

m values and the limits can be arranged such that they form

m + 1 non-overlapping intervals that cover the range [0, 1].
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Fig. 1. Diagram of the update process

Draw m vectors x uniformaly from C0.

Measure the response once for each new x.

Choose the n x with the highest performance.

The distbution of n x defines the new Ci+1.

Replace the oldest x by a new drawing from Ci+1.

❄ ❄

❄

❄

❄

We define the density over any such interval [xi
a, x

i
b] as

D(xi) =
1

(m+ 1)(xi
b − xi

a)
,

satisfying
∫ 1

0
D(xi) = 1.

In this way the k columns of Table I define k marginal

density functions {D(x1), . . . ,D(xk)} which in turn define

a joint density function C. This definition of a density

function can be extended to allow intervals to overlap, for

example by taking intervals not between first neighbors along

the domain of the parameter, but between second or third

neighbors. The resulting distribution is a smoothed version

of the original one and has a higher Shannon entropy. The

more the intervals overlap, the higher the resulting Shannon

entropy and Shannon entropy is maximized when all intervals

overlap and form a uniform distribution.

As can be seen in Figure 1, REVAC starts from an initial

table X0 that was drawn from the uniform distribution over

X . The update process that creates a new table Xt+1 from a

given Xt can be described from both the horizontal and the

vertical perspective. Looking at Table I from the horizontal

perspective we can identify two basic steps:

1) Evaluating parameter vectors: Given a parameter vec-

tor ~x we can evaluate it: the expected performance of

~x is the performance of the EA executed with these

parameter values. The evaluation can be based on one

or more replications.

2) Generating parameter vectors: Given a set of param-

eter vectors with known utility we can generate new

ones that have higher expected utility.

Step 1 is straightforward, let us only note that we call

the performance that an EA achieves on a problem using

parameters ~x the response. Response r is thus a function r =
f(~x); the surface of this function is called a response surface.

As for step 2, we use a method that is evolutionary itself,

(but should not be confused with the EA we are calibrating).

We work with a population of m parameter vectors. A new

population is created by selecting n < m parent vectors

from the current population, recombining and mutating the

selected parents to obtain a child vector and replacing one

vector of the population.

We use a deterministic choice for parent selection as

well as for survivor selection. The best n vectors of the

population are selected to become the parents of the new

child vector, which always replaces the oldest vector in the

population. Only one vector is replaced in every generation.

Recombination is performed by a multi-parent crossover

operator, uniform scanning, that creates one child from n
parents, cf. [12].

The mutation operator—applied to the offspring created

by recombination—is rather complicated. It works indepen-

dently on each parameter i in two steps. First, a mutation

interval [xi
a, x

i
b] is calculated, then a random value is cho-

sen from this interval. To define the mutation interval for

mutating a given xi
j all other values xi

1, . . . , x
i
n for this

parameter in the selected parents are also taken into account.

After sorting them in increasing order, the begin point of the

interval can be specified as the h-th lower neighbor of xi
j ,

while the end point of the interval is the h-th upper neighbor

of xi
j . The new value is drawn from this interval with a

uniform distribution.

From the vertical perspective we consider each iteration

as constructing k new marginal density functions from the

old set Xt = {Dt(x
1), . . . ,Dt(x

k)}. Roughly speaking,

new distributions are built on estimates of the response

surface that were sampled with previous density functions,

each iteration giving a higher probability to regions of the

response surface with higher response levels. Each density

functions is constructed from n uniform distributions over

overlapping intervals. In this context, the rationale behind

the complicated mutation operator is that it heavily smoothes

the density functions. Like all evolutionary algorithms EDA

is susceptible for converging on a local maximum. By

consistently smoothing the distribution functions we force

it to converge on a maximum that lies on a broad hill,

yielding robust solutions with broad confidence intervals. But

smoothing does more: it allows REVAC to operate under

very noise conditions, it allows it to readjust and relax

marginal distributions when parameters are interactive and

the response surface has curved ridges, and it maximizes

the entropy of the constructed distribution. Smoothing is

achieved by taking not the nearest neighbor but the h-

th neighbors of xi
j when defining the mutation interval2.

Choosing a good value for h is an important aspect when

using REVAC. A large h value can slow down convergence

to the point of stagnation. A small h value can produce

unreliable results. Based on our experience so far, we prefer

h ≈ n/10.

REVAC, like any EDA, is a random process. Not all cal-

ibrations achieve results of the same quality. Independently

of the fact whether measurement replication is used during

the calibration itself, REVAC results can be made more

reliable by calibrating an EA more than once, and either

choosing the calibration that resulted in a higher performance

measure, or averaging over several calibration results. This

is indeed a higher level replication of measurement. But

unlike measurement replication, which can be too expensive

2At the edges of the parameter ranges are no neighbors. We solve this
problem by mirroring neighbors and chosen values at the limits, similar to
what is done in Fourier transformations.
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to extract any useful information, REVAC can always provide

a first approximation, which can then be refined if resources

permit. Further documentation, a Matlab implementation and

graphical demonstrations are available on these web sites:

• http://www.complexity-research.org/revac

• http://www.cs.vu.nl/∼gusz/resources

B. Interpreting the Calibration Results

Because REVAC is implemented as a sequence of dis-

tributions with slowly decreasing Shannon entropy we can

use the Shannon entropy of these distributions to estimate

the minimum amount of information needed to reach a

target performance level. We can also measure how this

information is distributed over the parameters, resulting in

a straightforward measure for parameter relevance. This

measure can be used in several ways. First, it can be used to

choose between different sets of operators. A set of operators

that needs little information to be tuned is more fault tolerant

in the implementation, easier to calibrate and robuster against

changes to the problem definition. Second, it can be used

to identify the critical components of an EA. For this we

measure relevance as the absolute difference between the

entropy of a distribution and the entropy of the uniform

distribution over the same interval, calculating the absolute

amount information needed to calibrate the particular param-

eter. A highly relevant parameter typically has a sharp peak

in the distribution, indicating a narrow confidence interval.

When an EA needs to be adapted from one problem to

another, relevant parameters need the most attention and

with this knowledge the practitioner can concentrate on the

critical components straight away. Third, it can be used to

define confidence intervals for parameter choices. Given a

distribution that peaks out in a region of high probability

(except for the early stage of the algorithms the marginal

distributions have only one peak), we give the 25th and the

75th percentile of the distribution as a confidence interval for

the parameter. That is, every value from this range leads to a

high expected performance, under the condition that the other

parameters are also chosen from their respective confidence

interval.

III. EXPERIMENTS

In order to evaluate the need for measurement replication

in REVAC we distinguish 3 layers in the analysis of an EA:

• Application layer—the problem(s) to solve.

• Algorithm layer—the EA with its parameters operating

on objects from the application layer (candidate solu-

tions of the problem to solve).

• Design layer—REVAC operating on objects from the

algorithm layer (parameters of the EA to calibrate).

In order to study the merits of measurement replication for

the design layer we need to define an EA for the algorithm

layer and a problem for the application layer. In Section III-

A we rely for both purposes on [2], which uses ANOVA to

calibrate the mutation and crossover operators in a simple GA

of highly variable performance. In Section III-B we report

on extensive testing of REVAC as part of ongoing research

in evolutionary agent-based economics.

In all experiments reported here REVAC is used with

a population of m = 100 parameter vectors, from which

the best n = 50 are selected for being a parent. We

smooth by extending the mutation interval over the h = 5
upper and lower neighbors. In each experiment REVAC is

allowed to evaluate 1,000 parameter vectors. For a test with

3 replications of each parameter vector, this implies 3,000

runs of the EA, evaluating 1,000 different parameter vectors

3 times each.

A. Calibrating a Classic Genetic Algorithm

The EA to calibrate is a generational GA with 22 bits

per variable, Gray coding, probabilistic rank-based selection,

single point crossover and bit flip mutation. In addition to the

two parameters calibrated in [2], mutation pm ∈ [0, 1] and

crossover pc ∈ [0, 1], we also calibrate the population size

of n ∈ [10, 200] chromosomes, a total of 3 parameters. The

4 test functions for the application layer are rather standard:

sphere (f1), saddle (f2), step (f3), Schaffer’s f6.

f1(x) =
∑3

i=1 x
2
i , −5.12 ≤ xi ≤ 5.12 (1)

f2(x) =
100(x2 − x2

1)
2 + (1− x1)

2,

− 2.048 ≤ xi ≤ 2.048
(2)

f3(x) =
∑5

i=1⌊xi⌋, −5.12 ≤ xi ≤ 5.12 (3)

f6(x) =
0.5 +

(sin
√

x2
1 + x2

2)
2 − 0.5

(1 + 0.0001(x2
1 + x2

2))
2
,

− 100 ≤ xi ≤ 100

(4)

The performance index F measures the performance of a

GA on a specific test function in terms of the computational

cost of solving that test function. F is calculated from the

negative (we want to maximize performance) number of

generations that are needed to solve the function, times the

population size. When a GA needs 100 generations of 100

individuals or 200 generations of 50 individuals, we will

say that it has a performance index F of -10,000. A test

function is considered solved as soon as one individual of the

population encodes a value that is within certain bounds of

the best feasible solution. These bounds are chosen such that

a well calibrated algorithm can solve each test function with

a performance index F of between -5,000 and -10,000. If the

algorithm doesn’t solve the test function with a performance

index F of less than -25,000 (e.g., within 1000 generations

if the population size is 25), execution is aborted and a

performance index F of 25,000 is recorded.

We evaluate 5 different levels of replications: 1, 2, 3,

5, and 10 replications. For each level or replication we

calibrate each test function 10 times and report the average

result. Figure 2 shows the typical time evolution of the

median and the 25th and 75th percentile of the distribution

of each calibrated parameter. Figure 3 shows the typical time

V. Nannen, A.E. Eiben / 2007 IEEE Congress on Evolutionary Computation (CEC 2007) 103–110



Mutation

200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

 

 
75%
50%
25%

Crossover

200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

 

 

75%
50%
25%

Population Size

200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

 

 
75%
50%
25%

Fig. 2. Typical time evolution of the calibration of the 3 GA parameters. The x-axis shows the progress of the calibration. The y-axis shows the percentiles
of the marginal distribution. The central line of each plot shows the evolution of the median of the distribution, the lower and upper lines show the evolution
of the 25th and 75th percentile.
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Fig. 3. Typical time evolution of the entropy of the calibrated parameters.
The x-axis shows the progress of the calibration. The y-axis shows the
entropy for each marginal distribution.

TABLE II

GLOBAL RELEVANCE ESTIMATION OF THE 3 PARAMETERS FOR EACH

TEST FUNCTION, BASED ON THE ABSOLUTE ENTROPY MEASURE

sphere saddle step Schaffer’s f6

mutation 11.1 11.3 10.9 9.6

crossover 1.7 3.5 2.2 0.9

population size 5.9 4.5 6.2 1.0

evolution of the entropy of each marginal distribution during

calibration. The test function used in the two figures is the

step function and 1 replication is used for REVAC.

Quality of the relevance estimation. To measure the

quality of the relevance estimation we need a reliable global

estimate with which to compare individual estimations. For

this we use the average final estimate of all experiments

with all levels of replications, 50 experiments for each test

function. This approach is possible because REVAC was

designed such that the relevance estimations of different runs

of REVAC converge to a unique set of values, the maximum

entropy solution.

The quality of the relevance estimation is then measured

as the mean error or mean squared distance e from this

global estimate. The lower the error e, the better the estimate.

The global estimate of parameter relevance, based on the

difference in entropy between the uniform distribution and

the final calibrated distribution is shown in Table II. We

record the following quantities:

• the number of different parameter vectors that REVAC

needs to evaluate in order to reach an error e ≤ 0.1 with

regard to the empirical optimum relevance estimation,

• the total number of evaluations that are needed to reach

an e ≤ 0.1 (i.e., the number of parameter vectors times

Quality of the Relevance Estimation

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

 

 
1 replication
2 replications
10 replications

Fig. 4. The y-axis shows the mean squared error with regard to the
global relevance estimation, and averaged over all 4 test function. The x-axis
shows the process of the calibration, measured in the number of evaluated
parameter vectors, not of total evaluations.

TABLE III

QUALITY OF THE RELEVANCE ESTIMATION FOR DIFFERENT LEVELS OF

REPLICATION. RESULTS ARE AVERAGED OVER ALL TEST FUNCTION.

number of number of number error e error e

replications parameter of evalu- after after

per param. vectors at ations at 1,000 1,000

vector e ≤ 0.1 e ≤ 0.1 vectors eval.

1 404 404 0.08 0.09

2 413 826 0.04 0.07

3 741 2,223 0.05 0.23

5 844 4,220 0.04 0.35

10 236 2,360 0.06 0.37

the number of replications),

• the mean squared distance e after evaluating 1,000

vectors, regardless of the total number of evaluations

involved, and

• the mean squared distance e after a total number of

1,000 evaluations.

The results in Table III and Figure 4 show that a higher

number of replications comes with a heavy computational

penalty, but does not improve the quality of the estimation

significantly. The final mean squared distance after evaluating

1,000 parameter vectors is higher for the calibration with

single replication than for the other cases, but this can

simply be due to the fact that with fewer overall evaluations

REVAC is still converging on the final value. There is no

observable trend in the final results for replication levels of

2–10. We conclude that there is no evidence that replication

of measurements leads to a significant improvement of the

estimation.
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Fig. 5. Time evolution of the average performance of REVAC for three different levels of replications. The x-axis shows the progress of the calibration. The
numbers indicate the number of evaluated parameter vectors, not of total evaluations. The y-axis shows the average logarithmic performance of parameter
vectors that are chosen according to the current distribution. Graphs are smoothed for readability.

TABLE IV

GLOBAL OPTIMUM PERFORMANCE ESTIMATION FOR EACH TEST

FUNCTION.

Sphere Saddle Step Schaffer’s f6

optimum perfor-

mance index F -3,786 -2,770 -2,107 -3,260

Quality of the value calibration. To measure the quality

of the value calibration we use the average performance

ft for each test function t of the globally best calibra-

tions. That is, of all calibrations for a test function t with

different levels of replication we choose the performance

of the best calibration as the global measure. This allows

us to evaluate the results obtained with different levels of

replication without knowing if a better calibration is possible.

The performance of the globally best are shown in Table IV.

We again consider 4 cases:

• the number of parameter vectors needed to achieve an

average performance index of at least twice the best

performance index ft (i.e., -10,000 if ft = −5, 000),

• the number of evaluations needed to achieve the same

performance (which is equal to the number of parameter

vectors times the number of replications),

• the average performance index reached after evaluating

1,000 parameter vectors, regardless of the number of

evaluations involved, and

• the average performance index reached after 1,000 eval-

uations.

Table V and Figure 5 show the results. Performance

levels are almost independent from the level of replica-

tion, depending almost entirely on the number of parameter

vectors that REVAC has evaluated so far. Note especially

how the performance comes close to the maximum around

TABLE V

QUALITY OF THE CALIBRATION WITH DIFFERENT LEVELS OF

REPLICATION. RESULTS WERE FIRST CALCULATED FOR EACH TEST

FUNCTION t, USING THE PERFORMANCE ft OF THE OPTIMUM

CALIBRATION ON THAT FUNCTION, AND THEN AVERAGED OVER ALL

TEST FUNCTIONS.

number of number of number perform. perform.

replications parameter of evalu- index F index F

per param. vectors at ations at at 1,000 at 1,000

vector F ≥ 2ft F ≥ 2ft vectors evalations

1 411 411 -9,954 -9,789

2 397 795 -6,326 -7,250

3 241 722 -4,783 -4,877

5 380 1,901 -10,576 -10,424

10 277 2,772 -9,006 -9,072

parameter vector 400, independent of the level of replication.

Replication does also not improve the absolute capability

of REVAC to reach a better calibration. The performance

penalty however is huge. The amount of computation needed

to reach an arbitrary level of performance increases almost

linearly with the level of replication.

B. Calibrating an Evolutionary Agent-Based Simulation

Here we report on extensive testing of REVAC as part

of ongoing research in evolutionary agent-based economics

[13]. To describe the experimental setup in a nutshell: 200

agents evolve their investment strategies over a period of

500 time intervals. In each interval each agent invests its

current income in a number of economic sectors. The agent’s

income of the next interval is then calculated according to

some production function. The production function changes

dynamically, so that the same investment strategy will lead

to different growth rates at different points in time. Agents

adapt their investment strategies through random mutation
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Fig. 6. Histogram of the EA performance, based on 1000 runs.

and selective imitation in a complex social network. Mutation

here is a random change to the way the investment is

distributed over the economic sectors. For imitation an agent

compares its own economic growth rate to that of its peers

in the social network. If a peer has a higher growth rate it

can copy that peer’s strategy, wholly or in part.

The performance measure that REVAC has to maximize is

the mean log income of the economic agents at the end of a

simulation, corresponding to the preference of an economic

agent with constant relative risk aversion. Figure 6 shows

a typical histogram of the performance measure, based on

1000 runs with identical calibrated parameter settings. The

distribution is skewed and has a flat tail, limiting the value of

measurement replication. The distribution is not lognormal,

but the estimated mean of the logarithmic performance seems

to converge faster than the estimated mean of the perfor-

mance itself and is a more reliable statistic. For this reason

we average over the logarithm of the performance measure

when we report the performance reached by different REVAC

calibrations, even though the calibration is done in the

original domain.

The algorithm layer has 6 parameters that need calibration:

mutation probability, mutation variance, imitation probabil-

ity, imitation ratio (how much of the original strategy is

perserved), imitated fraction (the fraction of well performing

peers that are considered for imitation), and the connectivity

of the social network. For the application layer we consider

four different dynamic economic environments: changes oc-

cur sudden and with high frequency (sudden-high), sudden

and with low frequency (sudden-low), gradual and with

high frequency (gradual-high), and gradual and with low

frequency (gradual-low).

We use REVAC with one, three and ten replications of

measurements to calibrate the algorithm layer to each of the

four economic environments. All other REVAC parameters

are as described before. To improve the reliability of the

calibration, we also look into the option of repeating each

calibration several times, choosing those calibrations that

achieved the highest performance and averaging over their

calibration results. Due to limited computational resources

we used different numbers of calibration for each replication

scheme: 30 for 1 replication, 10 for 3 replications and 3 for

10 replications.

Figure 7 shows the average (log) performance that each

calibration achieved during the last 10% of its evaluations.

Results are sorted per replication scheme to show how the

calibration results vary. With only 3 calibrations for the

10 replication scheme no firm conclusion is possible, but

a general trend is visible: the distribution of calibration

1 replic. (30 calib.)

0 10 20 30
2

2.2

2.4

3 replic. (10 calib.)

0 5 10
2

2.2

2.4

10 replic. (3 calib.)

1 2 3
2

2.2

2.4

Fig. 7. Distribution of calibration results. The y-axis shows the average
performance at the end of the calibration. The x-axes shows the id of the
calibration, sorted by performance. Note the similar median.

results is similar for all numbers of replication, with similar

mean and variance. The same can be observed for each

relevance estimation and each calibrated parameter value: all

calibration results follow a similar distribution, regardless of

the number of measurement replications.

Since not all calibrations achieve the same performance

measure, we decide to take only the better 50% and average

over the result. To compare REVAC with 1 measurement

replication and with 3 measurement calibrations we start

by randomly selecting 10 out of the 30 calibrations with

1 replication. Of these we take the better 5 and compare

their average results to those of the better 5 from the

implementation with 3 replications. From the implementation

with 10 replication we only use the better 2 calibrations.

Table VI shows the average relevance estimation (in absolute

entropy) for every parameter, and the suggested value for

each parameter (the median of the distribution) for one eco-

nomic environment (sudden-low). Average calibrated values

for each parameter are shown in bold, followed by the

measured variance. Note how the measured variances for the

different measurement replications are all of the same order.

TABLE VI

CALIBRATED PARAMETERS. AVERAGE VALUES IN BOLD, FOLLOWED BY

THE MEASURED VARIANCE

relevance estimation (absolute entropy)

1 replication 3 replications 10 replications

mutation probability 0.6 0.4 0.5 0.2 0.3 0.2

mutation variance 0.3 0.1 0.2 0.0 1.2 0.3

imitation probability 0.9 0.3 1.2 0.3 1.1 0.4

imitation ratio 1.2 0.5 1.8 1.0 1.8 1.0

imitation fraction 0.8 0.4 0.7 0.1 0.9 0.5

connectivity 0.1 0.0 0.2 0.1 0.0 0.0

all parameters 3.9 1.0 4.6 1.7 5.3 0.3

suggested parameter values

1 replication 3 replications 10 replications

mutation probability 0.20 0.03 0.21 0.02 0.45 0.09

mutation variance 0.28 0.02 0.30 0.03 0.15 0.01

imitation probability 0.83 0.01 0.86 0.00 0.85 0.01

imitation ratio 0.90 0.00 0.93 0.00 0.93 0.00

imitation fraction 0.85 0.01 0.77 0.01 0.83 0.01

connectivity 0.54 0.04 0.58 0.05 0.51 0.01

To see if each REVAC implementation correctly differ-

entiates between different problems in the application layer

we apply each of the four calibration a thousand time to

each economic environment and average over the logarithm

of the performance measure. This is done separately for
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each replication scheme. Table VII shows the results. Each

row stands for one economic environment and has four

entries, showing the results when applying its own calibration

and the other three calibrations to that environment. The

bold values show the highest value for each row. With

correct differentiation we expect to see the highest value for

each economic environment when parameters from its own

calibration are used. As can be seen, this is almost always

the case. The variance of the measured means is below 0.001

and therefore insignificant.

In general one can conclude that there is no significant

difference in results obtained with 1, 3, or 10 measurement

replication, even though in the case of 1 replication the

total number of evaluations is significantly smaller. With the

exception of one environment, all calibrations differentiate

well between different problems in the application layers.

One of the design goals of REVAC is to provide robust

calibration that work well on similar problems. And indeed,

all calibrations achieve good results on all economic envi-

ronments. To compare, an uncalibrated system has a mean

logarithmic performance of between 1.7 and 2, depending on

the economic environment.

IV. SUMMARY AND CONCLUSION

Measurement replication is the standard statistical method

to reduce variance, but computationally expensive when the

variance is high. We studied the benefit of measurement

replication when applied to REVAC. In the first set of ex-

periments three parameters of a generational GA of variable

performance were calibrated on four different test functions.

We studied the quality and the computational cost of the

obtained relevance estimation and value calibration as a

function of the number of measurement replications.

In the second set of experiments we used REVAC to

calibrate a complex evolutionary economic simulation. 6 pa-

rameters needed calibration for 4 different environments. The

performance measure followed a skewed distribution with a

flat tail. We found that calibration results for different levels

of measurement replication follow a similar distribution, with

a variance of the same order of magnitude. Increasing the

number of measurement replications does not reduce the

variance of the final results. We also found that average

results from more than one calibration are fairly reliable and

that they can differentiate well between different problems

on the application level.

We conclude that in spite of the heavy computational

penalty, more than one replication per measurement does not

lead to a significant quality improvement of the relevance

estimation and value calibration of REVAC. Using REVAC

with only a single replication per parameter vector is suffi-

cient to calibrate an evolutionary algorithm and to estimate

the relevance of each parameter. Most of the information that

REVAC can give on an EA will be produced by using only

a single measurement. If resources permit more evaluations,

it is more advisable to run REVAC several times to increase

the robustness of the results.

TABLE VII

PERFORMANCE OF CALIBRATED SIMULATION. EACH ROW ARE FOUR

CALIBRATIONS APPLIED TO THE SAME DYNAMIC ENVIRONMENT.

1 measurement replication, 10 calibrations

grad.-low grad.-high sud.-low sud.-high

gradual-low 2.628 2.619 2.603 2.582

gradual-high 2.269 2.539 2.524 2.511

sudden-low 2.686 2.713 2.724 2.727

sudden-high 2.089 2.233 2.226 2.256

3 measurement replications, 10 calibrations

grad.-low grad.-high sud.-low sud.-high

gradual-low 2.610 2.591 2.597 2.584

gradual-high 2.375 2.531 2.520 2.512

sudden-low 2.710 2.716 2.733 2.704

sudden-high 2.102 2.247 2.230 2.258

10 measurement replications, 3 calibrations

grad.-low grad.-high sud.-low sud.-high

gradual-low 2.625 2.589 2.595 2.577

gradual-high 2.202 2.540 2.521 2.502

sudden-low 2.691 2.712 2.710 2.713

sudden-high 2.024 2.243 2.202 2.261
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