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Abstract. We present an empirical study on the impact of different
design choices on the performance of an evolutionary algorithm (EA).
Four EA components are considered—parent selection, survivor selec-
tion, recombination and mutation—and for each component we study
the impact of choosing the right operator, and of tuning its free parame-
ter(s). We tune 120 different combinations of EA operators to 4 different
classes of fitness landscapes, and measure the cost of tuning. We find that
components differ greatly in importance. Typically the choice of opera-
tor for parent selection has the greatest impact, and mutation needs the
most tuning. Regarding individual EAs however, the impact of design
choices for one component depends on the choices for other components,
as well as on the available amount of resources for tuning.

1 Introduction

Evolutionary Algorithms (EA) form a class of search methods that work by
incrementally improving the quality of a set of candidate solutions by variation
and selection [B]. The most important components of EAs are thus recombination
and mutation (umbrella term: variation), parent selection, and survivor selection.
To obtain a working EA, each component needs to be instantiated by a specific
operator, e.g., the one-point crossover operator for the recombination component.
Furthermore, an EA has parameters that need to be instantiated by a specific
parameter value, e.g., 0.5 for the crossover rate. In this paper we maintain the
distinction between components and parameters and say that the instantiation
of EA components by concrete operators specifies a particular EA; e.g., uniform
crossover, bit-flip mutation, random uniform parent selection and k-tournament
survivor selection. Further details regarding the parameters do not lead to a
different EA, only to variants of the one defined by the operatorsﬂ A complete
EA design includes the definition of an EA (operators for its components) and
the specification of a particular variant of it (values for its parameters).
Setting EA parameters is commonly divided into two cases, parameter tuning
and parameter control [34]. In case of parameter control the parameter values are
changing during an EA run. This requires initial parameter values and suitable

1 Alternatively, components & operators could also be called symbolic parameters &
values, and we could say these values only define different EA variants.
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control strategies, which in turn can be deterministic, adaptive or self-adaptive.
The problem of parameter tuning is hard because for any given application
there is a large number of options, but only little knowledge about the effect
of EA parameters on EA performance. EA users mostly rely on conventions
(mutation rate should be low), ad hoc choices (why not use uniform crossover),
and experimental comparisons on a limited scale (testing combinations of three
different crossover rates and three different mutation rates). Here we address the
problem of parameter tuning. Our main research questions are:

1. How does the choice of operator for each component contribute to EA per-
formance? To this end we compare the absolute performance achieved with
different combinations of operators.

2. The parameters of which EA component need the most tuning? For this
question we measure the amount of information needed to tune the free
parameter(s) of each operator (e.g., crossover rate or tournament size).

For a systematic exploration of the space of EA configurations we use ex-
haustive search for the combination of operators, and Relevance Estimation and
Value Calibration (REVAC) to tune the free (numeric) parameters. REVAC is
an Estimation of Distribution Algorithm [I4] that tunes an EA by optimizing
marginal probability distributions over the free parameters [T6/T5]. Starting from
a set of uniform distributions and an initial drawing of 100 vectors of random
parameter values, REVAC iteratively generates new marginal distributions of in-
creasing expected EA performance by drawing a new vector of parameter values
from the current distributions, evaluating the vector by measuring the perfor-
mance of the EA with these values, updating all marginal distributions based on
this evaluation, and smoothing the updated distributions. Smoothing is a unique
feature of REVAC that forces all marginal distributions to approach the maxi-
mum Shannon entropy distribution for a given EA performance. This maximized
Shannon entropy is independent from the computational cost of any particular
tuning method and can be used as a general estimator of the minimum amount
of information required to reach a certain level of EA performance. Hence, it
can be regarded as a general indicator of how difficult it is to tune a certain EA
parameter, and how relevant it is to overall EA performance.

Related work includes the general discussion of EA design [2] and parameter
setting [12], in particular within parameter tuning as defined in [3/14]. Through-
out the relevant literature we find that the costs of tuning parameters is largely
ignored. Notable exceptions are the theoretical considerations of [I7] and [9], as
well as the systematic parameter sweeps of [ITI2TI20] and the statistical analysis
of parameters by [6]. In the general field of experimental design, a paradigm shift
that emphasizes a low cost of tuning over the performance of optimal parameter
values was due to [22]. In our field, [7] proposes a meta-GA approach in which
both EA components and EA parameters are tuned and shows the importance
of the right choice for the GA operators. [20] shows how parameter sweeps can
be used for robustness and correlation analysis. [I8] embed sequential parameter
optimization in a wider framework of experimental EA design.
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2 Experimental Setup

For a clear discussion we distinguish three different layers in the analysis of an
EA: the problem/application (here: fitness landscapes created by a generator),
the problem solver (here: an EA), and the method for tuning the problem solver
(here: REVAC). For an unbiased study we use independent software implementa-
tions for each layer and combine them through simple interfaces. For the problem
layer we use a generator of real-valued fitness landscapes that are formed by the
max-set of Gaussian curves in high dimensional Cartesian spaces [8]. Where a
Gaussian mixture model takes the average of several Gaussians, a max-set takes
their enveloping maximum, giving full control over the location and height of all
maxima. For the implementation we followed [I9] on rotated high dimensional
Gaussians, and used 10 dimensions, 100 Gaussians, and the same distributions
over height, location, and rotation of these Gaussians as specified in the exem-
plary problem sets 1-4 of [§]. These sets offer an increasing amount of exploitable
structure to the EA. Set 1 has the least structure, with peaks of different height
scattered at random, while set 4 is the most structured, with peaks that get
higher the closer they get to the origin. For each set, different landscapes are
created by passing a different random seed to the generator. Initialization of all
EA populations is uniform random in the domain of the fitness landscapes. The
optimal fitness value is 1 on each problem instance and the condition for success-
ful termination is defined as “fitness > 0.9999” or 10,000 fitness evaluations”.

For the EAs we use the Evolutionary Computation toolkit in Java (ECJ)
[13], which allows the specification of a fully implemented EA through a simple
parameter file, including the choice of operator for each component and the
values for the free parameters. The ECJ offers several operators for each EA
component, cf. Table [Il For any given EA, the population size parameter is
always present. Most operators have zero or one free parameter. One operator
has 2 free parameters—Gaussian(o,p) with parameters o for step size and p
for mutation probability, which takes the value 1 in case of Gaussian(o, 1). Due
to technical details of the ECJ, only 10 different combinations of parent and
survivor selection operators are possibleE With 4 operators for recombination
and 3 operators for mutation, we have 120 combinations of operators, of which
6 with 2, 33 with 3, 53 with 4, 25 with 5, and 3 with 6 free parameters.

The performance of an EA with a given set of parameter values is measured in
three different ways: SR (Success Rate, percentage of runs with fitness > 0.9999),
MBF (Mean Best Fitness of all runs), and AES (Average number of Evaluations
to Solution of successful runs; undefined when SR = 0). Each EA is tuned 5
times on each of the 4 problem sets. During each tuning session on a given set
REVAC generates 1,000 different vectors of parameter values. Each vector of
values is written to the ECJ configuration file, together with the specification of
the operators and the problem generator. The resulting EA is evaluated on 10
different instances of the problem set, generated by different random seeds.

2 Arguably, (1, \) and (u+ \) define both parent and survivor selection. Here we clas-
sify them under survivor selection because that is what the parameter A influences.
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Table 1. EA components, operators, and parameters used in this study

Component Operator Parameter(s)
population size u

parent tournament parent tournament size

selection best selection number n of best

random uniform -
fitness proportional -

survivor generational -
selection tournament survivor tournament size
random uniform -
(1, A) A
(n+A) A
recombination none -
one-point crossover probability
two-point crossover probability
uniform crossover probability
mutation reset (random uniform) mutation probability
Gaussian(o, 1) step size
Gaussian(o, p) step size, mutation probability

Notes. We follow the naming convention of the ECJ.

For each REVAC tuning session and each EA, the performance after n evalu-
ations is the best performance measured after evaluating n vectors of parameter
values. The average performance after n evaluations is averaged over multiple
tuning sessions on the same EA. We define near best performance as the aver-
age performance after 1,000 evaluations minus 5%. If n is the lowest number of
vectors for which the average performance exceeds this value, then we say that
REVAC needs n evaluations to tune the EA to near best performance. Section [3]
uses this to study the impact of choosing an operator for each component.

In Section @] we analyze the cost and benefits of tuning per EA component.
REVAC continuously maximizes the Shannon entropy of the marginal distribu-
tions that it optimizes during a tuning session. This maximized Shannon en-
tropy provides a generic information-theoretic measure of the minimum amount
of information needed per parameter to reach a given performance level. The
differential Shannon entropy H of a probability density function D over the
continuous interval [a, b] is commonly defined as

b
H(Di ) = —/ D(z)log, D(x) da.

The sharper the peaks of a probability density function, the lower its Shannon
entropy. In order to compare the entropy of distributions that are defined over
different parameter intervals in a meaningful way, we normalize all parameter
intervals to the interval [0, 1] before calculating the Shannon entropy. In this way
the initial uniform distribution has a Shannon entropy of zero, and any other
distribution has a negative Shannon entropy H(Djy 1)) < 0.
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Fig. 1. Near best performance in AES against cost of tuning, by EA component

3 How Does the Choice of Operator Per Component
Contribute to Performance?

Due to space limitations we only present data on one problem set (no. 4) and one
performance measure. We choose to report on the AES, because it only yields 67
data points (those 67 EAs with SR > 0 for which the AES could be calculated).
MBF and SR require 120 data points, making the plots less transparent. The
four scatter plots in Figure[Ilshow the performance of these 67 EAs after tuning,
and the cost of tuning, averaged over 5 tuning sessions per EA. The y-axes show
the near best performance in AES. The z-axes show the number of REVAC
evaluations needed to tune the EA to this performance. Each plot shows the same
EAs but labels them according to the operator choice for a different component.
To read the full specification of an EA, one needs to look at the same location
in all four plots. Table 2] shows the near best performance in AES per operator,
averaged over those EAs that have this operator and terminated with success.
The choice of operator for the parent selection component has the strongest
effect on EA performance. The 16 EAs that are clustered together in the lower
left of each plot of Figure [I] display the best performance and the lowest num-
ber of evaluations needed to reach this performance. These EAs all use tour-
nament selection for parent selection, either tournament selection or random
uniform selection for survivor selection, any recombination operator, and either
Gaussian(c, p) or Gaussian(c, 1) for mutation. On the other hand, those 53 EAs
that never terminated with success share one common feature, namely a lack
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Table 2. Average near best performance in AES per operator

parent selection survivor selection recombination mutation
random unif. 9581 random unif. 7039  none 7994  Gaussian(o, p) 6056
tournament 4514 tournament 6332  one-point 7736  Gaussian(o, 1) 6891
best select. 7661 generational 8299  two-point 7053  reset 9633
fitness prop. - (e, A) 7943  uniform 7325
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Fig. 2. Impact of recombination operators on AES and cost of tuning

of selection pressure. In particular, EAs with random uniform or fitness propor-
tional selection for parent selection almost never terminate with success unless
combined with strong survivor selection pressure.

Of the two variation components, the choice of mutation operator has the
stronger effect on EA performance, as can be seen from the differences in Table[2l
On this problem set reset mutation is the worst mutation operator, and non-
standard Gaussian(c,p) mutation is superior to Gaussian(o, 1) both in terms
of performance and cost of tuning. The latter may come as a surprise, since
the additional free parameter for mutation probability increases the parameter
search space. We conclude that the tuning cost of different operators is not
additive, and that the tuning cost of an operator can only be evaluated in the
context of the overall EA composition.

While choosing the recombination operator has the least effect on EA perfor-
mance, it demonstrates how the choice of operator can depend on the available
resources for tuning. Figure[2enlarges the lower left corner of Figure[Ik, overlaid
by four graphs that show the evolution of the average performance of 4 EAs with
tournament selection for both parent and survivor selection, Gaussian(o, p) mu-
tation, and four different recombination operators. 20 tuning sessions were used
for each graph. While any recombination operator eventually outperforms no re-
combination, an EA with no recombination consistently outperforms EAs with re-
combination after about 30-40 parameter vectors have been evaluated, and it has
at least average performance for anything under 100 evaluated parameter vectors.
Recombination behaves similar over a wide range of operator choices for the other
components and over all 4 problem sets. All in all, for recombination, the choice of
operator can clearly depend on the amount of effort that can be invested in tuning.
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Fig. 3. Correlations with Shannon entropy

4 Which EA Component Needs the Most Tuning?

The previous section related the performance of the near best parameter vector
to the number of REVAC evaluations needed to find this vector and to achieve
this performance. This section takes a rather unconventional approach based on
the average performance when parameter values are drawn from a probability
distribution, namely those created by REVAC after 500 evaluations. To calculate
the performance gain achieved by tuning, this average performance is compared
to the average EA performance when parameter values are drawn from the uni-
form distribution. All results are averaged over 5 REVAC tuning sessions of an
EA on each of the 4 problem sets, 20 tuning sessions per EA. In order to extend
our analysis to all 120 EAs, we use the Mean Best Fitness that an EA achieves
at termination (successful or not), rather than the AES.

Shannon entropy measures the amount of information that a probability dis-
tribution provides on its random values. By definition, the lower the Shannon
entropy of the maximum entropy distribution that achieves a given expected EA
performance, the finer the parameter value has to be tuned in order to achieve
that expected performance. This is demonstrated in Figure [3l The left scatter
plot shows the correlation between the Shannon entropy of the marginal dis-
tribution over the mutation probability and the standard deviation of the best
found parameter values. The z-axis shows the Shannon entropy as estimated by
REVAC. The y-axis shows the average of the standard deviation of the 5 best
found values for each set. The correlation coefficient is 0.8. The point here is
that if the maximum entropy distribution has a higher Shannon entropy, there
is less certainty on the precise parameter value, something that can otherwise
be expensive to assess.

The right scatter plot of Figure [3] shows a clear correlation between a gain in
expected MBF and the Shannon entropy of the maximum entropy distributions
that REVAC has estimated after 500 evaluations. The z-axis shows the aver-
age performance gain in percent. The y-axis shows the Shannon entropy of the
estimated distributions, summed over all tuneable parameters of the EA. Note
that no EA lies above the main diagonal, which shows that there is a minimum
information cost for every percent point of increase in expected performance,
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Table 3. Entropy per EA component & population size aggregated over all EAs

Component Correl. with Shannon Median Sha. Entropy per

& pop. size MBF gain Entropy Component & pop. size
Correl. p-value max median min 2

1) pop. size -0.3 0.002 0 -0.8  -1.5

2) parent sel. -0.3 0.069 0 -0.7 3.7

3) surviv. sel.  -0.5 0.002 0 -0.3  -1.2 .

4) recombin. -0.3 0.004 0 -0.1  -1.0

5) mutation -0.6 0 -0.2  -15 -4.6

entire EA -0.8 0 -0.3 -29 -51 1 2 3 4 5

regardless of the EA specifications. Of those EAs that lie significantly below the
diagonal, most use tournament selection for both parent and survivor selection.
By 500 REVAC evaluations, their MBF had long been maximized. Further tun-
ing only improved their AES, distorting their performance gain-entropy ratio.
Does the strong correlation between total Shannon entropy and the gain in
expected performance carry over to individual EA components? The first two
numeric columns of Table [§ show the correlation coefficient for each component
and its p-value, i.e., the probability to observe this value if the true coefficient
is zero. Only EAs with a tunable operator were considered for the respective
component. The correlation is generally weaker, with coefficients up to -.3. In
other words, the question which component needs tuning in order to improve
the performance of a particular EA depends much on the EA in question.
With respect to the average Shannon entropy per component, we see that not
all components require the same amount of tuning. The right numeric columns
in Table B show the maximum, median, and minimum Shannon entropy that we
observed for each component (and the population size) when instantiated with
an operator that needs tuning. The bar diagram to the right of Table [ allows
a visual comparison of this average median Shannon entropy. Such a skewed
distribution of a need for tuning is commonly known as sparcity of effects.
Typically, mutation requires the highest amount of tuning, and recombina-
tion the least. This rule has many exceptions, as can be concluded from the low
correlation coefficients. While the relative order of Shannon entropy per compo-
nent depends much on the EA in question, consistent patterns can be detected
for small groups of EAs. Take for example the two EAs with tournament selec-
tion for both parent and survivor selection, Gaussian(c, 1) mutation and either
one-point, two-point or uniform crossover. We find that the Shannon entropy
for mutation has the unusually high Shannon entropy of around -.2, while the
parent selection operator has a low Shannon entropy below -3. When combining
the same selection operators with other recombination or mutation operators,
we find that the Shannon entropy for parent selection is back to normal levels,
while it is still comparatively high for mutation. Another example is recom-
bination, which only exhibits a low Shannon entropy for uniform crossover in
combination with either (u+ A), or (i, A). Such irregular patterns are consistent
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over different problem sets and seem to be inherent to specific combinations of
EA components.

5 Conclusions and Further Work

This paper introduces a novel approach to EA design that emphasizes the cost
of tuning. To understand how this cost depends on the choice of operator per EA
component, we combined an enumerative search over operators with REVAC for
tuning their parameters. Our experiments revealed a number of notable insights.

Our tests confirmed the common wisdom that the choice of operator for one
EA component depends on the choice of operator for the other components.
Of all components, the choice of operator for parent selection has the biggest
impact on EA performance. Furthermore, EAs differ greatly in the amount of
tuning needed to reach a given performance, and this tuning cost depends on
the overall setup of the EA, rather than the number of free parameters. With
regard to recombination, we found that the best EA setup depends on the time
and effort one can permit to tune the EA.

To measure the need for tuning per component we use the Shannon entropy
of maximum entropy distributions as estimated by REVAC, which expresses
the minimum amount of information that is needed to achieve a given expected
EA performance. It is a generic information-theoretic measure that is indepen-
dent of any particular tuning algorithm. Inspired by theoretical considerations,
it was validated by a strong correlation with the standard deviation of best solu-
tions found during multiple tuning sessions. Based on this measure we observed
that the need for tuning follows a skewed distribution, and that while total
Shannon entropy is strongly correlated with performance gain, the correlation
per component is weak. The question which component needs the most tuning
depends on the precise composition of an EA and can not be answered on a
general level. It needs to be addressed by the operational analysis of individual
EAs. Also, we recommend that a scientific discussion of individual operators ad-
dresses its effect on the overall tunability of an EA and on the need for tuning per
component.

Regarding the scope of our results, an empirical study can only use a limited
set of test problems, and strictly speaking our findings are only proven for our
test problems. However, we consider it unlikely that the complex picture that
has emerged here is an artefact of the test problems. What remains to be studied
is whether the way in which the need for tuning per component depends on the
choice of operators is different on other complex fitness functions.

Last but not least, this paper serves as a demonstration of an open source
tool kit that can be used to analyze the need for tuning of EA parameters
on a given application. Further documentation, Matlab implementations and
graphical demonstrations of REVAC are available on the web sites of the
authorsd.

3 http://www.few.vu.nl/~volker /revac and http://www.few.vu.nl/~gusz
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