
UNIVERSITAT DE LES ILLES BALEARS

DEPARTAMENT DE CIÈNCIES MATEMÀTIQUES I INFORMÀTICA

PROGRAMA DE DOCTORAT EN INFORMÀTICA

PH.D. THESIS

A document submitted in partial satisfaction
of the requirements for the degree Doctor

Improving Error Containment and Reliability of
Communication Subsystems Based on

Controller Area Network (CAN) by Means of
Adequate Star Topologies

Manuel Barranco

SUPERVISORS

Julián Proenza
Luı́s Almeida

Fem constar que aquesta memòria ha estat realitzada, sota la di-
recció de Julián Proenza Arenas i Luı́s Miguel Pinho de Almeida,
per Manuel Alejandro Barranco González i que constitueix la
seva tesi doctoral.

Palma, març de 2010

Signat: Manuel Alejandro Barranco González
Estudiant de doctorat

Signat: Julián Proenza Arenas
Co-director de la tesi
Professor Titular d’Universitat
Departament de Ciències Matemàtiques i Informàtica
Universitat de les Illes Balears

Signat: Luı́s Miguel Pinho de Almeida
Co-director de la tesi
Professor Associado
Faculdade de Engenharia
Dep. de Eng. Electrotècnica e de Computadores
Universidade do Porto

To my parents and Elia.

There was Eru, the One, who in Arda is called Ilúvatar and he
made first the Ainur, the Holy Ones, that were the offspring
of his thought, and they were with him before aught else was
made. And he spoke to them, propounding to them themes of
music; and they sang before him, and he was glad. But for a
long while they sang only each alone, or but few together, while
the rest hearkened; for each comprehended only that part of the
mind of Ilúvatar from which he came, and in the understanding
of their brethren they grew but slowly. Yet ever as they listened
they came to deeper understanding, and increased in unison and
harmony.

En el principio estaba Eru, el único, que en Arda es llamado
Ilúvatar, y primero hizo a los Ainur, los Sagrados, que eran
vástagos de su pensamiento, y estuvieron con él antes de que
se hiciera alguna otra cosa. Y les habló y les propuso temas
de música; y cantaron ante él y él se sintió complacido. Pero
por mucho tiempo cada uno de ellos cantó solo, o junto con
unos pocos, mientras el resto escuchaba; porque cada uno
sólo entendı́a aquella parte de la mente de Ilúvatar de la que
provenı́a él mismo, y eran muy lentos en comprender el canto
de sus hermanos. Pero cada vez que escuchaban, alcanzaban una
comprensión más profunda, y crecı́an en unisonancia y armonı́a.

First fragment of Ainulindalë - The Music of the Ainur, J.R.R.
Tolkien (1892-1973)

Resum

Els busos de camp han estat amplament utilitzats en sistemes de control distribuı̈ts,
incloent sistemes amb garanties de funcionament, ja que aquesta tecnologia pro-
porciona robustesa elèctrica i baix cost. Aquest és el cas del protocol Controller
Area Network (CAN), el qual és extremadament popular en aquest context degut
principalment al seu baix preu, la seva facilitat de configuració, la seva robustesa
elèctrica, i perquè proporciona una latència determinista d’accés al medi, aixı́ com
bons mecanismes de detecció i contenció d’errors. Fins ara, els busos de camp
tı́picament s’han basat en una topologia de bus simple, la qual planteja dubtes so-
bre la idoneı̈tat d’aquestes tecnologies per a aplicacions amb altes garanties de
funcionament. Un dels principals problemes d’una topologia de bus és que els
seus components estan interconnectats sense els mecanismes adequats de contenció
d’errors. Això fa que una única fallada en qualsevol component de la xarxa (com
per exemple un controlador de comunicacions, un transceptor, un connector o un
cable) pugui generar errors que es propaguin per tot el subsistema de comunica-
cions, provocant una avaria generalitzada de comunicació. Aquesta caracterı́stica
persisteix inclús quan s’utilitzen de forma separada o conjunta tant busos repli-
cats que proporcionen tolerància a fallades, com mecanismes addicionals per a
incrementar la contenció d’errors. Aquesta limitació es deu principalment a les
conegudes com fallades de proximitat espacial i de mode comú. Aquestes fallades
afecten simultàniament a més d’un component del sistema, reduint o inhabilitant
els seus mecanismes de detecció d’errors i tolerància a fallades.

A diferència dels busos, les topologies d’estrella poden oferir una millor con-
tenció d’errors i independència de fallades i, per tant, poden conduir potencialment
a l’obtenció de sistemes de comunicació més robustos. Concretament, el centre
d’una topologia d’estrella, per exemple un concentrador, té una visió privilegiada
de les comunicacions i podria fer-se servir per a detectar i aı̈llar fallades que ocor-
rin als medis i als nodes. Més encara, les topologies d’estrella no sofreixen ni
fallades de proximitat espacial ni de mode comú. Per a moltes aplicacions, aquests
beneficis potencials compensen el major cost que tı́picament tenen les topologies

d’estrella. De fet, el domini de les xarxes d’àrea local (LAN) ja fa temps que ha
adoptat topologies d’estrella per a Ethernet, una tecnologia que avui en dia s’està
adaptant a l’entorn de l’automatització industrial. Moviments similars s’han do-
nat en el domini dels sistemes encastats, on noves tecnologies de busos de camp,
com ara el Time-Triggered Protocol TTP/C i FlexRay en sistemes de control dins
vehicles, han evolucionat devers topologies d’estrella. Aquestes dues tecnologies
ofereixen acobladors (concentradors) d’estrella simple i replicada per tal de propor-
cionar una millor contenció d’errors i/o tolerància a fallades. Fins ara, CAN, que és
probablement la xarxa més amplament utilitzada en sistemes distribuı̈ts encastats,
s’ha mantingut bàsicament com una xarxa de bus simple. Diferents investigadors
també han proposat topologies d’estrella per a CAN. Malauradament, aquestes es-
trelles no ataquen el problema de la contenció d’errors ni la tolerància a fallades,
o simplement tracten un conjunt reduı̈t de possibles fallades. Fins i tot moltes
d’elles ni tan sols són compatibles amb CAN o presenten problemes i limitacions
elèctriques.

Aquests avantatges potencials de les estrelles que encara no han estat explotats
per a CAN, ens motivaren a declarar que és possible millorar la contenció d’errors
i la tolerància a fallades de sistemes basats en aquest protocol, canviant la seva
topologia de bus simple per topologies d’estrella adequades. A més, nosaltres
afirmem que aquesta millora de contenció d’errors i tolerància a fallades pot real-
ment augmentar la fiabilitat d’aquests sistemes; on fiabilitat s’entén com la proba-
bilitat de qué un sistema proporcioni el seu servei de forma ininterrompuda durant
un determinat interval de temps. Estem especialment interessats en la fiabilitat
perquè les aplicacions més noves contı́nuament requereixen un nivell més elevat
d’aquest atribut, tal i com succeeix en els sistemes crı́tics on una fallada o un
funcionament incorrecte pot causar un gran perjudici a les persones, a l’entorn,
a equipaments molts costosos i, fins i tot, la pèrdua de vides humanes.

Per tal de validar aquestes afirmacions, en aquesta dissertació dissenyem i con-
struı̈m dues topologies d’estrella inèdites, CANcentrate i ReCANcentrate. Des
d’un principi es va imposar un requisit al seu disseny, a saber, preservar totes
les especificacions de CAN, per tal de mantenir totes les bones propietats rela-
cionades amb les garanties de funcionament que aquest protocol ja aconsegueix
per sı́ mateix, aixı́ com per a assegurar la compatibilitat d’aquestes estrelles amb
components CAN comercials i aplicacions i protocols basats en CAN. La primera
de nostres propostes, CANcentrate, és una topologia d’estrella simple el concen-
trador de la qual incorpora mecanismes inèdits per a detectar i contenir errors als
seus ports d’origen, de tal forma que millora la contenció d’errors de CAN més
enllà de les capacitats de qualsevol altra estrella simple que hagi estat proposada
prèviament per a aquest protocol. La nostra segona proposta, ReCANcentrate,

és una topologia d’estrella replicada que inclou dos concentradors similars al de
CANcentrate. Addicionalment, cadascun dels concentradors de ReCANcentrate
pot contenir els errors generats per l’altre concentrador. Més encara, ReCANcen-
trate inclou mecanismes per a tolerar fallades que afecten no tan sols a un dels
concentradors, si no també als enllaços i als controladors de comunicacions dels
nodes.

Finalment, per tal de corroborar quantitativament els beneficis que les topolo-
gies d’estrella poden aportar a la fiabilitat del sistema, hem modelat i avaluat, util-
itzant Stochastic Activity Networks (SANs), la fiabilitat de sistemes basats en CAN,
CANcentrate i ReCANcentrate. És important tenir en compte que tot i que hi ha
hagut un interès creixent en la utilització de topologies d’estrella en tecnologies
de busos de camp diferents de CAN, fins on nosaltres sabem, aquest és el primer
intent de quantificar apropiadament l’increment de garanties de funcionament que
les estrelles poden atènyer en comparació amb els busos.

Abstract

Field-buses have been extensively used in distributed control systems, including
dependable ones, as this technology offers electrical robustness and low cost. This
is the case of the Controller Area Network (CAN) protocol, which is extremely
popular in this context mainly due to its low cost, simple configuration, electric
robustness, deterministic medium-access delay, and good error-detection and con-
tainment features. However, field-buses have typically relayed on a simplex bus
topology, which poses some uncertainties about their suitability for highly depend-
able applications. One of the main problems of a bus topology is that since it at-
taches components to each other without the appropriate error-containment mech-
anisms, a single fault in any network component (such as a communication con-
troller, transceiver, connector, or wire) can generate errors that propagate through-
out the communication subsystem, leading to a generalized failure of communi-
cation. This characteristic persists when using replicated buses to provide fault
tolerance, additional facilities to increase error containment in a bus, or both. The
main problem is the so-called spatial-proximity and common-mode failures. These
failures simultaneously affect more than one component in the system, reducing or
disabling its error-detection and fault-tolerance mechanisms.

In contrast, star topologies can provide better error containment and fault inde-
pendence, thus potentially leading to more robust communication systems. Specif-
ically, the center of a star topology, e.g. a hub, has a privileged view of the com-
munication, and could be used to detect and isolate faults occurring at media
and nodes. Moreover, star topologies do not suffer from spatial-proximity and
common-mode failures. These potential benefits, in several applications, compen-
sate for star topologies’ typical higher cost. The local area network (LAN) do-
main, for example, has long moved to star topologies with Ethernet, a technology
nowadays being adapted to the industrial automation domain. Similar moves oc-
curred in the embedded systems domain, where newer field-bus technologies, such
as the Time-Triggered Protocol TTP/C and FlexRay for in-vehicle systems, have
also evolved to star topologies. These two technologies offer simplex or replicated

star couplers (hubs) for providing better error-containment and/or fault-tolerance.
However, CAN, which is probably the most widely used network in distributed em-
bedded systems, remained essentially a bus-only network. Therefore, researchers
have also proposed star topologies for CAN. Unfortunately, these stars address
neither error containment nor fault tolerance, or deal with only a small set of pos-
sible faults. Moreover, some of them are not even fully compatible with the CAN
protocol or present electrical problems and limitations.

The unexploited potential benefits of stars in CAN motivated us to claim that
it is possible to improve error containment and fault tolerance in CAN-based sys-
tems by changing its simplex bus topology to adequate star topologies. Moreover,
we state that this improvement of error containment and fault tolerance can actually
enhance the reliability of these systems; where reliability is understood as the prob-
ability with which a system continuously delivers its intended service throughout
a given interval of time. We are specially interested on reliability since the level of
this attribute required by newer applications is continuously increasing, as happens
in critical ones where failure or malfunction may result in serious injury to people,
environment, high-priced equipment or even in loss of lives.

In order to validate these claims, in this dissertation we design and implement
two novel star topologies, CANcentrate and ReCANcentrate. One requirement was
imposed from the beginning on their design, namely to preserve all the specifica-
tions of CAN, so that they keep all the dependability properties already achieved by
CAN and they are compatible with commercial-off-the-shelf (COTS) CAN com-
ponents and CAN-based applications and protocols. The first one of our proposals,
CANcentrate, is a simplex star topology whose hub incorporates novel mecha-
nisms to detect errors and contain them at their ports of origin, thereby enhancing
error-containment of CAN beyond the capacities of any other simplex star topol-
ogy previously proposed for this protocol. Our second approach, ReCANcentrate,
is a replicated star topology that includes two hubs similar to the CANcentrate’s
one. However each one of them can also contain errors generated by the other
hub. Moreover, ReCANcentrate includes mechanisms to tolerate faults occurring
not only at one of the hubs, but also at links and in the communication controllers
of the nodes.

Finally, to quantitatively corroborate the system reliability benefits of adequate
star topologies, we modelled and evaluated, using Stochastic Activity Networks
(SANs), the reliability of systems relying on CAN, CANcentrate and ReCANcen-
trate. It is important to note that despite the growing interest in using stars in field-
bus technologies other than CAN, to our best knowledge, this is the first attempt
to appropriately quantify the dependability benefits stars achieve when compared
with buses.

Acknowledgments

Al empezar a escribir estas lı́neas, me doy cuenta de lo difı́cil que es agradecer en
tan poco espacio tantas cosas a tantas personas. Con total seguridad, me olvidaré de
alguien o de algo, pues incluso hay quien con sus acciones nos ayuda, aun cuando
nosotros no nos demos cuenta.

No obstante, en primer lugar quisiera intentar agradecer lo mucho que me han
aportado las personas con las que he trabajado más estrechamente: mis supervi-
sores Julián Proenza y Luı́s Almeida, ası́ como Guillermo Rodrı́guez-Navas. To-
dos ellos me recibieron con los brazos abiertos y me arroparon desde un principio,
guiando mis pasos por el estimulante y muchas veces arduo mundo de la inves-
tigación y la escritura. Han sido y son mi soporte y ejemplo, y rara es la vez en
la que no amplı́o o cambio mi punto de vista tras conversar con ellos. De verdad
que hace tiempo que perdı́ la noción de la cantidad de horas que, por ejemplo,
Julián ha estado ahı́, escuchando, leyendo y corrigiendo cuanto escribo; o las ve-
ces que Luı́s me ha ayudado a crear, a impulsar y a redondear trabajos. Es más,
he encontrado en ellos a verdaderos amigos con los que compartir viajes (a veces
surrealistas), alegrı́as, penas, conversaciones filosóficas y, en el caso de Guillermo,
hasta consejos sobre Yoga.

Ası́ mismo, he tenido mucha suerte de poder trabajar y compartir espacio con las
personas del Departament de Matemàtiques i Informàtica de la UIB, en especial
con los demás miembros del Grup de Sistemes, Robòtica i Visió (SRV). Fortuna
como la de compartir despacho con José Guerrero, con el que he sobrevivido a
microclimas invernales, del que siempre recibo una bienvenida y del que siempre
encuentro respuesta a preguntas técnicas. Le estoy igualmente agradecido a per-
sonas como Alberto Ortiz, Yolanda González y Javier Antich, que me han apoyado
y apoyan en el área de docencia y que siempre han estado disponibles cuando
las he necesitado. Por supuesto, tampoco me puedo olvidar de Biel Oliver, An-
toni Burguera, Francesc Bonin, Xisco Bonnin, Bartolomé Garau y Óscar Valero,
cuya permanente alegrı́a e ironı́a son contagiosas. Finalmente, también me gus-
tarı́a agradecer a David Geßner su interés, dedicación y profesionalidad en la real-

ización de tareas técnicas directamente relacionadas con esta tesis; trabajar con él
es sinónimo de inspiración, optimización y mejora.

En este punto recuerdo con gran cariño a muchas personas del Departamento
de Electrònica Telecomunicaçoes e Informática de la Universidade de Aveiro en
Portugal. Con ellos me sentı́ siempre como en casa; pues su hospitalidad no parece
tener lı́mites. En especial me gustarı́a nombrar a Ricardo Marau, Valter Silva,
Arnaldo Oliveira y Pedro Duarte magnı́ficos profesionales y mejores humanos si
cabe, con un gran sentido de la amistad y cuyos consejos técnicos fueron vitales en
las tareas relacionadas con los prototipos presentados en este documento. También
me gustarı́a agradecer a José Alberto Fonseca, Paulo Pedreiras, Joaquim Ferreira,
Fernando Morgado, Frederico Santos y Francisco Borges su amistad, su hospital-
idad y, como no, su ayuda para conocer la cultura portuguesa (y brasileña). Sin
lugar a dudas, todas estas personas me han hecho pasar muchos de los mejores
momentos de mi vida.

In fact, the time that I spent in Aveiro was so intense that it is impossible not
to smile when I remember people like Tullio and Agnese. You are just fantastic!
Thank you very much for your friendship, hospitality and for all those good trips
we made together through Portugal and Mallorca. Another very important person
that helped me a lot is Elisabete Souza. In fact, she was my first friend in Aveiro
and she is one of the best and more emotive persons I have ever met. She was
also the person who firstly taught me Portuguese and I am very grateful to her
for introducing me to the Brazilian culture. Of course, I cannot forget to thank
Matthias Herrmann for everything. You are that kind of person that is surrounded
by a special aura of friendship, freedom and adventure. In particular, you showed
me the most funny and amusing lifestyle of Aveiro; you and the people from Casa
dos Loucos are just unforgettable.

Finalmente, en lo que concierne a las personas que hicieron de mi estancia en
Aveiro un sueño irrepetible, no sé cómo expresar mi gratitud y nostalgia hacia
Doña Maria Do Santo Cristo. Ella es para mı́ como una segunda madre, pues me
recibió en su casa como si me conociese de toda la vida y, de hecho, no sé hasta
qué punto no era ası́ en realidad. Le estoy muy agradecido por la cantidad de cosas
que aprendı́ en su hogar y en el de su familia, desde los rudimentos de la preciosa
lengua portuguesa, algunas de cuyas frases hechas me vienen a la cabeza casi todos
los dı́as, hasta la variedad, sutileza y calidad de su gastronomı́a, pasando por ese
humor ácido y escatológico que les caracteriza y que tanto me recordó siempre al
Mediterráneo. Siempre dice que le hice mucha compañı́a, pero en realidad vivir
con usted fue como disfrutar de una segunda infancia.

I am also deeply indebted to all the anonymous reviewers of several publica-

tions for their comments and advices, some of which help me in improving impor-
tant parts of the work carried out in the context of this dissertation, such as those
concerning some paramount aspects of dependability evaluation; to Nicolas Navet
from INRIA for the encouraging and clarifying conversations about automotive
embedded systems; to Juan Pimentel from Kettering University for his valuable
opinions concerning CANcentrate and ReCANcentrate, as well as for his personal
invitation to participate at the SAE World Congress; to Francisco Vasques from the
University of Porto, Thilo Sauter from the Vienna University of Technology, and
Thomas Nolte from the Mälardalen University for encouraging me in publishing
the results of my research.

Me gustarı́a también agradecer el cariño y la alegrı́a de todas las personas con
las que he compartido parte de mis viajes a congresos. Me acuerdo especialmente
de Marga Marcos, Elisabet Estévez y Federico Pérez de la Universidad del Paı́s
Vasco; saber que uno se va a encontrar con gente tan divertida y natural es un
aliciente extra para investigar.

Ya fuera del ámbito universitario, me gustarı́a agradecer el apoyo de mis amigos
más cercanos. Especialmente a Miguel Ángel Nieto por su amistad incondicional,
su interés por mi trabajo, y nuestras discusiones sobre la utilidad y los lı́mites de la
ciencia y la tecnologı́a.

En cuanto a mi familia, tengo que decir que es irrepetible. Le doy las gracias a
Mamaı́ta y al Abuelo (que Dios tenga a ambos en su gloria), ası́ como a Juanfra
por creer en mı́ y por hacerme sentir tan querido. De la misma forma, le estoy muy
agradecido a mi familia de Cartagena, que siempre se interesa y está orgullosa
de mı́; sobretodo a Isabel, la Yaya, Antonio y David. En especial me acuerdo de
mi primo Tono, que en paz descanse; siempre echaré de menos nuestras marchas,
conversaciones y muestras de cariño de ingeniero a ingeniero ;-). También le doy
las gracias a mi familia “polı́tica”, por su abundante hospitalidad gallega y por el
aprecio que siempre me demuestran.

No sé cómo agradecer a mi madre y a mi padre todo lo que han hecho y hacen por
mı́. Sin ellos no serı́a nada. Desde el dı́a en que nacı́ no me han fallado ni una sola
vez. Lo mismo puedo decir de mis hermanos José y Cristina y de mi cuñado Óscar,
mis mejores amigos, que siempre me empujan a evadirme momentáneamente para
hacer más llevadero el trabajo. Sólo espero poder corresponderos, aunque sé que
es casi imposible.

Por último, quisiera agradecerle a Elia su amor y su paciencia. A pesar de ser
tan transparente, ella es para mı́ un misterio y una fuente de inspiración que nunca
llegaré a entender. Ojalá hubiese forma de agradecerte tu alegrı́a y todo lo que
haces y soportas por mı́.

Contents

List of Figures xvii

List of Tables xx

1 Introduction 1
1.1 Problem statement . 1
1.2 The role of star topologies in improving dependability of CAN . . 3
1.3 The thesis . 4
1.4 Main contributions . 5

1.4.1 The simplex star CANcentrate 5
1.4.2 The replicated star ReCANcentrate 6
1.4.3 Quantifying the dependability improvement 7

1.5 Organization of the document . 11

2 An overview on dependability 13
2.1 Introduction . 13
2.2 Basic concepts and terminology 13
2.3 Fault tolerance basics . 19
2.4 Fundamentals of fault-tolerant systems design 22
2.5 Dependability concepts introduced for this work 23
2.6 Conclusions . 24

3 Controller Area Network (CAN) protocol 27
3.1 Introduction . 27
3.2 CAN Physical Layer . 28
3.3 CAN Data Link Layer . 29

3.3.1 Frame format . 29
3.3.2 Bit-wise arbitration mechanism 31
3.3.3 Frame encoding . 31
3.3.4 Error detection and signalling 31

xi

xii CONTENTS

3.3.5 Fault treatment . 34
3.3.6 Overload signalling . 35

3.4 Types of faults in CAN networks 36
3.5 Conclusions . 37

4 Potential solutions for improving dependability in CAN 39
4.1 Introduction . 39
4.2 Replicated bus topology . 40
4.3 Reconfigurable bus topology . 40
4.4 Bus guardian . 41
4.5 Star topologies . 42

4.5.1 Passive star couplers . 43
4.5.2 Active star couplers . 44
4.5.3 Bridge star couplers . 45

4.6 Conclusions . 47

5 CANcentrate basics 49
5.1 Introduction . 49
5.2 Fault model . 49
5.3 Design rationale . 50
5.4 Internal structure of the hub . 52
5.5 Hub synchronization in the presence of errors at the coupled signal 55
5.6 Considerations on the cabling and bit rate 58
5.7 Conclusions . 61

6 CANcentrate error-detection and fault-treatment mechanisms 63
6.1 Introduction . 63
6.2 Error-detection and fault-treatment rationale 64
6.3 Current State signals for the Enabling/Disabling units 66
6.4 Stuck-at-recessive faults . 67
6.5 Stuck-at-dominant faults . 68
6.6 Bit-flipping faults . 69
6.7 Reintegration policy . 70
6.8 Conclusions . 72

7 CANcentrate mechanisms for detecting bit-flipping errors 75
7.1 Introduction . 75
7.2 Bit-flipping error-detection rationale 75
7.3 Error detection during normal transmission 77

7.3.1 Error detection on the transmitter contribution 78
7.3.2 Error detection on a receiver contribution 81

CONTENTS xiii

7.4 Error detection upon the occurrence of an error 83
7.4.1 Error detection after an error occurs in the resultant frame 83
7.4.2 Error detection after an error occurs on a port contribution 87

7.5 Error detection during an error signaling 89
7.6 Error detection during an overload signaling 93
7.7 Conclusions . 94

8 Analysis of the mechanisms that deal with bit-flipping faults 97
8.1 Introduction . 97
8.2 Complexity of the mechanisms 98
8.3 Advantages of the mechanisms 99

8.3.1 Enhanced error detection 100
8.3.2 Enhanced fault treatment 102

8.4 Limitations of the mechanisms and further enhancements 103
8.4.1 Unfair error detection during the error signaling 104
8.4.2 Unfair error detection after an arbitration misunderstanding 106

8.5 Penalization policy of the BFC Manager 108
8.6 Conclusions . 111

9 CANcentrate prototype 115
9.1 Introduction . 115
9.2 Description of the prototype . 115
9.3 Experimental platform . 118
9.4 Functional tests . 121
9.5 Performance measurements . 123
9.6 Conclusions . 124

10 Reliability evaluation of CANcentrate 127
10.1 Introduction . 127
10.2 Metrics . 130
10.3 Modelling limitations . 132
10.4 Modelling assumptions . 133

10.4.1 Implementation assumptions 134
10.4.2 System components and entities 136
10.4.3 Basic statistical fault properties 137
10.4.4 Failure mode assumptions 139
10.4.5 Coverage assumptions 146

10.5 Modelling formalism . 153
10.6 Modelling rationale . 154

10.6.1 A dedicated SAN submodel per entity 155

xiv CONTENTS

10.6.2 A dedicated SAN submodel per entity type 158
10.6.3 A dedicated SAN submodel per region type 160

10.7 CANcentrate model . 167
10.7.1 nodeKernelsT submodel 168
10.7.2 nodeConnsT submodel 171
10.7.3 hubKernel submodel . 176
10.7.4 branchesFailureEval submodel 176
10.7.5 CANcentrateFaiEval submodel 177

10.8 CANbus model . 179
10.8.1 nodeKernelsB submodel 180
10.8.2 nodeConnsB submodel 183
10.8.3 inBusSections and edBusSections submodels 187
10.8.4 CANbusFaiEval submodel 188

10.9 Quantitative assessment . 189
10.9.1 NFT/AR vs number of nodes 191
10.9.2 FT/AR1 vs number of nodes 192
10.9.3 FT/AR1 vs system fault-tolerance coverage 194
10.9.4 FT/AR1 vs fail-silent node proportion 197
10.9.5 FT/AR1 vs bit-flipping coverage of the hub 201
10.9.6 FT/AR1 vs bit-flipping proportion 203
10.9.7 FT/AR1 vs out-of-fault-model proportion 208
10.9.8 FT/AR1 vs wires and connectors’ failure rates 211
10.9.9 FT/AR1 vs Hub Core failure rate 216

10.10Conclusions . 218

11 ReCANcentrate 227
11.1 Introduction . 227
11.2 Redundancy approaches in CAN 228
11.3 Fault model of ReCANcentrate 230
11.4 Design rationale . 231
11.5 Internal structure of the hub . 235
11.6 Error-detection and fault-treatment mechanisms of the hub 237
11.7 Node’s media management strategy 238

11.7.1 Faults and discrepancies 240
11.7.2 Treatment of discrepancies and fault-tolerance strategy . . 242

11.8 Considerations on the cabling and bit rate 242
11.9 Prototype implementation . 244
11.10Functional tests . 245

11.10.1 Experiments under fault-free conditions 246
11.10.2 Experiments under the presence of faults 246

CONTENTS xv

Stuck-at recessive faults at links and interlinks 247
Stuck-at-dominant and bit-flipping faults at links 248
Stuck-at-dominant and bit-flipping faults at interlinks . . . 249
Stuck-at-dominant and bit-flipping faults at a hub 250

11.11Performance measurements . 251
11.12Conclusions . 252

12 Reliability evaluation of ReCANcentrate 255
12.1 Introduction . 255
12.2 Metrics . 256
12.3 Modelling assumptions . 257

12.3.1 Implementation assumptions 257
12.3.2 System components and entities 258
12.3.3 Failure mode assumptions 258
12.3.4 Coverage assumptions 259

12.4 ReCANcentrate model . 262
12.4.1 Modelling rationale . 263
12.4.2 Some important preliminary remarks 267
12.4.3 ReCANcentrateFaiEval submodel 269
12.4.4 nodeKernelsR submodel 273
12.4.5 nodeConnsR submodel 282
12.4.6 hubInConns submodel 287
12.4.7 hubKernels submodel . 292
12.4.8 fauLPevalAtNode submodel 298
12.4.9 fauLPsEvalAtHubs submodel 303
12.4.10 fauLPevalAtHub submodel 307
12.4.11 fauIPevalAtHubs submodel 311
12.4.12 fauHubEvalAtHub submodel 315
12.4.13 fauHubEvalAtNodes submodel 319
12.4.14 ofmFauEval submodel 326

12.5 Quantitative assessment . 332
12.6 Conclusions . 335

13 Conclusions and future work 341
13.1 Thesis validation and contributions 342

13.1.1 First assertion . 342
13.1.2 Second assertion . 344
13.1.3 Third assertion . 346
13.1.4 Fourth assertion . 347

13.2 Publication of results . 349

xvi CONTENTS

13.2.1 Preliminary publications 349
13.2.2 Publication of results presented in this dissertation 349
13.2.3 Publication of future work’s first results 353

13.3 Applicability of the contributions 353
13.4 Future research . 355

Bibliography 359

Index 367

List of Figures

1.1 Examples of failures of the communication system 2

2.1 Hardware component’s mortality curve 17

3.1 CAN base frame format (CAN 2.0 A) of the Data frame 29
3.2 CAN base frame format (CAN 2.0 A) of the Remote frame 29

4.1 Common-mode failure in replicated buses 40
4.2 Spatial-proximity failures in replicated buses 41
4.3 Common-mode failure when using a bus guardian 42
4.4 A useless bus guardian in the presence of a medium failure 42

5.1 Architecture of CANcentrate . 51
5.2 Configuration of the transceivers to connect a node to its link . . . 52
5.3 Internal structure of the hub . 53
5.4 Hybrid topology combining CANcentrate and CAN 58
5.5 Comparison between cabling lengths in a star and in a bus 59

6.1 Internals of the Enabling/Disabling Unit 65
6.2 Reintegration policy schema of CANcentrate 71

9.1 Hub prototype . 116
9.2 Basics of the CANcentrate node prototype 117
9.3 Faulty node prototype . 119
9.4 Experimental platform . 120

10.1 Bus layouts . 135
10.2 Basic internal architecture of the Philips SJA1000 CAN controller 143
10.3 Error-containment capabilities of a CAN controller in a CAN bus . 149
10.4 Error-containment capabilities of a CAN controller in CANcentrate 151
10.5 Basic structure of an entity submodel 156

xvii

xviii LIST OF FIGURES

10.6 Basic structure of a regions submodel 162
10.7 CANcentrate model . 168
10.8 nodeKernelsT submodel . 169
10.9 nodeConnsT submodel . 171
10.10hubKernel submodel . 176
10.11BranchesFailureEval submodel 177
10.12CANcentrateFaiEval submodel 178
10.13CANbus model . 180
10.14nodeKernelsB submodel . 181
10.15nodeConnsB submodel . 184
10.16inBusSections and edBusSections submodels 187
10.17CANbusFaiEval submodel . 189
10.18NFT/AR vs number of nodes . 192
10.19FT/AR1 vs number of nodes . 193
10.20FT/AR1 vs system’ fault-tolerance coverage for 3 nodes 195
10.21FT/AR1 vs system’ fault-tolerance coverage for 15 nodes 196
10.22FT/AR1 vs fail-silent node proportion for 3 nodes 199
10.23FT/AR1 vs fail-silent node proportion for 15 nodes 200
10.24FT/AR1 vs bit-flipping coverage of the hub for 3 nodes 202
10.25FT/AR1 vs bit-flipping coverage of the hub for 15 nodes 203
10.26FT/AR1 vs bit-flipping proportion for 3 nodes 206
10.27FT/AR1 vs bit-flipping proportion for 15 nodes 207
10.28FT/AR1 vs ofm proportion for 3 nodes 209
10.29FT/AR1 vs ofm proportion for 15 nodes 210
10.30FT/AR1 vs cable and connector’s failure rate for 3 nodes 213
10.31FT/AR1 vs cable and connector’s failure rate for 15 nodes 214
10.32FT/AR1 vs hub’s failure rate for 3 nodes 216
10.33FT/AR1 vs hub’s failure rate for 15 nodes 218

11.1 Example of a network partition in a replicated star topology 230
11.2 Architecture of ReCANcentrate 232
11.3 Architecture of a ReCANcentrate’s node 233
11.4 Possible simplified architecture of a ReCANcentrate’s node 234
11.5 New internal structure of the hub 236
11.6 Analogy between ReCANcentrate and CAN with two controllers . 239
11.7 Injection of stuck-at-dominant/bit-flipping faults at links 249
11.8 1st injection of stuck-at-dominant/bit-flipping faults at interlinks . 250
11.9 2nd injection of stuck-at-dominant/bit-flipping faults at interlinks . 251

12.1 ReCANcentrate model . 263

LIST OF FIGURES xix

12.2 Paths of the coverage process . 265
12.3 ReCANcentrateFaiEval submodel 270
12.4 nodeKernelsR submodel . 276
12.5 nodeConnsR submodel . 283
12.6 hubInConns submodel . 289
12.7 hubKernels submodel . 294
12.8 fauLPevalAtNode submodel . 299
12.9 fauLPsEvalAtHubs submodel . 304
12.10fauLPevalAtHub submodel . 309
12.11fauIPevalAtHubs submodel . 312
12.12fauHubEvalAtHub submodel . 317
12.13fauHubEvalAtNodes submodel 321
12.14ofmFauEval submodel . 327
12.15NFT/AR vs number of nodes . 333
12.16FT/AR1 vs number of nodes . 334

List of Tables

10.1 FS proportion as a function of the node’s error-containment coverages . 198
10.2 20% bit-flipping proportion sensitivity analysis configuration 204
10.3 Attachments’ failure rates configuration for 15 nodes 212
10.4 CAN bus, CANcentrate and ReCANcentrate models’ common parameters 224
10.5 Parameters specific to the CAN bus model 225
10.6 Parameters specific to the CANcentrate model 226

12.1 Parameters specific to the ReCANcentrate model 339

xxi

Chapter 1

Introduction

1.1 Problem statement

The Controller Area Network (CAN) protocol [ISO93] is a field-bus which ful-
fills the communication requirements of many distributed embedded systems. In
particular, CAN provides electrical robustness [FOFF04] and good real-time per-
formance with very low cost. Due to this, the CAN protocol is nowadays used
in a wide range of applications, such as in-vehicle communication and factory
automation. Furthermore, there is still a high interest in researching new solutions
based on the mentioned properties of CAN [PPA+09] [GAW09] [Cav05] [NNH05]
[PF04].

However, the use of CAN in applications that require a high level of depend-
ability, e.g. in safety-critical systems, has been controversial due to some depend-
ability limitations [PPA+09] [Fre02]. Some of these limitations are caused by
the bus topology it relies on [Kop03] [BKS03]. The main drawback of any pro-
tocol using a bus topology is that the structure of the network presents multiple
components, i.e. cables, connectors and circuits in nodes, which have direct elec-
trical connections to each other without proper error containment [Lap92] [Lap01]
[Kop03] [ABST03]. As a consequence, a fault in the bus interface of one node
may generate errors that propagate to the remaining nodes and effectively prevent
further communication to take place, leading to a global failure of the communica-
tion subsystem. This situation is depicted in case A of Figure 1.1 in which a fault
in the medium access circuitry of node 2, e.g. with the transmitted bits stuck at a
fixed value, blocks the communication channel and none of the nodes can commu-
nicate with each other. Similar situations can happen with short-circuits in the bus
transmission medium or the connectors.

1

2 Chapter 1. Introduction

Node
1

A

Node
2 Node

4 Node
3

B C

Figure 1.1: Examples of failures of the communication system

Moreover, a bus is shared by all communication paths between every subset of
nodes. Consequently, a physical disruption in just one point necessarily destroys
many of those paths, thereby dividing the network in several subnetworks or par-
titions [Kop03]. This is depicted in case B of Figure 1.1 in which a disruption
in the bus mid point splits the network into two partitions and blocks any further
communication between nodes 1 and 2 with nodes 3 and 4. Moreover, even if
both partitions can continue operating independently, i.e. the respective nodes can
still communicate with each other, the global communication capabilities may have
been substantially reduced.

Finally, case C shows the situation in which there is a partition in the local con-
nection of node 4 with the bus that does not affect the bus integrity and which
leaves the inputs of the node’s reception port floating. Consequently, node 4 be-
comes isolated but the communication among the remaining nodes is unaffected.
From the communication system point of view, this is the desired behavior when
a fault occurs on one node or on one node’s bus interface, because it exhibits the
least impact on the communication system itself.

It can be deduced from the above discussion that a bus topology presents multiple
points where a single fault in any of them generates errors that cannot be contained
and that, thus, propagate throughout the communication subsystem. This multiplic-
ity represents a problem, because a higher probability of error propagation should
negatively affect the dependability of the overall system. This is even clearer if we
notice that each one of those points represents a single point of failure, i.e. a point
whose failure causes the failure of the overall system. In fact, the presence of a sin-
gle point of failure could be unacceptable for many highly reliable systems, which
raises an additional objection against the use of CAN for these applications. As a
consequence, it would be necessary to provide CAN with additional fault-tolerance
mechanism aimed at removing all single points of failure from the communication
system.

Moreover, note that the lack of adequate error-containment and/or fault-tolerance
mechanisms persists when adopting replicated buses, bus guardians or both. Repli-
cated buses are used to tolerate both the propagation of errors through bus replicas
and faults happening at those replicas. The use of bus guardians is devoted to

1.2 The role of star topologies in improving dependability of CAN 3

containing errors generated at nodes. More specifically, a bus guardian controls a
node’s transmissions and blocks them when they are not legal in both the time do-
main, such as transmissions carried out in the wrong instant, and the value domain,
such as transmissions using wrong data. The main problem of replicated buses and
bus guardians is that they may suffer from spatial-proximity and common-mode
failures. A spatial-proximity failure occurs when a fault affects several compo-
nents because of their physical proximity. For instance, if a mechanical action de-
stroys a node, it is likely that such action will also partition all the replicated buses
to which that node is connected, or that this action also affects the corresponding
bus guardian. Similarly, a common-mode failure happens when different compo-
nents of the system fail in the same way. It can be caused by spatial proximity of
components or because different components share the same resources. For exam-
ple, nothing prevents a faulty node from issuing errors to all bus replicas, thereby
blocking any further communication. Another example could be a bus guardian
that shares components with the node it controls, such as the clock oscillator or the
power supply. In such a situation, a single fault in one of these components will
affect the node and its bus guardian equally, so that the bus guardian will likely no
longer detect and isolate certain faults.

1.2 The role of star topologies in improving dependability
of CAN

Conversely to bus guardians and replicated buses, star topologies might represent
an effective solution for containing errors and tolerating faults. In a simplex star
topology, each node is connected to a central element or hub by its own link. The
most important advantage of this feature is that it is possible to design the hub
as an element that has a privileged view of the system, knowing the contributions
received from each node through the corresponding links. In this way, the hub can
disable any faulty node’s contribution in order to contain the corresponding errors
at their port of origin. Moreover, a replicated star can be used in order to provide
tolerance to hub and link failures. In this sense, an adequate hub can play a key
role since it can provide the degree or error-containment needed to prevent errors
from propagating from a faulty hub or a faulty link to the rest of the system.

Finally, another important advantage of a star is that links come into spatial prox-
imity only at the star’s center, significantly reducing the probability that links suffer
from spatial-proximity failures. Moreover, since the hub can be designed to be in-
dependent from the nodes, it is hardly possible that the hub and the nodes exhibit
spatial-proximity or common-mode failures.

4 Chapter 1. Introduction

A broader analysis of communication system dependability aspects can be found
in [Kop02] concerning a comparison between TTP/C [KG94] and FlexRay [Fle05],
two recent field-bus communication technologies proposed for automotive sys-
tems. This analysis also discusses the specific issue of network topology and
shows that the qualitative benefits of a star topology over a bus are clear. More-
over, [PPA+09], which deals with dependability aspects in the particular case of
CAN for automotive systems, addresses the advantages of using star topologies for
this technology. In fact, benefits of stars over buses are the reason why the LAN
domain has long ago moved to star topologies with Ethernet, a technology that
is now extensively used in the industrial automation and large embedded systems
domains.

Different simplex star topologies have already been proposed for CAN. How-
ever, as will be explained later, although they reduce the impairment provoked by
spatial-proximity and/or common-mode failures, none of them takes full advantage
of the potential error-containment and fault-tolerance capacities of the star topol-
ogy. Thus, the general objective of the work herein presented is to improve the
dependability of CAN-based systems by means of adequate star topologies.

1.3 The thesis

This document presents the work we have conducted in order to demonstrate the
truthfulness of the following thesis:

“It is possible to improve the CAN features related to dependability by means of
adequate star topologies. Specifically it is possible to improve error containment
of CAN by using an adequate simplex star topology whose hub is provided with
adequate mechanisms that contain errors at their ports of origin. Moreover, this
improvement can be bigger than the one achieved for CAN with previously pro-
posed simplex star topologies. Thanks to its better error containment, an adequate
simplex star topology is suitable to increase the reliability of a CAN-based system
that already accepts or tolerates node failures or disconnections. Additionally, it
is possible to enhance both error containment and fault tolerance of CAN and of
CAN-based simplex star topologies by means of an adequate replicated star topol-
ogy that includes two hubs that can contain errors at their ports of origin and also
errors generated by the other hub, and that includes mechanisms to tolerate faults
at links and at one of the hubs. Furthermore, thanks to these improved depend-
ability features, the use of an adequate replicated star topology is appropriate to
increase the reliability of both CAN-based systems that do not accept or tolerate
node failures or disconnections and CAN-based systems that can do that.”.

1.4 Main contributions 5

1.4 Main contributions

1.4.1 The simplex star CANcentrate

Our first main contribution that is aimed at improving dependability of CAN-
based systems is the design and implementation of a simplex star topology we
call CANcentrate [BPRNA06]. CANcentrate includes an active hub provided with
enhanced mechanisms that detect and contain errors generated by faults affecting
nodes and/or links. The most innovative feature of CANcentrate is that its hub can
contain errors that no other existing star topology for CAN is able to detect. More-
over, it presents neither the implementation limitations nor the incompatibilities
with the CAN protocol exhibited by other CAN-based stars.

In fact, two requirements were imposed from the beginning on the CANcen-
trate’s design. First, to ensure a complete compatibility with the CAN protocol.
As a consequence of this compatibility with the standard CAN specification, com-
mercial off-the-shelf (COTS) CAN components can be used for implementing the
nodes of a CANcentrate network. Moreover, CANcentrate can be the communi-
cation infrastructure of any CAN-based application and CAN-based protocol. The
second requirement was to preserve all the characteristics of the CAN protocol that
are related to dependability. Since CANcentrate is fully compatible with CAN, this
requirement was accomplished by taking advantage of the dependability-related
features already provided by CAN. For instance, particular care was taken to main-
tain the frame format and all mechanisms for channel error detection and signalling
exactly as they are defined in CAN [ISO93].

In order to formalize the error-containment capabilities of a given topology such
as the CAN bus or CANcentrate, we define the concept of k-severe failure of com-
munication as a situation in which few than N − k (with k ≥ 0) nodes of the
N nodes that constitute the complete system can operate and communicate among
them. By extension a point of k-severe failure of communication is a point such that
a single fault in it may cause a k-severe failure of communication. This definition
subsumes the commonly referred to as single point of failure, since a single point
of failure is a point of k-severe with k = N .

In this sense, we can say that a CAN bus presents multiple points of k-severe
failure, since the errors generated by a single fault are likely to propagate and
thus prevent more than k nodes from communicating. Conversely, notice that in
CANcentrate each node is connected to the hub by means of a dedicated link,
so that a fault affecting a node or its link can be isolated by disabling only the
respective hub port. As a consequence, in CANcentrate, each fault prevents a
maximum of one node from communicating, except if the fault affects the hub.

6 Chapter 1. Introduction

This implies that a CANcentrate star does not include multiple points of k-severe
failure, but only one: the hub itself.

The existence of a point of k-severe failure has a negative impact on the system
dependability in the sense that, although the system may be resilient to the failure
of such a point, it could not deal with a situation in which the errors propagate
causing the failure of other parts of the system. However, although the hub still
represents a point of k-severe failure, we consider the simplex star topology to be
a good choice. Note that a simplex star has one point of k-severe failure, whereas
the bus includes multiple of these points. Thus, the star should yield dependability
benefits, since it minimizes the number of subsystems that are affected by errors
when faults occur. Certainly, the capacity of a system to take profit from this
star’s advantage depends on its ability to deal with subsystems that are polluted
with errors. In particular, a system should obtain greater benefits from the simplex
star as the number of subsystems that are not essential for its correct operation
increases.

Moreover, as pointed out above, a point of k-severe failure can actually represent
a single point of failure. In this sense notice that, in fact, not only the hub, but also
all the points of k-severe failure of a bus topology are single points of failure.
Therefore, when a fault occurs, it is more likely that an overall failure takes place
in a system that relies on a bus topology.

Finally, notice that it is also possible to improve the error containment and thus
the system dependability, if the probability of error propagation is reduced by in-
creasing the reliability of the points of k-severe failure. This is because to increase
the reliability of a point of k-severe failure is equivalent to decrease the probability
with which this point fails and then causes a harmful propagation of errors. The
star topology also represents an advantage over the bus in this aspect, since it is
easier to improve reliability for just one point of k-severe failure, i.e. the hub, than
for the multiple points of k-severe failure in a bus topology.

1.4.2 The replicated star ReCANcentrate

However, it is still possible to further improve the error containment by means of
a star topology, if spatial redundancy is used at the hub level, so that the errors
provoked by a hub failure are also contained. Therefore, the second main contri-
bution of our work is the design and implementation of an adequate replicated star
topology we call ReCANcentrate [BAP05]. As in the case of CANcentrate, this
replicated star has been designed to be fully compatible with CAN and to preserve
the good features of CAN related to dependability.

1.4 Main contributions 7

ReCANcentrate includes two hubs and each node is normally connected to both
of them by means of two dedicated links. ReCANcentrate is provided with mecha-
nisms that are able not only to prevent the propagation of errors generated by faulty
nodes and/or links, but also to contain the errors that any of the two hubs may is-
sue through any of its ports. Notice that the fact that a hub issues errors through a
given port does not necessarily mean that the hub is completely faulty. A hub can
be partially affected by a fault, so that it can correctly deliver its services to some
nodes, while sending errors to other nodes.

However, the most innovative feature of ReCANcentrate is that, besides error-
containment, it further provides mechanisms to tolerate faults at the communica-
tion subsystem level. On the one hand, ReCANcentrate tolerates faults that com-
pletely affect one the two hubs (no matter which one) and that prevent all nodes
from communicating through it, e.g. faults that lead one of the two hubs to con-
stantly issue errors through all its ports. On the other hand, ReCANcentrate toler-
ates faults happening at the connections of the nodes to the hubs, so that each node
is able to communicate as long as it is connected to a non-faulty hub port.

The ability of ReCANcentrate to tolerate faults at the communication subsys-
tem can yield important benefits in terms of system dependability. Firstly, the
capacity of ReCANcentrate to tolerate the complete failure of a hub implies that
it definitively eliminates all points of k-severe failure from a CAN network. This
is because to tolerate a fault that provokes a complete hub failure is equivalent to
contain the errors generated by a fault that, otherwise, will propagate to all nodes.
Secondly, to tolerate the failure of one of the connections (no matter which one)
of a node to a hub goes beyond the capacity for preventing that other nodes are in-
directly affected by the errors associated with such a failure. Conversely, what we
additionally obtain by tolerating the failure of these connections is to increase the
capacity of each node for communicating when it suffers from faults that directly
affect its connections with the rest of the system.

1.4.3 Quantifying the dependability improvement

Nevertheless, despite the good properties of star topologies, no one has appro-
priately quantified the dependability benefits they achieve when compared with
buses. Stars are inherently more resilient to spatial-proximity and common-mode
failures, can yield better error containment and, in particular, replicated stars can
even provide fault tolerance. However, they also include more hardware compo-
nents, thereby increasing the probability that faults and errors occur. Therefore,
it is necessary to quantify the effect that the above-mentioned advantages of star
topologies, e.g. better error-containment, have on the system dependability. More-

8 Chapter 1. Introduction

over, to quantify the dependability improvement that a star topology can achieve
in the context of field-bus communications in general, and in the case of CAN
in particular, it is essential to justify the interest of the designs presented in this
dissertation.

Therefore, the third main contribution of the work herein presented is the quan-
tification of the benefits that the dependability-related mechanisms of CANcentrate
and ReCANcentrate, i.e. their error-containment and fault-tolerance features, yield
in terms of specific dependability attributes when they are compared with the CAN
bus. To our best knowledge, no one has appropriately quantified the dependability
improvement of stars over buses. For instance, no one has taken into account the
ability of hubs to contain errors, or the fact that more hardware is normally needed
to connect a node to a hub than to connect a node to a bus. Moreover, it is notewor-
thy that such an appropriate quantification has not been carried out for technologies
other than CAN either.

As it will be explained later, dependability is a broad concept that embraces
several attributes such as for example the maintainability, availability and reliabil-
ity. A star topology can yield benefits in terms of those and other dependability
attributes. For example, as concerns maintainability, the hub can be designed to
provide information about what ports have been diagnosed as faulty, thereby facili-
tating the work of the maintenance personnel. Moreover, the information provided
by the hub concerning the location of faults can reduce the time needed to repair
the system. Thus, a star topology can also yield benefits in terms of system avail-
ability, since short repair times increase the probability with which the system is
ready to deliver its service at a given instant of time.

However, notice that it is not always possible to have access to a distributed em-
bedded control system in order to carry out repair activities. Moreover, sometimes
it is not even acceptable that a system momentarily interrupts its service. The most
important dependability attribute in those cases is the reliability, which stands for
the probability with which a system continuously delivers its intended service dur-
ing a given interval of time.

The benefits that the error-containment capabilities of a star can yield in terms of
reliability depend on the ability of the system to correctly deliver its service when
only a subset of nodes can still operate and communicate among them. This was
already pointed out before, when we discussed about the potential advantages that
a system can obtain from the fact that a star topology eliminates the multiple points
of k-severe failure present in a bus. At this point, notice that to contain errors in a
star implies the disconnection of a given hub port and, thus, of the corresponding
node. Hence, error containment becomes useless if the system is not able to accept

1.4 Main contributions 9

or tolerate that, in order to prevent the propagation of errors, at least one node is
isolated. The same happens if the system does not accept or tolerate the failure
of at least one node. In general, to isolate M nodes in order to contain errors is
useless if the system does not accept or tolerate the isolation or the failure of those
M nodes.

Certainly, there are systems that do not accept the failure of any node and that
require that all nodes communicate with each other. Because of the reasons just
explained above, error containment is useless for them and, thus, the mechanisms
of CANcentrate (or of any simplex star topology) intuitively do not represent any
advantage for those systems in terms of reliability when compared with the CAN
bus. In fact, it is expected that a simplex star topology reduces the reliability of
those system since, in general, it needs more hardware than a bus to interconnect
a given ensemble of nodes, e.g. the hub and extra cabling, and thus, it is expected
that faults are more likely to occur in the star.

Nevertheless, as concerns ReCANcentrate, it is not a priori so evident whether it
reduces or improves the reliability of those systems. This is because, besides error
containment, ReCANcentrate also provides fault-tolerance mechanisms that could
compensate its extra hardware, and that could even increase the probability with
which all nodes are able to communicate with each other. For instance, imagine a
ReCANcentrate star and a CAN bus where each node is connected to both hubs by
means of two dedicated links, and where a CAN node is connected to the bus just
by means of a single stub. Since a link is generally larger and includes more wire
than a stub, the probability of failure of the former is bigger. Then, a situation in
which a node loses its connection to one of the hubs is more likely than a situation
in which a node loses its connection to the bus. However, a ReCANcentrate node
that suffers from a fault in one of its two links can still communicate using its
remaining non-faulty link, whereas a CAN node is no longer able to communicate
if its stub fails.

Anyway, although it seems quite clear that a better error containment does not
improve reliability in the above-mentioned systems, it is not so obvious that it
cannot increase the reliability of systems that can continue delivering their services
as long as a minimum number of nodes can still operate and communicate among
them. In fact, it is possible that error containment could significantly improve the
reliability of these systems. To better understand this issue, image two systems,
one that does not include adequate error-containment mechanisms and another one
that does include those mechanisms, but at the expense of being more prone to
faults. Notice that a single fault can be enough to provoke the failure of the first
system, because the errors that fault generates are not correctly contained and, as
a consequence, they can affect too many nodes. Conversely, in the second system,

10 Chapter 1. Introduction

the number of nodes that are affected by the errors a fault generates is minimized
and, hence, more than one fault are needed to affect too many nodes and lead to a
system failure. This ability of the second system to minimize the impact of faults is
very valuable, because the occurrence of multiple faults is much less probable than
the occurrence of just one. Therefore, although the second system is more prone
to faults, its probability of failure can be significantly lower than the probability of
failure of the first system.

Fortunately, there are plenty of systems that can just accept the failure or the
disconnection of some nodes and, then, deliver their services in a degraded mode.
An example could be a factory plant with N automated production lines working in
parallel, in which it can be accepted that up to k production lines are inoperative,
as long as a minimum throughput is guaranteed. Another example is the intra-
building communication system of a hotel or a house, whose main objective is to
provide service to the maximum number of rooms, even when faults occur.

Moreover, there are also examples of systems that can fully deliver their services,
while tolerating the loss of up to k of N nodes. This is the case of highly reliable
(safety-critical) systems that use mechanisms to tolerate node failures. Fault tol-
erance is normally achieved in those systems in a systematic way by means of
redundancy, either of hardware, software, information or time. One typical way of
introducing such a redundancy is to include several circuits that provide the same
service in parallel for the system to be able to continue its operation despite the fail-
ure of a specific maximum number of these redundant circuits. Each one of these
redundant circuits is called a replica. Error containment becomes thus fundamental
to guarantee fault independence among replicas in those systems. Otherwise, er-
rors generated by a fault can propagate to several replicas, thereby provoking their
failure and possibly the failure of the whole system. An example of this kind of
systems can be the air-conditioning control system of an aircraft, which extensively
uses redundancy to tolerate node, actuator and sensor failures. Similar examples
could be x-by-wire control applications, which are devoted to substituting the me-
chanical and hydraulic control mechanisms in vehicles by an electronic control
system.

Among all the dependability attributes, the quantitative evaluation presented in
this work focuses on the reliability. Notice that although CAN has been exten-
sively used in a broad range of applications, including highly reliable ones such
as aerospace systems, e.g. [KHJN03], the level of reliability required by newer
applications is continuously increasing. Those new reliability requirements have
raised considerable uncertainties about the suitability of CAN for those systems,
as pointed out before. This situation is clear in the avionics and the automotive
industry domain, for which alternative highly reliable protocols have been recently

1.5 Organization of the document 11

developed, e.g. TTP/C [KG94] and FlexRay [Fle05], in order to complement or
compete with CAN (as can be seen in [HR09] or [DZY09] for instance). In fact,
those newer protocols have also adopted star topologies, given the reliability bene-
fits that stars are supposed to provide.

However, this interest in reliability does not mean that this work is exclusively
devoted to highly reliable and fault tolerant systems. Conversely, error containment
and reliability are desirable for many other applications, as mentioned above. In
fact, non highly reliable applications are also demanding increasing levels of error
containment and reliability, since the requirements in number of nodes and ser-
vices are also growing. This can be seen, for instance, in the automotive or in the
home automation domains, where comfort or entertainment features are gaining in
importance.

1.5 Organization of the document

The rest of the document is organized as follows. Firstly, Chapters 2 and 3 respec-
tively give an overview on the dependability concepts and on the CAN protocol
features that are relevant to this dissertation.

Chapter 4 briefly describes previous solutions proposed in the literature to im-
prove dependability of CAN networks, and highlights their main pros and cons.
Then, Chapter 5 presents CANcentrate, explains its main characteristics and dis-
cusses its performance when compared with CAN. The internal mechanisms of
the CANcentrate hub to deal with errors and faults are thoroughly explained in
Chapter 6.

Since the detection and containment of errors generated by a specific type of
fault, called bit-flipping fault, is particularly complex, the two next chapters are
dedicated to this issue. Specifically, Chapter 7 deeply describes the mechanisms
the hub of CANcentrate includes for detecting bit-flipping errors, whereas Chap-
ter 8 further analyzes the pros and cons of the hub mechanisms for both detecting
bit-flipping errors and diagnosing bit-flipping faults, and proposes some further
enhancements.

After the explanation of the CANcentrate design, Chapter 9 describes its first
prototype implementation. It also shows some experiments we conducted using
this prototype in order to evaluate the mechanisms CANcentrate includes to deal
with errors and faults, as well as to measure its performance. Finally, Chapter 10
describes the work we carried out in order to quantitatively evaluate the improve-
ment of reliability achieved when using CANcentrate instead of CAN.

12 Chapter 1. Introduction

As concerns ReCANcentrate, Chapter 11 describes its main characteristics, fo-
cusing on the mechanisms it includes to tolerate faults, as well as on its main dif-
ferences when compared with CANcentrate. This chapter also presents a first pro-
totype implementation of ReCANcentrate and the experiments we carried out to
check its main error-containment and fault-tolerance capabilities and to measure
its performance. Afterwards, Chapter 12 thoroughly explains the reliability mod-
els of ReCANcentrate and quantitatively compares the reliability achievable by
equivalent systems relying on CAN, CANcentrate and ReCANcentrate.

Finally, Chapter 13 summarizes the work presented in this document, explains
how the thesis has been validated, highlights the main contributions of this disser-
tation and their practical applicability, specifies the publications that resulted from
the work herein presented, and proposes future work.

Chapter 2

An overview on dependability

2.1 Introduction

As already explained, the work presented in this dissertation is devoted to improv-
ing both error containment and fault tolerance of CAN networks by means of ad-
equate star topologies. This better error containment and fault tolerance can yield
benefits in terms of some dependability attributes, such as reliability.

However, dependability embraces other attributes and it is related to a wide range
of different concepts. Thus, although in previous chapter we briefly outlined some
of these concepts that give an idea about our objectives and how we are going
to achieve them, it is still necessary to further clarify some aspects to precisely
understand the work herein presented.

This section is devoted to providing an overview on these concepts. Particu-
larly, we adopted the terminology proposed by Laprie in [Lap92] [Lap01], which
is widely accepted by the research community that works on dependability issues.

2.2 Basic concepts and terminology

It is quite difficult to find a concise definition that reflects the meaning of depend-
ability. Maybe a good definition of it can be the one provided in [Lap92] [Lap01]:

“Dependability is defined as the trustworthiness of a computer system such that
reliance can justifiably be placed on the service it delivers [Car82]”.

This definition tries to encompass the attributes that constitute dependability: re-
liability, availability, safety, security, performability, maintainability and testabil-

13

14 Chapter 2. An overview on dependability

ity. In this document we focus on the attribute of reliability, which can be defined
as the ability of a system to continuously deliver its intended service throughout a
given interval of time [Sho02].

Note that reliability differs from other dependability attributes. For instance,
availability, which stands for the ability of a system for being ready to deliver its
service at a given instant of time [Sho02], does not require the system to unin-
terruptedly provide its service. Another concept different from reliability is the
performability, which is a measurement of how well a system operates during an
interval of time in the presence of faults [Sho02]. In this sense, note that a system
can still operate in a degraded but acceptable way in the presence of faults. How-
ever, a system that operates in a degraded mode cannot bet always considered as
delivering its intended service.

There are also several impairments to dependability and it is necessary to clearly
understand how they are related to each other. These impairments are faults, errors,
and failures, and there exists a cause-effect relationship between them. A fault is a
defect in the behavior of a system or in the way the system is designed or built. A
fault can generate an error (or errors), which is an incorrect result delivered by the
system. Finally, an error can lead to a failure, which implies that the comportment
of the system deviates from the service it is intended to. A system that presents
a failure is said to be faulty, whereas a system that does not present a failure is
correct or non-faulty.

Notice that if we decompose a system into different subsystems or components,
then the failure of a given subsystem can be considered as a fault from the point of
view of the overall system. In this way, a faulty subsystem represents a fault that
can generate errors that lead the entire system to fail. Moreover, if a entire system
SA forms part of a bigger system SB , then the failure of SA can be considered as a
fault in SB and so on. This is the reason why sometimes it is not so easy to differ-
entiate between a fault and a failure. In fact, to talk about one or the other depends
on whether we are considering a subsystem or a whole system, respectively.

A fault can be active or dormant [Lap92] [Lap01], meaning that it generates er-
rors or it does not respectively. Depending on the frequency with which a fault
cycles between the active and the dormant states, it can be classified as permanent,
intermittent or transient1. A permanent fault is always active and constantly gener-
ates errors. In contrast an intermittent and a transient fault cycle between the active
and the dormant states. The difference between these two last types of faults is that
the former cycles quickly when compared with the mechanisms devised to handle

1This notation actually corresponds to the one used in [DT89] for classifying errors depending
on their cycling between the effective and the latent states

2.2 Basic concepts and terminology 15

the errors it generates, whereas the second one does not. In addition, a transient
fault can also be a fault that is the consequence of a temporary external influence.

At this point, it is necessary to make some brief remarks about how faults can
be characterized by means of reliability measures. First, note that the time that
elapses until a system fails is normally referred to as the Time To Failure of that
system (TTF). More specifically, if X is a random variable that corresponds to the
TTF of a system, then F (t) is called the Cumulative Distribution Function of X
(or the Time To Failure distribution) and can be expressed as:

F (t) = Probability(X ≤ t)

where F(t) has the following properties:

F (t) = 0 for t < 0

0 ≤ F (t1) ≤ F (t2) if t1 < t2

limt→∞F (t) = 1

If we focus on the probability of failure within an infinitesimal interval of time,
then we can write F (t) in terms of its probability density function, f(t), as:

F(t) =

∫ t

0

f(t’) dt’

Another important function that is used to characterize faults is the reliability
function of the system, R(t), i.e. the function that expresses the probability that
the system correctly operates throughout the interval of time [0, t]. Note that R(t)
is a continuous monotonic nonincreasing function that is defined in the interval
[0,∞) and whose values range between 0 and 1. Moreover, it is assumed that
limt→∞R(t) = 0, so that we can write R(t) as:

R(t) =

∫

∞

t

f(t’) dt’ = 1 − F (t)

The functions R(t) and f(t) allow defining an important measure of reliability
called failure rate. The failure rate of a system is the instantaneous probability with
which the system fails, conditioned by the fact that the system has not failed so far.
It can be written as:

λ(t) =
f(t)

R(t)

16 Chapter 2. An overview on dependability

It is worth highlighting the difference between f(t) and λ(t). f(t)∆t is the un-
conditional probability with which a system fails within the interval [t, t + ∆t];
whereas λ(t)∆t is the conditional probability that the system fails within the inter-
val [t, t + ∆t], given that it has not failed up to t.

λ(t), which is also referred to as the hazard rate or the age-dependent failure
rate [STP96]2, is one of the mostly used measures to analyze the reliability of
hardware components, such as electronic ones. Thus, this measure is of paramount
importance in the context of this dissertation since, as will be explained later in
Chapters 10 and 12, we analyze the reliability of a system that relies on a CAN
bus, CANcentrate and ReCANcentrate exclusively considering permanent hard-
ware faults.

If we study the failure rate of a hardware component as a function of time, we
obtain what is called the mortality curve [STP96]. Figure 2.1 depicts the typical
shape of this curve, which is based on empirical experiences. As can be seen in this
figure, the curve is divided into three regions. The infant mortality period is the
extent of time during which the component may exhibit faults related to intrinsic
imperfections or defects normally due to the manufacturing processes. This period
is characterized by a high failure rate that rapidly decreases with time. The second
period is known as the steady-state operation period. It is the largest period and
it is characterized by a low an almost constant failure rate. Faults occur in this
period normally as a consequence of external conditions. The last period is called
the wearout period and corresponds to the last stage of the component’s life, where
the failure rate monotonically increases with time. Nevertheless, notice that the
characteristics of the wearout period are based on the experience with mechanical
components, which start to wear with age. In contrast, data concerning electronic
devices that has been acquired during many years indicate that the failure rate of an
electronic component is not expected to exhibit the properties of this third period,
but to remain low and almost constant during all its life [KNM90].

Besides those remarks about different reliability measures, it is necessary to dis-
cuss the effect of faults (either permanent, intermittent or transient) on the service
delivered by a system or a subsystem. In this sense, notice that the way in which a
failure manifests is commonly referred to as its failure mode. For instance, a faulty
node in a network can simply stop communicating, or it can fail by corrupting the

2There are authors that distinguish between the concepts of hazard rate and failure rate [KNM90].
Specifically, they consider that the former is devoted to characterizing components’ failures in non-
maintainable systems, whereas the failure rate aims at characterizing these failure in maintainable
ones. In this sense, what we understand as failure rate in the context of this dissertation corresponds
to the concept of hazard rate in [KNM90]. However, these two concepts are numerically equivalent
under specific conditions. For more details concerning this issue refer to [KNM90]

2.2 Basic concepts and terminology 17

Figure 2.1: Hardware component’s mortality curve

data conveyed through the medium. For practical reasons, it is common to clas-
sify the failure modes following the hierarchy specified in [Pol96]. This hierarchy
specifies the following types of failures.

• Byzantine or arbitrary failures. A system that suffers from this failure
mode exhibits an incorrect behavior with no restriction neither in the value
nor in the time domain. This type of failure is also referred to as fail-
uncontrolled or even malicious. An arbitrary failure can be malicious in
the sense that the system may exhibit a “two-faced” behavior or an inconsis-
tent failure, delivering different results to different users, so that users have
a different perception of the service delivered by the system. Moreover, an
arbitrary failure can also be considered as malicious when it leads the system
to deliver forged results or messages that belong to other systems, i.e. when
the system exhibits a masquerading failure.

• Authentification detectable Byzantine failures. A system that presents this
failure mode behaves in a fail-uncontrolled manner, but with one restriction:
it cannot forge results or messages that are calculated or delivered by other
systems. In other words, this failure mode is equivalent to the Byzantine
failure mode, but it cannot provoke that the system impersonates another
one.

• Incorrect computation failures. When a system shows this failure mode,
it fails by issuing incorrect values either in the value or in the time do-
main. This failure mode is actually not included in [Pol96], but introduced
in [BMD93] as incorrect computation faults.

18 Chapter 2. An overview on dependability

• Performance failures. A system that suffers from this type of failure de-
livers results that are correct at the value domain, but that are incorrect in
the time domain. In other words, the system delivers results that are either
too early or too late. This failure mode is also referred to as timing failures
in [BMD93].

• Omission failures. A system exhibits an omission failure when it does not
deliver a requested result, i.e. when it delivers an expected result with an
infinite delay. Notice that an omission failure does not necessarily imply
that the system permanently stops delivering its service. In this sense, the
system may respond or not when it is requested for something.

• Crash failures. A system crashes or is crashed when it permanently stops
delivering its service. Hence, it can be considered that a crashed system
omits any further requested service.

• Stopping (Fail-stop) failures. When a system suffer from a stopping failure
it exhibits a special case of a crash failure. Specifically, it permanently issues
the same result or value to any request, e.g. the last value that was correctly
delivered.

Each one of these categories specifies a set of failure modes with different de-
grees of harshness. In this way, Byzantine and stopping failures are the least benev-
olent [Pro07] and the most benevolent ones, respectively. Also notice that a given
category includes all the failure modes of the categories that are below in the hier-
archy, e.g. performance failures comprise omission, crash and stopping failures.

This categorization is useful when designing a dependable system, since it is
necessary to specify what failure modes the system and its subsystems are going
to exhibit. On the one hand, the designers of the system must know what will
be the behavior of the system when it fails, in order to devise the mechanisms
that are necessary to deal with such a situation. For instance, in an ultra-reliable
system embedded in a vehicle, it could be necessary to use a mechanical back-up
system that takes over the control from the electronic system when the electronic
system completely fails in a specific manner. On the other hand, as concerns the
subsystems and components that constitute the system, to know the ways in which
they fail is essential, because the mechanisms a system must include to address
these faults, e.g. for detecting them, depend on the way in which they manifest.

The failure modes a system or a subsystem can exhibit are generally referred
to as its failure semantics. A more formal definition of this concept can be found
in [Pol96]:

2.3 Fault tolerance basics 19

“A system exhibits a given failure semantics if the probability of failure modes
which are not covered by the failure semantics is sufficiently low”.

Notice that the definition of failure semantics includes the concept of cover-
age, which is commonly known as assumption coverage [Pol96] or failure mode
assumption coverage [Pow92]. This concept is formalized in [Pow92] as the prob-
ability that the specific way(s) in which a system or a subsystem is supposed to fail
proves to be true in practice, conditioned on the fact that the failure actually oc-
curs. This probability is a main concern when devising a dependable system, since
a subsystem that fails in a manner that is not covered, i.e. that violates the failure
mode assumptions, is considered as provoking the failure of the overall system.

In fact, to help to fulfil the application requirements, one of the first steps carried
out when designing a dependable system is to gather all the failure modes of its
components into a so called fault model. In this sense, a fault that violates the
failure mode assumptions is said to be out of the fault model.

Finally, notice that a great effort is normally carried out to restrict the failure
semantics of the subsystems that compose a whole system. If this is done, it is pos-
sible to simplify the mechanisms that will allow non-faulty subsystems to continue
operating when other subsystems fail. For instance, in fault-tolerant distributed
control systems, it is very common to devise mechanisms to enforce each node to
exhibit a fail-silent behavior, i.e. to ensure that each node can only suffer from a
crash failure.

2.3 Fault tolerance basics

At this point, one may ask what are the mechanisms that can be used to provide
dependability. Certainly, there are different ways to achieve it: fault prevention,
fault tolerance, fault forecasting and fault removal [Pro07]. Among them, this
dissertation focuses on fault tolerance, i.e. on methods used to allow a system to
deliver its service even in the presence of faults.

Fault tolerance is carried out in two phases: error processing and fault treatment
[AL81]. Error processing is intended to eliminate errors from the system, whereas
fault treatment aims at preventing faults from generating errors again. Among
the different ways that can be used to carry out error processing, this document
addresses two of them called error detection and error recovery. Error detection
is performed in order to discover errors, whereas error recovery is used to lead the
system to an operational state that does not present errors.

Regarding fault treatment, it is performed by means of fault diagnosis and fault

20 Chapter 2. An overview on dependability

passivation. Fault diagnosis aims at finding out the fault that generates the errors,
whereas fault passivation aims at preventing a fault from causing errors again. For
instance, the hubs we propose in this dissertation passivate a fault happening at a
node or at a link by disabling the corresponding hub port, which prevents this fault
from causing errors in the communication among the other nodes.

These two phases of fault tolerance, i.e. error processing and fault treatment, can
be carried out following two different strategies: application-specific fault toler-
ance and systematic fault tolerance [Pol96]. The first one consists in using the
knowledge about the characteristics of the system to detect faults and to tolerate
them. In the second one, redundancy is used to detect faults when different repli-
cas disagree on a given state or result, as well as to continue delivering the intended
service using only non-faulty replicas.

The designs presented in this dissertation use both application-specific and sys-
tematic fault tolerance. For instance, as will be explained later in Chapter 7, the hub
of our star topologies detects errors at any of its ports using its knowledge about
how nodes should behave according to the CAN protocol. As concerns systematic
fault tolerance, notice that the replicated star topology we propose (Chapter 11)
includes two hubs in order to tolerate the failure of one of them. Notice that in this
last example, redundancy is used to eliminate the single point of failure the hub
represents. As already pointed out, a single point of failure is a single subsystem
or component whose failure provokes the failure of the overall system. For obvi-
ous reasons, the presence of a single point of failure is normally not accepted in a
fault-tolerant system.

Redundancy is typically the preferred alternative to provide final fault tolerance,
since to deploy redundancy is much more simple and more effective than to exploit
the knowledge about some properties of the system. There are different types of
redundancy, but all them can be classified as spatial or temporal redundancy. The
first one consists in introducing extra hardware, software or even extra informa-
tion, e.g. a cyclic redundancy code in a message; whereas the second one consists
in using extra time to perform a given function in order to enable error detection
and fault tolerance. Independently of the type of redundancy used, it is necessary
to provide the system with the appropriate redundancy management mechanisms.
These are indispensable for coordinating the different replicas either in the pres-
ence or in the absence of faults.

An important aspect that must be taken into account to deploy redundancy is
whether it is needed to deal with related faults or only with independent faults. Re-
lated faults are those that are due to the same cause, whereas independent faults do
not have the same origin. Related faults may occur either when different subsys-

2.3 Fault tolerance basics 21

tems are close to each other, so that an external cause affects some of them at the
same time, or when different subsystems are equally affected by a fault happening
in a resource they share. When failures happen as a consequence of physical prox-
imity they are referred to as spatial-proximity failures. In addition, if related faults
lead the affected subsystems to exhibit the same failure mode, then it is said that
common-mode failures occurs.

It is necessary to guarantee as much as possible that different replicas cannot
exhibit related faults, i.e. it is vital to provide fault independence. Otherwise, re-
dundancy becomes useless. For example, if replicas are used to detect faults by
comparing their outputs, then, it is necessary to ensure that they will not exhibit
a common-mode failure that lead them to deliver the same erroneous result. This
could be accomplished, for instance, by preventing them from sharing the same
resources, e.g. a power supply.

However, although replicas can be designed to ensure that they independently
fail, errors generated by faults in other subsystems may propagate and affect dif-
ferent replicas. In fact, the propagation of errors is one of the main problems to
be solved when designing a fault-tolerant system, since errors can corrupt several
subsystems, thereby leading to a global failure. Thus, it is mandatory to provide
the system with error-containment mechanisms, i.e. mechanisms to prevent errors
from propagating from the faulty components to the rest of the system. In this
sense, what is normally done is to divide the system into several error-containment
regions [Kop97] or fault-containment regions, i.e. regions that can be isolated to
prevent error propagation. Notice that in this dissertation we propose to contain
errors by disabling the corresponding hub ports. This means that each node and its
corresponding link represent an error-containment region.

A particular case of error propagation that provokes a system failure may hap-
pen in the presence of Byzantine failures that lead different subsystems to receive
inconsistent data, i.e. to receive different data when it is supposed that all them
receive the same. For instance, a node that is the responsible for indicating the
other nodes in which operational mode the overall system should behave may fail
by specifying different modes to different nodes.

In order to overcome the problems that inconsistencies pose, it is necessary to
devise some kind of mechanisms that enforce an agreement on the received data. In
the particular case of CAN, this agreement is supposed to be enforced at the com-
munication level. Specifically, it is said that CAN presents the so called data con-
sistency property. This property ensures that every frame is quasi-simultaneously
accepted by all nodes or by none of them [ISO93]. The mechanisms CAN uses to
try to provide data consistency will be further addressed in Section 3.3.4.

22 Chapter 2. An overview on dependability

Finally, notice that any mechanism devised to process or contain errors, as well
as to treat faults cannot be perfect. For instance, if an error-detection mechanism
must deal with a huge range of different scenarios involving errors, it is actually
impossible to guarantee that all errors will be always detected. Therefore, when
designing and evaluating a dependable system, it is necessary to take into account
the coverages of its fault-tolerance mechanisms. Furthermore, these coverages are
of capital interest since the dependability of a system strongly depends on their
value. This strong influence have long ago been demonstrated or highlighted by
many authors, e.g. [BCS69] [Arn73] [DT89].

Notice that the mentioned coverages are, in fact, an abstraction of the probability
of success of the different processes that constitute the fault-tolerance mechanisms
of a given system. Thus, the specific coverages to be considered depend on the
system itself and on the level of abstraction used to design and to evaluate it. More
specifically, the coverages depend on the number of phases the process of tolerating
a fault is supposed to be divided into. For instance, [Pow92] considers just one
coverage called coverage of the error-processing mechanisms; whereas [DT89]
compares system abstractions from different authors, each one considering its own
set of coverages, e.g. error-detection, error-location and error-recovery coverages.
It is important not to confuse these coverages with the failure mode assumption
coverage, which we explained above.

2.4 Fundamentals of fault-tolerant systems design

Besides the approach used to provide fault tolerance, application-specific and/or
systematic, the development of a complex fault-tolerant system requires the use of a
“systematic” and practical strategy. In our case, we roughly followed the paradigm
that Prof. Avižienis proposed for developing a fault tolerant system [Avi95]. This
paradigm divides the tasks carried out to build a fault-tolerant system into three
activities: specification, design and evaluation.

Specification activities basically consist in determining the functional and de-
pendability requirements of the system, e.g. the fault model, the degree of desired
reliability, etc.

Design activities embrace different tasks aimed at defining the system architec-
ture: what subsystems compose the overall system and how they interact with each
other; the structure and functionalities of each subsystem, e.g. how each subsystem
performs error containment; and the integration of all subsystems.

Finally, evaluation activities are performed during the different phases of the

2.5 Dependability concepts introduced for this work 23

design process for two purposes. First, to guide the design process. Second, to
assess whether or not the designed system or subsystems fulfill their functional
and dependability requirements.

There are two types of evaluation: qualitative evaluation and quantitative eval-
uation. The first one is devoted to verifying that the system is able to deal with
all the faults included in its fault model; whereas the second one aims at numeri-
cally corroborating that the system fulfills its dependability requirements, e.g. its
intended reliability.

There are different techniques to perform both types of evaluation. Model check-
ing techniques [CGP99], for instance, can be suitable for qualitatively evaluating
intricate parts of a system. More specifically, model checking allows formally ver-
ifying system properties. The first step consist in building a model of the system,
typically in the form of a set of interconnected automatons. Then, the user asks, by
means of queries, whether or not the modelled system fulfils certain properties. Fi-
nally, a software tool, called model checker, exhaustively analyzes all the possible
states of the model and determines whether or not each property/query holds.

Quantitative evaluation techniques usually also rely on the specification of a
model of the system. Different formalisms, such as for example Markov Chains
or Petri Nets [TMGT93] [Pet81], can be used for this purpose. These models nor-
mally include a considerable amount of parameters, some of which have a great
impact on the final results. For instance, as already said, this is the case of the
coverages of the system’s fault-tolerance mechanisms.

Different alternatives are available to estimate those parameters, e.g. simula-
tions, experimentation with prototypes, etc. For the case of the coverage, it is
very common to build a prototype and then to evaluate its behavior in the pres-
ence of faults that are introduced in the system by means of fault injection tech-
niques [ACL89] [GKT89].

2.5 Dependability concepts introduced for this work

Before concluding this chapter about dependability aspects, let us further discuss
some concepts we have introduced for the work herein presented.

As said above, errors generated by a faulty subsystem may propagate to other
subsystems and even provoke a global failure. In particular, if we consider a CAN
node as a subsystem, then the errors issued by a faulty node can prevent other
nodes from communicating. Thus, to contain errors in a network such as CAN is
particularly important for systems that can accept the failure of some nodes as long

24 Chapter 2. An overview on dependability

as a minimum set of non-faulty nodes can communicate with each other.

In order to characterize the dependability of a network that can be suitable for
those systems, we defined the concepts of k-severe failure of communication and
point of k-severe failure of communication. If we consider a network composed of
N nodes, then a k-severe failure of communication occurs when few than N − k
nodes can operate and communicate with each other. A point of k-severe failure of
communication is a component or a subsystem whose failure provokes a k-severe
failure of communication. For k = 0, a point of k-severe failure of communication
corresponds to the concept of a single point of failure in the context of a communi-
cation network. For the sake of conciseness, we will normally use the terms severe
failure and severe point of failure instead of k-severe failure of communication and
point of k-severe failure of communication respectively.

2.6 Conclusions

This chapter gives an overview on some dependability concepts that are essential
to understand the work presented in this dissertation.

Firstly, we provided a definition of dependability and of some of its attributes,
such as reliability. We focused on the cause-effect relationship between faults, er-
rors and failures, and we discussed the concepts of failure mode, failure semantics,
failure mode assumption coverage and fault model.

Then, we briefly described some fault-tolerance basics. Firstly, we addressed
the phases of fault tolerance (error processing and fault treatment), focusing on
the concepts of fault passivation and redundancy. In particular, we pointed out
that we chose redundancy as the approach to provide final fault tolerance, and we
presented in few words the different types of redundancy. Secondly, we addressed
the concepts of independence of faults and we introduced the problem of dealing
with spatial-proximity and common-mode failures. We also put special emphasis
on the problem of the error propagation, as well as on the need of error-containment
mechanisms. Thirdly, we presented the problem of inconsistencies in the presence
of Byzantine failures, as well as the necessity for agreement mechanisms such as
protocols that provide data consistency. Finally, we highlighted the importance of
the coverages of the fault-tolerance mechanisms and their impact on the system’s
dependability.

After this overview on fault tolerance, we outlined the paradigm that Prof. Aviž
ienis proposed for developing fault tolerant systems. We briefly explained each
phase of this paradigm, pointing out some evaluation techniques such as model

2.6 Conclusions 25

checking, Petri Net formalisms and fault injection.

Finally, we defined the concepts of k-severe failure and point of k-severe failure,
which are specific to the work herein presented and that will be used throughout
this dissertation.

Chapter 3

Controller Area Network (CAN)
protocol

3.1 Introduction

The Controller Area Network (CAN) protocol is a field-bus communication tech-
nology created in the early 80s by Bosch GmbH in Germany. Its main advantages
are its low cost, simple configuration, electric robustness, prioritized medium ac-
cess arbitration mechanism, as well as error-detection and containment features.
Thus, although CAN was initially aimed to reduce the wiring cost in in-vehicle
communications, soon after it became extremely popular in other distributed em-
bedded control systems. Nowadays it is widely used as the communication in-
frastructure of a wide range of applications such as factory automation, robotics,
intra-building communication, medical equipment, etc.

CAN comprises the Physical Layer and the Data Link Layer [ISO03a] of the ISO
Open Systems Interconnection Basic (OSI) Reference Model. Its data link layer was
firstly specified by Bosch in 1991 [Gmb91]. Afterwards, ISO standardized both
layers in 1993 [ISO93] and updated that specification in 2003 [ISO03a]. Moreover,
due to increased interest in using CAN, other physical layers standards have also
been specified.

This chapter summarizes the aspects of the CAN physical and data link layers
that are more relevant to this document. Additionally, it specifies the types of faults
that can affect a CAN network, some of which are the aim of the solutions we
propose in this document for improving its dependability.

27

28 Chapter 3. Controller Area Network (CAN) protocol

3.2 CAN Physical Layer

There exists several CAN physical layers specifications. The most relevant ones
are: ISO 11898-2 (high-speed) [ISO03b], ISO 11898-3 (fault-tolerant), SAE J2411
(single-wire) and ISO 11992 (point-to-point). Among them, maybe the most pop-
ular is the ISO 11898-2 (high-speed); hence this document only addresses this
standard.

In compliance with this standard, a CAN network relies on a simplex bus topol-
ogy whose medium is constituted by a two-wire differential line that is specially
resistant to Electromagnetic Interference (EMI). Additionally, in order to prevent
signal reflections, the bus is terminated at both its ends with impedances of 120
Ohm and its stub lines are configured as short as possible.

One of the most important features of the medium of CAN is that it implements a
wired-AND function of every node contribution. This is the basis of the dominant
/ recessive transmission property of CAN. This property guarantees that whenever
one of the nodes transmits a bit with a dominant value, i.e. a logical ‘0’, this value
is received by all the nodes in the network. In contrast, a bit with the recessive
value, i.e. a logical ‘1’ is only received as long as every node issues a recessive
value.

Moreover, CAN communication relies on a complex bit synchronization mecha-
nism which guarantees that nodes have a quasi-simultaneous view of every single
bit on the channel, i.e. the so-called in-bit response. This mechanism uses the re-
cessive to dominant transitions of the signal on the channel in order to keep the
nodes of the network synchronized with respect to the node that is transmitting
(the so-called leading transmitter).

Notice that the in-bit response property implies that the transmission of a bit
traverses all the network and electrically stabilizes and only then the next bit can
be transmitted. Thus, the bit synchronization of CAN forces an inverse relationship
between the bit rate and the achievable bus length. For example, if a CAN network
operates at its higher bit rate, i.e. at 1 Mbit/s, the maximum achievable bus length
is around 40 m [CiAa]. In contrast, a CAN network operating at 125 Kbit/s or at
10 Kbit/s can respectively achieve a bus length of 500 m and 5 Km [CiAa].

Although the bit synchronization of CAN limits the maximum bus length and/or
the bit rate of the network, at the same time it allows definition of a number of
additional mechanisms we will describe later on, e.g. bit-wise arbitration, which
yield important benefits in terms of dependability and real-time.

3.3 CAN Data Link Layer 29

3.3 CAN Data Link Layer

The data link layer of CAN provides a set of mechanisms that allow nodes to cor-
rectly exchange data even in the presence of errors and/or some permanent faults.
Next, we present a brief overview on these mechanisms.

3.3.1 Frame format

CAN includes four types of frames: data frames, remote frames, error frames and
overload frames. Current section describes the format of the two first ones. The
format of the error frame and the overload frame are respectively explained in
Sections 3.3.4 and 3.3.6.

A node uses a data frame to transmit data, whereas it uses a remote frame to
request data from other node. The appearance of both types of frames is almost the
same, as shown in Figures 3.1 and 3.2. More specifically, these figures show the
CAN base frame format (CAN 2.0 A) for both types of frames. However, notice
that it also exists another frame format called CAN extended frame format (CAN
2.0 B). The only difference between CAN 2.0 A and CAN 2.0 B is that in the
former one the identifier is constituted by 11 bits, whereas in the second one the
identifier is 23 bits long. This document only deals with CAN 2.0 A, but all the
ideas herein presented are applicable to CAN 2.0 B as well.

SOF
1 bit

Identifier
11 bits

RTR
1 bit

IDE
1 bit

R0
1 bit

ACK field

…

…

Arbitration field Control field

…

DLC
4 bits

Data
0..8 bytes

EOF
7 bits

CRC field

15 bits
CRC

1 bit
del.

1 bit
slot

1 bit
del. IFS

3 bits
idle

Figure 3.1: CAN base frame format (CAN 2.0 A) of the Data frame

SOF
1 bit

Identifier
11 bits

RTR
1 bit

IDE
1 bit

R0
1 bit

ACK field

Arbitration field Control field

…

DLC
4 bits

EOF
7 bits

CRC field

15 bits
CRC

1 bit
del.

1 bit
slot

1 bit
del. IFS

3 bits
idle

Figure 3.2: CAN base frame format (CAN 2.0 A) of the Remote frame

When the channel is free (no frame is being broadcast), any node willing to trans-

30 Chapter 3. Controller Area Network (CAN) protocol

mit firstly sends a dominant bit called Start Of Frame (SOF). All nodes that listen
to that SOF synchronize with that transmitting node. However, it is possible that
more than one node quasi-simultaneously send a SOF. In such a case a contention
takes place, during which all transmitting nodes decide which one finally gains the
access to the medium for transmitting. Moreover, a node can decide transmitting
just after detecting a SOF. If this occurs, the node is normally allowed to start send-
ing its own frame (in the next bit without transmitting a SOF), thereby initiating or
joining in a contention.

A contention is solved by using a bit-wise arbitration mechanism that relies on
the arbitration field of the frame. This field includes the identifier and the Remote
Transmission Request (RTR) bit. The arbitration mechanism, which is described
later on, ensures that after the arbitration field only the node with the lowest identi-
fier and RTR continues transmitting. The identifier is constituted by 11 bits whose
value identifies the frame itself. Notice that an identifier does not belong to a given
node, since CAN nodes have not addresses. Regarding the RTR bit, it is ‘0’ to
indicate that the frame is a data frame, or ‘1’ to indicate that it is a remote frame.

The arbitration field is followed by the control field, which includes the IDenti-
fier Extension (IDE) bit, a reserved bit called R0, as well as the Data Length Code.
The former is ‘0’ or ‘1’ to respectively indicate whether the frame follows the CAN
base frame or the CAN extended frame format. The R0 bit is reserved for future
protocol extensions. The DLC is a 4-bit field that indicates the number of bytes
that will be included in the Data field, in the case the frame is a data frame; or the
number of requested data bytes, in the case of a remote frame.

In order to allow the receiving nodes to check the integrity of the frame, the
transmitter sends a Cyclic Redundancy Code (CRC) after de Data field. This code
is included within the so called CRC field, which is constituted by 16 bits. The
15 first bits of this field are the value of the CRC itself, whereas the last one is a
recessive bit called CRC delimiter.

The ACKnowledge (ACK) field is used by the receiving nodes to indicate whether
or not they consider that the part of the frame that has been broadcast so far is
correct. The transmitting node always sends a recessive value at the first bit of this
field, i.e. at the ACK slot. In contrast, the receiving nodes that want to acknowledge
the frame send a dominant bit, called ACK bit, in the ACK slot, thereby overwriting
the recessive sent by the transmitter. The second bit of the ACK field is always
recessive and it is called ACK delimiter.

Finally, the frame ends with the End Of Frame field (EOF), which consists of 11
consecutive recessive bits. After this field, an Intermission Frame Space (IFS) of
3 recessive bits follows and, afterwards, the channel becomes free or Idle (at the

3.3 CAN Data Link Layer 31

recessive state) as long as no node initiates a new transmission.

3.3.2 Bit-wise arbitration mechanism

As explained above, if more than one node decide to star transmitting at the same
time, a contention occurs after the start-of-frame (SOF). When this happens, in
order to decide which node gains the access to the medium, all transmitters initiate
the so called bit-wise arbitration mechanism of CAN.

Specifically, each transmitting node observes the actual bits on the bus while
transmitting its arbitration field. If a transmitting node monitors a dominant bit, ‘0’,
while it is issuing a recessive bit, ‘1’, then it assumes that it has lost the contention,
backs off, becomes a receiving node, and retries after the current frame.

At the end of the arbitration phase only the node with the lowest identifier field
continues transmitting. Also notice that since the RTR bit of the arbitration field of
a data frame is ‘0’ and the RTR of a remote frame is ‘1’, data frames have a higher
priority than remote ones.

3.3.3 Frame encoding

CAN uses a Non Return to Zero (NRZ) bit coding, so that the signal level is kept
at the same value during all the bit time. However, as said before, nodes use the
recessive to dominant transitions of the signal on the channel to keep synchronized
with the transmitting node. Therefore, it is necessary to limit the time the signal
remains at the same level, so that nodes can keep correctly synchronized.

This is achieved by using the stuff rule. This rule basically specifies that the
transmitter must insert a complementary bit, called stuff bit, whenever it has already
transmitted five consecutive bits of the same polarity (including stuff bits). All the
frame is encoded using the stuff rule, except the CRC delimiter, the ACK field and
the EOF.

3.3.4 Error detection and signalling

Each CAN node includes a set of mechanisms that provide in-bit detection of bit-
stream errors. Any CAN node is able to detect five different error types [ISO93]:
stuff error, format error, bit error, CRC error and ACK error.

Such errors are detected by means of several error-detection mechanisms that
check the correctness of the frame that the node transmits or receives. These mech-

32 Chapter 3. Controller Area Network (CAN) protocol

anisms respectively are: stuff rule check, frame check, monitoring, CRC check and
ACK check. Each node uses them as follows.

• Stuff Error. Both, the transmitter and the receivers perform a stuff rule check
to test if the stream being broadcast fulfils the stuff rule. As explained before,
this rule basically specifies that a complementary bit, called stuff bit, must
follow every five consecutive bits of the same polarity (including stuff bits).

• Format error. Both, the transmitter and the receivers perform a frame check
to test if the frame obeys the format rules. These rules define the character-
istics of each field of the frame: order within the frame, length and allowed
bit values.

• Bit error. Each node (either transmitter or receiver) performs a monitoring
of the signal on the channel in order to check that whenever it transmits
a dominant bit, the resultant bit in the channel is actually a dominant bit.
Moreover, the transmitter also checks that whenever it transmits a recessive
bit, the resultant bit is also recessive (except in the arbitration field and in
the ACK slot).

• CRC error. As explained before, the transmitter calculates a 15 bit Cyclic
Redundancy Code (CRC) based on the bits of the frame it has already trans-
mitted and, next, it transmits such CRC in the last but two field of the frame.
The receivers also calculate the CRC and carry out an acceptance test to
check if it matches with the CRC received i.e. they perform a CRC check.

• ACK error. As already explained, receiving nodes send a dominant bit value
at the ACK slot if they wish to acknowledge the correct reception of the
frame. The transmitter performs an ACK check to test if there is a domi-
nant bit value in the ACK slot and thus, to detect if at least one node has
acknowledged the frame.

As will be explained later, depending on the number of errors detected up to a
given instant of time, a node is in the error-active state, in the error-passive state or
in the bus-off state. Thus, one can consider that a node is error-active, error-passive
or bus-off respectively.

A node detecting an error initiates the error-signaling mechanism, which con-
sists in signaling an error by transmitting an error frame. The node starts trans-
mitting that frame in the next bit after detecting the error. Except in the case of a
receiving node that detects a CRC error. In that case, the node starts sending the
error frame at the first bit of the EOF.

3.3 CAN Data Link Layer 33

An error frame is formed from an error flag followed by an error delimiter, and
its actual appearance depends on some factors such as, for example, on wether
nodes are error-active or error-passive1. An error-active node signals an error by
transmitting an active error flag, which is composed of 6 consecutive dominant
bits. Conversely, an error passive node signals an error by sending a passive error
flag, which is constituted by 6 consecutive recessive bits. An active error flag
always violates the stuff rule and provokes all the nodes to detect an error and to
signal it too. In such a way, the error is globalized and the frame that was being
transmitted is rejected by all the nodes, i.e. it is said that an error globalization
occurs. Nevertheless, a passive error flag does not always force the other nodes to
detect an error and thus, no globalization is ensured when an error-passive node
signals an error.

In case an error flag (active or passive) provokes a globalization, all nodes coop-
eratively transmit an error delimiter after transmitting their own error flags. Thus,
the final appearance of an error frame is the one that results from the overlapped
error flags, followed by the cooperative error delimiter.

The cooperative error delimiter is constituted by a minimum of 8 consecutive
recessive bits, and it is built as follows. After transmitting its own error flag, each
node sends its error delimiter, which is constituted by consecutive recessive bits,
until it monitors a pattern of 8 consecutive recessive bits in the channel. This pat-
tern indicates the end of the error delimiter and, thus, of the error frame. Notice
that since dominant values always overwrite recessive values, all nodes will moni-
tor dominant bits as long as there is a node that is still transmitting its active error
flag. Therefore, all nodes will observe the beginning and the end of the sequence
of 8 consecutive recessive bits at the same time, i.e. they will quasi-simultaneously
detect the end of the error frame.

Finally, the error frame is followed by the Intermission Frame Space and then
the channel becomes idle.

At this point, it is worth noting that the CAN error-signalling mechanism is de-
signed for providing error-active nodes with data consistency. As said in Sec-
tion 2.3, if data consistency is ensured for a set of nodes, then it is guaranteed
that each frame is quasi-simultaneously accepted by all these nodes or by none of
them [ISO93]. This property is very valuable for dependable systems and, there-
fore, data consistency has been considered as one of the most important advantages
of the CAN protocol. However, it is worth noting that CAN actually does not en-
force data consistency in some situations. On the one hand, data consistency is not
enforced if there is any error-passive node. This is due to the fact that a passive

1A bus-off node does not communicate

34 Chapter 3. Controller Area Network (CAN) protocol

error flag cannot always force an error globalization. On the other hand, data con-
sistency is violated in the presence of some inconsistency scenarios identified in
[RVA+98] and [PMJ00]. As will be explained, although the solutions we propose
in this document do not totally overcome these problems, at least they do not make
them worse.

3.3.5 Fault treatment

The CAN standard specifies some fault-treatment mechanisms to diagnose and pas-
sivate faults occurring at nodes. Specifically, each CAN node includes two error
counters [ISO93]: the Transmission Error Counter (TEC) and the Reception Error
Counter (REC). Depending on the value of these counters, the node changes its
way of behaving in order to minimize its impact on the communication.

A CAN node increases its TEC/REC almost every time it detects an error in the
channel, e.g. a stuff error, a format error, etc. Specific rules [ISO93] are followed
to decide how to increase an error counter. Basically, these rules penalize more the
errors the node detects when it is acting as the transmitter than when it is acting
as a receiver. In this way, the transmitter normally increases the TEC by 8 units,
whereas a receiver usually increases the REC by 1 unit.

Additionally, the node further increases the TEC or the REC (depending on
whether it is acting as a transmitter or a receiver) in 8 units when it suspects that
it is the responsible for an error. This basically happens when it detects a primary
error [ISO93], i.e. when it monitors a dominant bit after its own error flag. That
is because a node that detects this dominant bit can assume that it was one of the
nodes (or the only node) that firstly detected an error and started to signal it, thereby
provoking the other nodes to detect an error and to perform an error signaling too.
In other words, a node detecting a primary error means that the node did not detect
an error as a consequence of the error signaled by other node, but probably due to
a local error.

Besides the rules for increasing the TEC/REC, the node also follows specific
rules for decreasing them. Normally, the TEC (or the REC in the case of a re-
ceiver) is decreased by 1 unit (unless its is already 0) when a frame is successfully
transmitted (or received). The only case in which the REC is decreased by more
than 1 unit is when its value is greater than 127; in such a case the REC is set to a
value between 119 and 127.

As said before, the node takes into account the values of the TEC/REC to reduce
its impact on the communication. A CAN node is initially in the error-active state,
meaning that it is involved in bus activities without any restriction. However, when

3.3 CAN Data Link Layer 35

any of its error counters becomes higher than 127, the node goes into the error-
passive state. The single difference between this state and the error-active state is
that an error-passive node signals an error by means of a passive error flag. As
explained before, a passive error flag does not necessarily provoke an error glob-
alization, since it is constituted by 6 consecutive recessive bits. Therefore, when
an error-passive node detects and signals a local error, i.e. an error that is only de-
tected by one node locally, it does not necessarily corrupt an on-going frame. This
actually reduces the propagation of errors generated by a fault that only affects
that node. Moreover, a node goes into the bus-off state whenever its TEC becomes
greater than 255. In such state the node is no longer involved in the communi-
cation and, thus, this situation corresponds to a node diagnosing itself as being
permanently faulty.

Finally, note that an error-passive or a bus-off node can become error-active
again. This allows reintegrating nodes that are not permanently faulty. Specif-
ically, an error-passive node becomes error-active when both its TEC and REC
are less than or equal to 127. A bus-off node becomes error-active after observ-
ing 128 CAN bus-free occurrences, i.e. 128 sequences of 11 consecutive recessive
bits [ISO93].

3.3.6 Overload signalling

CAN specifies two kinds of overload conditions [ISO93]. The first condition oc-
curs when a receiving node needs an extra delay before a new data or remote frame
can be transmitted on the bus. When this happens, the node starts signaling an
overload flag, constituted by 6 consecutive dominant bits, at the first bit of the
Intermission Frame Space (IFS).

The second overload condition happens when a node detects a dominant bit dur-
ing the IFS. When this occurs, the node must react by signaling an overload. Notice
that this behavior is the mechanism that allows globalizing an overload previously
triggered by the first condition.

After transmitting their own overload flags, all nodes cooperatively transmit an
overload delimiter of at least 8 consecutive recessive bits, i.e. the format of an
overload frame is the same as the format of an active error frame.

36 Chapter 3. Controller Area Network (CAN) protocol

3.4 Types of faults in CAN networks

Faults occurring at different components of a CAN network can manifest in sev-
eral ways. Unfortunately, as explained in Section 1.1, the error-detection and fault-
treatment mechanisms of the CAN protocol present important limitations. More-
over, it has also been pointed out that CAN lacks fault-tolerance facilities. Thus,
the occurrence of one fault can be enough to cause a severe failure of communi-
cation. More specifically, to better understand how these faults can jeopardize the
communication in a CAN network, let us classify them into the following two main
categories.

On the one hand, we consider faults that generate errors that corrupt the bit
values that are broadcast through the medium and that, thus, lead CAN frames to
be incorrect from a syntactical point of view. These faults can be further classified
into two categories:

• Stuck-at fault. It occurs whenever a given node or a component of the medium
is damaged and issues a constant bit value. These faults can arise, for ex-
ample, from short-circuits to ground or battery, or malfunctioning or iso-
lated controllers. Two types of stuck-at fault exist: stuck-at-dominant and
stuck-at-recessive faults, depending on whether the stuck-at bit is dominant
or recessive respectively. Since the physical layer of CAN is equivalent to a
logic-AND of every node’s contribution, only a stuck-at-dominant node may
cause a severe failure of communication (the recessive bit is implemented as
the logical ‘1’ value). In contrast, a stuck-at fault affecting the medium leads
to a global failure, independently of whether the medium becomes stuck-at-
dominant or stuck-at-recessive.

• Bit-flipping fault. This occurs whenever a component of the network (form-
ing part of either a node or a medium) exhibits a fail-uncontrolled behavior
and starts sending erroneous and random bits with no restrictions in the value
domain. In this case, even if a node is trying to send a correct bit stream, this
is destroyed by the dominant bits of the bit-flipping stream. Some potential
causes of this fault are: a damaged node that sends random bit values; a bad
welding on a medium connector that generates random bit values, etc.

On the other hand, components in a CAN network can also suffer from faults that
lead CAN frames to be incorrect just from a semantical point of view. For instance,
a fault could lead a node to transmit frames that are timely-incorrect, e.g. frames
that are too early or too late, which is a typical problem of communication systems.
Among these, there has been an important concern about babbling-idiot faults in

3.5 Conclusions 37

the context of real-time distributed embedded systems. This type of timing fault
is defined in the literature as a situation in which a node sends messages in a way
that it consumes more resources that it really needs, thereby starving other nodes
of the appropriate resources for communicating [BB03]. A babbling-idiot fault
may happen as a consequence of several causes. For instance, a fault manifests
as babbling idiot if it affects the internals of a CAN controller and compels it to
constantly send a frame placed in its transmission buffer. Another example could
be a software fault in a node that results in an infinite loop that constantly sends
messages that are incorrect in the time domain. Finally, a semantic fault that de-
serves careful consideration in this dissertation is the Network partition fault. It
occurs whenever the network is broken into several subnetworks, which are called
network partitions. Since any two nodes located in a different partition can no
longer communicate with each other, the nodes of the system have an inconsistent
view of which ones are available for communicating. In a bus topology, a network
partition is typically provoked by a physical disruption of the medium.

As can be inferred from the above sections, the error-detection and fault-treatment
mechanisms the CAN protocol is provided with are only able to deal with the for-
mer above-mentioned types of faults, i.e. with syntactic faults. This fact, the limited
effectiveness of the mechanisms it does include for dealing with stuck-at and bit-
flipping faults, and its lack of fault-tolerance facilities encourage the investigation
of solutions that improve its error-containment and fault-tolerance capabilities.

3.5 Conclusions

The Controller Area Network (CAN) protocol is a field-bus communication sub-
system that has demonstrated to be ideally suited for a wide range of distributed
control systems. Part of its success is due to the fact that it represents an excellent
trade-off between dependability and cost.

In this chapter we have described the most important features of CAN. We
showed that it relies on a differential bus line that is very resilience to Electromag-
netic Interference (EMI). We also explained that the medium of CAN implements a
wired-AND function of every node contribution, thereby enabling the use of in-bit
response together with dominant/recessive transmission. These two last properties
are the basis for the definition of a set of mechanisms that yield important bene-
fits in terms of dependability and real-time performance. On the one hand, CAN
provides a prioritized medium access arbitration mechanism that avoids indeter-
ministic medium access delays. On the other hand, CAN includes in-bit detection
of bit-stream errors, as well as error signalling and globalization mechanisms that

38 Chapter 3. Controller Area Network (CAN) protocol

are aimed at providing data consistency.

Nevertheless, CAN relies on a simplex bus topology that poses important limi-
tations on the containment of syntactic errors and that lacks fault-tolerance mech-
anisms. To better understand these limitations we classified syntactic faults into
stuck-at-recessive, stuck-at-dominant and bit-flipping faults. Moreover, we also
explained that CAN does not include any mechanism for dealing with faults that
cause semantically-incorrect frames (either in the value or the time domain), e.g.
babbling-idiot faults.

In conclusion, despite the good characteristics of CAN concerning dependabil-
ity and real-time, its error-containment and fault-tolerance limitations justify the
research on new solutions for CAN that keep the good properties already presented
by this technology. In particular, since some of these limitations are imposed by
its simplex bus topology, it is worth investigating new topologies for CAN that do
not present these drawbacks and that could even ease the inclusion of new error-
detection, fault-treatment and fault-tolerance mechanisms.

Chapter 4

Potential solutions for improving
dependability in CAN

4.1 Introduction

Some of the faults that can cause a severe failure of communication in CAN (see
Section 5.2) can be confined in bus-based systems, up to a certain extent, using
techniques that are already known. These techniques rely on the use of replicated
transmission media, bus guardians and reconfigurable bus topologies. However,
due to the characteristics that are inherent to the bus topology, said techniques do
not prevent the existence of multiple components such that a single fault in any of
them may cause a severe failure of the communication system.

In contrast, the interest in using star topologies has been growing, given their
better error-containment capabilities and fault resilience. For example, the LAN
domain has long moved to star topologies with Ethernet, a technology that is now
extensively used in the industrial automation and large embedded systems domains.
In this latter case, particularly concerning in-vehicle systems, we can find other ex-
amples of transition topologies such as with TTP/C [BKS03] and FlexRay [Fle05].
Different star topologies have also been proposed for Controller Area Network
(CAN), but they still do not take a full advantage of the potential benefits of this
topology.

This chapter aims to provide an overview on the technics that have been proposed
for improving dependability of CAN, while identifying their main drawbacks.

39

40 Chapter 4. Potential solutions for improving dependability in CAN

4.2 Replicated bus topology

The use of a replicated bus topology generally allows nodes to detect a faulty or
an error-polluted bus by comparing the values received from each of the replicas
[RVA99] [Rus03] [SFF06]. In this way, nodes can disable a faulty bus so that the
communication system can still provide a correct service.

Nevertheless, this solution does not prevent a faulty node (a stuck-at-dominant
node, for instance) from causing a failure of the whole communication system
by sending erroneous information to all replicas, i.e. all bus replicas can exhibit
common-mode failures. An example of such a situation is depicted in Figure 4.1,
in which a faulty node blocks both buses by sending a stuck-at-dominant value to
both of them.

Bus 1

Bus 2

“0”
“0”

Node
1

Node
2

Node
3

Node
4

�

“0”

Both buses become
stuck-at-dominant

Figure 4.1: Common-mode failure in replicated buses

Moreover, this solution has a more subtle weakness; regardless of the routing
of the replicated buses, they have to come together near every node of the system.
This can be a potential cause of spatial-proximity failures of the replicated media
system. For instance, as showed in Figure 4.2, a smash near any node may cause
a physical disruption in all media, thus provoking a network partition and a severe
failure of communication [Kop03].

4.3 Reconfigurable bus topology

A different architecture, which is used in RedCAN [Fre02], connects nodes by
means of a special ring in which one of its sectors is redundant and left inactive, so
that the resultant topology is a bus. The ring can be reconfigured by shutting down
one or more adjacent sectors and activating the redundant one. This is carried out
when a stuck-at fault of the medium occurs in one or some active and adjacent

4.4 Bus guardian 41

Bus 1

Node
2

Node
1

Node
3

Node
4

Bus 2 Bus disruption

Bus disruption �

�

Figure 4.2: Spatial-proximity failures in replicated buses

sectors or if the node or nodes that connect adjacent sectors crash.

The main disadvantage of RedCAN is that it only deals with faults occurring in
adjacent sectors or contiguous nodes. Moreover, this solution increases the com-
plexity of the network nodes, thus increasing their probability of failure, and uses
specific RedCAN hardware.

4.4 Bus guardian

Bus guardians have been proposed to prevent the propagation of errors from any
node, thereby enforcing a fail-silent behavior [BB03] of the nodes. A bus guardian
is basically a device which supervises the output of a node to its bus interface in
order to detect incorrect behaviors. In this way, a faulty node, such as a stuck-at-
dominant or a bit-flipping node, can be easily detected and isolated from the rest of
the system. Moreover, a bus guardian could even include information concerning
the scheduling of the messages in order to detect and isolate babbling-idiot faults.

Nevertheless, the weak point of this approach is that fault independence between
a node and its corresponding bus guardian is not completely ensured, so that they
can exhibit common-mode failures. These can be caused either by spatial proxim-
ity of a node and its bus guardian, or by sharing resources or procedures, e.g. power
supply, system clock, clock synchronization algorithm. Figure 4.3 shows an exam-
ple of this situation in which a node and its guardian share a clock supply that fails
and stops working. In such a case, the output of both the node and its guardian can
become stuck-at-dominant, thereby permanently blocking the bus.

Moreover, the use of bus guardians is useless for containing error propagation
from a faulty medium, as depicted in Figure 4.4. As can be seen in this example,
if the node stub is shorted to ground or to battery, the guardian can do nothing to
prevent this from leading the whole bus to be stuck-at a given logical value.

42 Chapter 4. Potential solutions for improving dependability in CAN

“0”

Bus
guardian

Clock
supply

Power
supply

Medium

Node

“0” + - �

Figure 4.3: Common-mode failure when using a bus guardian

Bus
guardian

Medium

Node

�
“0” “0”

Figure 4.4: A useless bus guardian in the presence of a medium failure

4.5 Star topologies

From the discussion above we can conclude that even though the use of replicated
media as well as bus guardians significantly improves the dependability charac-
teristics of CAN, these mechanisms -even if they are used together in the same
system- still allow multiple components to cause severe failures of the communica-
tion system, and therefore they do not fulfill the aim of this work. Thus, alternative
solutions have been researched, namely those based on a star topology.

In a star topology, each node is connected to a central element, the hub, by its
own link. On the one hand, this provides a natural way of enforcing confinement1

of faulty transmission media by isolating the respective links at the respective hub
ports. Moreover, the links of a star topology only come into spatial proximity at the
center of the star. On the other hand, the hub has a privileged view of the system,
as it simultaneously knows the contribution from every node and thus, it can play
the role of bus guardian of each node. In this way, spatial-proximity and common-
mode failures between a node and its corresponding bus guardian are avoided.

1Fault confinement is a concept introduced in the CAN specification [ISO93] to refer to the mech-
anisms CAN includes to passivate faulty nodes. This term roughly corresponds to the concept of
error-containment introduced in Section 2.3.

4.5 Star topologies 43

Even though the star topology provides a good basis to improve the dependabil-
ity of the communication system, the adoption of such a topology is not enough.
Additional mechanisms should be included in the hub in order to detect and iso-
late faulty components and achieve the behavior of what we call the ideal star,
that is a star-based system in which the hub includes all the mechanisms which are
necessary to ensure containment of all errors which may cause a severe failure of
communication.

Nevertheless, it is obvious that the main drawback of a star topology is that
the hub represents a single point of failure. In addition, a star topology includes
more cables than a bus, and the error-detection and fault-treatment mechanisms
that could be included in the hub would make its complexity higher than for simpler
components. This extra hardware and hub complexity can imply that the probabil-
ity with which faults occur in a star is higher than in a bus topology. Fortunately,
different strategies can be adopted in order to face these problems. For instance,
the hub reliability can be increased by placing it in a well-protected zone inside
the physical system or by investing in its quality. Moreover, the overall network’s
fault-resilience can also be improved by adopting a replicated star topology.

For the particular case of CAN, the interest in using star topologies to improve
dependability is reflected in the considerable amount of star topologies that have
been already proposed for this protocol in the literature. Next, we present an
overview on these stars, focusing on their pros and cons.

4.5.1 Passive star couplers

In [Ruc94] [CiAb], a passive star network topology for CAN is presented. This
solution relies on the use of a central element, the passive star coupler, which acts
as a concentrator where all the incoming signals are electrically coupled. The result
of this coupling is then broadcast to the nodes.

As concerns dependability, the only advantage this solution presents when com-
pared with a bus-based CAN system is the reduction of the spatial-proximity prob-
lem between different links. This reduction is possible since the links only come
into physical proximity at the center of the star.

However, this kind of star couplers shows some technical drawbacks that dis-
courage its use from the practical point of view. On the one hand, large coupling
loses impose strong limitations on the star radius (5 to 10 meters) and hence force
nodes to communicate at low bit rates. On the other hand, the coupling of the in-
coming signals causes some electrical problems, such as resonances, harmonics or
disturbances, which require the use of complex hardware solutions.

44 Chapter 4. Potential solutions for improving dependability in CAN

4.5.2 Active star couplers

Besides passive star topologies, active ones have also been proposed for CAN:
[CiAb], [IXX09], [CDV01]. The central element of an active star topology is the
so called active star coupler. Conversely to the case of passive star couplers, an
active one does not merely electrically couple the incoming signals. Instead, it
translates the physical signals it receives at its ports to logical values and, then,
it combines them to obtain a resultant signal that is broadcast to all nodes. More
specifically, an active star coupler basically receives the incoming signals from the
nodes bit by bit, implements a logical AND function, and retransmits the result to
all nodes. By means of this coupling these stars overcome the technical problems
of passive star topologies.

In the first one of the referred active stars, [CiAb], each node is connected to the
star coupler by an independent link constituted by two optical paths. The coupler
includes a transceiver for each link (a so-called node-coupler transceiver) as well
as an internal CAN bus with few centimeters of length. In a first stage, signals from
each link are received by the respective node-coupler transceiver and transmitted
without any processing into the internal CAN bus. In a second stage, the resultant
signal from the internal CAN bus is received by each node-coupler transceiver and
retransmitted towards the corresponding node. Since the star coupler includes nei-
ther any error-detection nor any fault-treatment mechanism, from the dependability
point-of-view it just reduces the spatial-proximity problem between different links.

In contrast, the active star topologies available in [IXX09] do present error-
detection and fault-treatment mechanisms for detecting and passivating ports that
suffer from a permanent stuck-at-dominant fault. Since there are not technical in-
formation available describing the mechanisms included in these star couplers, it
is difficult to evaluate the performance of their error-detection and fault-treatment
mechanisms. However, notice that they use only one link to connect each node to
the coupler and, therefore, they have to deal with the fact that nodes’ contributions
are not separated in the space. This leads us to think that the time needed to di-
agnose which port is actually stuck-at-dominant is considerably bigger than in a
case in which each node contribution can be independently monitored before it is
coupled with the others. Besides this possible disadvantage, it is also worth noting
that these stars do not deal with stuck-at-recessive, bit-flipping and babbling-idiot
faults.

The last active star topology referred above is called StarCAN [CDV01]. The
main goal of this solution is not network dependability, but network performance.
In particular, StarCAN achieves either an extension more than 10 times longer or
a bit rate 10 times higher than a typical CAN network. Nevertheless, in order

4.5 Star topologies 45

to fulfill this goal, StarCAN sacrifices one of the most important characteristics
of CAN, the in-bit response [ISO93]. This decision has an enormous impact on
the dependability properties of the network. On the one hand, the lack of in-bit
response jeopardizes the so-called data consistency of the CAN network, since
inconsistency scenarios [RVA+98] [PMJ00] turn out to be more likely. On the other
hand, despite keeping some CAN mechanisms, e.g. arbitration and error signaling,
off-the-shelf CAN controllers cannot be used, raising issues about the practicality
of the solution.

4.5.3 Bridge star couplers

A recent star topology proposed for CAN is ESCAPE CAN [HPDS08]. This is,
however, a different kind of star coupler with respect to the previous ones since
it does not operate at the physical layer but at the data link layer instead, being
capable of storing and forwarding frames. In fact, the hub does not couple the
contributions of the different nodes but manages each port as an independent CAN
bus segment through which it performs the appropriate transmissions.

ESCAPE CAN addresses babbling-idiot and masquerading faults due to either
hardware or software faults. More specifically, the main goal of ESCAPE CAN is
to enhance the robustness of the arbitration and the acknowledge mechanisms of
CAN. It is not intended to provide error detection and fault treatment for stuck-at
and bit-flipping faults.

As concerns the arbitration mechanism, the hub of ESCAPE CAN aims at de-
tecting and isolating a node that tries to send a not allowed identifier frame field,
without aborting the on-going arbitration. To achieve this, the hub does not couple
each node contribution, but monitors each one of its ports independently, and in-
cludes mechanisms to align the bit-streams of the different nodes with each other
during the arbitration. If a port issues a not allowed identifier, the hub simply
discards it without injecting an error in any port.

To emulate the CAN arbitration mechanism, the hub sends the lowest prioritized
CAN identifier through all its ports. In this way, it leads each contending node
to believe that it is winning the arbitration. However, the last bit of the identifier
is reserved for the hub, so that no node is allowed to send a dominant value for
this bit. This allows the hub to know, at the last-but-one bit of the identifier field,
which node has won. Then, it uses the last (reserved) bit of the identifier to force
all nodes, except the winner, to lose the arbitration.

When the arbitration phase ends, the hub continues delivering a dummy frame
to the receiving nodes and continues monitoring the frame that the node that won

46 Chapter 4. Potential solutions for improving dependability in CAN

the arbitration (the transmitter) is sending. As soon as possible, the hub aborts
the dummy frame by signaling an error in each port corresponding to a receiver,
and stars retransmitting to the receiving nodes the frame the transmitter is sending.
Once the transmitting node ends its frame, the hub forces it to signal an overload
condition in such a way that the end of that overload coincides in time with the end
of the frame the hub is retransmitting to the receiving nodes. In this way, all nodes
reach the Intermission Frame Space and, afterwards, the idle state at the same time.

Regarding the other objective of ESCAPE CAN, i.e. to enhance the acknowl-
edgement mechanism, the hub behaves as follows. Firstly, since the nodes’ con-
tributions are not coupled, the hub sends the ACK bit to the transmitter to make
it to believe that the receiving nodes are acknowledging its frame. Secondly, later
on, when the hub is retransmitting that frame, the hub observes the value that each
receiving node sends at the ACK slot. In this way, once the frame is completely
retransmitted, the hub knows which receiving nodes accepted that frame. Finally,
just after the retransmission ends, the hub transmits to all nodes a new frame whose
payload includes information concerning which nodes accepted the frame, i.e. what
in the context of ESCAPE CAN is referred to as the acknowledgement vector. This
information can then be used by the software running at nodes as a basis for a
membership algorithm.

Although interesting, ESCAPE CAN exhibits important shortcomings. Firstly, it
is not clear whether or not ESCAPE CAN improves the acknowledgement mech-
anism of CAN. Note that the hub sets up the acknowledgement vector taking into
account the nodes that, from its point of view, have accepted the frame. Certainly,
there is not enough available information about how the hub comes to a conclusion
about whether or not a node accepts a frame. However, if this decision is only
based on the reception of a dominant value during the ACK slot, then a single error
that corrupts the ACK bit sent by a node will lead the hub to an incorrect conclu-
sion. Moreover, due to the inconsistency scenarios of CAN [RVA+98] [PMJ00],
the hub cannot be sure about what nodes (including the transmitting one) actually
accepted a given frame. In fact, since the acknowledgement mechanism proposed
in ESCAPE CAN is more complex that the one included in CAN, it could make
it possible the occurrence of scenarios concerning inconsistencies that have not
been appropriately investigated yet. Finally, notice that the frame that carries the
acknowledgement vector can also be inconsistently received.

The second disadvantage of ESCAPE CAN is that it reduces the compatibil-
ity with existing CAN applications. On the one hand, ESCAPE CAN substantially
restricts the amount of possible values that can be used as a frame identifier. Specif-
ically, only the hub can use the lowest prioritized identifier; the first and the last bit
of any identifier are also reserved for the hub; and it is not possible to use identi-

4.6 Conclusions 47

fiers that include stuff bits. On the other hand, this compatibility is also negatively
affected by the hub leveraging the priority of the identifier of every frame it retrans-
mits. This obliges the application to recalculate the original value of the identifier
of each frame it receives.

Thirdly, note the hub of ESCAPE CAN includes mechanisms that allow it to
store and forward a CAN frame, to leverage a frame identifier, and to recalculate
CRCs. This implies that ESCAPE CAN may exhibit failure modes that are more
typical of switches rather than of hubs, e.g. it may fail by creating and sending false
CAN frames. Moreover, since the hub manages each port as an independent CAN
bus segment, it must include a considerable amount of hardware to communicate
through each port independently from the others. This implies that the complexity
of the hub should be quite high when compared with other active hubs. In conclu-
sion, the higher failure rate and the possible failure modes of the hub are issues of
main concern that should be further investigated to justify ESCAPE CAN benefits.

Finally, note that a secondary objective of ESCAPE CAN is to improve the per-
formance of CAN. Nonetheless, it is not clear if it actually degrades it. Authors
claim that the key to improve the performance is to decouple the nodes’ contribu-
tions. This allows the hub to avoid aborting an on-going transmission when, during
the arbitration phase, it needs to isolate a candidate that is sending a not allowed
identifier. Nevertheless, this decoupling also obliges the hub to abort the dummy
frame it sends to the receiving nodes (by injecting an error frame), and then, to
retransmit the frame the transmitter is sending. This behavior actually increases
the time needed to broadcast each frame through the network, thereby probably
reducing the overall performance of CAN.

4.6 Conclusions

The use of CAN in highly-dependable applications has been controversial due to
a few factors, such as its bus topology, which includes multiple points of severe
failure.

Solutions based on either simplex, reconfigurable or replicated bus topologies
suffer from several impediments to enforce error containment, even if they are
used together with bus-guardians. Replicated buses and bus guardians still may ex-
hibit spatial-proximity and common-mode failures. Moreover, bus-guardians can-
not contain errors provoked by faults in the media, whereas reconfigurable buses
can only deal with a few faults.

In contrast, star topologies may represent an effective solution to prevent the

48 Chapter 4. Potential solutions for improving dependability in CAN

existence of multiple severe points of failure. In a simplex star topology, each
node is connected to a central element, the hub, by its own link. One advantage
of a simplex star topology is that links only come into spatial proximity at the
center of the star and, thus, the probability that different links suffer from spatial-
proximity failures is significantly reduced. But the most important advantage is
that the center of the star, i.e. the hub, can be designed to have a privileged view of
the system, knowing the transmissions from each node through the corresponding
links. Thus, the hub can act as the bus-guardian of every node while not exhibiting
common-mode failures. Because of all these advantages, a star topology allows
reducing the number of components whose failure can cause a severe failure of the
communication system, to a unique single point of failure, i.e. the hub.

Some star topologies have already been proposed for CAN. Unfortunately, they
either do not address fault confinement; only deal with a small set of possible faults
or with faults not related to our fault model; are not compatible with CAN; or are
not even implemented yet. Therefore, we can conclude that none of these stars
fulfills our goal of preventing the existence of multiple components such that a
single fault in any of them may cause a severe failure of communication. In fact,
almost all the studied star topologies behave as a bus with enhanced resilience to
spatial-proximity failures. This justifies the design of a new star topology for CAN,
with special focus on achieving an ideal star.

Chapter 5

CANcentrate basics

5.1 Introduction

In Chapter 4, it was shown that neither bus topologies nor existing star topologies
do fulfill the strong dependability requirements of many systems, since they allow
a single fault in any of multiple network components to cause a severe failure
of communication. Due to this, we have proposed a new star topology, called
CANcentrate, which does not exhibit this drawback.

In the CANcentrate architecture, each node is connected through a dedicated
link to a different port of a central hub and, therefore, a node together with its
link can be considered as an error-containment region. Moreover, from the hub
perspective, a fault within a given error-containment region manifests as a faulty
port. Thus, from now on, we will say that the hub contains errors by detecting and
isolating the appropriate faulty ports.

This chapter is devoted to describing the CANcentrate architecture, paying spe-
cial attention to the internal structure of the hub. The error-detection and fault-
treatment mechanisms the hub includes are thoroughly discussed in Chapters 6, 7
and 8.

5.2 Fault model

As explained in Section 2.2, one of the first steps towards the design of a depend-
able system is to specify the type of faults it has to deal with, i.e. its fault model.
Notice that we propose to enhance the reliability of CAN-based systems by means

49

50 Chapter 5. CANcentrate basics

of star topologies that prevent faults from causing a severe failure of communica-
tion. Thus, in principle the fault model we consider in the rest of this dissertation
gathers all the different kinds of faults that may happen in the components of a
CAN network and that may cause such a failure. These faults where thoroughly
explained in Section 3.4.

However, in the context of this dissertation we focus on solutions for CAN that
are independent of the application. Therefore, although semantic faults may pro-
voke a severe failure of the communication system, we postpone the treatment of
those that require information specific to the application. In this sense, the only
semantic faults we deal with are network partitions, which as will be explained
later on can be addressed by means of topological features of a star. In contrast,
we rule out the treatment of semantic faults such as babbling-idiot ones, which
would require information concerning the scheduling of messages. Anyway, note
that for instance it is suitable to include in the hub a bus-guardian, similar to the
one proposed in [BB03], for dealing with faults in the time domain.

In conclusion, our fault model includes faults that manifests as stuck-at-recessive,
stuck-at-dominant, bit-flipping or as a network partition.

5.3 Design rationale

Probably the most important characteristic of CAN is the dominant/recessive trans-
mission. As explained in Section 3.2, this means that a recessive bit value is re-
ceived by all nodes in the network only if every node issues a recessive bit; it is
enough that one node transmits a dominant bit value to force all nodes to receive
a dominant bit. Moreover, we also explained therein that CAN communication
relies on a complex bit synchronization mechanism that enforces in-bit response,
which guarantees that nodes have a quasi-simultaneous view of every single bit
on the channel. This synchronization mechanism uses the recessive to dominant
transitions of the signal on the channel to keep the nodes of the network synchro-
nized with respect to the one which is transmitting, i.e. with respect to the leading
transmitter. As already explained, this bit synchronization limits the maximum
bit rate of the network, but at the same time allows definition of a number of ad-
ditional mechanisms, e.g. bit-wise arbitration, error signalling and globalization,
which significantly improve the dependability and real-time properties of CAN
networks [ISO93]. Due to the relevance of these mechanisms, it is very important
to preserve them even if a star topology is used instead of a bus.

Assuming that the typical assignment is done, i.e. logical ‘1’ to recessive value
and logical ‘0’ to dominant value, in order to keep the dominant/recessive transmis-

5.3 Design rationale 51

Node k

Hub

Uplink
Downlink Link

Node i

Node l Node j

Figure 5.1: Architecture of CANcentrate

sion, the hub must implement a logical AND function of the contributions received
from every node. Moreover, and in order to preserve the in-bit response, this log-
ical AND must be performed within a fraction of one bit time, despite the extra
delay which the internal circuitry of the hub may cause.

Furthermore, the hub must include some mechanisms in order to identify faulty
ports. These mechanisms, which are thoroughly described later on, require the
hub to be able to discriminate the signal that any node transmits from the signal
resulting of the logical AND that the hub broadcasts to the nodes. A simple way
to separate both signals is through the use of two different cables for each link that
connects each node to the hub. Figure 5.1 shows the corresponding architecture in
which there are only point-to-point unidirectional electrical connections.

The cable that carries the signal from a node to the hub is called the uplink,
whereas the cable that carries back the resulting signal from the hub to the node is
called the downlink. Each cable is of the same type as the twisted copper wiring
used for implementing typical CAN buses, which have a good resilience against
electromagnetic interferences. Moreover, each cable is terminated at both its ends,
the node and the hub.

Therefore, two transceivers are required at the end of each link; one for the uplink
and another one for the downlink. Figure 5.2 illustrates how the transceivers are
connected at the end of the node. Note that the receive data output pin (RxD) of
the uplink transceiver is left open whereas the transmit data input pin (TxD) of the
downlink transceiver is forced to have a recessive level (the logical ‘1’ value). It
is important to remark that the CANcentrate architecture can be implemented with
both off-the-self CAN controllers and off-the-shelf CAN transceivers. This makes
the solution practical and relatively low-cost. Nevertheless, the hub requires some

52 Chapter 5. CANcentrate basics

CAN
controller

Trans

RxD

TxD “1” Downlink

Uplink

Tx

Rx

Trans

RxD

TxD

Figure 5.2: Configuration of the transceivers to connect a node to its link

specifically designed hardware, as discussed next.

5.4 Internal structure of the hub

The hub plays a crucial role in the star topology since it performs two fundamental
functions. On the one hand, it implements the logical AND function which allows
preservation of the dominant/recessive transmission of CAN as well as the rest
of dependability mechanisms of CAN. On the other hand, it includes a number of
mechanisms to detect error at the hub ports and to isolate any of them that becomes
faulty.

The hub is divided into three modules, namely the Input/Output Module, the
Coupler Module, and the Fault-Treatment Module. The structure and interconnec-
tions of these modules are depicted in Figure 5.3.

The Input/Output Module is made up of a number of transceivers; two for each
link. As Figure 5.3 shows, one transceiver is assigned to every uplink in order to
convert the physical signal received from each node into a logical value that the
hub can process, B1..n. Moreover, one transceiver is assigned to every downlink
so that the logical output of the hub, the resultant coupled signal B0, is converted
into a physical signal that is broadcast to every node.

The Coupler Module is made up of an AND gate, which performs the coupling
of the uplink signals, and a number of OR gates, one per link, which allow the hub
to disable the contribution to the global AND from a specific uplink. In particular,
the contributions that are disabled are those from ports that have been diagnosed
as being faulty. Since the AND gate replaces the wired-AND functionality of the
CAN bus, this means that the output of the Coupler Module, B0, would be the
same of a CAN bus where there were no faulty component. The frame that results
from coupling the frames from the enabled ports (and, therefore, that would result

5.4 Internal structure of the hub 53

...

Fault-Treatment
Module

Input / Output
Module

Coupler
Module

Tr

“1”

Rx_CAN

B0

B1
Bn B2

CS

iniErrorFrame

hubTx
Ena/Dis

ED2 ED1 EDn

clkT clkR

...

errorFlagGenerator

Tr

Downlink
to a

node

Uplink
from a
node

Tr

“1”

Tr Tr

“1”

Tr

Ena/Dis Ena/Dis

physicalLayer

p

Figure 5.3: Internal structure of the hub

in a CAN bus without faulty nodes) is called the resultant frame hereafter.

This configuration causes an additional delay on the signal that the nodes receive.
For the bit synchronization of the nodes, this additional delay has to be taken into
account as a part of the propagation time [ISO93]. For all purposes it is similar to
the extra delay caused by an equivalently longer cable in a bus system.

Note that the output of the AND gate is connected to each and every one of the
downlink transceivers. In this way, the output of the hub (i.e. the coupled signal)
does not interfere with the signals received through the uplinks, so the contribution
of every node remains separated and further mechanisms can be applied in order
to identify a faulty port.

The Fault-Treatment Module is devoted to performing error detection and fault
treatment. Notice that the name of this module only reflects the concept of fault
treatment for the shake of succinctness. The Fault-Treatment Module performs er-
ror detection in order to identify when a port issues incorrect data. This is essential
to carry out fault treatment actions, which include both fault diagnosis and fault
passivation (see Section 2.3). In the context of CANcentrate, fault diagnosis aims
at finding out when a port is faulty; whereas fault passivation aims at isolating the
faulty port from the system.

54 Chapter 5. CANcentrate basics

The error-detection mechanisms of the Fault-Treatment Module require the iden-
tification of the contributions from every uplink as well as knowledge of the current
state of the resultant frame. This current state represents what all nodes are sup-
posed to have received from the hub until this moment, and therefore permits to
forecast which should be the proper contribution of each node for the following
bit. Fortunately, the use of two cables for each link keeps the contribution from
each link separated, and therefore the physical source of the errors can be more
easily established.

However, this architecture does not allow the hub to discriminate between errors
that are caused by a faulty transmission medium and faults that are caused by a
faulty node. Therefore, as stated before in Section 5.1, from the point of view of
the hub, either a faulty medium or a faulty node are viewed as a faulty port.

The current state of the resultant frame describes the meaning of the bit of the
resultant frame that is currently being broadcast to all ports. The knowledge of
such current state requires to keep the synchronization of the hub with the resultant
frame at bit level as well as at frame level. The synchronization at bit level allows
the hub to agree with all the nodes about the beginning and the end of each bit time
in order to perform a correct sampling of the bit value; whereas the synchronization
at frame level allows the hub to agree with all the nodes about the location of each
bit inside the frame, i.e. about the frame field the bit belongs to.

On the one hand, the Physical Layer Module uses the typical CAN synchroniza-
tion mechanisms [ISO93] for allowing the hub to synchronize with the bit stream
at bit level and this generates the reception and the transmission clocks (clkR and
clkT respectively in Figure 5.3). As in a normal CAN node, the reception clock in-
dicates to the hub the instant of time at which the input signal from the medium (the
coupled signal and each port contribution in the case of the hub) must be sampled;
whereas the transmission clock indicates the instant of time at which a transmission
bit value could be issued to the medium if the hub needs to transmit a bit.

On the other hand, the Rx CAN Module observes the bit stream at the coupled
signal in order to achieve the synchronization at frame level. As a result of this
synchronization, the Rx CAN Module generates a set of signals, we call Current
State signals (CS), that together with B0 describes the current state of the resul-
tant frame. However, as will be explained in Section 5.5, the Rx CAN Module
must keep the synchronization at bit and at frame level with the other nodes in
spite of the presence of errors that are observed in the resultant coupled signal. It
is very important not to confuse the errors that are observed in the coupled signal
with the errors that are observed at a given hub port. Errors at the coupled signal
are broadcast to all nodes, leading the hub and nodes to desynchronize with each

5.5 Hub synchronization in the presence of errors at the coupled signal 55

other. In contrast, an error at a hub port is not necessarily propagated to the cou-
pled signal and, hence, it is not always broadcast or provokes a desynchronization.
To deal with this situation and force the hub and all nodes to re-synchronize when
the hub or any node detects an error in the coupled signal, the hub includes some
of the standard error management mechanisms of CAN. Section 3.3.4 thoroughly
discussed what are these mechanisms. Basically they consist in signaling and glob-
alizing any detected error by transmitting an active error flag. Specifically, when
the Rx CAN Module detects an error in the coupled signal, it orders the Error
Flag Generator Module within the Fault-Treatment Module (errorFlagGenerator
in Figure 5.3) to transmit the active error flag. Then this module transmits the flag
through a dedicated contribution, hubTx, driven into the global AND.

The ultimate error detection, fault diagnosis and fault passivation are carried
out by the Enabling / Disabling units (Ena/Dis in Figure 5.3). Each one of these
units uses the set of signals CS, which are better described in Section 6.3, and
the resultant coupled signal, B0, to know the current state of the resultant frame.
This information is used together with the contribution from its corresponding port
(either B1, B2, etc.) in order to detect errors and to diagnose whether its port is
faulty or not.

Whenever a given Enabling/Disabling Unit diagnoses its corresponding hub port
as being faulty, it removes the contribution of this port from the system by issu-
ing a logical ‘1’ to the corresponding Enabling/Disabling signal, ED1..n, which
is connected to the OR gate that corresponds to the faulty port (see Figure 5.3).
This effectively removes the contribution of this port to the global AND, being
equivalent to disconnecting the link, and the corresponding node, from the hub.
In general, this mechanism is similar to the one proposed in [RVA99] to manage,
locally in each node, the media redundancy in a replicated bus topology.

The mechanisms that have been devised in order to detect errors at the hub ports,
as well as to diagnose them as faulty are thoroughly described in Chapters 6, 7
and 8.

5.5 Hub synchronization in the presence of errors at the
coupled signal

As stated above, the error-detection and fault-treatment mechanisms of the Fault-
Treatment Module require knowledge of the current state of the resultant frame.
However, errors that corrupt the coupled signal can lead the hub and nodes to
desynchronize at bit and/or at frame level, i.e. to disagree on the logical value

56 Chapter 5. CANcentrate basics

of the bit that is being broadcast, and/or on the frame field this bit belongs to. If
the hub and a node are desynchronized with each other, the hub can misinterpret
the contribution it receives through the hub port corresponding to that node and,
thus, it can incorrectly believe that this contribution is erroneous or even faulty.
This desynchronization can be provoked for various reasons. For instance, an elec-
tromagnetic disturbance may affect a bit in a way that not all nodes (and the hub)
sample the same logical value.

Since a desynchronization can lead the hub to misinterpret the contribution of
a given hub port, the hub needs mechanisms to keep synchronized with all nodes
in spite of the presence of errors at the coupled signal. Fortunately, the standard
CAN [ISO93] embraces error management mechanisms that force nodes to re-
synchronize after any of them detects an error. The hub includes some of these
mechanisms in order to force itself and all nodes to re-synchronize whenever it or
any node detects an error in the coupled signal.

In order to better understand how the hub can keep synchronized with all nodes,
let us summarize the error management mechanisms of CAN, which were outlined
in Section 3.3.4. Any CAN node is able to detect five different error types [ISO93]:
stuff error, format error, bit error, CRC error and ACK error. Whenever a node
detects an error, it signals it by means of an active error flag or a passive error flag,
depending on whether the node is error-active or error-passive.

An active error flag always violates the stuff rule and forces all nodes to detect
an error and to signal it too. In such a way, the error is globalized and the frame
that was being transmitted is rejected by all the nodes, i.e. we say that an error
globalization occurs. Nevertheless, a passive error flag does not always force the
other nodes to detect an error [ISO93] and thus, no globalization is ensured when
an error-passive node signals an error. This is an important issue since data con-
sistency can only be ensured if all nodes which detect an error are able to globalize
it (see Section 3.3.4).

Moreover, as already explained, after an active error flag provokes an error glob-
alization, all nodes cooperatively transmit an error delimiter after transmitting their
own error flags. Since all nodes recognize the end of an error delimiter at the same
time, they become re-synchronized at frame level at that time. This is very impor-
tant because it guarantees that all nodes are re-synchronized before any node tries
to transmit a new frame.

In contrast, it is not guaranteed that an error passive node that signals an error
becomes re-synchronized with the other nodes before a new frame is transmitted.
For example, imagine a situation in which a receiving node detects an error during
the End Of Frame field (EOF) of a given frame. The node signals the error, but it

5.5 Hub synchronization in the presence of errors at the coupled signal 57

is not globalized, thereby leading to an inconsistency scenario in which all nodes
except itself accept the frame. This situation is certainly undesirable, but it can be
even worse. Notice that after transmitting the passive error flag, this node will con-
tinue monitoring the resultant frame trying to detect the pattern of 8 consecutive
recessive bits that indicate the end of the error passive delimiter (see Section 3.3.4).
Then, imagine that other node starts transmitting a new frame before the error pas-
sive node detects this pattern. In such a situation, and considering that no more
errors occur, the error passive node will only be able to recognize a sequence of 8
consecutive recessive bits when monitoring the EOF of this new frame. As a con-
sequence, not only the fist frame was inconsistently accepted, but also the second
one. Thus, one can conclude that it is necessary to re-synchronize all nodes as soon
as possible after an error occurs.

All these considerations regarding the CAN error-signaling mechanism influ-
ence the design of the hub. As stated above, the hub includes some of the error
management mechanisms of CAN to keep synchronized with all nodes in spite of
the presence of errors at the coupled signal. Specifically, since only an active error
flag ensures the globalization of any error, the hub must behave as an error-active
node when signalling an error. This means that the hub always signals an error by
transmitting and active error flag, regardless the number of errors it has detected
in the coupled signal so far. Specifically, as indicated in Section 5.4, the Rx CAN
Module is the responsible for detecting errors at the coupled signal. Thus, when
this happens, the Rx CAN Module simply orders the Error Flag Generator Module
to transmit an active error flag.

At this point, it is also noteworthy that in order to reduce the probability of data
inconsistency the hub not only signals errors as an error-active node, but it also
considers that error-passive nodes are faulty, i.e. it only allows contributions of
error-active nodes.

As concerns the types of errors the hub signals, notice that it is never the original
transmitter of a message; so that it observes the coupled signal from the point of
view of a receiver. Thus, it can only detect in the coupled signal those errors that
a receiving CAN node would detect. More specifically, the hub is able to detect a
subset of the errors that are detectable in CAN: stuff error, format error and CRC
error. Notice that although a receiving CAN node can also detect a bit error, this
type of error is not included in this subset. The hub could also detect it by just
monitoring the downlinks. However this monitoring is not required because any
error in the downlink actually desynchronizes the corresponding node at frame
level, which implies that, sooner or later, this node will cause a stuff error, a format
error or a CRC error in the resultant frame.

58 Chapter 5. CANcentrate basics

Downlink
Hub

Node B

Uplink

Node 1

Node n

.

.

.
Uplink

Downlink

Node A

Figure 5.4: Hybrid topology combining CANcentrate and CAN

Finally, note that the error globalization mechanism provided by the Error Flag
Generator allows the hub to abort the transmission of a frame at any moment.
Therefore, it allows inclusion of further fault-treatment mechanisms, which are not
included in the CAN protocol, e.g. to abort the transmission of a forged message
due to a masquerading fault. Nevertheless, these issues will be addressed in future
work.

5.6 Considerations on the cabling and bit rate

The cost and the length of the cabling, as well as the achievable bit rate, are im-
portant factors in distributed embedded systems. Star topologies generally lead to
longer cabling than corresponding bus topologies, and thus higher costs, but not
necessarily. In fact, the gains or losses in cabling length are highly dependent on
the network physical layout. Moreover, the benefits of dependability that can be
obtained when using star topologies could be a good reason for choosing them
when dependability is an issue.

However, a flexible approach would be the best choice, which combines de-
pendable mechanisms only where needed with less expensive mechanisms where
dependability is not an issue. CANcentrate allows this kind of flexibility because
it brings the possibility of setting up an hybrid topology combining a bus and a star
topology (Figure 5.4). This can be done by connecting a set of nodes with lower
dependability requirements to one hub port, sharing the same uplink and downlink.

The second important factor regarding the cabling is the achievable bit rate. As
explained in Section 3.2, in CAN, due to the synchronization at the bit level among

5.6 Considerations on the cabling and bit rate 59

a) Typical cable configuration of a star topology

b) Typical cable configuration of a bus topology

Node n Node k

Li Lj

Ln Lk
Lm

Node i

Node m

Node j

Node n

Node i

Node m

Node j

Node k Lb

Figure 5.5: Comparison between cabling lengths in a star and in a bus

all nodes, there is an inverse relationship between the bit rate and the maximum
bus length [ISO93]. In CANcentrate, these relationship is preserved as the bit level
synchronization of CAN is maintained.

However, since the signals travel to the hub and then in parallel in all links back
to the nodes, the maximum length applies only to every pair of links. This feature
may represent a substantial increase in the capacity to interconnect nodes when
compared with the bus topology. To better understand this issue, imagine a system
with N nodes separated in space, as depicted in Figure 5.5. The total length of
the bus that interconnects such nodes is Lb (Figure 5.5b). On the other hand,
consider all nodes interconnected by means of a hub with link i having length Li

(Figure 5.5a). Despite depending on the nodes placement, for the general case,
Lb >> Li + Lj , ∀i,j . This is a major benefit of the star topology. Obviously, also
for the general case, Lb <

∑

i(Li) meaning that the total length of the cabling
system is longer in the star topology. But the superior connectivity of the star may
allow using higher bit rates than with a bus due to the stronger limitation on the
bus length.

Finally, let us compare the relationship between the bit rate and the maximum
separation between two nodes in a bus and in a star topology. Regarding the length
of each star link, the bit level synchronization imposes a limitation on the sum of
the lengths of every pair, as stated above. Let this limitation be Lmaxs, the star
diameter, i.e. the sum of the lengths of the two longest links in the star. In order
to have the lengths of all links independent of each other, the previous constraint

60 Chapter 5. CANcentrate basics

implies that ∀iLi < Lmaxs/2.

To derive Lmaxs, the maximum diameter of the star, we need to analyze the
propagation of the electrical signals from end-to-end. With respect to a bus topol-
ogy, the star presents an extra delay caused by the hub (additional transceivers and
internal gates). This delay is dominated by the former factor since the gate delays
are negligible (order of 1 ns or less using modern technologies) when compared
with the transceiver delay (approximately 150 ns for fast transceivers, including
bus to reception pin and transmission pin to bus [Inf02]). For a given bit rate B,
the bit time 1/B has now to account for both propagation effects as in a bus plus
hub delay. For the former aspect, consider all the parts that contribute to establish
the bit time in CAN using the normal bus topology. Let this be tpb (notice that
tpb = 1/B by definition). In a star, all these parts related to propagation effects
also have to be considered, taking tps. However, the bit time now also includes the
hub delay th, thus tps = 1/B − th. Note that since a signal must go through the
hub two times (from the transmitting node to the receiving node and viceversa), th

includes twice the time a signal is delayed when crossing the hub in one way.

Therefore, from the point of view of signal transmission, we can define a star
equivalent bus, with propagation effects taking tps and operating at a bit rate B ′ so
that:

B′ =
1

tps
=

1

1/B − th
=

B

1 − B · th
> B (5.1)

The previous equation shows that a star is, from an electrical signal transmission
point of view, equivalent to a bus operating at a higher bit rate. Moreover, the
higher the bit rate, the larger the difference. Therefore, the maximum diameter of
the star Lmaxs, operating at bit rate B, is the maximum length of standard CAN
operating at bit rate B′. For example, given th = 2 · 150 = 300 ns (according
to the figure of hub delay referred above), a star operating at B = 1 Mbit/s has
a maximum diameter equal to the length of a bus operating at 1.43 Mbit/s. On
the other hand, if B = 125 Kbit/s then the maximum diameter of the star equals
the length of a bus operating at 129.9 Kbit/s which implies a negligible reduction
in length. To calculate the effective bus length for these transmission rates refer
to [CiAa]

5.7 Conclusions 61

5.7 Conclusions

CANcentrate is a star topology that includes an active hub provided with enhanced
fault-treatment mechanisms. Each node is connected to the hub by means of a
dedicated link containing an uplink and a downlink. Each node and its link can be
considered as region or a hub port that can be isolated to prevent error propagation.

The hub is made up of three modules: the Input/Output Module, the Coupler
Module and the Fault-Treatment Module. The Input/Output Module is composed
of a number of transceivers that convert the physical signal received from each hub
port into a logical value that the hub can process, and that translate the resultant
coupled signal to a physical signal that is broadcast to every node.

The Coupler Module substitutes the wired-AND functionality of the CAN bus by
a logical AND gate and includes a number of OR gates, one per link, which allow
the hub to disable the contribution to the global AND from a specific uplink. The
coupling of every hub port is performed in a fraction of the bit time. This allows
preserving the CAN low level properties, i.e. the dominant/recessive transmission
and the in-bit response, as well as the rest of mechanisms of CAN. Moreover, as
a consequence of this compatibility with the standard CAN specification, off-the-
shelf CAN components can be used in the nodes of CANcentrate.

The hub evaluates each port independently to detect errors. For this purpose, it
includes a dedicated Enabling/Disabling Unit per port within the Fault-Treatment
Module. Each one of these units is supplied with information about the meaning of
each bit that is being broadcast. Basically, this information specifies the frame field
the bit belongs to. The Enabling/Disabling unit uses this information to evaluate
whether or not the contribution received from its corresponding hub port is correct.
The independence among the Enabling/Disabling units allows easily adding a new
hub port. This can be done by basically including a new Enabling/Disabling Unit in
the fault treatment module and its corresponding OR gate in the Coupler Module.

In order to supply the Enabling/Disabling units with the information that de-
scribes the meaning of each bit that is being broadcast, the Fault-Treatment Module
includes the Rx CAN Module. This module acts as a CAN receiver, synchronizing
with the resultant coupled signal at bit level and at frame level, so that it agrees with
all nodes about the location of each bit inside the frame. To enforce this agreement
even in the presence of errors in the channel, the Rx CAN Module is also able
to detect the same kind of errors as a standard CAN receiver and to trigger the
transmission of an active error frame.

Finally, regarding the cabling of CANcentrate, two key factors have to be con-
sidered in distributed embedded systems: its cost/length and the achievable bit

62 Chapter 5. CANcentrate basics

rate. Star topologies generally lead to longer cabling and higher costs than corre-
sponding bus topologies, but not necessarily. In fact, the gains or losses in cabling
length are highly dependent on the network physical layout. Moreover, CANcen-
trate allows building hybrid topologies by, for instance, attaching to a hub port a
set of CAN nodes that are interconnected by means of a bus topology. Since star
topologies can yield dependability benefits when compared with bus topologies,
star topologies could be the choice when dependability is an issue.

Regarding the achievable bit rate, CANcentrate preserves the inverse relation-
ship between the bit rate and the maximum separation between two nodes. This is
because it maintains the bit level synchronization of CAN. Fortunately, in CAN-
centrate such compromise applies to its diameter only. However, the presence of
the hub causes an extra delay that must be taken into account when dimensioning
the bit time. In practice, CANcentrate will require a longer bit time for a given
diameter than a CAN bus with an equivalent length. This means that the maximum
bit rate attainable in the star is lower than that achievable in the bus. To minimize
such a difference, it is important to use fast transceivers in the hub ports.

Chapter 6

CANcentrate error-detection and
fault-treatment mechanisms

6.1 Introduction

As we have already explained, CANcentrate aims at improving dependability of
CAN networks by providing enhanced error-containment capabilities. To achieve
this, the hub of CANcentrate incorporates error-detection and fault-treatment mech-
anisms that allow it to deal with errors and to contain them at their port of origin.
These mechanisms are implemented within the Fault-Treatment Module (see Sec-
tion 5.4).

In Sections 5.4 and 5.5 we explained that errors are detected at two different
levels. On the one hand, the Rx CAN Module includes most of the error-detection
mechanisms of CAN in order to detect errors at the coupled signal. Moreover,
it also includes the CAN error-signaling mechanism to participate with all other
nodes in recovering when an error at the coupled signal occurs. This recovery
basically consists in forcing the hub and all nodes to re-synchronize at bit and at
frame level.

On the other hand, the hub also detects errors at each hub port. Specifically, each
hub port is monitored by a dedicated Enabling/Disabling Unit within the Fault-
Treatment Module. A given Enabling/Disabling Unit aims at detecting errors at
its corresponding hub port in order to diagnose if that port is faulty. When this
occurs, the Enabling/Disabling Unit passivates the fault by driving a logical ‘1’ at
the corresponding Enabling/Disabling signal (EDi), which effectively isolates the
port contribution, as indicated in Section 5.4.

63

64 Chapter 6. CANcentrate error-detection and fault-treatment mechanisms

Current chapter is devoted to discussing the basics of how the Enabling/Disabling
Unit detects errors and treats faults. Details concerning the way in which errors at
the coupled signal are processed were explained in previous Sections 5.4 and 5.5.

6.2 Error-detection and fault-treatment rationale

The Enabling/Disabling Unit is able to deal with all faults included in our fault
model, which is specified in Section 5.2: stuck-at-dominant, stuck-at-recessive
and bit-flipping faults. Note that in the present chapter we will not refer to net-
work partition faults. As explained in Section 3.4, in a bus topology, this type of
fault is provoked by a physical disruption affecting the medium. However, a phys-
ical disruption affecting the media of a simplex star topology, e.g. occurring at an
uplink, cannot provoke a network partition, since each node has its own dedicated
connection to the hub. In other words, a simplex star topology inherently prevents
network partitions from happening. Moreover, a physical disruption can also lead
the medium to be stuck-at or bit-flipping. For instance, signal reflections at an open
extremity of a link may cause channel errors and, hence, manifest as a bit-flipping
fault. Therefore, we can say that the hub indirectly treats physical disruptions when
dealing with stuck-at and bit-flipping faults.

The internals of the Enabling/Disabling Unit are shown in Figure 6.1. On the
one hand, each Enabling/Disabling Unit has a dedicated event counter and an asso-
ciated manager module for each type of fault that must be detected. A given event
counter is used to count up suspicious situations in which the corresponding hub
port is possibly behaving incorrectly due to a specific type of fault. In fact, one can
consider the event counter as a kind of error counter. Regarding a given manager
module, it is the responsible for detecting suspicious situations at a given hub port
(for detecting possible errors) and, then, for deciding how to increase/decrease its
associated event counter. For that, the manager module basically analyzes the cou-
pled signal, B0, the port contribution Bi, as well as the Current State signals (CS)
from Rx CAN. The manager module makes its decisions depending on the type of
fault it is responsible to deal with.

More specifically, the Enabling/Disabling Unit includes the following event coun-
ters and their corresponding manager modules: the Dominant Bit Counter (DBC)
and the DBC Manager Module for stuck-at-dominant faults; the Non-Acknowledge
Counter (NACKC) and the NACKC Manager Module for the stuck-at-recessive;
and the Bit-Flipping Counter (BFC) and the BFC Manager Module for the bit-
flipping faults.

On the other hand, the Enabling/Disabling Unit includes a Threshold Control

6.2 Error-detection and fault-treatment rationale 65

CS

bitStuffWaited

valueBitStuff

Bi

frameField

Threshold
Control

clkR

resets

EDi

Enabling/disabling Unit
k

m

m

m

B0

portStatusi
2

NACKC
C

BFC

DBC

DBC Manager
+/-

reset

BFC Manager

NACKC Manager
+/-

reset

+/-
reset

CRCPassed

Figure 6.1: Internals of the Enabling/Disabling Unit

Module that is aimed at declaring the port as faulty when it corresponds and, then,
at isolating its contribution. The Threshold Control Module takes into account the
value registered by each event counter and is programmed with a specific threshold
for each one of them: the Dominant Bit Threshold (DBT), the Non-Acknowledge
Threshold (NACKT) and the Bit-Flipping Threshold (BFT). Whenever any of the
event counters exceeds its corresponding threshold, the Threshold Control Module
isolates the port contribution by setting the corresponding EDi signal to ‘1’.

However, in order to increase the tolerance to transient faults, the Threshold
Control Module may use a specific reintegration policy to re-enable the port con-
tribution and to allow the operation of all managers again, after a given period of
inactivity is observed at the port. This reintegration policy will be explained in
Section 6.7.

Finally notice that, as explained in Section 3.3.4, although the CAN protocol
is supposed to ensure data consistency, it actually cannot enforce it if a CAN
node is in the error-passive state. This is because an error-passive node cannot
always force the globalization of an error. In order to mitigate this problem, the
Enabling/Disabling units consider the behavior of error-passive nodes as incorrect
(see Section 5.5). This will eventually lead to the isolation of any hub port corre-

66 Chapter 6. CANcentrate error-detection and fault-treatment mechanisms

sponding to an error-passive node.

6.3 Current State signals for the Enabling/Disabling units

As indicated in Section 5.4 and in Figure 5.3, the Rx CAN Module, besides being
responsible for ensuring the synchronization at frame level, also provides the En-
abling/Disabling units with a set of signals called Current State signals, CS, that
gathers all the information that, together with B0, is needed to know the meaning of
the bit that is currently broadcast to all nodes, i.e. the current state of the resultant
frame. Next, these signals are explained (see Figure 6.1). Nevertheless, the reason
why these are the signals required by the Enabling/Disabling units for describing
the current state of the resultant frame will be more easily understood later on in
Chapter 7.

First, the meaning of a bit takes into account whether or not it is a stuff bit.
Signal bitStuffWaited indicates this. Additionally, in case it is a stuff bit, the signal
valueBitStuff specifies the expected correct bit value according to the stuff rule.

Second, the type of frame and the specific field of the frame in which the bit
is located also determines the meaning of the bit. As explained in Section 3.3.1,
CAN specifies four kinds of frames: data frames, remote frames, error frames and
overload frames. However, we have re-defined the types of frames for practical
reasons.

• Data frame. This type of frame coincides with the data frame specified in
the CAN standard [ISO93]. It is the frame a node uses to transmit data.

• Remote frame. This kind of frame is also included in the CAN standard. It
does not carry data, but a node uses it to request for the transmission of a
specific data frame from another node.

• Overload frame. This type of frame is specified in the CAN standard as
well. An overload frame is transmitted to achieve an extra delay between
two different data or remote frames.

• Active error frame. This frame, which is not defined in the CAN standard, is
the one that results when error-active nodes signal an error. It is composed
of the superposition of the active error flags sent by these nodes (and by the
hub in the case of CANcentrate), followed by the error delimiter they all
cooperatively transmit.

6.4 Stuck-at-recessive faults 67

• Passive error frame. This frame is not included in the CAN standard. We
defined it as being the one that results when error-passive nodes signal an
error. It is composed of the superposition of the passive error flags sent by
these nodes, followed by the error delimiter they cooperatively transmit.

• Inter frame. This type of frame is also specified for practical reasons. We
defined it to embrace the bits that form part of the Intermission Frame Space
(IFS) and the Idle period [ISO93]. As explained in Section 3.3.1, the CAN
standard specifies the IFS as a sequence of three consecutive recessive bits
that follows every frame. After the IFS the channel remains at a recessive
value (Idle) until a dominant bit is observed at it as a consequence of an error
or because of a node starts transmitting a frame. In this way, our inter frame
consists of two fields: the Intermission field, which is composed of three
consecutive recessive bits, and the Idle field, which comprises no bit or some
consecutive recessive bits.

The kind of frame and the specific frame field the bit that is being broadcast
belongs to is codified by means of the vector of signals (a signal of k bits) called
frameField.

Finally, as will be explained later on in Sections 7.3.1, 7.3.2, 7.4.2 and 7.4.1,
some error-detection mechanisms included in the Enabling/Disabling units also
need to know whether or not the frame sent through the hub has passed the CRC
check (this check is performed by the Rx CAN Module, see Section 5.5). This
information is provided by means of the CRCPassed signal.

6.4 Stuck-at-recessive faults

Due to the AND function that the hub implements, a port suffering a stuck-at-
recessive fault does not interfere the communication among the rest of the nodes
in the star. Therefore, this kind of fault does not generate a severe failure of the
communication system. Nevertheless, detection of such faults may still be useful
in order to implement additional fault-tolerance mechanisms at higher levels of the
system architecture, for example to detect a crashed or absent node.

The detection of stuck-at-recessive faults poses an additional difficulty because
a CAN node may be without transmitting, which actually means sending recessive
values, for a long time. Therefore, it would be theoretically impossible to differ-
entiate between a stuck-at recessive node and an operational but non-transmitting
node. Nevertheless, the CAN protocol specifies that every CAN controller must

68 Chapter 6. CANcentrate error-detection and fault-treatment mechanisms

transmit a dominant bit in the ACK slot of every frame it correctly receives, i.e. the
ACK bit (see Section 3.3.1). Therefore, the absence of this bit can be used to detect
stuck-at-recessive ports.

For each port, such detection is carried out by a specific NACKC Manager Mod-
ule. Whenever the NACKC Manager detects, thanks to the CS signals, that the
current state of the resultant frame is the ACK slot and that the frame has passed
the CRC check, it checks in Bi if the node is sending a dominant value to ac-
knowledge the frame. If this dominant value is not sent, then the NACKC Manager
increases the NACKC (Non-Acknowledge Counter).

The NACKC Manager decreases the NACKC whenever a dominant bit is issued
through the port. It is important to note that by decreasing the counter, instead
of resetting it when detecting a dominant bit value, the hub can detect not only
stuck-at-recessive failures, but also nodes that tend to be stuck-at-recessive.

When the NACKC exceeds the Non-Acknowledge Threshold (NACKT), the cor-
responding Threshold Control Module does not isolate the port, but it merely noti-
fies the user about the inactivity of the port by means of a LED. The specific value
for the NACKT can be configured depending on how strict we want to be when
considering a port as being stuck-at-recessive. For instance, since an error-active
node should send an active error flag after omitting an ACK bit, even a NACKT
value equal to 2 can be considered if we want to be very strict when detecting a
crashed or absent node.

6.5 Stuck-at-dominant faults

In order to detect a stuck-at-dominant fault at a given hub port, the corresponding
DBC Manager Module counts the number of consecutive dominant bits that are
received through that port (through the uplink of that port). The DBC Manager
increases the corresponding DBC in one unit each time it observes a dominant bit
value, and it resets that DBC as soon as it observes a recessive bit.

The associated Threshold Control Module compares the value of the DBC with
the Dominant Bit Threshold (DBT). Whenever the DBC exceeds the DBT, the
Threshold Control Module isolates the port.

The DBT is configured in order to maximize the chances to differentiate between
situations in which a stuck-at-dominant fault really exists and situations in which
the channel is occupied by many consecutive dominant bits, although there is not a
stuck-at-dominant fault. The maximum number of allowed consecutive dominant
bits before diagnosing a stuck-at-dominant fault takes into account two different

6.6 Bit-flipping faults 69

contributions:

DBT = (Tstuff + 1) + N · TerrorFlag

The first term, Tstuff+1, specifies the minimum number of consecutive dominant
bits that violates the stuffing rule in a CAN network (6 bits). This term includes
the maximum number of consecutive dominant bits allowed in CAN, Tstuff, plus
the additional dominant bit needed for violating the stuff rule. Whenever the stuff
rule is violated, it is expected that all nodes start to send an active error flag im-
mediately after this error occurs. Nevertheless, it is possible that a node detects
a second error during its own error flag and restarts the transmission of the active
error flag, thereby prolonging the sequence of consecutive dominant bits. In the
worst case, a node will see this second error in the last bit of its first error flag,
and will send a consecutive active error flag. The second term, N · TerrorFlag, is
intended to covering these situations. It specifies the maximum number of consec-
utive dominant bits that are considered as overlapped or consecutive active error
flags. In other words, it indicates the maximum amount of time a node is allowed
to transmit overlapped or consecutive error flags, measured in number of bits.

Note that for N = 2 the threshold coincides with the one proposed in [RVA99].
In that case, the threshold can be exceeded if two additional errors occur in the error
flag that follows a violation of the stuff rule, leading to an erroneous diagnosis of
a stuck-at-dominant fault. Using a higher value of N reduces the probability of
performing an erroneous stuck-at-dominant diagnosis.

The value of N can be configured depending on the application. For instance, in
a hazarding environment, we may consider that N = 4 is tolerant enough and does
not imply a significant loss of reactivity in diagnosing stuck-at-dominant faults.

6.6 Bit-flipping faults

As said before, a bit-flipping fault occurs whenever a component of the network
sends erroneous and random bits with no restrictions in the value domain. From
the hub point of view, such kind of fault manifests as any of its ports receiving too
many arbitrarily erroneous sequences of bits.

The CAN standard specifies some fault-treatment mechanisms that can be used
to diagnose and passivate bit-flipping faults occurring at nodes. These mecha-
nisms were briefly described in Section 3.3.5. Basically, each CAN node includes
a Transmission Error Counter (TEC) and a Reception Error Counter (REC). These
counters are increased and decreased following some rules established in the CAN

70 Chapter 6. CANcentrate error-detection and fault-treatment mechanisms

specification. When any of these counters exceeds a given threshold, the corre-
sponding CAN node reduces its impact on the communication process by going
into the error-passive state. Moreover, a CAN node may disconnect itself from
the network by entering into the bus-off state [ISO93] if a second threshold is also
exceeded. These fault-treatment mechanisms are aimed at preventing further prop-
agation of local errors. See Section 3.3.5 for a further explanation about the error-
passive and bus-off states.

Nevertheless, these mechanisms based on the TEC/REC included in each CAN
node present some deficiencies that make little advisable for the hub to rely on these
mechanisms for achieving error containment. First, normal CAN nodes can fail in
arbitrary ways and for this reason may stop performing fault confinement. Second,
if a medium is the source of bit-flipping faults affecting all nodes, it cannot be
isolated by the nodes. Finally, the accuracy of the error detection strategy followed
by the TEC/REC is limited by the restricted vision that the bus imposes, in which
the contributions of all nodes are mixed. Thus, we decided to implement in each
Enabling/Disabling Unit a dedicated Bit-Flipping Counter (BFC) and its associated
BFC Manager Module.

Each BFC Manager is aimed at detecting errors in its port contribution. The
BFC Manager increases and decreases its BFC depending on the errors it detects.
Whenever the BFC exceeds a given Bit-Flipping Threshold (BFT), the Threshold
Control Module diagnoses its port as being faulty and isolates it by means of the
corresponding ED signal.

The BFC Manager evaluates the correctness of its corresponding port by check-
ing whether or not its contribution (Bi) deviates from the expected behavior accord-
ing to the current state of the resultant frame (CS and B0). Because of the behavior
of a CAN node is quite complex and a bit-flipping fault can provoke a huge number
of error scenarios, the details of the error-detection mechanisms implemented by
the BFC Manager are thoroughly explained in Chapter 7. Additionally, the specific
values for increasing and decreasing the BFC, as well as the value for the BFT are
addressed in Section 8.5.

6.7 Reintegration policy

In Section 6.2 it was explained that each Enabling/Disabling Unit has a Thresh-
old Control Module that isolates its port contribution when detects that any of its
event counters exceeds a specific threshold. However, it was also said that in or-
der to increase the tolerance to transient faults, the hub implements an automatic
reintegration policy of isolated ports.

6.7 Reintegration policy 71

Hub initialization
/
action: initialize all
event counters and
their managers
action: compel the
DBC and BIC
managers to start
monitoring the port

Idle

Disabled

Active

Dominant bit during arbitration OR
ACK OR error flag
/
action: resume NACKC
action: compel the NACKC
Manager to start monitoring the port

DBC threshold exceeded OR
BFC threshold exceeded
/
action: disable port contribution
action: force all event
managers to stop monitoring
the port

128 occurrences of bus free
/
action: enable port contribution
action: resume DBC and BIC
action: compel the DBC and
BIC managers to start
monitoring the port

NACKC threshold exceeded
/
action: force NACKC Manager
to stop monitoring the port

BFC threshold exceeded
/
action: disable port contribution
action: force all event managers
to stop monitoring the port

Figure 6.2: Reintegration policy schema of CANcentrate

The reintegration mechanism is implemented by the Threshold Control Module,
and it basically consists in re-enabling the contribution of any port after a given
period of inactivity is observed at the port. The state machine that describes this
reintegration policy is depicted in Figure 6.2.

When the hub is initialized, each Threshold Control Module sets its port to the
idle state. During this state the port contribution is enabled. Notice that as long
as the hub port is in idle, the DBC and the BIC managers monitor its contribution
in order to detect possible errors. However, the NACK Manager does not. This
is because and idle port is not considered as being regularly participating in the
communication process and, thus, it is not expected to receive an ACK bit through
it.

As soon as the hub receives a meaningful contribution from a port, e.g. a dom-
inant bit contribution during the arbitration, an ACK bit, or an error flag trans-
mission, the corresponding Threshold Control Module sets that port to the active
state. The only difference between the idle and active states is that the second
one indicates that the node is regularly participating in the communication pro-
cess. Therefore, the NACK Manager is compelled to start monitoring the hub port
whenever it becomes active. Also notice that if the hub port is diagnosed as being
stuck-at-recessive during the active state, the hub port returns to idle and, thus, the
NACK Manager must stop monitoring the port.

Whenever the stuck-at-dominant or the bit-flipping thresholds are exceeded, the

72 Chapter 6. CANcentrate error-detection and fault-treatment mechanisms

Threshold Control Module sets the port to the disabled state, regardless the state of
the port at that moment. To be in this state actually implies that the contribution of
the port is disabled, and that the managers stop monitoring the port.

Once a port is in the disabled state, the corresponding Threshold Control Module
waits to observe a constant recessive contribution during 128 CAN bus-free occur-
rences, i.e. 128 occurrences of 11 consecutive recessive bits. This coincides with
the number of consecutive recessive bits that a CAN node in the bus-off state must
observe before being able to re-enter in the error-active state (see Section 3.3.5).
After detecting this period of inactivity, the port will be set again to the idle state;
its contribution will be re-enabled; the DBC and BIC will resume, and their man-
agers will start monitoring the port again.

The reintegration policy allows an autonomous performance of the hub because
it is able to return to normal operation by itself.

6.8 Conclusions

This chapter discuses the basics of how each Enabling/Disabling Unit detects errors
and treats faults to enhance error containment in a CAN network.

In order to be able to detect errors at its port contribution, the Enabling/Disabling
Unit needs to know the meaning of the bit that is currently being broadcast to all
nodes, i.e. the current state of the resultant frame. It gets this information from
a set of signals, CS, which are provided by the Rx CAN Module, and from the
current bit value of the coupled signal. The set of signals CS basically includes
information about whether or not the bit being broadcast is a stuff bit, as well as
about the type of frame and the frame field this bit belongs to. It is important
to note, at this point, that every bit of the stream that is being broadcast can be
considered as forming part of a frame. Therefore, for practical reasons, we consider
the interfame space as a type of frame.

The Enabling/Disabling Unit copes with all the faults that are included in our
fault model, even though it only explicitly detects and treats stuck-at-recessive,
stuck-at-dominant and bit-flipping faults. This is because a simplex star topology
inherently avoids network partitions and, in the worst case, a physical disruption
at a given point of the media manifests as a stuck-at or as a bit-flipping fault at the
corresponding hub port.

Stuck-at-recessive, stuck-at-dominant and bit-flipping faults are addressed sepa-
rately. For each one of these types of faults, the Enabling/Disabling Unit includes
an event counter and an associated event counter manager. The manager monitors

6.8 Conclusions 73

the hub port in order to detect suspicious situations in which the port is possibly
behaving incorrectly, i.e. to detect possible errors; and it increases/decreases its
associated event counter following specific rules.

In addition, the Enabling/Disabling Unit is provided with a Threshold Control
Module, which takes into account a different threshold for each type of fault.
Whenever the Threshold Control Module detects that the number of detected pos-
sible errors related to either a stuck-at-dominant or a bit-flipping fault exceeds the
corresponding threshold, it diagnoses the port as being faulty and isolates it by set-
ting the appropriate EDi signal to ‘1’. In contrast, the Threshold Control Module
does not isolate the port if it diagnoses it as being stuck-at-recessive. This is be-
cause a stuck-at-recessive port does not generate errors that can propagate to other
ports.

The detection of stuck-at-recessive faults poses an additional difficulty because
a CAN node may be without transmitting, which actually means sending recessive
values, for a long time. We propose a simple but effective solution to overcome this
problem. It consist in taking advantage of the fact that in CAN every operational
receiving node contributes to all frames in transmission with a dominant bit, the
ACK bit, within the ACK slot. In this way, a port is diagnosed as stuck-at-recessive
when it has omitted a predefined number of ACK bits.

A stuck-at-dominant fault is easily detected by counting up the number of con-
secutive dominant bits issued through the port. However, special care must be taken
not to confuse a stuck-at-dominant port with a port occupied by many consecutive
dominant bits, e.g. with a port that receives many overlapped or consecutive active
error flags. Specifically, we propose to consider that the maximum number of al-
lowed consecutive dominant bits depends on the maximum number of consecutive
active error flags that are expected in the network.

We have seen that to deal with suck-at faults is quite simple. However, the detec-
tion of a bit-flipping fault is much more complicated, since such a fault can lead to
the corresponding manager module to observe a huge number of error scenarios at
the hub port. This justifies the presence of Chapters 7 and 8, which are entirely ded-
icated to discuss the details of the error-detection and fault-diagnosis mechanisms
for dealing with bit-flipping faults respectively.

Finally, we have also described the reintegration policy that each Threshold Con-
trol Module performs in order to increase the tolerance to transient faults. This
policy basically consists in re-enabling the contribution of the port after it exhibits
a given period of inactivity. The reintegration policy allows an autonomous perfor-
mance of the hub because it is able to return to normal operation by itself.

Chapter 7

CANcentrate mechanisms for
detecting bit-flipping errors

7.1 Introduction

As explained in Chapter 6, a bit-flipping fault can manifest itself in a huge number
of different manners. On the one hand, this implies that the mechanisms responsi-
ble for detecting bit-flipping errors must try to encompass this wide range of error
scenarios. On the other hand, some difficulties arise for diagnosing a port as being
bit-flipping.

The present chapter is devoted to describing the details of the error-detection
mechanisms for dealing with bit-flipping faults; whereas a deep discussion of the
fault-diagnosis mechanisms will be provided in Chapter 8.

Notice that, as indicated before, the error-detection and fault-diagnosis mecha-
nisms are included in each Enabling/Disabling Unit, which operate independently
at each hub port. Particularly, within the Enabling/Disabling Unit, the Bit-Flipping
Counter Manager (BFC Manager) is the responsible for detecting bit-flipping er-
rors. This module counts up these errors using its corresponding Bit-Flipping
Counter (BFC).

7.2 Bit-flipping error-detection rationale

As explained in Section 6.6, each BFC Manager evaluates the correctness of its
corresponding hub port by checking that its contribution does not deviate from

75

76 Chapter 7. CANcentrate mechanisms for detecting bit-flipping errors

the correct behavior that is expected according to the current state of the resultant
frame. For instance, the BFC Manager does not expect to receive a dominant bit
through its port if that port corresponds to a receiving node, unless the current
bit that is being broadcast is the ACK bit and the frame that is being broadcast has
passed the CRC check. Other illustrative example is that the BFC Manager expects
that the stream received through its port correctly follows the stuff rule, in the case
its hub port corresponds to the transmitting node.

Concerning the concepts of transmitting and receiving node, notice that these are
the two possible roles that a CAN node can play during communication. On the one
hand, it is considered that a node is a receiving node as long as it does not attempt
to transmit. This means that a node acts as a receiver during the intermission field,
the idle field, as well as during the frame any other node is transmitting. On the
other hand, whenever the node attempts to transmit, i.e. when it sends a Start Of
Frame (SOF), it is considered as a transmitter in principle. The node keeps this
role until it ends transmitting, i.e. until the first bit of the intermission field, unless
it loses the arbitration. Concerning this last possibility, notice that, as explained
in Section 3.3.2, any conflict that arises when more than one node tries to gain
access to the medium for transmitting is resolved by the CAN bit-wise arbitration
mechanism. Thus if a transmitting node loses the arbitration, it is immediately
considered as a receiver.

In the case of CANcentrate, the BFC Manager assumes that its corresponding
node has lost the arbitration and becomes a receiver whenever its bit contribution
is recessive and the resultant coupled signal has a dominant value. Under nor-
mal circumstances, after the arbitration phase only one node considers itself as the
transmitter and only the BFC Manager corresponding to such node considers it to
be the transmitter. However, this may be not ensured in the presence of a special
type of error scenarios, which will be explained later on in Section 8.4.

Notice that since a node together with its corresponding link are considered as
an error-containment region (see Section 5.1), the BFC Manager assumes that the
bit issued through the port is the bit the node wishes to send. Hence, from now
on we will talk about the behavior of a hub port and the behavior of a node inter-
changeably.

Although the behavior of a CAN node is quite complex in the general case, we
have been able to identify five independent types of behaviors:

• The behavior of a transmitting node during a data frame and a remote frame
in which no error has been detected so far, i.e. during normal transmission
(see Section 6.3 for a further explanation about each type of frame).

7.3 Error detection during normal transmission 77

• The behavior of a receiving node during a data frame, a remote frame and an
inter frame1 in which no error has been detected so far, i.e. during normal
transmission.

• The behavior of a node upon an error condition is detected.

• The behavior of a node during an error signalling.

• The behavior of a node during an overload signalling.

It is very important to note here that when we say that an error condition is
detected, we refer again to errors that are detected at two different levels. As it
was explained in Sections 5.4 and 5.5 and, afterwards, again in Section 6.1, the
first level corresponds to errors detected in the coupled signal, i.e. in the resultant
frame, whereas the second one refers to errors detected in a port contribution.

It is important to highlight that a BFC Manager does not monitor the contribution
of other hub ports. Therefore, it only becomes aware of an error that happens in
other port when that error affects the resultant frame. Notice that it would not
have sense that the BFC Manager knows that other port is behaving incorrectly if
the error generated by that port does not propagate to the resultant frame. This is
because a CAN node will not react to an error issued by other node if that error does
not affect the correctness of the resultant frame. In contrast, the BFC Manager must
detect any error affecting its hub port to forecast what is going to be the contribution
of its node, independently of whether or not that error affects the resultant frame.

Next subsections are devoted to describing the rules the BFC Manager follows
to detect that its CAN node does not behave as expected. First, we will focus on
how the BFC Manager detects that its node behaves incorrectly before an error is
detected. Then, we will address the way in which the BFC Manager checks the
contribution of its node upon detection of an error or an overload.

7.3 Error detection during normal transmission

This section describes how the BFC Manager checks whether or not its node be-
haves correctly as long as an error has not been detected so far in the resultant
frame or in its port contribution.

We differentiate between the way in which the BFC Manager evaluates its node
contribution when that node is acting as the transmitter or as the receiver.

1Note that all the nodes are considered as receivers during the intermission frame space and the
idle period.

78 Chapter 7. CANcentrate mechanisms for detecting bit-flipping errors

To evaluate the correctness of the contribution of the transmitter is quite com-
plex since it is rather free to send the bit values it wishes. Fortunately, the BFC
Manager can adapt most of the error-detection mechanisms of the CAN protocol
to detect errors in the contribution of the transmitting node. Contrary to the case
of a transmitting node, to detect errors on the contribution of a receiving node is
easier. This is because a receiver is only allowed to send recessive bits, except in
particular locations of the frame and under specific circumstances. Thus, the BFC
Manager of a receiving node basically checks that its port only issues a dominant
bit when allowed.

7.3.1 Error detection on the transmitter contribution

The first type of errors the BFC Manager can detect is based on the expected be-
havior of the transmitting node during a data frame or a remote frame in which no
error has been detected so far.

The error detection for evaluating this type of behavior is not trivial because al-
though a transmitting node must respect the restrictions imposed by the CAN stan-
dard, it is rather free to send the bit values it wishes. Fortunately, the most complete
set of error-detection mechanisms available for detecting errors in the contribution
of a transmitter is already specified in the CAN protocol [ISO93]. These mecha-
nisms are: stuff rule check, frame check, monitoring, CRC check and ACK check
(see Section 3.3.4). However, notice that these error-detection mechanisms are
based on the observation of the resultant frame, in which the contribution of the
transmitter is mixed with the contributions of all the other nodes. Therefore, the
BFC Manager needs to adapt these error-detection mechanisms in order to directly
detect errors in the contribution of the transmitting node.

Note that to implement the referred CAN error-detection mechanisms, a typical
node needs to observe the bit value it wishes to send and the current value on the
bus. By observing the bus, the CAN node is able to know which is the resultant bit
in the bus (the bus acts as a logical AND gate), as well as to calculate, bit by bit,
the current state of the resultant frame.

Thus, similarly, the BFC Manager observes its corresponding port’s contribution,
Bi, the coupled signal B0, and the set of signals CS provided by the Rx CAN
Module, in order to detect errors. The Bi signal allows the BFC Manager to know
which is the value of the bit sent by the node. Additionally the BFC Manager uses
the signal B0 to know the value of the resultant bit that (as in a bus) all the nodes
should see. Finally, the set of signals CS complete the description of the current
state of the resultant frame.

7.3 Error detection during normal transmission 79

Also note that since after the arbitration phase only one node is considered as the
transmitter (see Section 7.2), only one BFC Manager will consider its correspond-
ing contribution as the transmitting node’s contribution during the rest of the data
or remote frame. Next, it is specifically explained how the BFC Manager corre-
sponding to the transmitting node adapts each CAN error-detection mechanism.

(1) Stuff rule check. The BFC Manager corresponding to the transmitting node
performs a stuff rule check on the stream sent by the transmitter. The signal bit-
StuffWaited included in CS indicates whether the current bit of the resultant frame
is a stuff bit or not, whereas the signal valueBitStuff included in CS indicates the
correct bit value expected for fulfilling the stuff rule. Whenever the signal bit-
StuffWaited indicates that the current bit is a stuff bit, the BFC Manager corre-
sponding to the transmitter checks if the stuff rule is fulfilled by analyzing whether
the bit issued through its corresponding port, Bi, matches with the bit value indi-
cated in the signal valueBitStuff.

(2) Frame check. The BFC Manager corresponding to the transmitter checks that
the transmitter’s contribution respects the frame format (during a data or a remote
frame) specified in the CAN protocol, i.e. the BFC Manager performs a frame
check on the transmitter’s contribution (see Section 6.3 for a further explanation
of the different types of frames). For data and remote frames, the transmitter is
allowed to send dominant bits and recessive bits depending on the current field
being transmitted. As concerns the signals involved to perform such frame check,
the vector frameField included in CS indicates which is the kind of frame and
the field within the frame the current bit belongs to. The BFC Manager uses its
knowledge about the CAN protocol in order to check whether the contribution of
its corresponding port, Bi, respects the frame format according to the kind of frame
and the field indicated by the vector frameField.

(3) Monitoring. As explained in Section 3.3.4, the transmitting node in a CAN
bus performs a monitoring of the resultant frame in order to check that whenever it
transmits a bit, such bit value is the value seen in the resultant frame (except during
the arbitration field and in the ACK slot, where it is allowed that a dominant bit
overwrites a recessive bit sent by the transmitter). In other words, the transmitting
node checks if a bit error has occurred.

Nevertheless, the BFC Manager cannot adapt this mechanism to detect that its
hub port provokes a bit error. This is because it cannot be sure about which is the
real bit value the node sent nor about whether or not that bit is corrupted in the
uplink/downlink of that node.

Fortunately, notice that if a bit error actually occurs, the BFC Manager corre-
sponding to the transmitter will detect, sooner or later within the frame, that the

80 Chapter 7. CANcentrate mechanisms for detecting bit-flipping errors

transmitter had any kind of problem. This is because the transmitting node should
signal an error when detecting the bit error. Such error signaling forces the BFC
Manager corresponding to the transmitter to detect an error by means of any of the
CAN error-detection mechanisms it adapts. In addition, even if the transmitter does
not signal the bit error due to extra errors (the transmitter may not detect that the
bit value it sent changed when reaching the hub), the BFC Manager will also detect
an error later on in the frame. That is because the error-detection mechanisms of
the CAN protocol (which the BFC Manager adapts) ensure that an error will be
detected if few than 5 errors occur within the same frame [ISO93]. For instance, a
bit-error that is not signaled by the transmitter will provoke a CRC error.

(4) CRC check. As said before in Section 3.3.4, the transmitting node calculates
and sends within the frame a 15-bit Cyclic Redundancy Code based on the bits
of the frame it has already transmitted. Note that if the contribution of any port
corresponding to a receiving node changes any of the bits that constitute the content
of the CRC or that are included in the set of bits from which the CRC is calculated,
then the transmitting node should detect such situation as a bit error and should
abort the transmission of the frame by signaling an error. Therefore, it is assumed
that the responsible for the correctness of the value of the CRC that can be seen in
the resultant frame is the transmitter. Thus, only the BFC Manager corresponding
to the transmitter checks if the CRC is correct in order to identify that its port has
behaved as bit-flipping. Regarding the signals involved in the CRC error detection,
the signal CRCPassed included in CS indicates whether the frame has passed the
CRC check performed by the Rx CAN Module or not. The vector frameField
included in CS indicates the frame and the field that is currently being transmitted
and, indirectly, when the CRC field ends. The BFC Manager corresponding to the
transmitter observes the vector frameField in order to know when the CRC field
ended, and then, checks by means of the signal CRCPassed if the frame has passed
the CRC check.

(5) ACK check. In CAN, when no receiving node acknowledges the frame, the
transmitter detects an ACK error by means of the ACK check. In fact, an ACK
error indirectly indicates to the transmitter that the frame it sent probably did not
pass the CRC check. Nevertheless, to use the ACK check in order to detect a CRC
error in the transmitter contribution is not appropriate. An ACK error can also
occur, even if the contribution of the transmitter is correct, if the receiving nodes
(or their links) have any problem and are not able to acknowledge a correct frame.
Therefore, to use the ACK error to conclude that the transmitting node is behaving
incorrectly would be unfair. Since the aim of the hub is to isolate permanently
faulty ports and not to isolate correct ones, the BFC Manager does not use the ACK
check for detecting CRC errors in the transmitter’s contribution. Note that this is

7.3 Error detection during normal transmission 81

not a problem since the BFC Manager checks if the CRC sent by the transmitter is
correct, as just explained above.

7.3.2 Error detection on a receiver contribution

As stated in Section 7.2, the BFC Manager is able to detect a second type of errors,
namely errors in the contribution of a receiving node during normal transmission,
i.e. during data frames, remote frames and inter frames in which no error has been
detected so far.

Contrary to the case of error detection on the contribution of a transmitting node
(explained above in Section 7.3.1), the error detection on the contribution of a
receiving node is easier. This is because a receiver is only allowed to send recessive
bits, except in three cases in which it can send a dominant bit: during the ACK slot
within a data and a remote frame if the frame has passed the CRC; in the first bit
of the intermission field of an inter frame; and during the idle field within an inter
frame (see Section 6.3 for an explanation of the types of frames we consider for
detecting errors).

Next, it is explained how the BFC Manager corresponding to a receiving node
specifically checks its node contribution during the ACK slot, the intermission field
and the idle field.

As concerns the ACK slot, it is important to note that a receiving node must only
acknowledge a frame if it has not detected any error (including the CRC error). In
the case a receiving node detects an error in the CRC, it does not acknowledge the
frame, but signals the error in the first bit of the End Of Frame field (EOF) (see
Section 3.3.4). The BFC Manager corresponding to a receiving node expects that
the result of the CRC check performed by the receiver is equal to the result of the
CRC check performed by the Rx CAN Module. Therefore, a receiving node that
sends a dominant bit during the ACK slot when the frame has not passed the CRC
check of Rx CAN is considered as a bit-flipping error.

In contrast, although a receiving node that does not send a dominant bit during
the ACK slot when it should do that is behaving incorrectly, the BFC Manager does
not consider, in principle, that omission as a bit-flipping error. This is because the
lack of the ACK bit is used for detecting stuck-at-recessive faults (see Section 6.4).
Only in the case the node actually starts signaling an error (a CRC error) at the first
bit of the EOF, the BFC Manager will consider the ACK omission as a bit-flipping
error.

As regards the signals that are involved in the detection of an error in the re-
ceiving node contribution during the ACK slot, the vector fieldFrame included in

82 Chapter 7. CANcentrate mechanisms for detecting bit-flipping errors

CS indicates which kind of frame and which field within the frame the current bit
belongs to, whereas the signal CRCPassed indicates whether the frame has passed
the CRC check performed by the Rx CAN Module. When the fieldFrame indicates
that the current bit belongs to the ACK slot, the BFC Manager corresponding to
the receiver will expect its corresponding node to send a dominant bit in the ACK
slot if the signal CRCPassed indicates that the frame has passed the CRC check;
otherwise, it will expect its corresponding receiving node to send a recessive bit in
the ACK slot.

Note that since each BFC Manager corresponding to a receiving node indepen-
dently checks its node contribution, a receiving node omitting the acknowledge can
be detected even though in the resultant frame the ACK slot has a dominant value.
This represents an improvement when compared with CAN, where it is impossible
to detect a node omitting an ACK if any other node is acknowledging the frame.

As explained above, besides the case of the ACK slot, other exception in which
the BFC Manager corresponding to a receiver allows its node to send a dominant bit
is at the first bit of the intermission field. This is because a receiving node can send
that bit to trigger an overload signaling (see Section 3.3.6). When this occurs, the
BFC Manager checks if the contribution of its node constitutes a correct overload
signaling, as will be explained in Section 7.6.

Finally the last case in which a receiving node is allowed to send a dominant bit is
during the idle field of the inter frame. During such field, any receiving node2 that
wishes to send a frame starts the transmission of such frame by means of a dom-
inant bit that constitutes the Start Of Frame (SOF) (see Sections 3.3.1 and 7.2).
When this occurs, the BFC Manager of the receiving node will not consider it as
an error, but instead that the receiving node becomes a transmitter. Hence, after
monitoring a SOF through its port, the BFC Manager will apply the error-detection
mechanisms for the contribution of a transmitting node described above in Sec-
tion 7.3.1.

However, the BFC Manager will consider that its corresponding node becomes
a receiver again if during the arbitration phase its node loses the arbitration. This
happens if the BFC Manager observes that its node sends a recessive bit and at the
same time a dominant bit is detected in the coupled signal. When this happens, the
BFC Manager checks that its node acts as a receiver during the rest of the frame.

2Note again that during intermission and idle all nodes are considered as receiving nodes.

7.4 Error detection upon the occurrence of an error 83

7.4 Error detection upon the occurrence of an error

Section 7.3 described the rules the BFC Manager follows to check if its CAN node
behaves correctly as long as an error has not been detected. Current section ex-
plains what kind of behavior the BFC Manager expects from its node just after an
error is discovered during normal transmission.

Normally, what the BFC Manager will expect is that its node signals the error
that has been detected by means of an active error flag. However, there are some
exceptions that must be taken into account in order not to incorrectly expect that
a node will signal an error. This section is actually devoted to clarifying when the
BFC Manager must expect an error signaling upon an error is detected. Details
concerning the correct behavior of a node during an error signaling, however, will
be addressed in Section 7.5.

At this point, it is important to note again that an error can happen at two different
levels: at the resultant frame and at any port contribution. Most of the errors
that affect the resultant frame are identified by the Rx CAN Module, which is
able to detect almost all types of errors that a receiving CAN node would detect
(see Section 5.5 for further details). However, as will be explained later, the BFC
Manager can also detect errors at the resultant frame beyond the capabilities of the
Rx CAN Module and the nodes. On the other hand, an error affecting a given port
is discovered by its corresponding BFC Manager by means of the error-detection
mechanisms just explained in Section 7.3.

Current section firstly addresses how the BFC Manager evaluates its port contri-
bution after an error is detected in the resultant frame. Then, it discusses how the
BFC Manager performs such evaluation upon observing an error in its own port
contribution.

7.4.1 Error detection after an error occurs in the resultant frame

This section is devoted to explaining what behavior the BFC Manager expects from
its node, upon an error occurs in the resultant frame during normal transmission.

As already explained, any CAN node is able to detect five different error types
[ISO93]: stuff error, format error, bit error, CRC error and ACK error. Such er-
rors are detected by means of several error-detection mechanisms that check the
correctness of the frame that the node transmits or receives. These mechanisms,
also specified in [ISO93], respectively are: stuff rule check, frame check, monitor-
ing, CRC check and ACK check. See Section 3.3.4 for further details.

84 Chapter 7. CANcentrate mechanisms for detecting bit-flipping errors

Every CAN node detecting an error signals it by means of an active error flag.
In the particular case of CANcentrate, a node will also signal any error it detects
in the resultant frame. Hence, in order to correctly forecast that a node is going to
signal an error that affects the resultant frame, it is necessary to identify when a
CAN node detects it. Specifically, stuff, format and bit errors will be detected by
all nodes; a CRC error should be detected by all receiving nodes; whereas an ACK
error must be detected by the transmitting node.

The Rx CAN Module can identify a stuff, a format and a CRC error happen-
ing in the resultant frame. Therefore, each BFC Manager can use the information
provided by this module to forecast when its node is going to signal an error. How-
ever, the Rx CAN Module does not detect ACK or bit errors. As explained in
Section 5.5, this is because the hub is never the original transmitter of a message;
so that the Rx CAN observes the coupled signal from the point of view of a re-
ceiver. Fortunately, the BFC Manager can observe the resultant coupled signal to
further know both when an ACK error has occurred and, in some cases, also to
detect when its corresponding node has detected a bit error.

Next, we explain how these errors at the resultant frame can be identified, as
well as what is the behavior that each BFC Manager expects from its node when
the error is detected.

(1) Stuff or format error. The Rx CAN Module detects these two errors by
means of the stuff rule check and frame check mechanisms respectively. The CAN
protocol specifies that whenever a node (transmitter or receiver) detects any of
these errors, it must start to signal it in the next bit. Therefore, as soon as the
Rx CAN Module detects a stuff error or a format error in the resultant frame, each
BFC Manager assumes that its corresponding node also has detected the error.
Thus, the BFC Manager will check that its port starts signaling an active error flag
in the bit following the error.

The signals involved in this case are used as follows. Once the Rx CAN Module
detects a stuff or a format error in the resultant frame, it will indicate (by means of
the vector frameField) at the next bit that the state of the resultant frame is account-
ing the transmission of an active error flag (as said in Section 5.5, the Rx CAN
Module orders the Error Flag Generator to transmit an active error flag when de-
tecting an error). Notice that if all nodes are synchronized with each other at frame
level, they must detect an error in the resultant frame at the same time and they have
to start signaling it at the same bit. Therefore, when the BFC Manager observes
by means of the vector frameField that the transmission of an active error flag has
been started in the resultant frame, it checks by means of Bi that its corresponding
node has also started sending an active error flag.

7.4 Error detection upon the occurrence of an error 85

(2) CRC error. The Rx CAN Module detects this error by means of the CRC
check mechanism. As already indicated, receiving nodes are the only ones that
can detect this error. Moreover, in Section 3.3.4, it was also explained that any
receiving node detecting a CRC error must start signaling it in the first bit of the
End Of Frame field (EOF). Therefore, when the resultant frame does not pass the
CRC check performed by the Rx CAN Module, each BFC Manager corresponding
to a receiver expect its node to start sending an active error flag in such bit of the
EOF.

For checking the CRC error signaling, each BFC Manager corresponding to a
receiver observes the signal CRCPassed to know if the resultant frame has passed
the CRC check; and the vector frameField for knowing when the EOF begins.
When the BFC Manager corresponding to a receiver detects that the frame has not
passed the CRC check, it will observe the vector frameField and the contribution
of its port, Bi, in order to check that its corresponding node starts sending an active
error flag in the first bit of the EOF field.

(3) ACK error. This type of error is detected by the BFC Manager corresponding
to the transmitter, which is the only node that actually can detect it. The CAN pro-
tocol specifies that a transmitting CAN node detects an ACK error when monitors
a recessive bit during the ACK slot. The protocol also specifies that whenever a
transmitter detects an ACK error, it must start to signal it in the bit following the
ACK slot. Therefore, when a recessive bit is observed at the resultant frame during
the ACK slot, the BFC Manager corresponding to the transmitter expects its node
to detect an ACK error and, therefore, to start to send an active error flag in the
next bit.

In order to detect the ACK error, the BFC Manager corresponding to the trans-
mitter first observes the vector frameField for detecting when the ACK slot is being
broadcast. In addition, the BFC Manager also has to observe the coupled signal,
B0, for detecting whether the ACK slot has a dominant bit or a recessive bit. If the
BFC Manager corresponding to the transmitter detects a recessive bit in B0 during
the ACK slot, it assumes that an ACK error occurred.

When the BFC Manager corresponding to the transmitter detects an ACK error,
it will observe its port contribution, Bi, to check that the transmitter starts sending
an active error flag in the next bit.

(4) Bit error. This type of error can be detected by the BFC Manager to some ex-
tent. As explained above in Section 3.3.4, a CAN node detects a bit error whenever
it sends a dominant bit, but observes a recessive bit. Furthermore, a CAN trans-
mitting node also detects a bit error when it transmits a recessive bit and observes
a dominant bit during a data or a remote frame (except during the arbitration phase

86 Chapter 7. CANcentrate mechanisms for detecting bit-flipping errors

and at the ACK slot field, see Section 3.3.4). This can happen, for example, if a
receiving node sends a dominant bit in a frame field during which it is not allowed
to do that. A node that detects a bit error must signal it in the bit after the error is
detected.

To identify that a node is going to detect a bit error because it has sent a dominant,
but it has observed a recessive bit could be done, in principle, as follows. If the BFC
Manager observes a dominant bit at its port contribution Bi and, nevertheless, the
bit value of the coupled signal B0 is recessive, it could assume that its node detects
a bit error. Nevertheless, notice that it has not sense to decide that a node must
detect a bit error when it issues a dominant bit and a recessive is observed at the
coupled signal. This is because such a situation can only occur if a fault affects
the internal circuitry of the hub so that the coupled signal is corrupted or even
not correctly calculated. However, as a fault may also lead the BFC Manager to
incorrectly monitor the coupled signal, to assume as valid the opinion of the BFC
Manager could be incorrect. To diagnose which part of the hub behaves incorrectly
as a consequence of an internal fault would require mechanisms that are beyond the
scope of this work, e.g. internal hub redundancy.

In contrast, it is reasonable to detect a bit error in the case in which the recessive
bit sent by a transmitting node is overwritten by a dominant bit during a frame field
other than the ones related to the arbitration or the ACK slot field. This is because
one dominant bit issued from the port corresponding to a receiver is enough to
force the value of the coupled signal to be dominant.

As concerns the signals used for detecting a bit error in this case, the BFC Man-
ager corresponding to the transmitter observes the contribution of its port, Bi, the
vector frameField included in CS and the coupled signal, B0. The BFC Manager
uses the signal frameField and the CAN format rules to know when the trans-
mitter and the receivers are allowed to send dominant and recessive bits. When
the transmitter is allowed to send dominant and recessive bits, but the receiver is
only allowed to send recessives, the BFC Manager corresponding to the transmitter
compares the port contribution of the transmitter with the coupled signal. If a reces-
sive bit is issued through the port of the hub corresponding to the transmitting node
and the coupled signal has a dominant value, then the BFC Manager correspond-
ing to the transmitter assumes that a receiver is sending an incorrect dominant bit
which should trigger a bit error detection at the transmitter (it is enough a dominant
bit issued from one port to force a dominant bit at the coupled signal).

7.4 Error detection upon the occurrence of an error 87

7.4.2 Error detection after an error occurs on a port contribution

As specified at the beginning of Section 7.4 an error detected during a normal
transmission, i.e. during a data frame, a remote frame or an inter frame in which
no error has been detected so far, can be localized at two different levels: at the
resultant frame and at any port contribution. In previous section we explained
what behavior the BFC Manager expects from its node upon an error affects the
resultant frame. Thus, current section explains what should be that behavior if the
error is detected at its port contribution.

The specific contribution the BFC Manager expects just after detecting such an
error depends on the role played by the node corresponding to the port which causes
the error and the value of the bit issued through that port.

Let us discuss what is the expected behavior depending on the role of the node.
If the node is acting as a transmitter, the possible errors that can be detected at its
ports are the stuff error, the format error and the CRC error (see Section 7.3.1).
If the transmitter violates the stuff rule or the format by issuing an unexpected
dominant bit, that error will propagate to the resultant frame. This implies that the
transmitting node at least should detect the error that affects the resultant frame and
signal it at the next bit. However, if the bit that violates the stuff rule or the format
is recessive, it may happen that the error does not propagate to the resultant frame.
Specifically, this may occur if the recessive bit is overwritten by an unexpected
dominant bit issued through the hub port corresponding to a receiver. Therefore,
in the case of detecting a stuff or a format error on the transmitter contribution,
its BFC Manager expects that the node correctly signals the error by means of an
active error flag at the next bit, only if the error has actually propagated to the
resultant frame. Otherwise, the BFC Manager simply expects that the transmitter
continues communicating as if no error has occurred so far.

Regarding the other type of error that can be detected at the port of a transmit-
ter, i.e. the CRC error, notice that a transmitting node does not signal a CRC error,
even though it is the responsible for that error (it signals an ACK error, instead).
Thus, although the BFC Manager considers that its node has been bit-flipping when
the Rx CAN detects a CRC error, it does not expect that the transmitter starts sig-
naling an error. Instead, the BFC Manager just expects that the transmitter con-
tinues transmitting normally. Afterwards, if an ACK error finally occurs at the
resultant frame as a consequence of the CRC error, the BFC Manager will expect
that the transmitter signals the error, as explained before in Section 7.4.1.

For the case in which the node that provokes the error at the port is acting as
a receiver notice that, as indicated in Section 7.3.2, the type of errors that can be
detected at its contribution are: a dominant bit issued out of the ACK slot (except

88 Chapter 7. CANcentrate mechanisms for detecting bit-flipping errors

when this bit is the beginning of an overload signaling or a SOF); a dominant bit at
the ACK slot when the frame has not passed the CRC check; and a recessive bit at
the ACK slot when the frame has passed this check.

A dominant bit sent by the receiver out of the ACK slot can either provoke an
error at the resultant frame or not. For example, such a dominant bit provokes that
the resultant frame violates the stuff rule if it overwrites a recessive stuff bit sent
by the transmitter. In contrast, such a dominant bit does not provoke an error in
the resultant frame if, for instance, it coincides with a dominant bit sent by the
transmitter.

If a dominant bit sent by a receiver out of the ACK slot does actually lead to
an error in the resultant frame, the receiving node should detect it; thus, its BFC
Manager simply expects that it correctly signals the error by means of an active
error flag at the next bit. In contrast, what to expect upon such a dominant bit does
not provoke an error in the resultant frame is more complicated. Notice that this
incorrect dominant bit can probably be the first bit of an active error flag the node
sends in order to signal a local error (an error that only it has detected so far). But,
it could also be just a bit-flipping bit generated by its uplink. Since, it is impossible
to know, a priori, if the node is signaling a local error, the BFC Manager cannot
be sure that its node will continue signaling an error in the next bit. Therefore,
the BFC Manager proceeds as follows. In principle, it expects that its node signals
an error in the next bit. But if the node actually does not, the BFC Manager will
assume that the incorrect dominant bit actually was a bit-flipping bit generated by
the uplink. In this case, the BFC Manager increases the bit-flipping counter (BFC)
and simply expects that its node continues behaving correctly as if the error had
not occurred. Notice that, in this way, the BFC Manager will not unfairly expect
the node to signal an error when the dominant bit actually was a bit-flipping bit
generated by the uplink.

The other possible error at the port of a receiver is a dominant bit at the ACK
slot when the frame has not passed the CRC check. This can happen if the receiver
incorrectly considers that the frame has passed the CRC check. However, as in the
previous case, that dominant bit could be also the first bit of an active error flag the
node sends to signal a local error, or even an incorrect bit generated by the uplink.
Therefore, the BFC Manager acts as in the previous case.

The last error that can be detected at the contribution of a receiver consists in a
recessive bit at the ACK slot of a frame that has passed the CRC check. This error
occurs if the node incorrectly detected a CRC error; in which case it will signal the
error at the first bit of the EOF. However, there can also be other causes for this
error. For example, the port could be stuck-at-recessive, or even the uplink could

7.5 Error detection during an error signaling 89

corrupt a correct dominant ACK bit sent by the receiver.

In order to deal with all these cases, what the BFC Manager will expect after
detecting an incorrect recessive ACK bit is that the node behaves correctly as if the
error had not occurred. Notice that this is the best choice. First, if the node actually
incorrectly calculated the CRC, it will signal it at the first bit of the EOF. Since
the BFC Manager will not expect this error signaling, it will consider the first bit
of this signaling as a bit-flipping bit. This is desirable because it allows the BFC
Manager to differentiate between a stuck-at-recessive and a bit-flipping fault (in
Section 7.3.2, we explained that the BFC Manager does not consider, in principle,
an ACK omission as a bit-flipping error). Second, if the recessive bit was actually
a dominant ACK bit that became corrupted, the most probable is that the receiving
node will not detect and signal it, because other receiving nodes will overwrite
the recessive bit with their own dominant ACK bits. Thus, not to expect an error
signaling is the better choice also for this case. Moreover, even if the node does
detect that its dominant ACK bit was corrupted, the strategy of the BFC Manager
is appropriate: the BFC Manager will consider the first bit of the active error flag
the node will send as bit-flipping, thereby detecting that the node had a problem
(that its dominant ACK bit was corrupted).

Finally, note that in this section we have just explained when and where the
BFC Manager expects its node to signal an error, after it has detected an error
in the contribution of that node. In the case the BFC Manager assumes that the
node has to signal the error, it will further check that this node correctly performs
the signaling. However, the specific format of the expected error frame will be
thoroughly discussed next in Section 7.5.

7.5 Error detection during an error signaling

In Section 7.4 we described the cases in which the BFC Manager expects that its
port signals an error. Current section explains how the BFC Manager checks that
its port actually signals the error in a correct way.

As explained in 5.5, we only accept as valid nodes that are error-active. Thus, the
BFC Manager expects that its node sends an active error frame. Notice again that
an error-active node signals an error by transmitting an active error flag composed
of 6 consecutive dominant bits, followed by a cooperatively error delimiter that is
formed from consecutive recessive bits (see Section 3.3.4 for more details). For the
sake of clarity, let us differentiate between the behavior the BFC Manager expects
during the transmission of the error flag and the error delimiter.

90 Chapter 7. CANcentrate mechanisms for detecting bit-flipping errors

The BFC Manager always checks that the error flag is composed of 6 consecutive
dominant bits. This implies that the BFC Manager must check both that the error
flag is not too short and that the error flag is not too large.

On the one hand, to check that the active error flag includes at least 6 consecutive
dominant bits, the BFC Manager basically counts up the number of consecutive
dominant bits it observes at its port, starting at the bit where the error signaling
is supposed to begin. However, the BFC Manager cannot do that such simple.
Imagine for example a situation in which the transmitting node detects a local error
during the data field of a frame, and starts signaling it by sending an active error
flag. Consider that this error flag provokes a stuff error (at both the resultant frame
and the transmitter port) at its 6th bit. Then, the BFC Manager detects this stuff
error and assumes that the transmitting node should start signaling it in the next bit
(refer to Section 7.4.2 for more details). If the BFC Manager starts counting up the
number of consecutive dominant bits the transmitter sends thereafter, it will only
monitor recessive bits (which belong to the error delimiter the transmitter sends)
and will unfairly assume that the transmitter is not correctly signaling the error.

In conclusion, the BFC Manager can unfairly believe that the error flag is too
short when, at a given bit, it assumes that the node is starting to signal an active
error flag when, in fact, the node started to signal it some bits before. In order to
deal with this kind of situations, the BFC Manager considers as forming part of the
active error flag all those consecutive dominant bits received through the port just
before the bit that is supposed to be the beginning of the error flag.

The only disadvantage of this strategy is that the BFC Manager will not be able
to detect some situations in which the error-flag is actually too short. For example,
imagine the case of a transmitter that sends 3 correct consecutive dominant bits
during the data field and that, due to a local error, does not monitor the third domi-
nant bit (so that it detects a bit error). Then, the transmitter starts sending an active
error flag. However, imagine that the last 3 bits of the flag are corrupted by the up-
link so that they do reach the hub port as recessives. In this case, although the error
flag was truncated, the BFC Manager is not able to detect it. This is because the
BFC Manager will believe that the error flag was composed of the three dominant
bits the node sent before signaling the error plus the three first dominant bits of the
flag that were not corrupted. Nevertheless, despite the possible existence of this
type of scenarios, we consider that it is more important not to unfairly penalize a
correct port than to try to detect all possible bit-flipping errors.

On the other hand, in order to check the correctness of the active error flag, the
BFC Manager also evaluates whether or not the flag is too large. This is important
because a too large active error flag indicates that, due to local faults, the node has

7.5 Error detection during an error signaling 91

detected bit errors during the transmission of its own active error flag (any bit error
will compel the node to re-send its error flag).

Specifically, the BFC Manager accepts up to 6 consecutive dominant bits after
the bit that is supposed to be the beginning of the error flag. When the BFC Man-
ager detects the 7th consecutive dominant bit it assumes that the node has detected
a bit error (an additional bit-flipping error) during the error signaling and that is
transmitting a new active error flag. The BFC Manager checks again that this new
active error flag is composed of a maximum of 6 consecutive dominant bits and so
on.

The reason why the BFC Manager accepts an additional group of 6 consecutive
dominant bits when detecting that the flag is too large is because, in the worst case,
the node may detect an error in the last bit of an error flag, thereby initiating the
transmission of a new error flag just after the previous one ends.

Also notice that for checking the maximum length of an error flag, the BFC
Manager does not take into account the consecutive dominant bits a node may send
before the first error flag is supposed to begin. For example, if during the data field,
the BFC Manager detects a unexpected dominant bit at the node contribution and
the three bits previous to that error were also dominant, the BFC Manager does not
consider the three previous bits nor the erroneous bit as forming part of the active
error flag. This is because the BFC Manager cannot be sure about whether or not
these four consecutive dominant bits form part of the error flag.

Besides the error flag, the BFC Manager checks the correctness of the other part
of the error frame: the error delimiter. First of all it is important to clarify when the
BFC Manager considers that its node is sending the error delimiter. In principle,
the BFC Manager assumes that its node is sending the error delimiter as soon as it
detects in its contribution a recessive bit after the active error flag (independently
of whether the flag is too short or too large).

However, there is one exception: the case of a receiving node that sends a too
short error flag that does not provoke an error in the resultant frame. This may
happen if the dominant bits that constitute that error flag coincide with a set of
correct dominant bits sent by the transmitter. We made this decision because a
too short error flag sent by a receiver can be just a set of consecutive dominant
bits generated by a short disturbance of its uplink. Therefore, when a too short
error flag sent by a receiver does not corrupt the resultant frame, its BFC Manager
considers that this node will behave as if no error has occurred so far. Notice that
this cannot happen if the node is the transmitter, since any unexpected dominant
bit sent by the transmitter that leads its BFC Manager to assume that is signaling
an error will also corrupt the resultant frame.

92 Chapter 7. CANcentrate mechanisms for detecting bit-flipping errors

In conclusion, the BFC Manager assumes that its node is sending the error delim-
iter as soon as it detects a recessive bit in its contribution and an error has already
occurred in the resultant frame.

When the BFC Manager assumes that its node is sending the error delimiter, it
checks that the node only sends recessive bits. In fact, it will expect recessive bits
as long as the resultant frame does not reach the idle field.

If the BFC Manager monitors a dominant bit at its port contribution when it
is considering that its node is transmitting the error delimiter, the BFC Manager
assumes that a bit-flipping error has occurred. The behavior the BFC Manager
expects after detecting that dominant bit depends on the state of the resultant frame.
If this state is the error delimiter, it means that all nodes are signaling the error
delimiter and that, consequently, the dominant bit is going to corrupt that delimiter.
Therefore, since the node should at least detect that error at the resultant frame, its
BFC Manager expects that it starts signaling it at the next bit.

In contrast, if the node sends a dominant bit during its error delimiter and the
state of the resultant frame is the error flag, then the BFC Manager cannot assume
that its node is going to signal an error in the next bit. This is because that dominant
bit could be just an erroneous bit generated by the uplink and, in such a case, since
it coincides with a dominant bit of the error flag that is being broadcast, the node
will not detect it. Therefore, if the node actually does not signal an error in the next
bit, the BFC Manager simply expects that its node continues behaving correctly
(transmitting its error delimiter) as if the error had not occurred. Notice that this
strategy is equivalent to the one explained in Section 7.4.2, where we explained
what the BFC Manager of a receiver expects when its node sends an unexpected
dominant bit that does not provoke an error in the resultant frame.

The last check the BFC Manager performs on its node contribution when that
node is transmitting the error delimiter is the following one. If the BFC Manager
observes that a dominant bit not issued through its port (but from another one)
corrupts the error delimiter being broadcast at the resultant frame, it expects its
node to detected it and, therefore, to start signaling it in the next bit.

In all cases in which the BFC Manager assumes that its node stops transmitting
its error delimiter to signal an active error flag, the BFC Manager evaluates the
correctness of the expected error flag following the rules already explained in this
section.

7.6 Error detection during an overload signaling 93

7.6 Error detection during an overload signaling

The fifth type of expected contribution identified in Section 7.2 corresponds to the
behavior of a node during an overload signalling.

As indicated in Section 3.3.6, there are two kinds of overload conditions [ISO93].
The first overload condition consists in a node that needs extra delay before a new
data or remote frame is transmitted on the bus. When this happens, the node start
sending an overload frame at the first bit of intermission. The format of an over-
load frame is the same as the format of an active error frame [ISO93]: it includes
an overload flag of 6 consecutive dominant bits followed by a cooperative overload
delimiter of at least 8 consecutive recessive bits. The second overload condition
ensures that the first condition, which is locally detected by a node, is globalized
to the rest of nodes. Specifically, any node detecting a dominant bit during inter-
mission must react by sending an overload frame.

The behavior the BFC Manager expects from its port after detecting an overload
condition (after detecting that its node sends a dominant bit during intermission)
depends on whether that condition is triggered by its node or not, i.e. on whether or
not its node has initiated the overload to achieve an extra delay before a new data
or remote frame is transmitted.

On the one hand, if the BFC Manager of a receiver detects that its corresponding
port issues a dominant bit in the first bit of the intermission field, it will assume that
its node is triggering an overload condition. The BFC Manager detects this when
the vector frameField indicates that the current bit being broadcast is the first bit of
the intermission field and, in addition, it observes that the value of its corresponding
port contribution, Bi, is dominant. When this happens, the BFC Manager assumes
that this dominant bit is the first bit of the overload flag and, hence, it expects
its node to send 5 more consecutive dominant bits. Afterwards, the BFC Manager
checks that its node cooperatively transmits the overload delimiter.

On the other hand, the BFC Manager considers that an overload condition is trig-
gered by another node if it observes a dominant bit at the coupled signal, B0, and
a recessive bit at its port contribution, Bi, during the first bit of the intermission
field. In this case, the BFC Manager expects that its port issues the 6 consecutive
bits that constitute the overload flag and, thereafter, it checks that its node cooper-
atively transmits the overload delimiter.

Since the format of an overload frame is the same as the format of an active error
frame, the specific way in which the BFC Manager checks that its node correctly
sends the overload frame (flag and delimiter) is the same as the way in which it
evaluates that its node correctly sends an active error frame. How the BFC Manager

94 Chapter 7. CANcentrate mechanisms for detecting bit-flipping errors

evaluates its node during an error signaling was explained in Section 7.5. Basically,
what the BFC Manager checks is that the overload flag is not too short or too large,
as well as that the node does not send dominant bits during its error delimiter. If the
BFC Manager detects that its port behaves incorrectly or that the overload delimiter
is corrupted at the resultant frame, it proceeds as explained in Section 7.4.

7.7 Conclusions

This chapter thoroughly describes the way in which the BFC Manager detects bit-
flipping errors in its hub port contribution. Since a node together with its corre-
sponding link are considered as an error-containment region, the BFC Manager
assumes that the bit issued through the port is the bit the node wishes to send.
Hence, we talk about the behavior of a hub port and the behavior of a node inter-
changeably.

Each BFC Manager evaluates the correctness of its corresponding hub port by
checking that its contribution does not deviate from the correct behavior expected
according to the current state of the resultant frame. Although the behavior of a
CAN node is quite complex in the general case, we have been able to identify few
independent types of behaviors.

We basically differentiate between the behavior of a node when no error has been
detected so far and when an error has occurred. On the one hand, when no error has
occurred so far, i.e. during normal transmission, the behavior of a node depends on
the role that it is playing, i.e. transmitter or receiver. To evaluate the correctness
of the contribution of the transmitter is quite complex since it is rather free to send
the bit values it wishes. Fortunately, the CAN protocol already specifies the most
complete set of error-detection mechanisms for detecting errors that corrupt the
data conveyed through the bus (and thus that corrupt the resultant frame). Since
these mechanisms are designed to detect errors in a signal where the contributions
of all nodes are mixed, the BFC Manager has to adapt them in order to directly
detect errors in the contribution of the transmitting node. Contrary to the case of a
transmitting node, to detect errors on the contribution of a receiving node is easier.
This is because a receiver is only allowed to send recessive bits, except in particular
locations of the frame and under specific circumstances. Thus, the BFC Manager
of a receiving node basically checks that its port only issues a dominant bit when
allowed.

On the other hand, when an error occurs, the expected behavior of a node does
not only depend on the role it is playing, but also on the type of the error as well
as on where the error is detected: on the resultant frame or on its port contribu-

7.7 Conclusions 95

tion. When an error affects the resultant frame, the BFC Manager needs to identify
whether or not its node detects it in order to forecast when that node is going to sig-
nal the error. Specifically, all nodes should detect and signal any stuff, format and
bit error; only receivers should detect and signal a CRC error; whereas exclusively
the transmitter should detect and signal an ACK error. Since the Rx CAN Module
can identify a stuff, a format and a CRC error happening in the resultant frame, the
BFC Manager can use the information provided by this module to forecast when
its node is going to signal any of these errors. Additionally, the BFC Manager
can observe the resultant coupled signal to further know both when an ACK error
has occurred and, in some cases, also to detect when its corresponding node has
detected a bit error.

The other location where an error issued by a node can be detected is at its port
contribution. An error affecting a given port is discovered by its corresponding
BFC Manager by means of the error-detection mechanisms that evaluate whether
or not the contribution of a transmitter or a receiver is correct when no error has
been detected so far. If the erroneous bit issued by a node provokes an error in the
resultant frame, that node should detect this situation and signal it when appropri-
ate. Thus, the corresponding BFC Manager can easily forecast what should be the
correct contribution of its node. However, if the erroneous bit does not corrupt the
resultant frame, the BFC Manager cannot know a priori which will be the contri-
bution of the node thereafter. This is because it is impossible to elucidate a priori
which is the cause for an erroneous bit, e.g. it could be just generated by the uplink,
or it could form part of an active error flag the node is transmitting to signal a local
error. To overcome this problem, the BFC Manager adapts what it expects from its
node to the bits that monitors after the erroneous bit.

Finally, the BFC Manager also evaluates whether or not its node correctly signals
an error and an overload. The BFC only accepts as valid nodes that are error-active,
hence it expects that its node sends an active error frame (an overload frame has the
same format as an active error frame). Basically, what the BFC Manager checks
is that the error/overload flag is not too short or too large, as well as that the node
does not send dominant bits during its error/overload delimiter (unless it should
signal a new error that affects the resultant frame). However, due to the huge
number of different manners in which a bit-flipping can manifest, it is not possible
to know what should be the correct contribution of a node every time it issues an
unexpected bit during the error/overload signaling. We explained the strategy the
BFC Manager follows to try to encompass this wide range of error scenarios. Since
to pretend to detect all possible bit-flipping bits would be impossible, at least this
strategy tries not to take decisions that would unfairly penalize the nodes

Chapter 8

Analysis of the mechanisms that
deal with bit-flipping faults

8.1 Introduction

The error-detection and fault-treatment mechanisms the hub includes for dealing
with bit-flipping faults were first presented in Section 6.6. We explained that a
bit-flipping fault can manifest itself in a huge number of different manners. This
implies that the hub must be able to detect bit-flipping bits in the presence of an
enormous amount of scenarios involving errors. Additionally, the wide variety of
patterns in which a bit-flipping fault can manifest poses some problems for cor-
rectly diagnosing a port as being permanently bit-flipping.

Note that, as explained before, all these mechanisms are included in each En-
abling/Disabling Unit, which operate independently at each hub port. Specifically,
within the Enabling/Disabling Unit, the Bit-Flipping Counter Manager (BFC Man-
ager) is the responsible for detecting bit-flipping errors. This module increases and
decreases the BFC (Bit-Flipping Counter) following specific rules that try to ef-
ficiently diagnose when the hub port is actually bit-flipping. Whenever the BFC
exceeds a given Bit-Flipping Threshold (BFT), the Threshold Control Module di-
agnoses the port as being faulty and isolates it by means of the corresponding ED
signal.

Due to the complexity of detecting bit-flipping errors, Chapter 7 was entirely
dedicated to describe the way in which the hub detects these errors at its port con-
tributions. Current chapter further discusses how the complexity of the bit-flipping
error-detection and fault-treatment mechanisms influences dependability. Then, it

97

98 Chapter 8. Analysis of the mechanisms that deal with bit-flipping faults

explains what are the advantages and limitations of these mechanisms and proposes
some further enhancements. Finally, it addresses how to configure some parame-
ters of the fault-diagnosis mechanisms in order to properly diagnose bit-flipping
faults.

8.2 Complexity of the mechanisms

The complexity of the circuitry included in a device is an important aspect that has
to be taken into account when devising dependable systems. The probability of
failure of a device augments as its complexity increases. As said before, the hub is
the most critical element concerning dependability in CANcentrate, since it is the
single point of failure of the communication system. Thus, we took special care
when devising the error-detection and fault-treatment mechanisms of the hub in
order to increase as less as possible its complexity in terms of circuitry.

As described before, the mechanisms for detecting and treating bit-flipping faults
are mainly included in each BFC Manager, which independently operates over a
given port. Each BFC Manager basically observes its port contribution, Bi, the
coupled signal B0, the set of signals CS from Rx CAN and uses its acknowledge
about the CAN protocol to check if its contribution is correct according to the
current state of the resultant frame.

The first characteristic of the error-detection and fault-treatment mechanisms that
allows minimizing the circuitry complexity is the way in which the BFC Manager
gets the current state of the resultant frame. As explained in Chapters 5 and 6,
the BFC Manager does not calculate this current state by observing the resultant
coupled signal, B0. Instead, the Rx CAN Module is aimed at calculating bit by
bit this current state by observing the coupled signal. Then, the Rx CAN Module
provides the different BFC Managers with a set of signals, CS, that, together with
B0, describes this state. Hence, since the logic for calculating the current state
of the resultant frame is implemented once in the hub (in the Rx CAN Module),
the cost in terms of circuitry is less than it would be if each BFC Manager had to
implement it.

This way of minimizing the circuitry is even more important if one takes into
account that, in order to detect bit-flipping errors, it is necessary to identify several
types of errors in the resultant frame: stuff error, format error, CRC error and
ACK error (see Sections 7.4 and 7.5). Since the BFC Managers do not need to
include the logic for identifying these errors, an important amount of circuitry is
saved. Among all these error-detection mechanisms, the most important reduction
is achieved when not including in each BFC Manager the logic needed for checking

8.3 Advantages of the mechanisms 99

the CRC sequence, which is expensive in terms of circuitry.

The second characteristic of the fault-diagnosis mechanisms that makes possible
reducing the amount of circuitry needed for implementing the error-detection and
fault-treatment mechanisms is that, as explained in Chapter 7, each BFC Manager
does not monitor the activity of the other BFC Managers. The major benefits of this
are that it actually reduces the number of needed interconnections inside the hub
and the complexity of the state machines included in each BFC Manager. More-
over, this also makes the hub design more flexible and extensible for further im-
provements. For instance, to add new ports and their respective Enabling/Disabling
units will not require to change the circuitry of the existing modules and units
within the Fault-Treatment Module.

8.3 Advantages of the mechanisms

This section explains what are the advantages of the mechanisms the hub of CAN-
centrate includes for dealing with bit-flipping faults. On the one hand, the hub can
detect bit-flipping errors beyond the possibilities of the error-detection mechanisms
implemented by a typical CAN node. Moreover, it also increases the accuracy with
which these errors are detected in CAN. On the other hand, the hub overcomes
some limitations of the CAN fault-treatment mechanisms.

In order to better understand how the hub improves error detection and fault
treatment, let us briefly summarize how a CAN node detects errors and diagnoses
faults (see Sections 3.3.4 and 3.3.5 for further details). Firstly, the CAN node in-
cludes a set of mechanisms that allow it to detect five different error types [ISO93]:
stuff error, format error, bit error, CRC error and ACK error. Such errors are de-
tected by means of several error-detection mechanisms that check the correctness
of the frame that the node transmits or receives. These mechanisms, also specified
in [ISO93], respectively are: stuff rule check, frame check, monitoring, CRC check
and ACK check.

Concerning the way in which a fault (a faulty node) is diagnosed and passivated
in CAN [ISO93], each CAN node is provided with two error counters: the Trans-
mission Error Counter (TEC) and the Reception Error Counter (REC), which are
increased and decreased following specific rules. As explained in Section 3.3.5,
when either the TEC or the REC reach a given threshold, the node enters the error
passive state which actually reduces the impact of the node on the communica-
tion [ISO93]. A second threshold is used if the error passive state is not enough.
If the TEC/REC reaches this second threshold, the node enters the bus-off state, so
that it is not involved in bus activities. This last situation corresponds to a node

100 Chapter 8. Analysis of the mechanisms that deal with bit-flipping faults

diagnosing itself as being faulty.

A CAN node increases its TEC/REC almost every time it detects an error. As
explained in Section 3.3.5, the rules used to increase the TEC/REC are more strict
with the errors the node detects when it is acting as the transmitter than when it
is acting as a receiver. The transmitter normally increases the TEC by 8 units,
whereas a receiver usually increases the REC by 1 unit.

Additionally, the TEC or the REC (depending on the role of the node) are further
increased in 8 units when the node seems to be the responsible for the error condi-
tion. Specifically, a node additionally increases its TEC/REC by 8 when it detects
a primary error [ISO93], i.e. when it monitors a dominant bit after its own error
flag. Refer to Section 3.3.5 for more details about the primary error.

8.3.1 Enhanced error detection

In CAN the error detection is only performed on the resultant frame. In contrast,
the hub can also detect errors on the contribution of each port. This allows the hub
to detect bit-flipping errors beyond the capacity of the error-detection mechanisms
of CAN, as well as to increase the accuracy with which bit-flipping errors are
detected.

More specifically, the first error-detection enhancement is that the hub can iden-
tify when a node should start transmitting an error and, then, to check if this ac-
tually happens. This is an important improvement since CAN does not include
any mechanism to check if a node starts signaling an error when expected. For
example, imagine that an ACK error is observed at the resultant frame. When this
occurs, the transmitter must signal the error at the next bit: the ACK delimiter. In
CANcentrate, the BFC Manager corresponding to that node will check that it actu-
ally starts signaling the error. Conversely, in CAN no mechanism evaluates if this
happens; hence it would not be considered as erroneous that the transmitter does
not signal the ACK error. The details of how each BFC Manager evaluates whether
or not its node signals an error as expected can be found in Sections 7.4 and 7.5.

The second enhancement the hub presents in terms of error detection is that the
hub is able to identify incorrect bits issued from a node that would be masked (and
hence not detected) in CAN by the contribution of other nodes. Firstly, in CAN, an
incorrect dominant bit issued by a receiver can be masked by a correct dominant bit
issued by a transmitter. For example, an incorrect dominant bit sent by a receiver
during the data field is not detected in CAN if that bit coincides with a dominant
bit sent by the transmitter. Secondly, a dominant bit sent by a transmitter can also
be masked. Specifically, this occurs when the transmitter sends a dominant bit

8.3 Advantages of the mechanisms 101

during the ACK slot, since to observe a dominant bit at this slot of the resultant
frame is not an error. Thirdly, an incorrect recessive bit can be also masked in
CAN. For instance, a recessive bit sent by the transmitter during the data field
will provoke an error if it violates the stuff rule. However, if this recessive bit
coincides with an incorrect dominant bit issued by a receiver, then no error will
be encountered. In contrast, in CANcentrate no incorrect bit can be masked, since
each node contribution is monitored separately before they are coupled.

The last enhancement the hub presents concerning error detection is that it in-
creases the accuracy with which bit-flipping errors are identified. Specifically, the
hub overcomes the lack of accuracy of the ACK check mechanism of CAN. As
indicated in Section 7.3.1, the ACK check is the mechanism that the CAN trans-
mitting node uses to indirectly detect that its frame has not passed the CRC check.
In other words, the transmitter does not perform the CRC check of the frame it is
transmitting, but it decides that it is the responsible for a CRC error when observes
an ACK error, i.e. that no receiver acknowledges the frame.

Unfortunately, as explained in Section 7.3.1, to use the ACK check to detect
that the transmitter contribution is incorrect may be unfair. Firstly, an ACK error
can occur even when the contribution of the transmitter is correct, if the receiving
nodes (or their links) have any problem so that they do not acknowledge a correct
frame. If this occurs, the transmitter will signal an error in the ACK delimiter and,
thus, it will unfairly detect a primary error. Moreover, any receiver that did not
acknowledge the frame because it incorrectly calculated the CRC will not detect a
primary error. This is because any receiver that incorrectly decides that the CRC is
erroneous plans to start signaling the CRC error at the first bit of the EOF; however,
it will observe that the transmitter initiates the error signaling before it (at the ACK
delimiter).

Secondly, to use the ACK check to detect that the transmitter has behaved in-
correctly could also provoke that correct receivers unfairly detect a primary error.
Imagine a situation in which a receiving node does not correctly perform the CRC
check and comes to the conclusion that the CRC is correct when, in fact, it is not.
Then, that receiver will acknowledge the frame and the transmitter will not detect
and signal an ACK error. Therefore, the nodes that will eventually corrupt the
frame will be the correct receivers, which detected the CRC error. Specifically,
these receivers will signal the CRC error at the first bit of the EOF. This implies
that all these correct receivers will detect a primary error, whereas the incorrect
receiver (the one that acknowledged the frame) will not.

Conversely to what happens in CAN, the hub of CANcentrate assumes that the
transmitter issues an error whenever the frame does not pass the CRC check, but not

102 Chapter 8. Analysis of the mechanisms that deal with bit-flipping faults

when no receiver acknowledges the frame. On the one hand, this allows detecting
an error in the transmitter contribution whenever it is actually the responsible for
the CRC error. On the other hand, it allows detecting an error on the contribution
of both the receivers that do not acknowledge a correct frame and the receivers
that acknowledge an incorrect frame. Moreover, the hub does not unfairly detect
errors on the receivers in the circumstances explained above. Refer to Sections 7.3
and 7.4 for more details concerning the way in which the hub uses the CRC and
the ACK check for detecting bit-flipping errors.

8.3.2 Enhanced fault treatment

The second advantage of the mechanisms of CANcentrate for dealing with bit-
flipping faults is that its hub overcomes some deficiencies of the mechanisms CAN
includes for treating faults. As explained in Section 6.6, the hub cannot rely on the
fault-treatment mechanisms that each CAN node includes for treating bit-flipping
faults: first, faulty nodes may stop performing fault-confinement operations, sec-
ond, a bit-flipping fault located in a medium bothers all nodes so that none of them
can isolate the fault, and third, the bus imposes a mixed vision of all nodes’ contri-
butions, thus, reducing the accuracy of the fault-diagnosis mechanisms. In contrast,
the hub we have devised does not present most of such deficiencies.

First, notice that the contribution of all nodes have to traverse the hub, which
operates independently from them. Therefore, the fault-diagnosis capacities of
the hub do not depend on the correct error-containment operations performed by
the nodes. Hence, passivation of faulty ports is guaranteed even if nodes stop
performing fault-treatment operations.1

Second, the impossibility of dealing with faulty media in CAN is overcome in
CANcentrate, since each link is dedicated and, together with its corresponding
node, constitutes a single fault-containment region that the hub can treat.2

Third, the hub is also able to improve the accuracy of the fault-diagnosis mech-
anisms implemented by typical CAN nodes. As already explained, these mech-
anisms are based on the Transmission Error Counter (TEC) and the Reception
Error Counter (REC). The problem is that the rules for increasing/decreasing the
TEC/REC present some limitations that reduce the accuracy with which nodes di-
agnose faults. First, a transmitting node is always penalized, even when it is not
the cause of the error. This may lead to unfairly isolate a CAN node that is not
faulty. For example, it may happen that each one of the subsequent frames a node

1Note that this advantage applies not only to bit-flipping faults, but also to stuck-at faults.
2Note that this advantage applies not only to bit-flipping faults, but also to stuck-at faults.

8.4 Limitations of the mechanisms and further enhancements 103

tries to transmit is corrupted by the failure of a different receiving node. Although
each faulty receiver will eventually isolate itself, the subsequent increments of the
TEC of the transmitter can lead it to shut-down too.

The second limitation of the rules for increasing/decreasing the TEC/REC is that
they rely on the detection of a primary error to identify (and hence, to additionally
penalize) the node that is the responsible for an error globalization. The problem
is that the node needs to wait until the end of its error flag to detect a primary error
and, hence, the node may incorrectly believe that it is the responsible for an error
if extra errors occur during the transmission of the error flag.

One possible case in which this can occur arises when a node that started to
signal an error situation, as a consequence of a local error, detects an additional
local error during its own active error flag (it monitors a recessive instead of a
dominant). In this situation the node immediately starts the transmission of an
additional active error flag, leading the other nodes to incorrectly detect a primary
error. Other example of an incorrect detection of the primary error occurs when a
node that detects a local error does not monitor a dominant bit after its own active
error flag due to an extra local error. In this case the node, which actually should
have been detected a dominant bit belonging to the error flags of other nodes, will
incorrectly not detect a primary error.

Due to the inaccurate strategy for detecting the CAN node that is the responsible
for an error condition, the fault-diagnosis mechanisms specified in CAN are inac-
curate too. In contrast, the hub improves the detection of guilty nodes since it does
not use the primary error mechanism, but it has an independent vision of each node
contribution. On the one hand, each BFC Manager detects that its port is guilty of
an error condition at the instant of time it issues an incorrect contribution. On the
other hand, each BFC Manager is able to detect that its port is the responsible for
an error condition, regardless of the contribution of any other port. Therefore, a
guilty node is detected independently of whether or not any other node (or itself)
detects extra errors. See Chapter 7 for a thorough explanation of the error-detection
mechanisms the BFC Manager implements.

8.4 Limitations of the mechanisms and further enhance-
ments

In Section 8.3 we explained the advantages of the mechanisms the hub includes
for dealing with bit-flipping faults when compared with CAN. However, the error-
detection and fault-treatment mechanisms of the hub also present some limitations.

104 Chapter 8. Analysis of the mechanisms that deal with bit-flipping faults

Current section aims at analyzing these limitation and to provide some further en-
hancements.

8.4.1 Unfair error detection during the error signaling

As explained in Chapter 7, the mechanisms for detecting errors provoked by bit-
flipping faults are included in the BFC Managers. Each BFC Manager basically
checks that the contribution of its port is correct according to the current state of
the resultant frame.

The contribution of a node can be incorrect due to several causes: the bit value
the node sends can be changed by a fault in its uplink; the bit value broadcast to
the node can be changed by a fault in the downlink, thereby compelling the node
to react by sending an unexpected bit value; the node can fail by misinterpreting
the state of the resultant frame and then issue a bit whose value is incorrect; an
electromagnetic disturbance or an internal node fault may provoke that the node
losses the synchronization at bit level and, thus, at frame level, etc. Of all these
causes, to lose the synchronization at bit level poses some additional difficulties in
detecting bit-flipping errors.

As it was explained, the synchronization at bit level allows all nodes and the hub
to agree about the beginning and the end of each bit time in order to perform a
correct sampling of the bit value. Thus, a node that is not synchronized at bit level
with the hub and the other nodes usually also loses the synchronization at frame
level. This normally provokes that the node issues an unexpected bit value, e.g. a
de-synchronized receiver could send its acknowledge at the CRC delimiter (one bit
before the ACK slot).

During a data, a remote or an inter frame, the BFC Manager corresponding to a
de-synchronized node will notice any unexpected bit value at its port and, thus, it
will correctly detect that the node issues a bit-flipping error. Moreover, the BFC
Manager could also expect that the de-synchronized node signals the error (see
Section 7.4 for further details about when a BFC Manager expects its node to
signal an error). However, at this point, the BFC Manager could encounter some
difficulties in evaluating whether or not the contribution of its node is correct.

As explained in Section 7.5, one of the aspects that the BFC Manager checks
when evaluates how its node signals an error is that it sends an active error flag
that is not too short nor too large (an active error flag should be constituted of 6
consecutive dominant bits). The problem is that since the node and the hub are de-
synchronized at bit-level with each other, the hub is not always able to sample at
the correct instants of time the bits that constitute the error signaling of the node. In

8.4 Limitations of the mechanisms and further enhancements 105

other words, the BFC Manager can sample each bit at the wrong time and, hence, it
cannot always correctly interpret the value of the bits the node sends. In particular,
as a consequence of this limitation, the BFC Manager could unfairly detect that the
error flag is too short or too large. For example, the BFC Manager could sample as
recessive the last dominant bit of the active error flag of its node, thereby unfairly
assuming that the flag is too short.

Furthermore, a fault such as an electromagnetic disturbance can provoke not
only that one node loses the synchronization at bit level, but that many nodes and
the hub lose this synchronization with each other. If this occurs, the hub could
incorrectly evaluate the way in which each one of these nodes signals an error. This
is specially hazardous, since the BFC Manager could detect bit-flipping errors on
the contributions of nodes that do not suffer from any fault.

This problem is worsened even further if the bit-flipping fault that provokes the
loss of synchronization manifests during several bits of the error signaling; spe-
cially, while all nodes and the hub are cooperatively transmitting the error delimiter.
If this occurs, the bit-flipping bits generated by the fault will corrupt the delimiter
thereby forcing all nodes and the hub to signal the error again. Since all nodes and
the hub will be still not synchronized with each other, the hub will unfairly penalize
them again. This problem could manifest many times if the fault endures, as long
as it is not isolated.

One possible solution to mitigate the effects of a fault that provokes a loss of
synchronization is to be less strict when evaluating if the active error flag sent by
a node has the appropriate length. On the one hand, the BFC Manager could be
modified to accept as valid an active error flag that is constituted of 5 consecutive
dominant bits. In this way, if due to a de-synchronization, the hub is not able to
correctly monitor the last dominant bit of an active error flag, at least the BFC
Manager will not consider that flag as being too short. We believe that to accept
as correct error flags of few than 5 consecutive dominant bits is not a good choice.
This is because a de-synchronization can lead the sample points of different nodes
to be out of phase, but it cannot provoke that nodes consider very different bit
times. Therefore, the sample points of two de-synchronized nodes cannot differ in
more than one bit time.

On the other hand, in order to be less strict when evaluating the length of an
active error flag, the BFC Manager could accept as valid flags that consist of more
than 6 consecutive dominant bits. In Section 7.5, we explained that the BFC Man-
ager considers that an active error flag is too long when it is composed of more
than 6 consecutive dominant bits. Specifically, the BFC Manager assumes that its
node has experienced an extra error while sending its flag, every time the manager

106 Chapter 8. Analysis of the mechanisms that deal with bit-flipping faults

monitors that this flag is composed of a new sequence of 7 consecutive dominant
bits. Because of the sample points of two de-synchronized nodes cannot differ in
more than one bit time, we could change the behavior of the BFC Manager so that
it assumes that a new error affected its node while sending its error flag, whenever
it monitors a new sequence of 8 consecutive dominant bits.

8.4.2 Unfair error detection after an arbitration misunderstanding

The second limitation of the mechanisms for dealing with bit-flipping faults is
related to the error-detection and fault-diagnosis after an arbitration phase where
the roles of the nodes are not correctly determined.

As explained in Section 7.2, each Enabling/Disabling Unit monitors its port con-
tribution during the arbitration phase in order to decide if its port is acting as a re-
ceiver or as a transmitter. An Enabling/Disabling Unit assumes that its correspond-
ing port is a receiver in two cases. First, if that port does not send any dominant
bit during the arbitration phase. Second, if that port is attempting to transmit by
sending dominant bits during the arbitration phase, but it issues a recessive bit and,
at the same time, a dominant bit is observed at the coupled signal. This is because
if another node is contending for gaining the access to the channel and sends a
dominant bit, this bit will be reflected at the coupled signal.

Nevertheless, notice that since the bits that contending nodes send and receive
can become corrupted, it is possible that an arbitration misunderstanding occurs
after the arbitration phase finishes. An arbitration misunderstanding occurs when
the hub and all nodes do not agree on the role of each node after the arbitration.
For example, a contending node that actually loses the arbitration at the last bit of
the arbitration phase can incorrectly believe that it has won, if it does not observe
that the recessive bit it sends is overwritten by the dominant bit other node issues.
Similarly, a BFC Manager corresponding to a node that loses the arbitration at the
last bit can incorrectly conclude that its node has won, if the recessive bit the node
sends is corrupted at the uplink so that the BFC Manager monitors a dominant bit.

As can be deducted from the above examples, an arbitration misunderstanding
can happen even if only one error occurred during the arbitration phase. However,
if the BFC Manager and its node do not agree on the role the node is playing,
then the BFC Manager will consider the contribution of that node as being bit-
flipping during the rest of the frame. This is because the BFC Manager will expect
a contribution of a transmitter when its node is actually acting as a receiver, or
viceversa. Therefore, even if the arbitration misunderstanding was provoked by
only one error during the arbitration, a BFC Manager can unfairly detect many

8.4 Limitations of the mechanisms and further enhancements 107

bit-flipping errors in its contribution.

The amount of bit-flipping errors a BFC Manager detects after an arbitration
misunderstanding happens depends on whether or not the hub (the Rx CAN Mod-
ule), or any node, detects an error in the resultant frame and decides to abort the
frame by signaling it. If more than one node considers itself as being the transmit-
ter as a consequence of the arbitration misunderstanding, then it is likely that their
contributions will eventually collide, leading them to abort the frame. In such a
case, the number of times the BFC Manager unfairly detects a bit-flipping error is
low. Unfortunately, it is possible that no more than one node considers itself as the
transmitter, even though there is a BFC Manager corresponding to a receiver that
incorrectly believes that its node won the arbitration. In this situation, the frame
will probably not be aborted and this BFC Manager will unfairly detect a high
number of bit-flipping errors.

One possible solution for reducing the impact of the arbitration misunderstand-
ing is that the hub aborts the frame (by sending an active error flag) not only when
the Rx CAN Module (see Sections 5.4 and 5.5) detects an error in the resultant
frame, but also when any BFC Manager detects an error at its port contribution. In
this way, if a BFC Manager does not agree with its node in the role that node is
playing, then it will abort the frame as soon as it detects an erroneous contribution.

However, this solution negatively affects the performance of the network, since
a BFC Manager could abort frames that would not be aborted in a CAN bus. For
example, a BFC Manager could incorrectly believe that its node is the transmitter
when, in fact, it is a receiver. In this case, the BFC Manager will abort a frame that
in CAN will be successfully transmitted.

Therefore, we propose to adopt an alternative solution. It consists in restricting
the number of times that the BFC Manager increases its BFC during a data, a
remote frame or an inter frame. To do that, the BFC Manager additionally uses
a Bit-Flipping Detection Counter (BFDC) and a Bit-Flipping Detection Threshold
(BFDT).

At the beginning of each data or remote frame, the BFC Manager resets the
BFDC, but increases it each time that it increases the BFC during such frame.
Whenever the value of the BFDC exceeds the BFDT, the BFC Manager orders the
Error Flag Generator Module (see Sections 5.4 and 5.5) to signal an error. This will
abort the frame and will lead the nodes to send their active error flags. Each BFC
Manager (including the one corresponding to the port whose BFDC exceeded its
BFDT) continues using its BFC without any restriction during the error signaling,
in order to check if its node correctly signals the error (see Sections 7.4.2 and 7.5
for an explanation of how a BFC Manager checks this).

108 Chapter 8. Analysis of the mechanisms that deal with bit-flipping faults

This solution based on the use of the BFDC and BFDT mitigates the loss of
performance that can be provoked by aborting frames that would not be aborted in
a standard CAN system. First, notice that the only case in which a frame would
be unnecessarily aborted when using this alternative solution may happen if a bit-
flipping fault only generates dominant bits that coincide with correct dominant
bits sent by the transmitter, or with an acknowledgement dominant bit sent by any
receiver. In such situations no error will be detected in the resultant frame, but only
in the hub port where the fault is located.

Fortunately, the probability of a bit-flipping fault not provoking an error in the
resultant frame detectable by the hub or the nodes during many bits, but in contrast
leading the BFDC to exceed the BFDT, must be taken as negligible. In average, a
CAN node should send the same number of dominant bits and recessive bits during
a data or a remote frame. Thus, during a data or a remote frame, the probability that
a dominant bit generated by a bit-flipping fault coincides with a correct dominant
bit send by other node (thus not provoking an error in the resultant frame) is of 0.5.
As a consequence, the probability that N dominant bits generated by a bit-flipping
source only coincide with correct dominant bits during a data or a remote frame can
be calculated as 0.5N . Since a bit-flipping fault should generate several erroneous
dominant bits in order to lead the BFDC of the corresponding port to exceed the
BFDT, the probability that a frame is unnecessarily aborted should be very low.

The second reason why the adoption of the solution based on the BFDC and the
BFDT mitigates the loss of performance is that the hub will eventually isolate any
bit-flipping port. Thus, a possible loss of performance provoked by the use of this
solution must be taken as temporary.

Finally, notice that it can be considered that the solution based on the BFDC
and the BFDT may, in some cases, improve the performance. Consider the case in
which, during a data or a remote frame, a source of bit-flipping bits will generate
an error in the resultant frame sooner or later. Note that if the bit-flipping bits
are masked by the contribution of the transmitting node, in the worst case, the bit-
flipping bits may only provoke an error next to the end of the frame. Therefore, to
use the BFDC and the BFDT to abort the frame earlier will save bandwidth.

8.5 Penalization policy of the BFC Manager

As already explained, the BFC Manager diagnoses its port as being permanently
faulty when the value of the Bit-flipping Counter (BFC) exceeds a given Bit-flipping
Threshold (BFT). Additionally, in Section 8.4 it has been explained that each BFC
Manager could restrict the number of times it increases its corresponding BFC in

8.5 Penalization policy of the BFC Manager 109

each data, remote or inter frame in order to reduce the impact of unfair error de-
tections in its port contribution. For this purpose, the BFC Manager could use a
dedicated Bit-Flipping Detection Counter (BFDC) and a dedicated Bit-Flipping
Detection Threshold (BFDT).

The present section is aimed at discussing what should be the specific values for
increasing and decreasing the counters, as well as the specific values of the thresh-
olds involved in the diagnosis of bit-flipping faults, i.e. it is devoted to discussing
the penalization policy.

The BFT and the number of units that the BFC has to be increased or decreased
can depend on how restrictive the application is. For instance, a highly-dependable
application may claim for specific issues that enhance the dependability of the
communication system. Concretely, as explained in Section 6.2, it is important not
to allow a node to be in the error-passive state in order to reduce the probability
of data inconsistency. The fault-diagnosis mechanisms of the hub consider the
behavior that characterizes the error-passive nodes as incorrect (i.e. passive error
flags are considered as erroneous contributions) and then, such nodes are eventually
isolated. However, it may be also necessary to apply a tight penalization policy in
order to minimize as much as possible the probability of any node entering in the
error-passive state.

We consider that a first good approach is to adopt a penalization policy based on
the standard CAN [ISO93], but introducing slightly modifications in order to be
more strict. Such policy presents the following rules.

• When the BFC Manager detects a bit-flipping error in its corresponding con-
tribution, it increases its BFC in 8 units. This corresponds with the value a
CAN node must increase the TEC or the REC when detecting a primary er-
ror in a CAN bus. As explained in Section 8.3, the BFC Managers can detect
that their nodes issue incorrect bits in situations that cannot be detected in
a CAN bus and, in addition, they improve the accuracy of detecting which
nodes are the responsible for an error situation. Thus, although the BFC
Managers use the same values used in CAN to increase the error counters of
guilty nodes, the BFC Managers are stricter.

• When the BFC Manager detects in its corresponding contribution an error re-
lated to the format of the active error frame, it will not increase its BFC in 8
units as it was just said, but in 16 units. This is because extra errors during an
error signaling are a good indication of a bit-flipping behavior. Even more, if
a node reaches the error passive state, this stronger penalization during an in-
correct error signaling allows the corresponding BFC Manager to reduce the

110 Chapter 8. Analysis of the mechanisms that deal with bit-flipping faults

time needed to isolate that node. See Section 7.5 for a detailed explanation
about the mechanisms for detecting errors during an error signaling.

• When the state of the resultant frame reaches the idle field (i.e. no trans-
mission is observed on the channel) after a data or remote frame has been
successfully broadcast, all the BFC are decreased in 1 unit. Notice that, this
asymmetric approach of increments and decrements is intended to require
high reliability of the nodes and links.

• The bit-flipping threshold can be set to 127 units. Which corresponds to
the threshold specified in the CAN protocol to lead a node to enter in the
error passive state. Note that in the case the accuracy of the error detection
performed by the BFC Manager was the same as the accuracy of the error
detection of a CAN node, this threshold could prevent a BFC Manager from
disabling the contribution of its node before it enters the error passive state.
However, since the error detection performed by the BFC Manager is more
accurate than the one performed by a CAN node, it is even less likely that
a CAN node enters in the error passive state before its corresponding BFC
Manager disables its contribution.

Even when this policy is more exacting than the policy specified in CAN, it
is important to note that the hub cannot ensure that a node never enters in the
error-passive state by simply adopting a stricter penalization policy. It should be
necessary to do a further analysis in order to find a proper policy that ensures that
the hub isolates any node before reaching this state.

Fortunately, an additional solution may be used without addressing this further
and complex analysis. This solution is based on the fact that it is possible to force a
CAN node to enter in the error-active state after a reset action. Thus, it is possible to
avoid that a node communicates while being error-passive by building the software
executed in each node so that it resets the node whenever it enters into such state.
Note that to restart the operation of a faulty node in this way does not negatively
affect the communication. This is because, anyway, the hub will eventually isolate
the port corresponding to an error-passive node.

Finally, as regards the Bit-Flipping Detection Counter (BFDC) and the Bit-
Flipping Detection Threshold (BFDT), it would be necessary to choose values for
them that allow overcoming the problems derived from an arbitration misunder-
standing, while mitigating the loss of performance of a CAN network.

Notice that in Section 8.4.2 we explained that this loss of performance only hap-
pens if the hub aborts frames that would not be aborted in a standard CAN system.

8.6 Conclusions 111

Therefore, the values of the BFDC and the BFDT should ensure that the proba-
bility of aborting such frames is negligible. Specifically, we propose to increase
the BFDC in 1 unit and to set the BFDT to 5 units. On the one hand, this choice
should not noticeably reduce the performance, since the probability that 5 erro-
neous bits do not provoke the abortion of a data or a remote frame in CAN is
around 0.55 = 0.031 (see Section 8.4.2). Furthermore, note that the standard CAN
ensures that a data frame or a remote frame is aborted if the number of errors dur-
ing the frame are lower or equal to 5. If a frame is affected by more than 5 errors,
the standard does not ensure that the frame will be detected as corrupted and, then,
aborted. Therefore, if the BFDT is set to 5 units and the BFDC in increased in
1 unit, any BFC Manager will force the abortion of a frame only when the error-
detection mechanisms of CAN are not able to do it. Actually, this should imply
that the performance will not be negatively affected.

8.6 Conclusions

This chapter further discusses some issues concerning the error-detection and fault-
treatment mechanisms the hub includes for dealing with bit-flipping faults.

We briefly showed that despite the complexity of these mechanisms, we imple-
mented them in a way that we minimize the amount of internal circuitry of the
hub. Firstly, each BFC Manager does not calculate the current state of the resul-
tant frame. Instead, the Rx CAN Module calculates this state and provides them
with a set of signals that describe it. Secondly, the Rx CAN Module also detects
some types of errors that affect the resultant frame and informs the BFC Managers
about them. This saves an important quantity of circuitry; specially because each
BFC Manager does not include the logic needed for checking the CRC sequence.
Thirdly, the fact that each BFC Manager does not monitor the activity of the other
BFC Managers reduces the number of interconnections as well as the complexity
of their state machines. Moreover, this also makes the hub design more flexible
and extensible for further improvements, e.g. to add new ports and their respective
Enabling/Disabling units will not require to change the circuitry of the existing
modules.

After this brief discussion about how the complexity of the error-detection and
fault-treatment mechanisms affect the amount of hub circuitry, we explained the
advantages of these mechanisms. One of the advantages is that the BFC Man-
ager can detect bit-flipping errors beyond the capacity of the typical error-detection
mechanisms of CAN. The key issue that enables this is that each BFC Manager ob-
serves its port contribution before it is coupled with the other port contributions.

112 Chapter 8. Analysis of the mechanisms that deal with bit-flipping faults

First, this allows the BFC Manager to check if its node starts signaling an error
when the node should do that. Second, the BFC Manager can observe erroneous
bits sent by its node that, otherwise, would not be detected on the coupled signal
because they would be masked by the contribution of other nodes. Third, when
its node is acting as a receiver, the BFC Manager can evaluate whether or not it
correctly acknowledges (or does not acknowledge) the frame being broadcast. Fi-
nally, the BFC Manager overcomes the lack of accuracy the CAN error-detection
mechanisms exhibit when they try to detect when the transmitter has sent a frame
that does not pass the CRC check.

The other advantage of the mechanisms for dealing with bit-flipping faults is
that they overcome some CAN limitations concerning fault-diagnosis. On the one
hand, isolation of faulty ports is guaranteed even if nodes stop performing fault-
treatment operations or the fault is located at the media. On the other hand, they
provide a better accuracy of fault-diagnosis than CAN. The problem of the fault-
diagnosis mechanisms of CAN is that they additionally increase the error counter
of the transmitter, as well as of any node detecting a primary error. This could
be unfair because of two reasons. First, because the transmitter is not always the
cause of an error. Second, because a node cannot rely on the detection of a primary
error to conclude that it is the cause of an error: additional errors during the error
signaling (not necessarily affecting that node) can lead it to incorrectly come to the
conclusion about whether or not it has provoked the error.

Once we explained the referred advantages, we described what are the limita-
tions of the mechanisms for dealing with bit-flipping faults, and we proposed some
further enhancements. The problem is that in some circumstances the BFC Man-
ager cannot correctly interpret the contribution of its port and, as a consequence, it
can unfairly detect errors at its port contribution. On the one hand, a BFC Manager
that is de-synchronized with its node at bit level cannot correctly sample its contri-
bution. This has not negative consequences if it leads the BFC Manager to detect
an error at its node contribution during a data, a remote or an inter frame in which
no error has been detected so far. In fact, to detect an error in this situation is desir-
able since it implies that the BFC Manager has correctly detected that its node has
a problem. However, if the de-synchronization happens during the error signaling,
the BFC Manager can incorrectly evaluate whether or not the active error flag its
node should send has the correct length. Due to the fact that a de-synchronization
cannot lead the hub and the node to consider very different bit sizes, their sample
points cannot differ in more than one bit time. Thus, it is enough to slightly modify
the BFC Manager so that it not only accepts as valid active error flags composed
of 6 consecutive dominant bits, but also those that consist of 5 or 7 consecutive
dominant bits.

8.6 Conclusions 113

On the other hand, the BFC Manager can unfairly detect errors at its port contri-
bution if an arbitration misunderstanding occurs, i.e. if after the arbitration phase
the hub and all nodes do not agree on the role each node plays (transmitter or re-
ceiver). To minimize the number of errors that are unfairly detected, we proposed
to restrict the number of times that the BFC Manager increases its BFC during a
data, a remote or an inter frame. To do that, the BFC Manager should additionally
use a Bit-Flipping Detection Counter (BFDC) and a Bit-Flipping Detection Thresh-
old (BFDT). At the beginning of each data or remote frame the BFC Manager resets
the BFDC, but it increases this counter each time that it increases the BFC. When-
ever the value of the BFDC exceeds the BFDT, the BFC Manager forces the hub
to signal an error. This aborts the frame and, in case the errors were caused by an
arbitration misunderstanding, it allows the BFC Manager to re-evaluate the role of
its node in the next arbitration phase.

Finally, we discussed the penalization policy of the BFC Manager. The BFT and
the number of units that the BFC has to be increased or decreased depends on how
restrictive the application is. However, we consider that it is important to apply a
tight penalization policy in order to minimize as much as possible the probability
of any node reaching the error-passive state. Since the hub improves the capacity
and the accuracy of the error-detection mechanisms of CAN, it should be enough
a penalization policy similar to the one implemented in CAN. Thus, we propose to
adopt a CAN-like penalization policy, but further penalizing nodes that incorrectly
signal an error frame. This is because extra errors during an error signaling are
a good indication of a bit-flipping behavior. Even more, if a node signals and
error-passive flag (which is considered as incorrect), this stronger penalization will
allow the corresponding BFC Manager to reduce the time needed to isolate that
node. Anyway, it is possible to avoid that a node communicates while being error-
passive by building the software executed in each node so that it resets the node
whenever it enters into such state. Regarding the Bit-Flipping Detection Counter
(BFDC) and the Bit- Flipping Detection Threshold (BFDT), we proposed to use
values for them that do not imply a loss of performance when compared with a
standard CAN system.

Chapter 9

CANcentrate prototype

9.1 Introduction

Previous chapters explain the motivation, the architecture, the error-detection and
the fault-treatment mechanisms of CANcentrate. This chapter describes the funda-
mentals of its first COTS-based prototype.

The hub of this prototype includes all the mechanisms described in above sec-
tions, except the further enhancements that were proposed in Section 8.4 to over-
come some limitations of the error-detection and fault-treatment mechanisms of the
hub. In other words, the hub does not include any of the mechanisms we proposed
to address unfair error detections during an error signaling and after an arbitration
misunderstanding.

We built this prototype not only for demonstrating the feasibility of the ideas
addressed above, but also to evaluate the effectiveness of the error-detection and
fault-treatment mechanisms, as well as to carry out a first assessment of the perfor-
mance of a CANcentrate network. Thus, this chapter also discusses the basics of
the experimental platform we have set up and the tests we carried out to verify the
correct behavior and the performance of the prototype.

9.2 Description of the prototype

The prototype is divided into several parts. Each of them corresponds to a given
part or parts of the CANcentrate architecture. The details of such architecture
can be found in Chapter 5. When building our prototype, we differentiated the

115

116 Chapter 9. CANcentrate prototype

��������	

��������

������	

������

�����������

���
�

���
�

�

�
�

���

��

�����

�����

����

�

!

"

���
�

���
�

�

�
�

���

��

�����

�����

����

�

!

"

�#��$%�& '�($�)*�

'+*��&

��,�*��&

"����-$���$����������

��������	

��������

������	

������

���
�

���
�

�

�
�

���

��

�����

�����

����

�

!

"

���
�

���
�

�

�
�

���

��

�����

�����

����

�

!

" '+*��&

��,�*��&

.�*���$������$.���--
(/��-$0(��

.�*���$+�����1+�$)���23$(/��-
�--$(�����1+�$(*������

�4)$���

5�+4�674�+4�$8�24*�

0*��$�)*�

���&

Figure 9.1: Hub prototype

following parts: the Coupler and the Fault-Treatment modules (referred hereafter
as the hub core), the Input/Output Module, the links, and the CAN nodes. Next, a
general description of the characteristics of each part implementation is given.

Figure 9.1 shows the hub prototype. For the sake of clarity only the most im-
portant connections are depicted. The hub core has been implemented using the
VHSIC Hardware Description Language (VHDL) and the Xilinx Virtex XCV300-
PQ240 FPGA (Field-Programmable Gate Array), which is placed in the Xilinx
prototype board PQ240-100 Prototype Platform (HW-AFX-PQ240-100 version).

A dedicated board has been used for implementing the Input/Output Module, fol-
lowing the wire-wrap technique. This board mainly contains four pairs of Philips
PCA82C250 high-speed CAN transceivers [PHI00] and four RJ45 jacks (one jack
for each pair of transceivers), so that up to four CAN nodes can be connected to
the hub at the same time. The pin CANL (LOW level CAN voltage input/output)
and the pin CANH (HIGH level CAN voltage input/output) of the transceiver are
then connected to the appropriate pins of the corresponding RJ45 jack. The inter-
connection between the Input/Output Module and the hub core is made by means
of a flat cable, which connects the specific reception and transmission pins of the
CAN transceivers with the corresponding pins of the Xilinx prototype board.

9.2 Description of the prototype 117

���������	
��

���
�

���
�

�

���
�

���

��

�����

�����

����

�

�

!

"#�$�%��!���&��'���
(�
)��
$$��

��*�+"�,-

./��#��)��0����������
)��
$$��1

������

���
�

���
�

�

���
�

���

��

�����

�����

����

�

�

!

���)�'��2

���)�'��(

�������2

�������(

���'�)���
) �3���4��5 6�"���	$�

�
/)$�)5

6%$�)5

��)5

7�����)5�	
��

Figure 9.2: Basics of the CANcentrate node prototype

One UTP (Unshielded Twisted Pair) Category 5/5e/6 ethernet cable is used for
implementing each link, which is constituted by an uplink and an independent
downlink (as explained in Section 5.3). Both the uplink and the downlink use
two-wire differential lines. The uplink uses the Transmit pair while the downlink
uses the Receive pair of the Ethernet cable. On the one hand, the CAN H and the
CAN L wires of the uplink are implemented with the Transmit+ and the Transmit-
ethernet wires respectively. On the other hand, the CAN H and the CAN L wires of
the downlink are implemented with the Receive+ and the Receive- ethernet wires
as well.

The CAN nodes have been implemented using commercial-off-the-self (COTS)
components. Figure 9.2 shows the basics of the node prototype. Each node is
constituted by two different boards that are attached to each other: a CANivete
board and a starLink board. The CANivete board is a previous development of
the Universidade de Aveiro (UA) for standard CAN applications and implements
a typical CAN node. In contrast, the starLink board was specifically designed for
this project. It includes all the additional components needed for modifying the
CAN interface of the CANivete in order to build the schema of double transceivers
needed for connecting each CAN node to the uplink and the downlink of CANcen-
trate (see Figure 5.2 and Section 5.3 for a description of such schema).

On the one hand, the CANivete is based on a printed board where the compo-

118 Chapter 9. CANcentrate prototype

nents are welded. Its main components are a Philips 82C592 microcontroller which
integrates a CAN controller; several sets of input/output pins that are connected to
different parts of the board for digital or analog I/O; an external EPROM memory
of 64k (for storing the program); two RS-232 drivers, one connected to the inter-
nal UART of the microcontroller and another one connected to the I/O pins of the
board; and a Philips PCA82C250 high-speed CAN transceiver, which is connected
to the CAN controller located within the 82C592 microcontroller.

On the other hand, the starLink is a wire-wrap board which contains a Philips
PCA82C250 high-speed CAN transceiver and a RJ45 jack. The transceiver lo-
cated within the CANivete is used for connecting the CAN node to the downlink,
whereas the transceiver located within the starLink board is used for the uplink.
The printed track of the CANivete which connected the transmit data pin (TxD) of
the CAN controller to the TxD pin of the PCA82C250 transceiver was modified to
be connected to the TxD pin of the transceiver of the starLink; the transmit TxD
pin of the transceiver of the CANivete was left open. The pins CANH and CANL
of both transceivers are then connected to the appropriate pins of the RJ45 jack.

9.3 Experimental platform

The prototype of CANcentrate was extensively tested to check its correct operation
under error-free conditions and in the presence of faults, as well as to measure its
performance. To perform these tests, an experimental platform was built. Specif-
ically, the issues that were taken into account when devising this platform are the
application that is executed at the CAN nodes, the configuration of the network and
the fault-injection mechanisms.

All CAN nodes run the same application, which is constantly trying to send data
frames with different identifiers and different data lengths, in order to test different
frames. However, although the CAN nodes execute the same application, each one
of them uses a different set of frame identifiers. In this way, it is impossible that
two nodes try to send a frame with the same identifier at the same time (this is a
general requirement for any CAN application).

In addition, since we wanted to assess the correctness of the CAN arbitration
mechanism, we force an arbitration at the beginning of the transmission of each
frame. For this purpose the application follows two basic rules: it must trigger a
new transmission whenever it successfully transmits a frame and it must restart the
CAN controller whenever, due to errors, it reaches the bus-off state (in such state,
a CAN controller is not involved in bus activities, see Section 3.3.5).

9.3 Experimental platform 119

�����������	�
�	

��
��

�

���
�

�

���
�

��

��

�����

�����

�	��

�

!

"

�	���#�
$

�	���#�
%

�����&�$

�����&�%

��	#���
��� �'���(��) *�+���,��

��-����)

*.���)

���)

�
�	���)�,��	/

Figure 9.3: Faulty node prototype

Moreover, by means of these rules we achieve the maximum network utilization
with a given bit rate. This allowed us to assess if the hub is able to correctly
analyze any two consecutive frames that are separated by a minimum delay (given
a specific bandwidth).

With regard to the second issue of the experimental platform, namely the config-
uration of the network, it covers several aspects that are related to the nodes, to the
links and to the bit rate. Concerning the nodes, it is worth noting that at least three
CANivete nodes are needed for forcing an arbitration to take place in the transmis-
sion of each frame. This is because our CAN nodes are not able to perform a new
transmission just after finishing a previous one (they have a single transmission
buffer and, thus, an extra delay is needed for configuring and ordering a new trans-
mission). As stated before in Section 9.2, the Input/Output Module has been built
to allow the connection of four CAN nodes at the same time. However, although
we could include four CANivete nodes, one of the ports of the hub was reserved
for fault-injection purposes as will be explained later in this section. Therefore, the
network finally included three CANivete nodes.

Regarding the other aspects covered in the network configuration, the links and
the bit rate, several Ethernet cables of different lengths, as well as different bit rates
were used in order to measure the performance of the network depending on the
star diameter and the bit rate. Nevertheless, due to implementation limitations on
the clock oscillators of the CAN nodes, the maximum bit rate that was used for
testing the performance is 690 Kbit/s.

Finally, the last issue related to the experimental platform is the set of fault-
injection mechanisms that are used to validate the fault-treatment capabilities of the
hub. As explained in Chapter 6, the hub is able to detect permanently faulty ports
that present stuck-at-recessive faults, as well as to diagnose and isolate permanently
faulty ports that present stuck-at-dominant or bit-flipping faults. Stuck-at-recessive
faults can be easily injected by disconnecting the link of an operational CAN node

120 Chapter 9. CANcentrate prototype

���

�����	
	

��	

�����	
	

��	

�����	
	

��	

����
�

��	

����
��������������	

��������������	�

Figure 9.4: Experimental platform

from the hub. However, a more complex fault-injection mechanism is needed for
stuck-at-dominant and bit-flipping faults.

For injecting both stuck-at-dominant and bit-flipping faults, a special CAN node,
called Faulty node, has been implemented (see Figure 9.3). Such node is imple-
mented with a stand-alone starLink board that is connected to a signal generator
device (see Section 9.2 for a detailed explanation of such board). The Faulty node
is connected as any other node (by means of an Ethernet cable) to the port of the
hub that is reserved for fault-injection purposes. Note that since the Faulty node
only has one transceiver, which is connected to the uplink within the cable, the
downlink is left open at the end of the Faulty Node.

The transmit data input pin of the transceiver of the Faulty node is connected to
the signal generator device. In this way, different bit stream patterns, consisting
of a periodic signal that alternates from the recessive to the dominant value with
a given frequency, can be transmitted to the hub. How to use the Faulty node to
inject stuck-at-dominant and bit-flipping faults is explained in the next section.

Figure 9.4 shows a schema of the experimental platform. Notice that it includes
a logical analyzer and a digital oscilloscope, which are used to monitor different
parts of the network, e.g. the state of some internal state machines of the hub, or
the value of the faulty stream the Faulty node injects.

9.4 Functional tests 121

9.4 Functional tests

As explained in Section 9.3, the correct operation of the prototype under error-free
conditions, as well as in the presence of faults was checked by means of several
functional tests. The aspects that have been tested under error-free conditions are
the correctness of the:

• Operation of the different state machines that constitute the hub.

• Calculation of the resultant frame upon all node contributions.

• Correct synchronization at bit level and at frame level.

• Assignation of the roles of the nodes after the arbitration phase.

In contrast, the aspects that have been tested in the presence of faults are the
correctness of the:

• Increase and decrease of the different error counters during different fault
scenarios.

• Detection of ports suffering stuck-at-recessive faults, as well as the isolation
of ports suffering stuck-at-dominant or bit-flipping faults.

• Reintegration of ports following the policy explained in Section 6.7.

All the issues indicated above were tested at two different levels: at the level of
the VHDL design of the hub and at the level of the physical network. However, the
tools that have been used at each of these two levels impose different limitations.
Thus, the different aspects listed above have been tested in different depths at the
two levels.

The first level of testing, the functional testing of the VHDL design of the hub,
has been done by means of the simulation tool ModelSim XE II 5.7g (provided by
Mentor Graphics Corporation). Several simulations were done in order to check
all the issues specified above and, in all cases, the operation of the hub was correct.
Special attention has been paid to check the correct operation of the different state
machines that constitute the hub, as well as their correct mutual interaction.

As concerns the second level of testing, physical limitations in the layout of the
FPGA board discourage an exhaustive testing of all the state machines that con-
stitute the hub. In contrast, many more fault scenarios can be injected at physical
level than at simulation level.

122 Chapter 9. CANcentrate prototype

For this physical level of testing, different parts of the physical network have
been observed by means of a logical analyzer and a digital oscilloscope. In partic-
ular, the ports of the hub were observed in order to know which is the contribution
of each node as well as the value of the coupled signal. Since the Rx CAN Mod-
ule and the Enabling/Disabling units are key modules for synchronizing the hub
at bit level and at frame level, as well as for diagnosing and isolating faulty ports,
respectively, they have also been observed.

For physically testing the correct operation of the network under error-free con-
ditions (like during the phase of the tests of the VHDL design), the correct calcula-
tion of the coupled signal, the correct synchronization at bit and at frame level and
the correct assignment of the roles during the arbitration phase have been checked.
With regard to the physical testing of the fault-treatment mechanisms the hub im-
plements, extensive tests that include stuck-at-recessive, stuck-at-dominant, bit-
flipping faults and the reintegration policy have been performed.

Specifically, in order to physically testing the actions carried out by the hub in
the presence of stuck-at-recessive faults, the link of a previously operating node
has been mechanically disconnected. When the link is disconnected a transient
bit-flipping behavior is observed in its corresponding port. However, these erro-
neous bits are not enough for leading the hub to isolate the port. In contrast the
contribution of the port quickly stabilizes to the recessive value and then, the hub
indicates that the port is at the idle state. Which actually means that the port is
stuck-at-recessive (see Section 6.7).

For physically testing the operations the hub performs in the presence of stuck-
at-dominant faults, the Faulty node described in Section 9.3 was used to transmit a
periodic signal that keeps the dominant value during many frames. It was observed
that the hub correctly increases the DBC and isolates the corresponding port when-
ever the configured Dominant Bit Threshold (DBT) is exceeded.

As concerns the fault-diagnosis and fault-isolation operations the hub performs
in the presence of bit-flipping faults, two kinds of techniques for injecting them
have been used. On the one hand, a bit stream, which has random values, was
injected by means of mechanically connecting/disconnecting a given link into its
plug. On the other hand, the Faulty node was used for injecting a bit stream that
changes from the recessive to the dominant value with different frequencies that do
not match with the bit rate the nodes use for communicating. Notice that in both
cases, the beginning of the bit-flipping injection was randomly chosen. Many tests
were performed with both techniques and in all situations the results were correct.

Finally, for the physical testing of the reintegration policy, the state (idle, active
or disabled) of a given port was observed in different situations (see Section 6.7

9.5 Performance measurements 123

for an explanation of the different states of the ports). After the system start-up the
port was in the idle state. When the node sent an ACK bit or when it tried to send a
frame, the port state changed to the active state. If the node was at the active state
and its link was disconnected from the hub, the port returned to the idle state. After
the port was isolated due to a stuck-at-dominant or a bit-flipping fault, a recessive
value was forced in this port by disconnecting its link or by compelling its node to
send recessive bits. In these cases, the hub re-enabled the contribution of the port,
which agrees with the expected behavior related to the reintegration policy.

9.5 Performance measurements

Regarding the performance tests, some measurements have been made. The values
of the FPGA device utilization needed for implementing the hub prototype (with
4 ports) are: 758 out of 3072 slices, 278 out of 6144 Flip-flops, 1396 out of 6144
LUTs, 91 out of 170 IOBs, 4 out of 4 GLCKs.

The extra delay introduced by the hub core is 35 ns, whereas the average value
of the extra delay introduced by the entire hub is 155 ns. Notice that the value of
the extra delay introduced by all the hub is of the order of 1/6 of the bit time when
operating at the higher bit rate allowed in CAN [CiAa] (1 Mbit/s).

In addition, the hub core has been also built with 16 ports. The values of the
FPGA device utilization in this case are: 2534 out of 3072 slices, 869 out of 6144
Flip-flops, 4662 out of 6144 LUTs, 91 out of 170 IOBs, 4 out of 4 GLCKs. It
has been observed that the extra delay introduced by the hub core does not visibly
depend on the number of ports it is provided with.

Finally, several Ethernet cables of different lengths, as well as different bit rates
have been used in order to measure the performance of the network depending on
the star diameter and the bit rate. As said before, due to implementation limita-
tions, the maximum bit rate that has been used is 690 Kbit/s. At this bit rate, the
maximum star diameter that was used without generating errors is 41 meters which
implies a small reduction in length when compared with a CAN bus operating at
the same bit rate (maximum length of approximately 68 meters) [CiAa].

Moreover, if we use Equation 5.1 considering that th = 310 ns, i.e. two times
the measured hub extra delay, we see that the bit rate, B ′, of an equivalent CAN bus
with a bus length equal to the CANcentrate diameter approximately is 878 Kbit/s.
The maximum CAN bus length achievable at this bit rate is in the range of 30 to
50 m [CiAa], whose average point (40 m) almost coincides with the diameter at
which CANcentrate starts experiencing sporadic errors.

124 Chapter 9. CANcentrate prototype

Finally, it is noteworthy that the delay introduced by the hub could be reduced
using specific high speed transceivers in the hub. In this way the current delay of
the hub, 155 ns, could be reduced until 55 or 65 ns, without losing compatibility
with COTS components when building nodes and links.

9.6 Conclusions

This chapter describes the basics of the implementation of a first prototype of CAN-
centrate, as well as the experimental platform and the tests we carried out to assess
its correct behavior and performance.

The entire prototype was built using COTS components, except the hub core,
which includes the Coupler and the Fault-Treatment modules, and which has been
synthesized on an FPGA.

We verified the correct behavior of the hub at the level of the VHDL design and
at the level of the physical network, in the presence of both error-free conditions
and faults. At the level of the VHDL design, we exhaustively verified the correct
operation of all the automata that constitute the hub via simulation. However, it
was not possible to inject many scenarios involving faults at this level. In contrast,
we were able to inject many more fault scenarios at the physical network. In this
case, due to limited number of probes of the logical analyzer, it was not possible to
monitor all the state machines of the hub. Fortunately, to monitor the state of the
main machines of the Rx CAN Module and the manager modules, as well as the
error counters was enough for verifying the correctness of the error-detection and
fault-treatment mechanisms of the hub.

Regarding the performance of the prototype, several cables of different lengths,
as well as different bit rates have been used in order to measure the performance of
the network depending on the star diameter and the bit rate. It has been observed
that the extra delay introduced by the hub implies a negligible reduction of length
when compared with a CAN bus operating at the same bit rate. Furthermore, it
has been found that the extra delay introduced by the hub does not depend on the
number of ports. In fact, the transceivers of the Input/Output Module represent
the major part of the extra delay introduced by the hub. Thus, this delay could be
reduced using specific high speed transceivers in the hub, without losing compati-
bility with COTS components when building nodes and links.

Finally, notice that some implementation decisions were merely taken for prac-
tical reasons. The Input/Output Module of the hub was built using the wire-wrap
technique. Although this technique is not the appropriate for building a robust

9.6 Conclusions 125

device, it allowed quickly implementing the hub. Similarly, the links were not
built with typical CAN cables, but with Ethernet ones. Despite creating a small
impedance mismatch, Ethernet cables were easier to deploy. Also notice that for
implementing each CAN node we used an already available CANivete board, just
adding a small board that includes the components needed to connect the node to
the uplink and the downlink. Although this allowed us to save time when devel-
oping the prototype, limitations on the clock oscillators of the CANivete boards
restricted the maximum bit rate that could be used for testing the performance of
CANcentrate. Anyway, despite the mentioned implementation limitations, this first
prototype represents a proof of concept of the feasibility and the potential advan-
tages of CANcentrate.

Chapter 10

Reliability evaluation of
CANcentrate

10.1 Introduction

As explained in Sections 1.2 and 4.5, star topologies can represent a step towards
improving dependability of communication networks, in general, and of CAN in
particular. Specifically, the interest in using star topologies has been growing, given
their better error containment capabilities and their resilience to spatial-proximity
and common-mode failures [Kop03]. For example, Ethernet has long ago moved
to star topologies that are nowadays used in industrial automation and the embed-
ded systems domains. In the particular case of in-vehicle systems, we can find
other examples of transition to star topologies such as with TTP/C [BKS03] and
FlexRay [Fle05]. Moreover, as explained in Section 4.5, different star topologies
have also been proposed for CAN.

Despite this growing trend towards the use of star topologies, it is not so clear
whether or not stars improve the dependability of systems that rely on them. In
fact, stars can provide better error containment but they also include more hard-
ware components, thereby increasing the probability that faults and errors oc-
cur. Furthermore, the enhancement of system dependability that can be achieved
when using a star instead of a bus has never been appropriately quantified. On
the one hand, previous work, e.g. [RD88], [Cao97], [FLS02], [ADS03], [LJ90],
that quantitatively analyzes the dependability of different network topologies by
means of mathematical or statistical models abstract away many important de-
tails: the differences between the failure rates of the nodes of a star and a bus;
the different components’ failure modes; the specific capacity of the hub for con-

127

128 Chapter 10. Reliability evaluation of CANcentrate

taining errors caused by different types of faults, etc. On the other hand, fault
injection experiments carried out for some technologies, e.g. for TTP/C [ABST03]
and FlexRay [DLMSS08] [MSH08], quantitatively demonstrate that a star is bet-
ter suited to prevent the propagation of errors than a bus. However, data collected
from these experiments have not been used so far to quantify the dependability im-
provement that can be actually achieved by means of the stars’ error-containment
capacities.

Among all the dependability attributes (see Section 2.2), we are interested in
quantifying the benefits that stars yield in terms of reliability. As explained in
Section 1.4.3, we are specially interested in this attribute because CAN can still
play a key role in newer applications that are demanding increased levels of re-
liability, and for which alternative solutions have been proposed to complement
or to replace this protocol. These applications embrace different domains such as
automotive and home automated systems.

The objective of this chapter is twofold. On the one hand, it is devoted to carry-
ing out a fair comparison of the system reliability that can be achieved with CAN
and CANcentrate, by means of models that include parameters for all the relevant
aspects of a system relying on these infrastructures. In this sense, we determined
the values of our models’ parameters that characterize CAN and CANcentrate with
special care not to favor the star in the comparison. For instance, since there are
many ways of implementing a CAN bus and a CANcentrate star, each yielding
different reliability results, we always choose the implementation options that fa-
vor the case of CAN. Thus, results herein presented are likely to be lower bounds
to the reliability that can be achieved with CANcentrate. On the other hand, this
chapter aims at carrying out sensitivity analyses with respect to some of the sys-
tem’s aspects that are parameterized, e.g. the ability of the hub to contain errors,
in order to assess how they influence the reliability that can be achieved with CAN
and CANcentrate.

In order to model the reliability of a system that relies on both CAN and CAN-
centrate we used the Stochastic Activity Networks (SANs) formalism. This formal-
ism is an extension to stochastic Petri Nets [CFJ+91] [TMGT93] [SoT04]. More
details about SANs are given later on in Section 10.5.

We take as a reference for comparing CAN and CANcentrate the reliability re-
quirements of a typical highly reliable application. This is because although we
are interested in using CANcentrate as a general field-bus network, one of the mo-
tivations of this dissertation is to enhance the error containment of CAN to make it
suitable for distributed control systems that demand an increasing level of reliabil-
ity. More specifically, since CAN was initially designed for in-vehicle communi-

10.1 Introduction 129

cations, we consider the reliability requirements of the less demanding x-by-wire
applications in cars [MK05], e.g. of throttle-by-wire and of some brake-by-wire
systems. As explained in Section 1.4.3, x-by-wire systems are devoted to substi-
tuting the mechanical and hydraulic control mechanisms in vehicles by electronic
parts.

Notice that since star topologies were mainly proposed to address the issue of
permanent hardware faults, this chapter focuses on these faults and leaves aside
transient ones (see Section 2.2). Moreover, transient faults, by definition, cannot
prevent nodes from communicating indefinitely. Instead, they cause temporary
unavailability of the communication system thereby negatively affecting its perfor-
mance, e.g. deadline violations, increased average response times, packet losses,
etc. Therefore, the impact of transient faults on reliability is necessarily appli-
cation dependant and, thus, they are beyond the scope of this dissertation. For
example, deadline violations can lead to a generalized failure in hard real-time
systems; but this strongly depends on the specific set of messages and the schedul-
ing [HNNP02]. Response times can also affect the reliability of some types of
control system, e.g. of life-critical ones [TMGT93]. But similarly to what happens
with deadline violations, the way in which performance affects reliability depends
on the application.

Nonetheless, this chapter is not intended to bring a definitive assessment in the
presence of permanent faults either. Firstly, as explained above, we characterized
system’s aspects by means of parameters whose values guarantee that results are
not biased towards CANcentrate and that, thus, lead to obtain lower bounds of the
system reliability achievable by the star. However, in some cases, these kind of
decisions may have been too detrimental for CANcentrate.

Secondly, we consider that semantically-incorrect frames, e.g. timely-incorrect
frames issued by babbling-idiot nodes (see Section 3.4) are not contained. However
this type of failures could be treated by simply including a bus guardian within the
hub, whereas in the CAN bus it would be necessary to include extra hardware in
each node. Thus, the potential benefits that CANcentrate could yield when dealing
with these failures are not reflected in the results.

Thirdly, we do not take into account faults happening at the software executed
at nodes. This fact should favor the CAN bus in the comparison, since software
faults are the main source of semantically-incorrect frames, which could be treated
by the hub as just said. Moreover, since a hub cannot suffer from software faults,
the negative reliability impact of including the hub as a new source of faults when
compared with a bus topology diminishes.

And fourthly, the minimization of the impact of spatial-proximity faults that is

130 Chapter 10. Reliability evaluation of CANcentrate

inherent to a star topology is not included in the models. This is because it is im-
possible in practice to find a reasonable value for the probability with which an
external event, e.g. a blow on a vehicle’s side, affects a given number of compo-
nents in a bus or in a star.

Due to the mentioned limitations, results presented in this chapter are just an
evidence of how CANcentrate can improve the reliability of CAN-based distributed
control systems; but they do not reflect its full potential.

Finally, it is noteworthy that although this chapter is devoted to comparing the re-
liability of a system that relies on the CAN bus with an equivalent system that relies
on CANcentrate, we will also compare them with the system reliability achievable
with ReCANcentrate (see Chapter 12). As will be explained, this means that, in
fact, the major part of of the modelling decisions explained in this chapter were
made to be also appropriate for the case of ReCANcentrate.

10.2 Metrics

As just said, among all the attributes of dependability, e.g. availability, maintain-
ability, etc., we are interested in reliability. Notice again that reliability is defined
as the probability with which a system continuously delivers its intended service
throughout a given interval of time (see Section 2.2). Such a definition implies that
the reliability is an attribute that is strongly related to the particular characteristics
of a system, since for each system the delivery of the intended service is defined
differently.

In this sense, as already explained in Section 1.4.3, we can differentiate between
two types of systems. On the one hand, there are systems that can only deliver their
services as long as all their nodes are non-faulty and can communicate with each
other. We refer to them as non-fault-tolerant/accepting systems (NFT/A systems).
On the other hand, we can find systems that are able to accept or tolerate the failure
or the disconnection of up to k of N nodes. We call them fault-tolerant/accepting
systems (FT/A systems). Examples of systems that accept the failure or discon-
nection of several nodes could be a factory plant in which it can be accepted that
up to k of N production lines are inoperative, or the intra-building communication
subsystem of a hotel or a house. As concerns systems that tolerate nodes’ failures
and/or disconnections, clear examples are safety-critical ones, such as those used
in avionics, which normally provide fault tolerance by means of redundancy.

This classification allows to better understand the role that the dependability-
related features of a simplex star topology such as CANcentrate can play in order

10.2 Metrics 131

to improve system reliability. On the one hand, the resilience to spatial-proximity
and common-mode failures and the potential error-containment mechanisms of a
simplex star are useless to improve reliability of NFT/A systems. This is because
to isolate a fault in a simplex star entails isolating a given node, thereby inexorably
provoking the failure of an NFT/A system. Moreover, since a star topology in-
cludes more hardware than a bus to interconnect a given ensemble of nodes, it is
expected that faults are more likely to occur in the former, thereby reducing the
reliability of an NFT/A system.

In order to quantify this reduction, we define a metric called non-fault-tolerant /
accepting system reliability (NFT/AR) as the probability with which all nodes of a
system can correctly operate and communicate with each other throughout a given
interval of time. As will be described later on, we use this metric to quantify the
reliability of an NFT/A system that relies on CAN and of an equivalent system that
relies on CANcentrate and, then, we compare them.

On the other hand, although a simplex star is likely to provoke a reduction in
terms of NFT/AR, it is still possible that the mentioned features of a star can im-
prove the reliability of FT/A systems. We discussed this issue in Section 1.4.1,
where we explained that those features allow reducing the multiple points of k-
severe failure of a bus to one point of k-severe failure (the hub), thereby minimizing
the number of nodes that are affected by the errors that faults generate. Examples
of those FT/A systems could be the intra-building communication system of a ho-
tel, in which the main objective is to provide service to the maximum number of
rooms, as well as highly reliable distributed control systems that tolerate faulty or
disconnected nodes by, for example, replicating them.

In order to quantify the improvement of reliability CANcentrate can yield for
FT/A systems, we define a new metric we call fault-tolerant/accepting system re-
liability (FT/AR). More specifically, let us specify a parameter called k for this
metric, so that we can denote it as FT/ARk. Thus, the FT/ARk is formally defined
as the probability with which at least N − k of the N nodes of a system can cor-
rectly operate and communicate among them throughout a given interval of time.
In other words, the FT/ARk is the probability of not suffering a k-severe failure.
As already said, a k-severe failure occurs when few than N − k of N nodes can
operate or communicate among them.

Particularly, we are interested in the FT/ARk when k = 1, i.e. we focus on the
FT/AR1. In this way, we study the potential benefits that CANcentrate can yield
in terms of reliability for FT/A systems that can accept or tolerate that at most one
node fails or cannot communicate. We selected this value of k because it is the one
with which CANcentrate intuitively yields the least reliability benefits. To better

132 Chapter 10. Reliability evaluation of CANcentrate

understand this issue, notice that when the number of nodes that fail or cannot
communicate reaches the value of k, then the ability of the hub to contain errors
becomes useless, since a new fault will inevitably lead to a generalized (k-severe)
failure even though the hub can isolate it. Therefore, the hub of CANcentrate has
more opportunities to contribute to the system reliability as the value of k increases.

10.3 Modelling limitations

Dependability modelling is a discipline whose application presents some limita-
tions that must be taken into account to understand its usefulness and to adequately
interpret the models and results presented in this chapter.

Maybe the most important limitation of dependability modelling is the impos-
sibility of reflecting all the characteristics of a real system, so that the model is
actually an abstraction. This is because the computational resources needed to
solve a model and obtain numerical results easily become unattainable as more de-
tails are included in the models. As a consequence, every model relies on a given
set of assumptions and it is inherently inaccurate.

Although there is not a definitive solution to overcome this problem, it is still
possible to model the essential characteristics of a system in order to extract con-
clusions about how different design alternatives and assumptions affect a given de-
pendability attribute such as the system reliability. In this sense, we have explored
and compared different modelling strategies in order to model as many system’s
details as possible, while keeping a reasonable computation time. In fact, to our
best knowledge, no one has previously modelled a system relying on a bus or a star
topology taking into account the details included in the models herein proposed.

Another important limitation of dependability modelling is the fact that it is
hardly possible to find numerical values that accurately quantify specific system’s
characteristics related to dependability such as, for example, the failure rate of the
components, the proportions of the different failure modes and the coverage of
some error-containment mechanisms. In order to mitigate this limitation, we made
a great effort to find values that can be considered as realistic for these character-
istics. Specifically, we took into account real implementation and technological
aspects and, when possible, we also used widely spread prediction standards.

Nevertheless, in order to avoid biased results towards CANcentrate, assumptions
for system’s characteristics were always taken in favor of CAN and, in some cases,
this may have been too detrimental for CANcentrate. Therefore, it becomes es-
sential to analyze how the system reliability varies depending on the value of its

10.4 Modelling assumptions 133

characteristics. Moreover, this analysis is very important for identifying which
ones have a bigger influence on reliability. Because of these reasons, as will be ex-
plained later, we have built our models so that the value of different system’s char-
acteristics are parameterized. Even more, this parametrization allows our models
to be more easily adaptable to assess the reliability improvement achieved when
using a star in technologies other than CAN.

From the above discussion concerning the limitations of dependability mod-
elling, it is easy to understand that the objective of this discipline is not to provide
absolute figures for different dependability attributes. In contrast, its objective is to
guide the design and implementation of a system by analyzing how different op-
tions and decisions affect its dependability [TMGT93]. Therefore, the comparison
carried out in this chapter aims not only at assessing whether or not it is possible to
improve the reliability of CAN-based systems; but also at analyzing how different
aspects of the system and the communication infrastructure affect this improve-
ment.

10.4 Modelling assumptions

This section introduces the assumptions our models rely on. It is important to note
again that each one of the assumptions our models are grounded on has been made
guaranteeing that the results are not biased towards CANcentrate. Moreover, when
we had to make a choice for any of these assumptions we always took the option
that was favorable for the CAN bus. Some of these decisions may have been too
detrimental for the CANcentrate results.

Some modelling assumptions condition the structure of the models, whereas
other ones are reflected as model parameters. As already explained, these parame-
ters are specially valuable since they allow performing sensitivity analysis with re-
spect to fundamental dependability-related characteristics of the system for which
it is hardly possible to find exact values.

Table 10.4 shows the parameters that are common to the models of the CAN
bus and CANcentrate. Moreover, these parameters also belong to the model of
ReCANcentrate. In addition, Table 10.5 shows the parameters that are specific to
the model of the CAN bus; whereas Table 10.6 presents the parameters that belong
to the model of CANcentrate. Finally, Table 12.1 specifies the parameters that
belong to the case of ReCANcentrate. The parameters of this last table are beyond
the scope of this chapter and will be addressed in Chapter 12. Each one of the
three first tables shows the name of each parameter, its default value and a short
explanation. The meaning of the parameters will be better understood in the next

134 Chapter 10. Reliability evaluation of CANcentrate

sections.

As will be explained in Section 10.9, we use the default values specified in those
tables to initially set up a case of reference in which we compare the reliability of
a system relying on CAN and on CANcentrate. Then, we perform some sensitivity
analysis with respect to the major part of the parameters, in order to assess how
they affect the benefits of CANcentrate.

Default values are those we will propose as reasonable in the following subsec-
tions. In this sense, figures we estimate in these sections should not be taken as
real values, but as initial reference values that can be considered as realistic.

10.4.1 Implementation assumptions

Firstly, it is necessary to establish what features of the different CAN physical layer
standards are included in the implementation of the CAN bus and CANcentrate.
This is because different CAN physical layer standards exhibit different degrees
of fault tolerance and electrical robustness and, hence, a fair comparison between
a CAN bus and a CANcentrate star must consider that both use the same physical
layer standard. We consider the ISO 11898-2 High-speed CAN standard [ISO03b],
which is the most widespread one. This standard specifies a two-wire differential
bus line terminated at both ends with impedances of 120 Ohm (see Section 3.2).
High-speed CAN does not compel to tolerate faults affecting any of the two wires
or any of the bus line terminations. Thus, we assume that a fault affecting any of
the wires or terminations will not be tolerated.

Secondly, we need to address the length and layout of both the bus and the star;
how nodes are attached to the medium; the quantity of wires included in each cable;
and how the terminations are implemented. We assume that the CAN bus length
and the CANcentrate diameter are of 100 m, which is the maximum bus length that
can be achieved operating at 500 Kbit/s [CiAa] (a half of the maximum CAN bit
rate). Moreover, in the case of the CAN bus we consider that nodes are equidistant,
whereas in CANcentrate we suppose that every pair of nodes is separated by a
length equal to the star diameter (100 m) and that all links have the same length
(50 m). Note that such layout is pessimistic for CANcentrate, since a star could
use much less cable to cover the area occupied by the nodes the bus interconnects.

There are several possible ways to attach a node to the bus line in the case of
CAN and to the link in the case of CANcentrate. Figure 10.1 depicts two examples
of bus layouts. Case A shows a daisy chain configuration with each pair of adjacent
nodes connected to each other using a CAN cable with a straight connector at both
its ends. Conversely, case B shows a situation in which each node has its own

10.4 Modelling assumptions 135

Node

connector

Node Node Node Node

link

stub

bus line

bus line cable

A

B

Node Node Node

Figure 10.1: Bus layouts

straight connector, which attaches it to the corresponding stub. Each stub is then
connected to the bus line by means of a T-connector. The first configuration is the
most reliable option for the CAN bus since it includes no stubs and minimizes the
number of connectors. Thus, in order to obtain more optimistic results concerning
the reliability of the bus, we assumed this configuration for CAN.

For CANcentrate, each link (including an uplink and a downlink) connecting a
node to the hub could also be implemented using a single CAN cable with one
straight connector at each end. However, for implementing the link in such a
way it would be necessary to use a cable with extra wires and straight connec-
tors with more pins than for CAN. Using different types of connectors and cables
for CAN and CANcentrate could pose some uncertainties concerning the fairness
of the comparison. Hence, we decided to consider that each uplink is implemented
separately from its downlink, so that each one of them uses a CAN cable and a pair
of connectors equal to those used for connecting each pair of adjacent nodes in the
CAN bus.

As concerns the number of wires included in each cable, a higher number of
wires implies a worse cable reliability. Usually, CAN cables have one or two
mandatory supply wire(s), e.g. GND, V+/GND or V+/V-, in addition to the pair of
wires used for the differential transmission. Hence, in order to cope with the most
general case, we decided to consider that a cable consists of four wires: CAN H,
CAN L, GND (or V-) and V+.

Notice that, as indicated above, in order to consider the same type of connec-
tors for CAN and CANcentrate, we have assumed that in each link the uplink
and the downlink are independently implemented in separated CAN cables. Thus,

136 Chapter 10. Reliability evaluation of CANcentrate

each link of the star includes an extra V+/GND pair that is unnecessary in prac-
tice, thereby biasing the results in favor of the CAN bus. In other words, this
is a pessimistic assumption concerning the cabling of CANcentrate since the up-
link/downlink pair could be implemented in a single CAN cable that would include
the two differential-wire pairs, but only one GND/V+ pair.

Concerning the terminations, we consider the typical approach of using special
connectors that already have the terminations inside and attach them at both ends
of the bus or of each uplink/downlink.

Thirdly, we need to take into account the way in which the hub is built and its
features that are to be modelled. For the former aspect we decided to follow the
basic characteristics of our first CANcentrate prototype hub (see Chapter 9), which
consists of a core that implements the wired-AND functionality and fault-treatment
capabilities, i.e. the Coupler and the Fault-Treatment modules, and an interface.
We assume that the core is implemented in a dedicated IC and that the interface
is basically composed of a set of COTS transceivers. For the latter aspect, we
consider all the hub functionalities except the CANcentrate’s reintegration policy
(see Section 6.7) because we only take into account permanent faults.

10.4.2 System components and entities

In order to model the reliability of a system relying on CAN or on CANcentrate it
is also necessary to decide what are its constituent components. This step is quite
important since to guarantee a fair comparison between CAN and CANcentrate,
it is necessary to identify what are the extra components introduced by CANcen-
trate. This is because, as already explained, although CANcentrate provides more
error-containment mechanisms than CAN, it also includes more hardware, thereby
increasing the probability that faults occur.

However, it is impossible in practice to model the dependability-related proper-
ties of each individual component. Instead, there must be a compromise between
the level of abstraction a system is modelled with and how close to the reality the
model is. In this sense, we gathered the components of the system into different
assemblies or entities.

The first entity is the Node Core, which includes an oscillator; a microprocessor;
a 32Kb SRAM and a 32Kb EEPROM; the corresponding integrated circuit (IC)
sockets, and a piece of a printed circuit board (PCB), whose amount of connections
depends on the number of components attached to it. This piece of PCB represents
the area of the node’s PCB the Node Core occupies.

Besides the Node Core we consider an entity called Controller, which is com-

10.4 Modelling assumptions 137

posed of a CAN controller, its socket and the corresponding area of the node’s
PCB.

Similarly, we consider two entities, called Node IO and Hub IO, which include
the components needed to interface a node and a hub port, respectively, with the
medium. In fact, these two entities include the same components: one CAN
transceiver and its corresponding socket and PCB area. However, we differen-
tiate between these two entities in order to make the model more flexible. For
instance, one could decide to use components with a different quality in the node
than in the hub and, therefore, these two entities could have different dependability
properties, e.g. different failure rates.

Regarding the medium, we consider the Attachment and the Termination enti-
ties. The first one includes a CAN cable and a pair of straight connectors. In
CANcentrate, it represents the uplink or the downlink so that two of these enti-
ties are necessary to connect a node to the hub. In the CAN bus, an Attachment
constitutes a bus section that connects two adjacent nodes. The other entity, the
Termination, is merely constituted by a resistor. A pair of Terminations is used in
each uplink/downlink, as well as in the bus line to prevent signal reflections.

Finally, we also consider an entity that represents the hub core. As explained in
Section 9.2, the hub core includes the Couple and the Fault-Treatment modules. We
call this entity Hub Core as well, and it comprises a dedicated IC that implements
these modules, its socket, an oscillator and the necessary PCB area.

10.4.3 Basic statistical fault properties

A capital aspect that needs to be considered when modelling the dependability of
a systems is the statistical properties of faults.

We consider that all faults are permanent and that component failures are in-
dependent. The hypothesis that faults are independent is typically made in the
context of dependability evaluation because it simplifies the way in which models
are mathematically solved. However, this independence should be verified if faults
are suspected of being correlated [TMGT93]. In the case of a star topology, its
resilience to spatial-proximity and common-mode failures supports the hypothesis
that faults are independent in CANcentrate. Conversely, since a bus topology does
not exhibit this advantage, to assume that faults are independent is maybe opti-
mistic for the CAN bus. This means, that results may be biased in favor of the
CAN bus, which is desirable in the analysis herein presented.

As concerns the characterization of the components reliability, notice that we are
interested in evaluating the reliability of the system during its steady-state opera-

138 Chapter 10. Reliability evaluation of CANcentrate

tion period, which implies that its components have left behind their infant mor-
tality period and still have not reached their wearout period. See Section 2.2 for
an explanation of the phases of a hardware component’s life. Based on data col-
lected during many years, the exponential distribution is commonly assumed to be
the most appropriate for modelling the Time To Failure distribution of components
during the steady-state operational period [KNM90] [Sho02]. Moreover, such a
distribution simplifies the way in which the models are mathematically treated to
obtain a numerical solution.

Therefore, in order to characterize the reliability of each component during the
steady-state operation period we model its Time To Failure distribution, F(t), as an
exponential distribution with mean 1/λ, where λ is the constant failure rate of the
component expressed in number of failures per hour.

F (t) = 1 − e−λt (t ≥ 0 λ > 0)

Notice that the above expression corresponds to a Non-Defective Time To Fail-
ure distribution [MT95]. In this way, if the failure time is X , then the probability
with which the component fails at or before time t, F(t) = Probability(X ≤ t), is 0
when t = 0, 1 − e−λt when 0 < t < ∞, and 1 when t = ∞.

In order to obtain the failure rates of the components we use a software of predic-
tion of failure rates, called Relex [Cor06], taking into account the MIL-HDBK-217
model [DOD95] and the Tellcordia Method I Case I calculation method [Cor06].

The MIL-HDBK-217 is the widest accepted model for calculating failure rates,
even though it is sometimes considered as pessimistic. The Tellcordia methodology
is widely used by commercial organizations. In particular, the Tellcordia Method
I Case I is used when not all specific data regarding components are available,
which is our case. More specifically, this method specifies that the failure rate of a
given subsystem (an entity in our case) is obtained by adding the failure rates of its
constituent components.

For all components we assume non optimistic technological characteristics, e.g.
commercial quality level, CMOS technology, etc. For calculating the failure rate
of the IC that constitutes the Hub Core, it was also necessary to specify its number
of logic gates, which depends on its number of ports. For this purpose we did not
make any assumption, but we used real values obtained when synthesizing it in an
FPGA (see Section 9.5).

Finally, some characteristics related to the environment where the system under
evaluation is supposed to operate are also needed to predict the failure rate of the
components. On the one hand, the Tellcordia Method I Case I assumes 40 degrees

10.4 Modelling assumptions 139

Celsius as the operating temperature, and 50 percent rated stress. On the other
hand, notice again that, as indicated in Section 10.1, we use as a reference the
dependability requirements of in-vehicle communications. Therefore, in addition
to the Tellcordia environmental parameters, we decided to use the Ground Mobile
(GM) operating environments provided by the MIL-HDBK-217, which is better
suited for those systems.

10.4.4 Failure mode assumptions

Besides predicting the failure rate of components, it is necessary to take into ac-
count the possible failure modes they can exhibit, as well as the proportions of
these modes. The concept of failure mode was introduced in Section 2.2 as the
effect of a fault on the service delivered by a system or a subsystem. For the partic-
ular case of this chapter, we consider that the failure mode of a given component is
the way in which a fault affecting that component manifests from the channel point
of view.

In principle, one could consider that faulty components can only lead to faults
included in the fault model the system is able to deal with. In our case, this would
mean that a component failure can only provoke a stuck-at-recessive, a stuck-at-
dominant, a bit-flipping or a network partition failure (see Section 5.2 for more
details about the fault model of CANcentrate).

However, note that, in a real system, components can actually fail in manners that
are not included in a given fault model. As explained in Section 2.2, this fact can be
formalized by means of the concept of failure mode assumption coverage [Pow92],
defined as the probability that a component failure mode assumption proves to be
true in practice. In order to take this coverage into account, we consider that a
component can also exhibit a new type of failure we call out-of-fault-model (ofm)
failure mode. This mode gathers all faults that are beyond our fault model and that,
thus, can be treated by neither a CAN controller nor a hub.

More specifically, we consider that ofm faults are those that lead to the transmis-
sion of frames that are syntactically correct, e.g. that do not violate the CAN frame
format, but that are incorrect from a semantic point of view. An example could be
a fault that changes the data stored in the transmission buffer of a CAN controller
before this data is encapsulated and sent within a CAN frame. In this case, al-
though the frame is syntactically correct, it carries semantically incorrect data that
can lead nodes to function improperly and provoke a generalized failure. Another
example of an ofm fault could be a CAN controller that fails in a babbling-idiot
manner by continuously sending a message stored in its transmission buffer. The

140 Chapter 10. Reliability evaluation of CANcentrate

only semantic faults we do not consider as being out of our fault model are net-
work partition faults, since a simplex star topology inherently prevents them from
happening.

Note that we do not consider as ofm faults those that cannot be isolated by means
of mechanisms that act at the logical level, e.g. by means of mechanisms similar
to the ones included in a CAN controller or in a hub, which isolate an erroneous
bit-stream by disconnect the CAN controller itself or by disabling a hub port. This
means that faults such as electrical problems or instabilities, e.g. a short circuit of
the GND wire to the V+ wire of a CAN cable that causes a fire that propagates
along the cabling installation, are out of the scope of this dissertation. We believe
that to rule out these type of faults is adequate for several reasons. First, to our best
knowledge, reliability analyses of digital systems do not take into account these
faults. Second, these faults are typically treated by means of types of mechanisms
other than those we address in this work, e.g. by means of fuses, circuit breakers,
cooling devices or fireproof cable coatings. Moreover, these failure modes are not
only specific to a digital control system, but they are also related to other systems
with which the control system interacts, e.g. to the lighting subsystem of a car.

Regarding the proportions with which components fail in specific manners, it
is worth noting that there is not a real consensus on that issue. Different analysis
centers, e.g. the Reliability Analysis Center (RAC), make their own analysis on
failure data, thereby coming to different conclusions. This can be seen in [Mee95],
which even recommends the reader to interpret the available data concerning failure
modes for its own application.

Because of these limitations, we decided to make our own interpretations, but
trying to find reasonable values. On the one hand, we consider that, in principle,
components exhibit a 0% of ofm failures. Notice that, otherwise, an ofm greater
than 0% would prevent us from analyzing the reliability achievable by the CAN
bus and our stars, since their contribution to the reliability would be masked by
the effect of faults they do not address. In fact, in order to fully benefit from our
stars, the system should include mechanisms that deal with ofm faults, since it is
impossible to increase the system reliability by improving only one of its parts. In
this sense, an ofm proportion of 0% is equivalent to assuming that these mecha-
nisms are 100% effective. Also notice that some of these mechanisms could be
included in our stars. However, our hubs do not present them, since their design
is application-independent and the knowledge necessary to address most of these
faults, e.g. babbling idiot ones, is strongly related to the application. Anyway, as
will be seen in Section 10.9.7, we carry out sensitivity analyses with respect to
the ofm proportion of specific components in order to analyze the importance of
including the corresponding additional mechanisms.

10.4 Modelling assumptions 141

On the other hand, we consider that the failure modes that are included in our
fault model are equiprobable. However, when possible, we assume higher propor-
tions for failure modes that favor the case of the CAN bus, as explained next. First,
we suppose that any fault happening in a component placed within the Hub Core
causes the failure of all the system. This is a pessimistic assumption for CANcen-
trate since the Hub Core could suffer from a more benign fault, e.g. it could stop
performing fault confinement or it could unfairly isolate a correct port.

Second, the cables and connectors that constitute an Attachment may fail in
many different ways [Mee95]. For instance, cables may be shorted, broken, opened,
fractured, arcing, worn, etc., whereas connectors may suffer from high resistance,
intermittent and/or poor connections, open circuits, short circuits, mechanical fail-
ure of solder joints, etc. We consider that these failure modes lead an Attachment to
exhibit, with the same probability, either a stuck-at-recessive, a stuck-at-dominant,
a bit-flipping fault or just a physical disruption of the medium. The last one of these
faults has different consequences depending on whether it happens in a star link or
in a bus section. In CANcentrate, an uplink/downlink that suffers from a disrup-
tion is considered to actually generate bit-flipping errors, because such a failure can
cause signal reflections at the open extremities of the medium. This is somehow
a pessimistic assumption for CANcentrate, because a physical disruption may also
lead the uplink/downlink to be stuck-at (as stated in Section 6.2), which can be
treated by the hub in an easier way. Note that the specific consequence of a physi-
cal disruption is internally translated by the model. In the case of CANcentrate, it
is transformed into a bit-flipping proportion (see Section 10.7.2).

As concerns the consequences of a physical disruption in a bus section, we also
assume that it generates bit-flipping errors, since such a disruption will split the
bus into two parts in such a way that each one of them will have an open extremity
that will provoke signal reflections. Note that we do not model the case in which a
physical disruption provokes a network partition instead of signal reflections. This
is because we consider that CAN (and CANcentrate) are implemented in accor-
dance with the ISO 11898-2 High-speed CAN standard, which does not compel
to tolerate faults affecting any of two bus line terminations (see Section 10.4.1).
Moreover, to assume that a physical disruption of a bus section always manifests
as bit-flipping instead of considering that it could also manifest as stuck-at is not
pessimistic for CAN. This is because, anyway, all nodes would be also prevented
from communicating if the disruption leads the medium (and then the entire bus)
to be stuck-at.

Similarly to the case of the Attachment, we assume that the failure of the resistor
that implements a Termination leads the medium to be stuck-at-recessive, stuck-at-
dominant, bit-flipping, or it can just imply that the medium losses the termination.

142 Chapter 10. Reliability evaluation of CANcentrate

We consider all these modes to be equiprobable too. However, notice that the
loss of a termination leaves one extremity of the bus and of the uplink / downlink
opened, indirectly provoking again a bit-flipping fault. Therefore, our models in-
trinsically assume that a termination loss provokes a bit-flipping fault. For instance,
see Section 10.7.2 for more details about how this assumption is modelled.

Third, we consider that an IO entity, i.e. a Node IO and a Hub IO, fails pro-
voking, with the same probability, a stuck-at-recessive, a stuck-at-dominant and a
bit-flipping fault. We believe that this assumption is reasonable, given the fact that
an IO entity is directly connected to the medium and, thus, it can directly deliver
errors to the channel without any restriction.

In contrast, it would not be reasonable to assume that stuck-at and bit-flipping
faults are equiprobable when a Node Core or a Controller fail. The Node Core
has not direct connection with the CAN transceiver, but uses the CAN controller
as an interface. Thus, we believe that the Node Core cannot manipulate the CAN
controller in a way that leads that controller to permanently deliver dominant or
bit-flipping values. Such assumption favors the case of CAN when compared with
CANcentrate. This is because if a Node Core never generates errors that can prop-
agate causing a severe failure, the benefits of the error-containment capabilities of
the hub become less relevant.

As concerns the Controller entity, to come to a conclusion about the proportions
with which it exhibits different failure modes poses additional difficulties. This is
because it includes both, components that can deliver errors to the channel with-
out any restriction and components whose errors cannot always reach the channel.
More specifically, the socket and the PCB area of the Controller entity can generate
erroneous stuck-at-dominant or bit-flipping streams that reach the channel through
the CAN transceiver. In contrast, a fault affecting the CAN controller will not al-
ways generate these errors. Notice that a CAN controller has a complex internal
structure that includes some internal modules or parts whose failure cannot gen-
erate errors that reach the channel, but that can only lead the CAN controller to
remain silent, i.e. to permanently deliver a stuck-at-recessive bit stream.

To overcome this problem we proposed a simple but reasonable approach. First,
we rule out the influence that the failure modes of the socket and the PCB area have
on the failure mode proportions of the Controller entity. We can do this simplifi-
cation because the way in which a faulty CAN controller manifests has the major
influence on the failure mode proportions of the Controller entity, given its much
higher complexity and failure rate. More specifically, in order to rule out the failure
modes of the socket and the PCB area we consider their failure rates as part of the
failure rate of the CAN controller itself. Thus, from now on we will refer to the

10.4 Modelling assumptions 143

CAN controller and the Controller entity without distinction.

For calculating the failure mode proportions of the CAN controller, we divide
it into its main parts. We assume all these parts to have approximately the same
complexity and, thus, the same influence on the failure rate of the CAN controller.
For the sake of simplicity, we also suppose that all parts fail independently from
each other.

For each part, we analyze whether its failure can only lead the CAN controller to
be stuck-at-recessive or, in contrast, it can also lead it to deliver a stuck-at-dominant
or a bit-flipping stream. In the later case, we consider that the part failure provokes
these three failure modes with the same probability.

Once we have analyzed all parts, we calculate the CAN controller failure mode
proportions. For that, we weight the failure mode proportions of every part taking
into account its influence on the failure rate of the CAN controller. As said above,
all parts have the same influence on that rate. Therefore, the proportion with which
the CAN controller exhibits a specific failure mode is calculated dividing the num-
ber of parts that can lead to that failure by the total number of parts.

Interface Management Logic
(IML)

Message Buffers
(BUF)

Acceptance Filter
(ACF)

Error Management
Logic (EML)

Bit Stream
Processor (BSP)

Bit Timing Logic
(IML)

Oscillator
Logic

Connection System
(COS)

Input/output
Pins

Input/output
Pins

Internal
buses

Clock Paths

Figure 10.2: Basic internal architecture of the Philips SJA1000 CAN controller

More specifically, we carried out this analysis for the Philips SJA1000 CAN con-
troller [SJA00], whose architectural basics are shown in Figure 10.2. We consider it
to be constituted by the following parts: Interface Management Logic (IML); Mes-
sage Buffers (BUF); Acceptance Filter (ACF); Error Management Logic (EML);

144 Chapter 10. Reliability evaluation of CANcentrate

Bit Stream Processor (BSP); Bit Timing Logic (BTL); Clock System (CLK); and
the Connection System (COS), which includes the internal bus and the input/ouput
pin connections.

The IML is the interface between the microcontroller and the CAN controller: it
interprets commands from the CPU and provides interrupts and status information.
The BUF includes the transmission and the reception buffers. The ACF includes
the logic needed to implement the acceptance reception filter functionality of a
typical CAN controller: the identifier of each frame received from the network is
compared with certain filter values to decide whether or not to accommodate it on
the reception buffer. The EML takes into account the number of errors detected
so far and decides when the CAN controller is in the error-active, error-passive or
bus-off states (see Section 3.3.5). The BSP controls the data stream flow between
the transmission/reception buffer and the channel. It also implements the arbitra-
tion, stuff rule, error-detection and error-signalling mechanisms. The BTL is the
responsible for implementing the CAN bit synchronization mechanism. The CLK
includes the oscillator logic and the clock paths that propagate the clock signals
throughout the device. Finally, the COS includes the internal buses that the differ-
ent submodules use to communicate with each other, as well as the pin connections
of the device.

We consider that a fault in the IML, BUF, ACF, and EML can only lead the
CAN controller to deliver a stuck-at-recessive stream1. Similarly to what we said
before for the case of the Node Core, we believe that it is extremely unlikely that
the IML sends commands, to the rest of the device parts, that lead the CAN con-
troller to constantly send a stuck-at-dominant or a bit-flipping stream. Similarly,
the BUF cannot send incorrect commands to other modules. At most, it can fail
by corrupting any frame stored in the transmission buffer. But this cannot even
provoke the transmission of stuck-at-dominant or bit-flipping bits. The content of
this buffer is not directly delivered to the channel, but the BSP uses this content
as a piece of data it encapsulates within a frame. Regarding the ACF, it has not
influence on the bit values the CAN controller outputs. Finally, if the EML fails,
the CAN controller can incorrectly be in the error-active, error-passive or in the
bus-off states. If the CAN controller incorrectly enters in any of the two latest
states, we consider that the controller is stuck-at-recessive. This is because, as
we explained in Section 8.5, if the CAN controller is error-passive, the microcon-
troller should disconnect it to prevent inconsistencies to occur. Likewise, a bus-off
CAN controller disconnects itself. In contrast, a CAN controller that does remain
error-active, when it should have disconnected itself to contain a fault that affects

1Note that a CAN controller that is disconnected (by the microcontroller or by itself) is considered
as stuck-at-recessive, since it does not deliver dominant bits through its transmission pin

10.4 Modelling assumptions 145

its output, cannot be exclusively considered as stuck-at-recessive. It can also be
stuck-at-dominant or even bit-flipping depending on the values of the incorrect bits
it delivers. However, notice that such a situation can only happen if, at least, two
faults affect the CAN controller: one that affects its EML and another fault that
compels it to output stuck-at-dominant or bit-flipping bits. Since the event of two
faults affecting a CAN controller is very unlikely, we rule out this possibility and,
thus, we definitively consider that a fault affecting the EML can only manifest as a
stuck-at-recessive.

But not all faults affecting a CAN controller manifest as stuck-at-recessive. We
consider that a fault affecting either the BSP, BTL, CLK or COS can lead the CAN
controller to be stuck-at-recessive, stuck-at-dominant or bit-flipping with the same
probability. The BSP and BTL can stop operating when the CAN controller is
issuing a dominant bit. If this occurs, the controller will permanently output a
dominant value. Similarly, the BPS and BTL can fail by performing random tran-
sitions, which will lead the controller to send random bit values as well. Regarding
the CLK subsystem, it can also stop or even perform random transitions, thereby
leading the controller to send a stuck-at-dominant or a bit-flipping stream. Finally,
regarding the COS, a fault in an internal bus can lead the BSP to transmit erro-
neous data or the BTL to behave incorrectly; a faulty transmission pin can output
any value; and a faulty reception pin will lead the CAN controller to misinterpret
the logical value of the channel, thereby compelling the controller to transmit syn-
tactically incorrect data.

As explained before, the proportion with which a CAN controller exhibits a
given failure mode is obtained dividing the number of parts that can lead to that
failure by the total number of parts. Thus, based on the above discussion, the pro-
portion with which it is stuck-at-recessive is:

Stuck-at-recessive proportion =
4

8
+

4

8
·
1

3
=

2

3
' 66.6%

where the 1/3 is the proportion with which the BSP, BTL, CLK and COS fail
provoking a stuck-at-recessive. This fraction is also the proportion with which
these parts provoke a stuck-at-dominant and a bit-flipping, thus:

Stuck-at-dominant proportion = Bit-flipping proportion =
4

8
·
1

3
=

1

6
' 16.7%

These proportions are reflected in the parameters ctrlStrProp, ctrlStdProp and
ctrlFlipProp of Table 10.4.

146 Chapter 10. Reliability evaluation of CANcentrate

10.4.5 Coverage assumptions

Until this point we have explained our models’ assumptions that are related to im-
plementation issues, constituent components and entities, statistical properties of
faults, and the proportion with which the different entities of the system exhibit
different failure modes. However, as said in Section 2.3, there is a crucial aspect
that must be considered when evaluating a dependable system: the coverages of its
fault-tolerance mechanisms. As we already explained in Section 2.4, these cover-
ages are of capital importance, since dependability is extremely sensitive to them.
Current section is thus devoted to deciding what coverages should be taken into
account as well as what are the most reasonable values for them. Anyway, given
the expected big impact of coverages, the present chapter analyzes the sensitiv-
ity of the system reliability with respect to the major part of the coverages herein
proposed.

First of all, notice that we distinguish between the fault-tolerance mechanisms of
the system itself and the fault-tolerance mechanisms of the communication subsys-
tem (CAN or CANcentrate) it relies on. The first set of fault-tolerance mechanisms
refer to the ability of the system to accept or tolerate the failure or the disconnec-
tion of a given number of nodes. Since we do not make any proposal in order to
improve those system’s mechanisms, we reflect their effectiveness by means of a
single coverage we call sysFauTolCov (see Table 10.4). Broadly speaking, sysFau-
TolCov can be considered as a numerical value that reflects the probability with
which the system accepts or tolerates the failure or the disconnection of a node,
provided that the system is able to accept or tolerate such a situation.

In order to better understand the meaning of this coverage, it is necessary to
recall that we mainly differentiate between two types of systems: systems that do
not accept or tolerate the failure or disconnection of any node, and systems that are
able to accept or tolerate the failure or the disconnection of up to k of N nodes.
We call them non-fault-tolerant/accepting (NFT/A) and fault-tolerant/accepting
(FT/A) systems respectively (see Section 10.2). Obviously, sysFauTolCov is not
connected with an NFT/A system, since such a kind of system has no mechanism
to tolerate the failure or disconnection of any node. Therefore, as will be explained
later in Sections 10.7.5 and 10.8.4, we built our models in such a way that the
NFT/AR, i.e. the metric we use to measure the reliability of an NFT/A system,
does not depend on this parameter.

Conversely, sysFauTolCov is strongly related to an FT/A system. Imagine an
FT/A system that is able to accept or tolerate the failure or disconnection of up to k
of N nodes. Then, sysFauTolCov represents the probability with which this FT/A
system accepts or tolerates the failure or disconnection of a new node, provided

10.4 Modelling assumptions 147

that the number of nodes that have failed or that have become disconnected so far
(including the new one) does not exceed the value of k.

As can be deduced from the above definition, sysFauTolCov does influence the
value of the metric we use to measure the reliability of FT/A systems, i.e. the
FT/ARk. In order to decide what should be the default value of sysFauTolCov,
it is necessary to further differentiate between FT/A systems that merely accept
situations in which up to k nodes are faulty or disconnected, and FT/A systems
that tolerate these situations. Examples of these two types of FT/A systems were
already specified in Section 10.2. Notice that the value of sysFauTolCov can be
considered of the 100% for the former type of FT/A systems; since they intrinsi-
cally accept situations in which not all nodes are operative and can communicate.
Conversely, sysFauTolCov cannot be perfect for an FT/A system of the second type,
since to build a fault-tolerance mechanism that yields such a coverage is impossible
in practice.

In order to choose the most general option for measuring the FT/ARk, we de-
cided that the default value of sysFauTolCov is 100%. On the one hand, as just
said, it is the appropriate value for the first type of FT/A systems, i.e. for FT/A
systems that intrinsically accept the failure or disconnection of a given number of
nodes. On the other hand, the coverage of the fault-tolerance mechanisms of an
important number of the second type of FT/A systems is expected to be very close
to this default value. This is the case of highly-reliable systems that include redun-
dancy to tolerate faults (and for which it is very interesting to assess the benefits
a star topology can yield). For instance, the coverage of the fault-tolerance mech-
anisms of any redundant subsystem that forms part of the Self-Repairing Flight
Control System (SRFCS) of a military aircraft typically ranges from 99%, 99.99%
and 99.9992% up to virtually 100%, depending on the number of replicas the re-
dundant subsystem is provided with [Wu02] [Wu04]. Moreover, notice again that
we do not propose any fault-tolerance mechanism at the level of the system that
relies on CAN or CANcentrate. Thus, to find specific values for the fault-tolerance
coverages of different FT/A systems is beyond the scope of the analysis herein
presented. Anyway, as will be seen later in this chapter, we perform a sensitivity
analysis of the FT/ARk with respect to the value of sysFauTolCov, in order to as-
sess what is the minimum coverage for which the use of a star yields benefits in
terms of this metric.

Regarding the coverage of the fault-tolerance mechanisms of the communication
subsystem, notice that as indicated in Section 2.3, each author defines her own spe-
cific coverages, depending on the subsystem itself and on the level of abstraction
from which it is addressed. In our case, we are not interested in modelling the
details of the error-processing and fault-treatment mechanisms of a CAN bus and a

148 Chapter 10. Reliability evaluation of CANcentrate

CANcentrate star. Thus, we do not consider a coverage for each one of the phases
carried out to process errors and treat faults in those networks. This would be nec-
essary in case we were interested in analyzing the efficacy of their fault-tolerance
mechanisms with respect to decisions concerning the design of those mechanisms
themselves. In contrast, we are interested in how the effectiveness of those mecha-
nisms affect the reliability of a system that relies on them. More specifically, since
CANcentrate is devoted to improving reliability by means of appropriate error con-
tainment, in the context of this chapter, we focus on the so called error-containment
coverage. We define this coverage as the probability of detecting and isolating a
fault included in our fault model, provided that this fault occurs. Do not confuse
this coverage with the failure mode assumption coverage, which we considered
when talking about the failure mode assumptions.

In the CAN bus, the only available error-containment mechanisms are those
implemented at each node; whereas in CANcentrate the hub provides additional
mechanisms to contain errors at the hub ports. Next, we explain what are those
mechanisms, as well as what are the default values we consider as reasonable for
them.

The error-containment capabilities of a CAN node rely on the fault-treatment
mechanisms of its CAN controller. As explained in Chapter 3, the CAN controller
can detect errors and stop transmitting when diagnosing itself as the responsible
for a permanent fault, thereby forcing local faults to manifest as the transmission
of a stuck-at-recessive stream. However, we cannot assume that a CAN controller
provides a 100% error-containment coverage because it is a practical impossibility.
On the one hand, it is necessary to analyze what faults the CAN controller can
isolate to prevent the propagation of errors. On the other hand, it is necessary to
decide what is the reasonable probability with which the controller successfully
diagnoses the faults it is able to isolate.

In a CAN bus, a CAN controller can potentially isolate faults affecting its Node
IO entity (its transceiver, basically), as well as some of its internal parts. In par-
ticular, a CAN controller can isolate a fault affecting its Node IO entity only if the
fault does not compel the transceiver to deliver incorrect bit values to the medium.
Otherwise, the CAN controller can do nothing to prevent the propagation of errors.
In order to take into account this fact, we define an error-containment coverage
called nodeIOInFauProp, which specifies the percentage of Node IO’s faults that
are delivered to the controller or to the medium. More specifically, we suppose
that nodeIOInFauProp% of Node IO’s faults deliver errors to the CAN controller,
whereas 1 − nodeIOInFauProp of these faults transmit errors to the medium (see
Figure 10.3). Since we do not know what is the actual value of nodeIOInFauProp,
we assume a neutral default value of 50% for it (see Table 10.4).

10.4 Modelling assumptions 149

Bus

connector
CAN cable Node’s PCB track that connects

the transceiver to the connectors
in a daisy chain configuration.

Node core

CAN controller

Node IO

Tx Rx

The CAN controller can
potentially isolate
nodeIOInFauProp (50%) of
Node IO faults, which are
those that deliver errors to
its reception pin.

(1 – nodeIOInFauProp) (50%)
of Node IO faults deliver errors
to the bus. The Controller can
do nothing to contain these
errors.

�

e

e

The CAN controller
successfully diagnoses faults
with the following coverages:

stuck-at-recessive = 100%

stuck-at-dominant = 100%

bit-flipping = ctrlFlipCov (95%)

The CAN controller can
potentially isolate
ctrlItselfCov (50%) of faults
that affect its internal
modules

�

Figure 10.3: Error-containment capabilities of a CAN controller in a CAN bus

As said above, the CAN controller can also potentially isolate faults that affect its
internal parts. This is useful when the fault leads it to deliver a stuck-at-dominant
or a bit-flipping stream. Otherwise, if the fault compels the controller to deliver a
stuck-at-recessive stream, there is no need to isolate it. Anyway, notice that what
the CAN controller does in order to prevent the propagation of its own errors is
to stop operating when it diagnoses itself as faulty. This mechanism limits the ca-
pacity of the CAN controller for isolating an internal fault. A clear example could
be a case in which the only way to isolate an internal fault consists in stoping the
faulty internal part, but this part does not stop operating when it is required to do
so. Moreover, the fault isolation mechanism of the CAN controller can be ineffec-
tive even if an internal fault can be theoretically isolated by stopping the operation
of other non-faulty internal parts. For instance, if a fault affects the clock signal or
the internal buses of the controller, the non-faulty internal parts can become desyn-
chronized or they cannot intercommunicate properly and, hence, they may ignore
or misinterpret the commands sent to them for stopping. Finally, notice that when
a fault leads the clock signal to stop, the CAN controller cannot perform any ac-
tion. If such a fault leaves the controller’s transmission pin stuck-at-dominant, the
controller becomes irretrievably stuck-at-dominant. This last limitation was also
pointed out in [NSSLW05]. In order to model the just mentioned drawbacks of the
fault isolation mechanism of the CAN controller, we suppose that a controller that

150 Chapter 10. Reliability evaluation of CANcentrate

diagnoses itself as faulty can successfully isolate an internal fault with a coverage
of ctrlItselfIsoCov. Again, since we actually do not know what is the real value of
this probability, we assume a neutral default value of 50% for it (see Table 10.4).

In CANcentrate, the fault-isolation capabilities of the CAN controller are more
or less the same as in the CAN bus. Firstly, the CAN controller is able to potentially
isolate faults affecting its internal parts, but showing the same limitations explained
just before.

Secondly, as depicted in Figure 10.4, the CAN controller can potentially isolate
faults affecting any of the components that connect its node to the hub port corre-
sponding to the downlink. More specifically, the CAN controller can isolate faults
affecting the Node IO or the Hub IO entities connected to its node’s downlink; the
Attachment entity that represents the downlink itself; and the Terminations of the
downlink. Notice that all errors generated by any of these entities are observed
only by the CAN controller and, thus, the hub becomes aware of these error only if
the CAN controller transmits an erroneous contribution as a consequence of them.
Therefore, the CAN controller can prevent the propagation of these errors by sim-
ply stop operating. This fact leaded us to assume that when the CAN controller
diagnoses a fault in any of the referred entities, it is able to isolate it with no re-
striction.

Finally, Figure 10.4 also shows what are our assumptions concerning the ability
of the CAN controller to isolate faults affecting the components that connect the
node to the hub port corresponding to the uplink. Specifically, we consider that the
CAN controller can do nothing to isolate those faults, since it has no mechanism
to prevent the propagation of errors they generate. This is slightly pessimistic for
CANcentrate, because we could suppose that, as in the case of the CAN bus, a fault
in the Node IO connected to the uplink does not deliver errors to the medium with
a probability of nodeIOInFauProp.

Up to this point, we have explained the capacity of the CAN controller to isolate
faults. However, a stated before, in order to characterize the error-containment ca-
pabilities of the CAN controller, it is also necessary to assess what is the probability
with which it successfully diagnoses the faults it can isolate. The effectiveness of
fault-diagnosis mechanisms of the CAN controller depend on the type of fault. On
the one hand, we suppose that the CAN controller successfully diagnoses stuck-at
faults with a probability of 100%. This is because such faults will lead the CAN
controller to detect an error in almost every bit transmission and, thus, it can be
expected that the CAN controller quickly reaches the error-passive or the bus-off
state. For instance, consider a fault in a transceiver that leads the corresponding
controller to receive a permanent stuck-at-recessive stream. The CAN controller

10.4 Modelling assumptions 151

downlink

connectors

CAN cables

terminations

uplink

 Node core

CAN Controller

Tx Rx

�
 e

The CAN
controller cannot
isolate faults
that affect the
components that
connect its node
to the hub port
corresponding
to the uplink.

Node IO

Hub IO

The CAN controller
successfully diagnoses faults
with the following coverages:

stuck-at-recessive = 100%

stuck-at-dominant = 100%

bit-flipping = ctrlFlipCov (95%)

The CAN controller
can potentially
isolate all faults that
affect the
components that
connect its node to
the hub port
corresponding to
the downlink.

�

Node IO

Hub IO

e

The CAN controller can
potentially isolate
ctrlItselfCov (50%) of faults
that affect its internal
modules

�

Figure 10.4: Error-containment capabilities of a CAN controller in CANcentrate

will detect a bit error as soon as it tries to send a dominant bit value. Then, the
CAN controller will start signalling an active error flag, but it will detect an ad-
ditional bit error in every bit transmission. As a consequence, its error counter
will quickly increase compelling the controller to reach the error-passive or the
bus-off state. On the other hand, we do not assume a perfect diagnosis coverage
for bit-flipping faults, since such a kind of fault can lead to a huge amount of er-
ror scenarios. Instead, we suppose that the CAN controller diagnoses bit-flipping
faults with a coverage of ctrlFlipCov. In particular, we consider a default value
of 95% for this coverage (see Table 10.4). As indicated above, this is a coverage
default value commonly assumed in the literature related to the dependability eval-
uation. Notice that Figures 10.3 and 10.4 reflect our assumptions concerning the
effectiveness with which the CAN controller diagnoses different types of faults.
For instance, these figures show that the coverage with which the CAN controller
successfully diagnoses bit-flipping faults is of ctrlFlipCov%.

So far, we have analyzed the effectiveness of the error-containment mechanisms

152 Chapter 10. Reliability evaluation of CANcentrate

implemented at the CAN nodes. Next, we do the same for the error-containment
mechanisms the hub is provided with. These mechanisms are thoroughly described
in Chapters 6, 7 and 8.

Given its privileged location within the network, the hub of CANcentrate is able
to detect errors generated by any faulty component located outside of the hub core.
Moreover, since the mechanism it uses to isolate faults, i.e. the OR gates, is in-
dependent from any of those components, the hub can always isolate any fault it
successfully diagnoses.

However, the hub cannot diagnose faults with a perfect coverage. Again, the
effectiveness of its error-detection and fault-diagnosis capabilities depends on the
way in which the fault manifests and, thus, on the difficulty off its detection. Firstly,
we consider that the hub can always diagnose suck-at-recessive faults since, even
in the case that the hub cannot detect them, they have no negative impact in the
communication among the other nodes.

Secondly, notice that the mechanism the hub uses to detect and diagnose stuck-
at-dominant faults is trivial: a counter that monitors the number of consecutive
dominant bits and a specific threshold. Hence, we consider that stuck-at-dominant
faults are diagnosed with a perfect coverage. This is a realistic assumption because
if such a failure occurs and the Hub Core is not faulty, then the related counter will
eventually reach its threshold.

Finally, as said above, a bit-flipping fault can lead to a huge amount of scenar-
ios involving errors. Therefore, since it is not reasonable to assume that the hub
provides a perfect fault-diagnosis coverage for it, we consider that the hub can di-
agnose bit-flipping faults with a limited effectiveness of flipLnkCov. Notice that
Table 10.6 describes the meaning of this parameter as being the coverage with
which the hub isolates a bit-flipping fault at the uplink hub ports. This is because
what the hub actually does to isolate a given fault in a branch is to disable the
corresponding faulty contribution it receives through the uplink. In particular, Ta-
ble 10.6 indicates that the default value we assumed for flipLnkCov is 95%. We
believe that this is not an optimistic assumption for CANcentrate, given that the
hub always correctly detected and isolated all bit-flipping faults we have injected
in our CANcentrate prototype so far. Moreover, this coverage can even be con-
sidered pessimistic for CANcentrate. This is because we supposed that a CAN
controller is able to diagnose bit-flipping faults with the same effectiveness as the
hub, despite the fact that the error-detection and fault-diagnosis mechanisms of the
hub are more efficient (see Section 8.3).

10.5 Modelling formalism 153

10.5 Modelling formalism

As already indicated in 10.1, we built our models using the Stochastic Activity
Network (SAN) formalism, which is an extension to stochastic Petri Nets [CFJ+91]
[TMGT93] [SoT04].

Notice that we could use other formalisms to built our models, instead of SANs.
As will be seen later on, we model the system as being in different states that repre-
sent where faults have occurred and how they have been isolated and / or tolerated.
This implies that each one of our models basically changes its state when a fault
occurs or when an error-containment or a fault-tolerance action takes place. On the
one hand, the Time To Failure of a given component is exponentially distributed,
which implies that the time that elapses until a fault occurs in the system is expo-
nentially distributed too. On the other hand, error-containment and fault-tolerance
actions are modelled to be performed instantaneously (they do not consume time in
comparison with the occurrence of faults), so that the system can also immediately
change from one state to another one. The fact that state transitions are exponen-
tially distributed or are instantaneous allows to model the system as a Continuous
Time Markov Chain (CTMC) [STP96]. Nevertheless, to model a system by means
of a CTMC poses some difficulties. On the one hand, the number of states of a
CTMC tends to explode when the complexity of the system to be modelled in-
creases. On the other hand, a CTMC provides scarce modelling primitives, so that
a CTMC model is normally not intuitive.

In contrast, Petri Nets offer more primitives than a CTMC and allow to build up a
compact model that is more easy to understand. The different Petri Net formalisms
that are available differ in the modelling facilities they provide. In this sense, SANs
is one of the most powerful Petri Nets’ formalisms [AM02]. A SAN includes to-
kens, places, activities, input gates and output gates. The number of tokens located
in each place, i.e. the marking of the places, determines the state of the modelled
system. An activity is connected to one or more source places and has one or more
cases, each one connected to one or more destination places. Each activity can be
enabled or disabled. When enabled, it fires immediately or in accordance with a
given statistical distribution to change the marking of places, thereby modelling
the system transitions through different states, e.g. the failure of a given compo-
nent. Activities that fire immediately are referred to as instantaneous activities,
whereas the others are called timed activities. An input gate defines a condition for
an activity to fire, which depends on the marking of its source places. This gate
also specifies how to change the marking of the source places when the activity
fires. Besides, an activity selects one of its cases to change the marking of specific
destination places. An output gate is connected to a given case and specifies the set

154 Chapter 10. Reliability evaluation of CANcentrate

of marking changes to be performed depending on some conditions.

The SANs formalism also provides two primitives to build a model as a hierar-
chical composition of submodels: the Join primitive, which allows interconnecting
different submodels by sharing places, and the Rep primitive, which can be used
to replicate a given submodel in order to model different instances of the same
submodel.

All the above mechanisms are used to specify the structure of the stochastic
process that models a given system behavior, i.e. they are used to build up the
structure state model of the system [STP96]. But in addition to these mechanisms,
the SANs formalism offers the possibility of specifying a reward model. A given
reward model is associated to specific states of the structure state model and it is
aimed at calculating a specific metric or attribute such as, for example, reliability,
availability, throughput, etc. Particularly, the SANs formalism offers the possibil-
ity of specifying a reward model by means of the so-called reward variables. A
reward variable is related to a specific aspect of the stochastic process. There are
basically two categories of reward variables: impulse reward variables, which are
associated to the number of times activities fire; and rate reward variables, which
are associated to specific markings.

Finally, it is important to highlight the importance of being able to assume ex-
ponentially distributed Time To Failures. As already explained in Section 10.4.3,
this is a realistic assumption that further simplifies the mathematical treatment of
the models. Specifically, such an assumption implies that the stochastic process
underlying the corresponding SANs model can be characterized by means of an
CTMC that can be analytically solved2. There are different software tools that of-
fer the possibility of modelling SANs, that automatically translate them into the
corresponding CTMC and that provide facilities to solved them [AM02]. In partic-
ular, we used the Moëbius software [SoT04] to build and analytically solve all our
SANs models.

10.6 Modelling rationale

The current section aims at providing a general view of the strategy we followed
to model the reliability of a system that relies on the CAN bus and of an equiv-
alent system that relies on CANcentrate. Specifically, this section focuses on the
level of abstraction and the basic structure of these models. However, it is impor-

2See [STP96] for a basic explanation of this procedure and [SoT04] for a more detailed specifi-
cation of the requirements needed to transform a SANs into a CTMC

10.6 Modelling rationale 155

tant to note again that we will compare the reliability of CAN and CANcentrate
with ReCANcentrate in Chapter 12. This means that, in fact, we modelled CAN,
CANcentrate and ReCANcentrate following the same strategy. Thus, some of the
modelling decisions explained here were made to be also appropriate for the case
of ReCANcentrate.

As concerns the level of abstraction, it is necessary to keep the complexity of
the model within reasonable limits, while guaranteing an accurate description of
the real system. The main abstraction we carried out consists in not modelling the
failure of single components but of groups of them called entities, as explained
in Section 10.4.2. These entities are: Node Core, Controller, Node IO, Hub IO,
Attachment, Termination and Hub Core. This abstraction allowed us to calculate
basic entities’ dependability properties, such as failure rates, failure modes and
different error-containment coverages, in a reasonably simple way. See Tables
10.4, 10.5, 10.6 and Section 10.4 for more details.

Regarding the basic structure of the models, we explored different approaches
in order to find one that can be analytically solved in a reasonable amount of
time. Specifically, we studied three different possibilities. Among these three ap-
proaches, only the third one provides a reasonable computation time for the models
of CAN, CANcentrate and ReCANcentrate and, thus, it is the strategy we finally
adopted. Anyway, in order to make it easier for the reader to understand this third
approach, next we summarize all three.

10.6.1 A dedicated SAN submodel per entity

At a first attempt, we modelled the CAN bus and CANcentrate following the
strategy presented in [BPA06], which is similar to those proposed in [MT95] and
[PdS04]. It consists in modelling each entity of the system by means of a dedicated
SAN submodel, we call entity submodel.

The basic structure of an entity submodel is depicted in Figure 10.5. It basically
has a place, called okEntity, that initially has a token that indicates that the entity is
not faulty; an activity called entityFailure, that models the failure of the entity, and
which has a case for each failure mode; and a set of places that represent how the
fault manifests (fm1, fm2, etc.).

The activity entityFailure models the Time To Failure of the entity as an expo-
nential distribution whose rate is the failure rate of that entity. When the entity
fails, the token is erased from okEntity and one of the activity’s cases is selected.
The probability with which each case is selected is the proportion with which the
entity shows the corresponding failure mode.

156 Chapter 10. Reliability evaluation of CANcentrate

Part of the entity
submodel that models the

error containment

Part of the entity submodel that
models the failure of the entity and

the way in which it manifests

nectm1

nectmM

notIso okEntity

entityFailure

.

.

.

fm1

fm2

fmN

.

.

.

.

.
.
.

nectmEvalM

nectmEval1

 Error-containment actions performed
by a CAN controller (in case there is a

CAN controller that can do that)
Entity failure

modes

Figure 10.5: Basic structure of an entity submodel

Once a case is selected, a token is written at the place that represents the failure
mode corresponding to that case (fmi) and, then, the entity submodel initiates a
sequential process that models whether or not the fault is isolated. We refer to
this process as the coverage process. As explained in Section 10.4.5, we must
consider two types of error-containment mechanisms: those implemented at the
CAN controllers and the mechanisms included in the hub of CANcentrate.

In case the fault can be isolated by means of a given CAN controller’s mecha-
nisms, the corresponding entity submodel models the part of the coverage process
related to these mechanisms. This is shown in the Figure 10.5, where a token
in a place that represents a failure mode is instantaneously transferred to a place,
nectmi, that represents a specific CAN controller’s error-containment mechanism.
When a token reaches any of these places, a dedicated nectmEval instantaneous
activity decides if the corresponding mechanism contains the errors. On the one
hand, if the errors are contained, then the token is basically deleted from the place
nectmi. In this case, the process that evaluates how the fault is isolated finishes,
since it is not necessary to further evaluate how the errors propagate, or whether
or not they can be contained by additional mechanisms. On the other hand, if the
activity nectmEvali decides that the errors are not contained, it transfers the token
from nectmi to a place that indicates this situation: notIso.

10.6 Modelling rationale 157

When the fault is not isolated, either because there is no CAN controller’s mech-
anism that can potentially do it, or because the CAN controller does not success-
fully achieve it, it is necessary to differentiate between what happens in a CAN
bus and in a CANcentrate star. If the first case, the communication subsystem
(and the whole system) can be considered as faulty, since a CAN bus does not in-
clude any error-containment mechanism apart from those implemented at the CAN
controllers. In contrast, in the second case (in the case of CANcentrate), it is nec-
essary to further evaluate if the hub can contain the errors. For this purpose, the
CANcentrate model includes an additional SAN submodel that models the error-
containment capabilities of the hub. We refer to this submodel as the coverage
submodel. All the entity submodels of CANcentrate share the place notIso with
the coverage submodel, so that this submodel takes over when any of the entity
submodels sets a token in it.

Besides these submodels, both the CAN bus model and the CANcentrate model
have what we call an evaluator submodel. It takes into account the faults that
have happened, as well as whether or not each one of them has been successfully
isolated, to elucidate what is the number of nodes that can still communicate among
them. Then, it decides if the system is faulty. This decision will depend on what
is the minimum number of nodes that must communicate among them to consider
that the system is not faulty. This number is configurable by means of the parameter
kSevere (see Table 10.4), which represents the value of k of the concept of k-severe
failure. In this way, the models can be set up to measure the NFT/AR and different
degrees of FT/ARk, i.e. the FT/AR for different values of k. For instance, if one
is interested in measuring the NFT/AR, the minimum number of nodes that must
communicate is the total number of nodes and, thus, kSevere must be specified as
0.

When the evaluator submodel considers that the system is faulty, it writes a token
at a place called generalized failure. This place is shared among all submodels and
allows the evaluator submodel to indicate to the rest of submodels that the system
is faulty. When this happens, all submodels stop evolving and the whole SANs
model do not change of state since then. Such a behavior reduces the size of the
state space of the underlying stochastic process.

Finally, in order to quantify the NFT/AR and the FT/ARk, we associate a rate
reward variable with the marking of the place generalized failure. We call this
variable probNonSev and its expressions is:

probNonSev = 1.0 − generalizedFailure → Mark()

where generalizedFailure → Mark() represents the marking of the place gener-

158 Chapter 10. Reliability evaluation of CANcentrate

alizedFailure, i.e. the number of tokens of this place. Since the marking of gen-
eralizedFailure can be only 0 or 1, the value of the variable is 1 as long as the
system is not faulty. In this way, once the model is analytically solved, the value
of this variable at a particular point in time indicates the probability with which the
system has not failed until that instant of time. Particularly, this variable quantifies
the NFT/AR and the FT/ARk for different values of k, depending on the value of
the parameter kSevere, as explained above.

Notice that the whole system (relying on CAN or on CANcentrate) is modelled
as a composition of these SANs submodels, using the Rep and Join primitives.
Specifically, we used the Rep primitive to obtain several instances of each one
of the SAN submodels that represents a given entity, e.g. to obtain several Node
Cores. This was very useful because we could specify every SAN submodel once
and, then, replicate each submodel to represent all entities of the system. We used
the Join primitive just to let submodels to share the appropriate places.

This strategy was suitable for modelling systems based on CAN and CAN-
centrate that include a small number of nodes. Unfortunately, when more nodes
were considered, this strategy led the state space transformation of the SANs into
Markov Chains to become extremely inefficient in terms of computation time. We
found out that to model the failure of each entity separately becomes impracticable
when the number of entities increases. Notice that this happens even though the
Rep primitive is used to obtain several instances of the different SAN submodels.
Similar problems have been reported when using the Petri Net formalism to model
complex and large systems [CFJ+91] [AM02].

10.6.2 A dedicated SAN submodel per entity type

In order to overcome the extreme performance inefficiency of the solution ex-
plained just above, we modeled CAN and CANcentrate following a second ap-
proach that does not model each entity failure by means of a dedicated SAN sub-
model. Instead, we used a SAN submodel to model faults occurring at any entity
of a given type. We call these SANs entity group submodels. For example, there
is one entity group submodel that represents all Node Cores and that models the
failure of any of them.

The entity group submodel has almost the same structure as the entity submodel
explained before (see Figure 10.5). It has one place whose number of tokens rep-
resents the number of entities of a given type that have not failed so far; an activity
that models the failure of any of these entities and that has a set of cases represent-
ing different failure modes; and a set of places that represent the failure mode with

10.6 Modelling rationale 159

which a fault manifests.

When an entity fails, the corresponding entity group submodel decides in which
way the fault manifests and, then, initiates the coverage process, which models
whether or not the fault is isolated. As in the previous approach, this process is
carried out by the entity group submodel itself and, in the case of CANcentrate,
also by a coverage submodel that represents the error-containment capabilities of
the hub.

Besides the entity group and the coverage submodels, this second strategy still
uses an evaluator submodel to elucidate when the system is faulty, as well as the
probNonSev reward variable to quantify the NFT/AR and the FT/ARk.

It is worth noting that although this alternative approach reduces the number of
SANs submodels, it still models the failure of every single entity. This is implic-
itly done at every entity submodel by means of the activity that models the failure
of any of the entities of a given type. Specifically, this activity models both the
Time To Failure distribution and the failure mode proportions of the entities that
the entity submodel represents. On the one hand, the activity represents a Time To
Failure distribution that takes into account the number of surviving entities of the
corresponding type, i.e. the number of entities of that type that have not failed so
far. Specifically, since the Time To Failure distribution of each entity is exponen-
tially distributed and each entity can independently fail, the time elapsed until any
surviving entity fails is also exponentially distributed, with a failure rate:

λentityGroup = λentity · entitiesOk → Mark()

where λentiy is the failure rate of the entity, and entitiesOk→Mark() is the mark-
ing of the place that represents the number of surviving entities at a given instant
of time.

On the other hand, each one of the cases of these activities represents the propor-
tion with which a given failure mode manifests, when any surviving entity of the
corresponding type fails. Notice that all the entities of the same type will exhibit
the same failure modes with the same proportions. Therefore, the proportion with
which each case is selected is just the proportion with which an entity of that type
exhibits the corresponding failure mode.

This new approach yields very good results for the case of CAN and CANcen-
trate in terms of computation time. Moreover, the time needed to transform the
SANs into Markov Chains when using this strategy is independent of the number
of nodes. Nevertheless, we found this approach to be very inefficient for the case of
ReCANcentrate. In fact, conversely to the case of CAN and CANcentrate, the per-

160 Chapter 10. Reliability evaluation of CANcentrate

formance of this strategy is unacceptably degraded in the case of ReCANcentrate
as more nodes are considered.

10.6.3 A dedicated SAN submodel per region type

Due to the efficiency problems of the first and second modelling strategies ex-
plained above, we decided to further reduce the number of SANs submodels needed
to model faults occurring at individual entities. For this purpose, we define the
concept of region as an ensemble of entities that constitute an error-containment
region. In other words, a region can be understood as the ensemble of entities that
are isolated to prevent the propagation of errors generated by any entity of this en-
semble. To better understand this issue, notice that normally, when an entity fails,
it is not possible to contain the errors it generates by isolating just that entity, but
by isolating a whole region that includes other entities. For example, a fault that
affects a downlink in a CANcentrate network is isolated by disabling the appropri-
ate hub port; which means that not only the Attachment entity that represents the
downlink is isolated, but also the rest of the entities of its branch: the Node Core,
the Node IOs, etc.

We decided what regions constitute the system taking into account what are the
ones that are appropriate for modelling not only the reliability of a system relying
on CAN or CANcentrate, but also of a system relying on ReCANcentrate. In this
sense, notice that, as will be explained later in Chapter 11, ReCANcentrate toler-
ates faults at hubs, links and even at CAN controllers. This means that the error-
containment regions of ReCANcentrate are smaller than the ones of the CAN bus
and of CANcentrate. For example, conversely to what happens in CANcentrate, to
disable a hub port in ReCANcentrate does not imply to isolate the corresponding
Node Core. After analyzing the CAN bus, CANcentrate and ReCANcentrate, we
decided to divide up the system into the following regions.

• Node Kernel. It only includes the entity Node Core.

• Node Connection. It comprises all the entities a node needs to be connected
to the bus line or to a given hub. In the case of the bus it includes one
Controller and one Node IO. In CANcentrate (and in ReCANcentrate), it
comprises one Controller, two Node IOs, two Attachments (one that repre-
sents the uplink and another one that represents the downlink), two Hub IOs
and four Terminations.

• Internal Bus Section. It contains the Attachment that connects two adjacent
nodes in a CAN bus, when none of these nodes is located at a bus extremity.

10.6 Modelling rationale 161

• Edge Bus Section. It contains the Attachment and the Termination that con-
stitute the bus section that connects a node located at a bus extremity with
the next node in the bus line.

• Hub Kernel. It only includes the entity Hub Core.

We use a single SAN submodel to represent all regions of a given type. We refer
to each one of these SANs as a regions submodel. In this sense, there is one regions
submodel that represents all Node Kernels, other regions submodel that represents
all Node Connections and so on.

The structure of a regions submodel is similar to the one of the entity and en-
tity group submodels of previous modelling strategies. As shown in Figure 10.6,
this means that a regions submodel still has a place, okRegions, whose marking
represents the number of regions that do not include any faulty entity; an activity,
regionFailure, that models the occurrence of an entity failure in any of those re-
gions and that has different cases each of which represents a given failure mode;
and places that represent how the fault manifests: fm1, fm2, etc. When an en-
tity fails, the corresponding regions submodel erases one token from okRegions to
model that the region where the entity is placed is faulty. Notice that by erasing this
token, the model rules out all the entities that are within the same region as the en-
tity that has failed, so that regionFailure will not model the failure of these entities
from then on. This can be done since it is not necessary to model these potential
additional faults. On the one hand, if the region is successfully isolated, all the en-
tities located within it will be isolated too and, thus, there is no need to model that
they can fail afterwards. On the other hand, if the fault cannot be isolated, then the
whole system becomes faulty and, thus, it is not necessary to continue modelling
entity failures either.

Once it erases the token from the place okRegions, the regions submodel selects
one of the cases of the activity regionFailure, in order to decide the way in which
the fault manifests. Notice that now this decision is more complicated than in the
previous modelling strategies. On the one hand, the cases of the activity regionFail-
ure take into account the proportions with which each entity located in each region
(of the type being modelled) exhibits different failure modes. On the other hand,
in some regions submodels, the cases of regionFailure also reflect that the errors
generated by the fault can be contained by a given CAN controller, which forces
the fault to manifest as stuck-at-recessive. This aspect is depicted in Figure 10.6, in
which the part that models the error-containment actions performed by the corre-
sponding CAN controller is represented as being embedded in the expression that
specifies the proportion with which each case is selected. As will be seen later, the
only regions submodels that take into account the error-containment mechanisms

162 Chapter 10. Reliability evaluation of CANcentrate

Part of the network regions submodel that
models the failure of the entity and the way in

which it manifests

The error containment capabilities of the CAN
controller (if applicable) are taken into account
within the calculus of the proportion with which

each failure mode is chosen.

regionFailure: Time
To Failure of any

network region of a
given type

.

.

.

fm1

fmN

.

.

.

okRegions

Network region
failure modes

Number of
surviving

network regions
of a given type

notIso

nectm1

nectmM

.

.
.
.

nectmEvalM

nectmEval1

Figure 10.6: Basic structure of a regions submodel

of the CAN controller are those that represent all Node Connections in the CAN
bus, CANcentrate or in ReCANcentrate. This is because a CAN controller is only
able to potentially contain errors generated by faults affecting some of the entities
located in its own Node Connection (see Section 10.4.5 for a detailed explanation
concerning the error-containment capabilities of a CAN controller).

Like in the former modelling strategies, the occurrence of a fault triggers a pro-
cess that evaluates whether or not the fault is isolated, i.e. it starts what we call the
coverage process. Notice that to include the CAN controller’s error-containment
capabilities within the calculus of the proportions of the cases of the activity re-
gionFailure of some regions submodels implies that part of the coverage process is
partially carried out by these submodels. In fact, since the CAN bus does not in-
clude any error-containment mechanism different from those implemented at CAN
controllers, the only actions related to the coverage process are those modelled
by the activity regionFailure of the submodel that represents all its Node Connec-
tions. Conversely, in the model of CANcentrate, it is necessary to carry out the
part of the coverage process that is related to the error-containment capabilities of

10.6 Modelling rationale 163

the hub. This part of the coverage process is carried out by a dedicated coverage
submodel, which shares the places fmi with the regions submodels. Similarly, as
will be explained in Chapter 12, the model of ReCANcentrate carries out this pro-
cess by means of several coverage submodels, where each of which represents a
different error-containment or fault-tolerance mechanism of this communication
infrastructure.

Finally, as concerns the way in which this third strategy models the failure of
the overall system and measures its probability, it is done as in the previous ap-
proaches, i.e. using an evaluator submodel and the probNonSev reward variable
(see Section 10.6.1).

As can be inferred from the above discussion, the actual innovative feature of this
third strategy is the way in which the regions submodel models both the Time To
Failure and the failure modes of every individual entity of each one of the regions
the submodel represents. Therefore, next we explain this issue in more detail.

As just mentioned above, the Time To Failure of each individual entity is implic-
itly modelled by means of the activity regionFailure, as depicted in Figure 10.6.
Notice that this activity represents the time that elapses until a fault occurs in any
entity of any of the surviving regions of a given type, i.e. in any region (of a given
type) that does not include any faulty entity. Therefore, the Time To Failure distri-
bution modelled by the activity regionFailure can be easily calculated as follows.
First, suppose that a region is composed of E entities, each of which indepen-
dently fails following an exponential Time To Failure distribution with failure rate
λi, where i ∈ [1, E]. Therefore, the Time To Failure distribution of a given region
can be written as:

Fregion(t) = (1 − e−λregion·t) (10.1)

where λregion is the failure rate of the whole region, and it is calculated as the
summation of the failure rates of each one of its individual entities:

λregion =
E

∑

i=1

λi (10.2)

Second, notice that all the surviving regions represented by the regions submodel
are equal to each other. This implies that each one of them has the same entities
and, thus, the same Time To Failure distribution. As a consequence, the Time To

164 Chapter 10. Reliability evaluation of CANcentrate

Failure distribution represented by the activity regionFailure can be calculated as:

FregionType(t) = (1 − e−λregionType·t) (10.3)

where λregionType is the rate with which any surviving region the submodel repre-
sents fails. Specifically, if okRegions→Mark() represents the number of surviving
regions, i.e. the marking of the place okRegions, then the value of λregionType can be
obtained as:

λregionType = okRegions → Mark() · λregion

= okRegions → Mark() ·
E

∑

i=1

λi

(10.4)

The activity regionFailure is also the responsible for modelling the failure modes
of every individual entity of each one of the regions the submodel represents. As
already explained, regionFailure does this, implicitly, by means of its cases, which
in a submodel that represents all Node Connections also take into account the error-
containment abilities of the corresponding CAN controller (see Figure 10.6). Any-
way, for the sake of clarity, let us explain first how regionFailure takes into ac-
count the entities’ failure modes. Afterwards, we will describe how it includes the
error-containment capacities of the CAN controller in the calculus of the cases’
proportions.

Since each one of the regions that a regions submodel represents includes exactly
the same entities, it is possible to calculate the proportions of the regionFailure’s
cases in terms of the failure mode proportions of the entities of just one region.
Also notice that we consider that faults are not near coincident in time, so that a
region’s failure modes are determined assuming that only one of its entities has
failed. In this sense, let us consider again that a region is constituted by E entities
that exhibit M different failure modes. Moreover, imagine that a given failure
mode is called fmj with j ∈ [1, M], so that the proportion with which an entity i
exhibits the failure mode fmj is denoted by fmpi,j with fmpi,j ∈ [0, 1] ∀i ∈ [1, E]
and ∀j ∈ [1, M]. Then, the proportion with which the region exhibits the failure
mode fmj (and, thus, the proportion with which the case that represents this mode
is selected), is a function that depends on the failure rates of its constituent entities,
λi, as well as on the proportions with which each one of these entities exhibits that
failure mode, fmpi,j . We call this function Fmpj and it is denoted by:

10.6 Modelling rationale 165

Fmpj(λ1, ..., λE , fmp1,j , ..., fmpE,j)

Given this function, the probability with which a region fails exhibiting the fail-
ure mode fmj at or before time t can be written as:

Fregionj
(t) = Fregion · Fmpj = (1 − e−λregion·t) · Fmpj ∀j ∈ [1, M] (10.5)

Moreover, since the region cannot exhibit more than one failure mode simulta-
neously, the Time To Failure distribution of the region can be expressed in terms
of Fregionj

as:

Fregion(t) =
M
∑

j=1

Fregionj
(t) =

M
∑

j=1

[(1 − e−λregion·t) · Fmpj]

= (1 − e−λregion·t) ·
M
∑

j=1

Fmpj

(10.6)

Notice that if we take into account Equation 10.1 and Equation 10.6, we corrob-
orate that:

M
∑

j=1

Fmpj = 1 (10.7)

At this point, we can expand Equation 10.1 in such a way that it includes the
entities’ failure rates and failure mode proportions (λi and fmpi,j) and, then, we
can compare the resultant expression with Equation 10.6 to obtain the expression
of Fmpj in terms of λi and fmpi,j . Specifically, in order to expand Equation 10.1,
we can use an expression that specifies λregion in terms of the entities’ failure rates
and failure mode proportions:

λregion =
E

∑

i=1

λi =
E

∑

i=1

(

λi ·

M
∑

j=1

fmpi,j

)

(10.8)

166 Chapter 10. Reliability evaluation of CANcentrate

More specifically, Equation 10.1 can be expanded as follows:

Fregion(t) = (1 − e−λregion·t)

= (1 − e−λregion·t) · 1

= (1 − e−λregion·t) ·
λregion

λregion

= (1 − e−λregion·t) ·

∑E
i=1

(λi ·
∑M

j=1
fmpi,j)

λregion

= (1 − e−λregion·t) ·

∑

i=1..E
j=1..M

λi · fmpi,j

λregion

= (1 − e−λregion·t) ·
∑

i=1..E
j=1..M

λi · fmpi,j

λregion

= (1 − e−λregion·t) ·
M
∑

j=1

(

∑E
i=1

λi · fmpi,j

λregion

)

(10.9)

At this point, if we compare this expression with Equation 10.6, we deduce that
Fmpj can be written as:

Fmpj =

∑E
i=1

λi · fmpi,j

λregion
=

∑E
i=1

λi · fmpi,j
∑E

i=1
λi

∀j ∈ [1, M] (10.10)

This expression of Fmpj indicates that the proportion with which a surviving re-
gion (and all the surviving regions of a given type together) exhibits a given failure
mode is the weighted arithmetic mean of the proportions with which each entity
of the region manifests that failure mode. Specifically, the proportion with which
each entity exhibits the failure mode is weighted considering the contribution of its
failure rate to the failure rate of the region.

Finally, let us explain how we take into account the error-containment capabili-
ties of a CAN controller when calculating the proportions of the cases of the activ-
ity regionFailure of a regions submodel that represents all Node Connections. For
this purpose, notice that a CAN controller prevents the propagation of errors just
by stop operating when it diagnoses a fault that affects an entity of its Node Con-
nection. This implies that a given percentage of an entity failure that leads the Node
Connection to manifest as stuck-at-dominant, as well as a given percentage of that

10.7 CANcentrate model 167

entity failure that leads the Node Connection to manifest as bit-flipping actually
will lead the Node Connection to manifest as stuck-at-recessive. These percent-
ages are obtained from the coverages that characterize the probability with which
the CAN controller successfully contains stuck-at-dominant and bit-flipping errors
generated by that entity respectively (see Section 10.4.5 for a detailed description
concerning these coverages). In general terms, these coverages are reflected in the
calculus of the Node Connection’s failure mode proportions in accordance with the
following equations:

Fmpstr =

∑E
i=1

λi · fmpi,str
∑E

i=1
λi

+

∑E
i=1

(λi · fmpi,std · stdCovi + λi · fmpi,flip · flipCovi)
∑E

i=1
λi

Fmpstd =

∑E
i=1

λi · fmpi,std · (1 − stdCovi)
∑E

i=1
λi

Fmpflip =

∑E
i=1

λi · fmpi,flip · (1 − flipCovi)
∑E

i=1
λi

(10.11)

where now Fmpstr, Fmpstd and Fmpflip are the proportions with which the Node
Connection exhibits a stuck-at-recessive, a stuck-at-dominant and a bit-flipping
failure respectively; fmpi,str, fmpi,std and fmpi,flip are the proportions with which
entity i manifests as stuck-at-recessive, stuck-at-dominant and bit-flipping respec-
tively; and stdCovi and flipCovi are the coverages with which the CAN controller
detects and isolates the entity i when it manifests as stuck-at-dominant and bit-
flipping respectively.

10.7 CANcentrate model

This section describes the model of the reliability of a system that relies on CAN-
centrate. Figure 10.7 depicts the general structure of this model, which is a com-
position of submodels interconnected by means of the Join primitive. The model
adheres to the third modelling approach explained above. In this sense, notice that
it comprises three regions submodels: nodeKernelsT, nodeConnsT and the hubKer-
nel, which respectively represent all Node Kernel regions, all Node Connection
regions and the Hub Kernel region.

Besides these submodels we can find the branchesFailureEval submodel, which
acts as the coverage submodel. When a Node Kernel or a Node Connection fails,

168 Chapter 10. Reliability evaluation of CANcentrate

Figure 10.7: CANcentrate model

this model evaluates whether or not the hub is able to successfully isolate the cor-
responding hub port. Notice that, from now on, we will refer to a CANcentrate hub
port as either a hub uplink port or a branch.

Finally, there is also one evaluator submodel called CANcentrateFaiEval. It
evaluates the number of nodes that can still operate and communicate among them
to decide whether or not the system is faulty.

Next, all these submodels are explained in more detail. The meaning and the
default values of the parameters included in the following description can be found
in Sections 10.4.4 and 10.4.5, as well as in tables 10.4, 10.5 and 10.6.

10.7.1 nodeKernelsT submodel

The nodeKernelsT submodel, which is depicted in Figure 10.8, represents all the
Node Kernel regions of CANcentrate. As explained before, a Node Kernel region
only includes the entity Node Core, whose constituent components are specified in
Section 10.4.2.

The marking of the place okNodeKernels denotes the number of Node Kernel
regions that are not faulty; whereas a token in any of the places stuckBranch, flip-
Branch, and outFauMod indicates that a Node Kernel has failed leading its related
branch to suffer from the corresponding type of failure.

The activity nkFailure models the time that elapses until any non-faulty Node
Kernel region fails. This time is exponentially distributed in accordance with Equa-
tion 10.4. Specifically, taking into account this equation and that a Node Kernel is
constituted by the Node Core entity only, the rate with which a Node Kernels fails
is:

10.7 CANcentrate model 169

Figure 10.8: nodeKernelsT submodel

okNodeKernels → Mark() · nodeCoreFRate

where okNodeKernels→Mark() is the marking of the place okNodeKernels and
nodeCoreFRate is the failure rate of the entity Node Core.

When the activity nkFailure fires, a token is erased from okNodeKernels and
one of its two cases, represented by circles at the right edge of the activity, is
chosen. The first case (the upper one) represents a fault that affects a Node Kernel
of a node that is located in a non-faulty branch; whereas the second one models
a fault happening in a Node Kernel of a node that is placed at a branch that was
already faulty, i.e. a Node Kernel attached to an already isolated hub port. The
proportion with which nkFailure chooses each case reflects the probability that the
Node Kernel is placed (or not) at an already faulty branch. For instance, the first
case’s proportion is:

(numBranches − numFaultyBranches → Mark())
okNodeKernels → Mark()

Parameter numBranches indicates the number of total branches of CANcentrate,
whereas numFaultyBranches is a place that submodels share and whose marking
indicates the number of branches that are faulty. Notice that the Node Kernel of
a non-faulty branch is always non-faulty (otherwise the branch would be faulty).
Therefore, the above expression can calculate the probability that a surviving Node
Kernel is placed in a non-faulty branch by simply dividing the number of surviving
branches by the number of Node Kernels that were not faulty. Likewise the pro-
portion of the second case, which is the probability that the surviving Node Kernel
that fails is placed at an already faulty branch, is:

170 Chapter 10. Reliability evaluation of CANcentrate

(okNodeKernels → Mark() − (numBranches − numFaultyBranches → Mark()))
okNodeKernels → Mark()

Concerning the actions taken after the activity nkFailure selects a case, notice
that the second one is not connected to any place. This is because since the branch
was already faulty and thus, isolated, the Node Kernel failure has no further impact
on the communication. Thus, no more actions are performed within the model
when this case is chosen.

Conversely, the first case is connected to places numFaultyBranches and nk-
FaultyBranch. When this case is selected, the marking of numFaultyBranches is
increased in one unit to reflect that the branch corresponding to the faulty Node
Kernel becomes faulty. Additionally, a token is placed at nkFaultyBranch, thereby
enabling the activity nkFailureMode. This activity is instantaneous, so that it im-
mediately fires transferring the token to one of the three places: outFauMod, stuck-
Branch and flipBranch, which respectively represent that the fault manifests as an
ofm, a stuck-at and a bit-flipping failure at the hub port.

The first case of nkFailureMode is selected with probability nodeCoreOfmProp,
which is the proportion with which the entity Node Core exhibits an ofm failure, i.e.
a failure mode that is not included in the fault model and that leads to the failure
of the whole system. When this occurs, a token is placed in outFauMod. This
place is shared with submodels nodeConnsT, hubKernel and CANcentrateFaiEval.
As will be explained later, whenever CANcentrateFaiEval detects a token in this
place, it sets a token in place generalizedFailure to indicate to all submodels that
the whole system is faulty. This leads all submodels stop evolving to reduce the
state space. Specifically, as can be seen in Figure 10.8, place generalizedFailure
is connected to the input gate corresponding to the activity nkFailure. This allows
stopping the nodeKernelsT submodel by disabling this activity when a generalized
failure occurs. The same strategy is used to stop the submodels nodeConnsT and
hubKernel.

Regarding the second case of nkFailureMode, it is selected with proportion:

nodeCoreStrProp + nodeCoreStdProp

which is the probability with which the Node Core exhibits a stuck-at-recessive
or a stuck-at-dominant failure mode (the Node Kernel is only constituted by a Node
Core entity). Notice that there is no need to differentiate between the situation in
which the Node Kernel exhibits a stuck-at-recessive and a stuck-at-dominant fail-
ure, since the hub isolates both types of faults with a perfect coverage. As concerns

10.7 CANcentrate model 171

the third case of nkFailureMode, it is selected with proportion nodeCoreFlipProp,
which is the one with which the Node Core fails provoking a bit-flipping failure.

Finally, it important to note that we have differentiated between a stuck-at-
recessive/dominant and a bit-flipping failure when, in fact, in Section 10.4.4 we
specified that we are convinced that it is almost impossible that a Node Core fails
in a way that compels the node’s CAN controller to transmit a stuck-at-dominant
or a bit-flipping fault. We reflect this assumption by specifying a value of 0 for
the corresponding model parameters, i.e. for nodeCoreStdProp and nodeCoreFlip-
Prop, but the structure of the model still contemplates the possibility that the Node
Core exhibits a stuck-at-dominant or a bit-flipping failure.

Figure 10.9: nodeConnsT submodel

10.7.2 nodeConnsT submodel

The nodeConnsT submodel models all Node Connection regions of CANcentrate.
As depicted in Figure 10.9 its structure is the same as the structure of the nodeK-
ernelsT submodel. The difference between both submodels lies in the fact that a
Node Connection region is constituted by several entities, whereas a Node Core re-
gion is only formed from the entity Node Core. This complicates the way in which
the failure rate and the failure mode proportions are specified in the corresponding
activities.

The failure rate of the exponential Time To Failure distribution of the activity
ncFailure is calculated adding the failure rates of all the entities that compose each
Node Connection region, as indicated before in Equation 10.4. This rate is:

okNodeConns → Mark() ·

(ctrlFRate + 2 · (nodeIOFRate + lnkAttchFRate + hubIOFRate + 2 · termFRate))

Notice that the failure rate of each entity is added as many times as it is included

172 Chapter 10. Reliability evaluation of CANcentrate

within the Node Connection. For instance, the failure rate of the entity Attachment,
lnkAttchFRate, is added twice, since there are two Attachment entities within a
Node Connection region, i.e. one Attachment for the uplink and another one for
the downlink.

Regarding the proportions of the cases of the activity ncFailure, they are cal-
culated as in the nodeKernelsT submodel. The proportion of the first one, which
represents the situation in which the Node Connection that fails is located in a
non-faulty branch, is:

(numBranches − numFaultyBranches → Mark())
okNodeConns → Mark()

Whereas the proportion of the second case of ncFailure, which models the sit-
uation in which the Node Connection that fails is located in an already faulty and
isolated branch, is calculated as:

(okNodeConns → Mark() − (numBranches − numFaultyBranches → Mark()))
okNodeConns → Mark()

Finally, let us explain in detail the activity ncFailureMode, which decides the
way in which the Node Connection failure manifests at the corresponding hub
uplink port. The probability with which this activity chooses its first case is the
proportion with which the Node Connection region fails exhibiting an out-of-fault-
model (ofm) failure. According to Equation 10.10, this proportion is:

2 · lnkAttchOfmProp · lnkAttchFRate + 2 · nodeIOOfmProp · nodeIOFRate+

ctrlOfmProp · ctrlFRate + 2 · hubIOOfmProp · hubIOFRate+

4 · termOfmProp · termFRate

Notice that it is not necessary to divide the above expression by the failure rate of
the Node Connection region in order to adhere to Equation 10.10. This is because
Moëbius normalizes the case proportions. Thus, such a division is not necessary
as long as the sum of all the case proportions is that failure rate (which is the case
indeed).

The second and third cases of ncFailureMode model a stuck-at and a bit-flipping
fault respectively. In order to calculate the proportions of these cases we apply
Equation 10.10, but taking into account that the CAN controller that forms part

10.7 CANcentrate model 173

of the Node Connection is able to contain, to some extent, the errors generated
by faults affecting the Node Connection. More specifically, the CAN controller
is able to diagnose faults happening at other entities of the Node Connection it
belongs to and, then, to stop operating in order to prevent error propagation. See
Section 10.4.5 for a detailed explanation of what are the entities whose failure the
CAN controller can diagnose and isolate, as well as what are the coverages with
which the CAN controller can do so.

As already said in Section 10.6.3, if the CAN controller isolates the entity re-
sponsible for the failure of the Node Connection, then the Node Connection will
exhibit a stuck-at-recessive failure, i.e. a fail-silent failure. This implies that a
given percentage of the entity failures that lead the Node Connection to manifest
as stuck-at-dominant, as well as a given percentage of the entity failures that lead
the Node Connection to manifest as bit-flipping actually will lead the Node Con-
nection to manifest as stuck-at-recessive. These percentages are the coverages with
which the CAN controller contains stuck-at-dominant and bit-flipping errors gen-
erated by that entity respectively, and they are included in the calculus of the Node
Connection’s failure modes’ proportions following Equations 10.11.

In the particular case of a Node Connection region of CANcentrate, the two
first equations specified in 10.11 are applied as follows in order to calculate the
proportion with which ncFailureMode selects its first case, i.e. the case that models
the situation in which the Node Connection manifests a the stuck-at-recessive or
as stuck-at-dominant. These two failure modes are modelled by means of a single
case, because the hub isolates both types of faults with a perfect coverage and, thus,
it is not necessary to differentiate between them.

174 Chapter 10. Reliability evaluation of CANcentrate

(hubIOStrProp + hubIOStdProp) · hubIOFRate +

(termStrProp + termStdProp) · termFRate · 2.0 +

(lnkAttchStrProp + lnkAttchStdProp) · lnkAttchFRate +

(nodeIOStrProp + nodeIOStdProp) · nodeIOFRate +

[hubIOFlipProp · hubIOFRate +

(termLossProp + termFlipProp) · termFRate · 2.0 +

(lnkAttchDisProp + lnkAttchFlipProp) · lnkAttchFRate +

nodeIOFlipProp · nodeIOFRate] · ctrlFlipCov +

(ctrlStrProp + ctrlStdProp) · ctrlFRate +

ctrlFlipProp · ctrlFRate · (ctrlFlipCov · ctrlItselfIsoCov) +

(nodeIOStrProp + nodeIOStdProp) · nodeIOFRate +

(termStrProp + termStdProp) · termFRate · 2.0 +

(lnkAttchStrProp + lnkAttchStdProp) · lnkAttchFRate +

(hubIOStrProp + hubIOStdProp) · hubIOFRate

Notice that it is not necessary to divide the above expression by the failure rate
of the Node Connection region to adhere to the first one of Equations 10.11. As
already said, this is because the sum of the proportions of the three cases of the
activity ncFailureMode is this failure rate and Moëbius automatically normalizes
the case proportions.

In order to better understand the above expression, we have written it in separated
blocks. This allows us to highlight different aspects concerning the capacity of the
CAN controller and the hub to contain errors. See Section 10.4.5 for a detailed
discussion on that issue. The first and second blocks of lines correspond to faults
of entities that connect the node to the downlink hub port. The first block repre-
sents these faults when they manifest as a stuck-at. The second block corresponds
to these faults when they generate bit-flipping streams that the CAN controller of
the node diagnoses and isolates, thereby forcing the faults to manifest as a stuck-
at-recessive at the hub uplink port. In this sense, notice that ctrlFlipCov is the
coverage with which the CAN controller successfully diagnoses bit-flipping faults.
Also notice that this blocks reflects that a physical disruption of an Attachment en-
tity and the loss of a Termination are considered as bit-flipping faults; as explained

10.7 CANcentrate model 175

in Section 10.4.4. The third block of the expression represents the internal CAN
controller faults: the ones that manifest as the transmission of a stuck-at stream,
and the ones that manifest as a bit-flipping stream but that the CAN controller suc-
cessfully isolates. Notice that this block implicitly considers a value of the 100%
for the error-containment coverage of the CAN controller internal faults that man-
ifest as a stuck-at-dominant stream. This is because although the CAN controller
does not always isolate an internal fault that leads it to send a stuck-at-dominant
stream, the hub diagnoses and isolates this type of failure with an effectiveness of
the 100% at the corresponding uplink hub port. The last block corresponds to the
entities that connect the node to the uplink hub port. The CAN controller can do
nothing to isolate bit-flipping fault affecting these entities, so that the expression
only includes the cases in which these entities exhibit a stuck-at-fault.

Regarding the second case of the activity ncFailureMode, it is selected with the
proportion with which the Node Connection exhibits a fault that manifests as bit-
flipping at the uplink hub port. This proportion adheres to the third one of Equa-
tions 10.11. Next we write this proportion’s expression split into different blocks,
each one corresponding to a specific aspect that should be highlighted:

(hubIOFlipProp · hubIOFRate +

(termLossProp + termFlipProp) · termFRate · 2.0 +

(lnkAttchDisProp + lnkAttchFlipProp) · lnkAttchFRate +

nodeIOFlipProp · nodeIOFRate) · (1.0 − ctrlFlipCov) +

ctrlFlipProp · ctrlFRate · (1.0−

ctrlFlipCov · ctrlItselfIsoCov) +

nodeIOFlipProp · nodeIOFRate +

(termLossProp + termFlipProp) · termFRate · 2.0 +

(lnkAttchDisProp + lnkAttchFlipProp) · lnkAttchFRate +

hubIOFlipProp · hubIOFRate)

The first block represents the entities that connect the node to the downlink hub
port when they fail exhibiting a bit-flipping fault that the CAN controller does not
successfully diagnose. As can be seen, these bit-flipping faults are not diagnosed
(and thus not isolated) with probability 1.0 − ctrlFlipCov. Similarly, the second
block corresponds to faults that affect the internals of the CAN controller com-
pelling it to transmit a bit-flipping stream that the CAN controller does not isolate.

176 Chapter 10. Reliability evaluation of CANcentrate

Figure 10.10: hubKernel submodel

The last block gathers the entities that connect the node to the uplink hub port and
that fail exhibiting a bit-flipping failure.

10.7.3 hubKernel submodel

The last regions submodel is the hubKernel. Its structure, which is depicted in
Figure 10.10, is very simple. Initially, there is one token in the place okHubKenel
to indicate that the only Hub Kernel region of the system is not faulty. The ac-
tivity hkFailure models the exponential Time To Failure distribution of the Hub
Kernel. Since this region only includes the entity Hub Core, the failure rate of the
distribution is hubCoreFRate.

Moreover, as already said, we assume that every Hub Core failure leads to the
failure of the overall system. Therefore, the activity hkFailure does not differentiate
between different failure modes. Instead, whenever the activity hkFailure fires, it
transfers the token from okHubKernel to the place hubKernelFailure. As will be
explained later, this compels the CANcentrateFaiEval submodel to diagnose the
overall system as faulty.

10.7.4 branchesFailureEval submodel

Submodel branchesFailureEval (Figure 10.11) evaluates whether or not the hub
isolates each fault happening in a Node Kernel or in a Node Connection region.
For this purpose, it shares the places stuckBranch and flipBranch with the submod-
els nodeKernelsT and nodeConnsT. When a token is set in any of these places,
branchesFailureEval decides whether or not the corresponding failure is success-
fully confined by the hub, and then it transfers the token to faultyCoveredBranches
or to faultyNonCoveredBranch accordingly.

Specifically, the marking of place faultyCoveredBranches indicates the number
of branches that are faulty but successfully isolated by the hub. Conversely, a to-

10.7 CANcentrate model 177

Figure 10.11: BranchesFailureEval submodel

ken in place faultyNonCoveredBranch means that a branch has failed and that the
hub was unable to isolate it. Since the error-containment coverage of stuck-at
failures is of the 100%, a token in stuckBranch is always transferred to faultyCov-
eredBranches. In contrast, the error-containment coverage of a bit-flipping fault is
not perfect. Submodel branchesFailureEval models this fact by transferring any
token set in flipBranch to faultyCoveredBranches or to faultyNonCoveredBranch
with probabilities flipLnkCov and 1.0− flipLnkCov respectively; where flipLnkCov
is the coverage with which the hub isolates a bit-flipping fault at the corresponding
hub uplink port (see Section 10.4.5 and Table 10.6).

10.7.5 CANcentrateFaiEval submodel

CANcentrateFaiEval submodel, which is depicted in Figure 10.12, is devoted to
deciding when the system fails as a whole. When this happens, it sets a token
in the place generalizedFailure, thereby compelling the regions submodels to stop
evolving, as explained in Section 10.7.1.

The CANcentrateFaiEval submodel becomes aware of failures by means of dif-
ferent places it shares with other submodels: outFauMod with all regions submod-
els; place hubKernelFailure just with the hubKernel submodel; and faultyCovered-
Branches and faultyNonCoveredBranch with the branchesFailureEval submodel.

Each one of these places is connected to place generalizedFailure by means of
an input gate and an instantaneous activity. Each input gate enables the activity
it is connected to, depending on the marking of its incoming place. In particular,
whenever a token is received in faultyNonCoveredBranch or in outFauMod, the
corresponding input gate enables the firing of its activity, so that a token is placed
at generalizedFailure. This is because a fault that cannot be isolated propagates
thereby provoking the failure of the overall system. Similarly, since the hub is
a single point of failure, when a token is set in the place hubKernelFailure, the
corresponding activity instantaneously writes a token at generalizedFailure.

178 Chapter 10. Reliability evaluation of CANcentrate

Figure 10.12: CANcentrateFaiEval submodel

In contrast, the number of tokens in faultyCoveredBranches that are necessary to
enable its associated activity to fire depends on the minimum number of nodes
that must communicate among them to consider that the system is not faulty.
As explained in Section 10.6.1, this minimum number of nodes is configured by
means of the parameter kSevere (see Table 10.4). If the marking of faultyCovered-
Branches exceeds the value of kSevere, then the activity fires transferring a token
to generalizedFailure. If one token is enough to enable this activity, kSevere = 0,
then the probability of not having a token in generalizedFailure is the non-fault-
tolerant/accepting system reliability (NFT/AR). Conversely, if more than one token
is necessary to enable the activity, kSevere = k with k > 0, then the probability
of not having a token in generalizedFailure is the fault-tolerant/accepting system
reliability (FT/ARk). In other words, a value of kSevere equal to 0 must be used
for measuring the reliability of an NFT/A system, whereas greater values of this
parameter must be specified to calculate the reliability of an FT/A system. Please,
refer to Section 10.2 for more details concerning this issue.

Finally, as concerns an FT/A system, notice that CANcentrateFaiEval also mod-
els the capacity of this type of system to successfully accept or tolerate the fail-
ure or disconnection of a new node, provided that the system can do so. More
specifically, when the hub isolates a new faulty branch and the number of isolated
branches (including the new faulty branch) still does not represent a k-severe fail-
ure, CANcentrateFaiEval evaluates whether or not the system actually accepts or
tolerates the disconnection of that new branch.

For this purpose CANcentrateFaiEval includes the place prevFaultyCovered-
Branches, the activity sysFauTolCoverage and the corresponding input gate. The
marking of prevFaultyCoveredBranches tracks the marking of the place faultyCov-
eredBranches, which as already said represents the number of branches that have
been isolated so far. When a new branch fails and the hub successfully isolates
it, a new token is set in faultyCoveredBranches, so that the marking of this place

10.8 CANbus model 179

becomes greater than the one of prevFaultyCoveredBranches. Then, if a k-severe
failure has not occurred as a consequence of the fault, the difference between the
markings of faultyCoveredBranches and prevFaultyCoveredBranches enables the
activity sysFauTolCoverage, which instantaneously fires in order to evaluate if the
FT/A system accepts or tolerates the fault. Specifically, the expression that enables
the activity sysFauTolCoverage, and which is evaluated by its corresponding input
gate, is:

faultyCoveredBranches → Mark() > prevFaultyCoveredBranches → Mark() and

faultyCoveredBranches → Mark() ≤ kSevere

Notice that when sysFauTolCoverage fires, its input gate forces the marking of
prevFaultyCoveredBranches to be equal to the marking of faultyCoveredBranches,
thereby ensuring that sysFauTolCoverage does not fire again for the same fault.

As regards the actions taken by sysFauTolCoverage, it has to choose one of its
two cases. The upper one represents the situation in which the FT/A system does
not successfully accept or tolerate the failure of a new branch and, therefore, it sets
a token in the place generalizedFailure. The other case models the opposite situ-
ation and it is not connected to any place. sysFauTolCoverage selects its first and
second cases with probabilities 1 − sysFauTolCov and sysFauTolCov respectively;
where sysFauTolCov is the coverage with which the FT/A system accepts or toler-
ates the failure or disconnection of a node, provided that it is able to do that (see
Section 10.4.5 and Table 10.4 for more details concerning this coverage).

10.8 CANbus model

We have modelled the reliability of a system relying on a CAN bus by means of
the CANbus model, which also adheres to the modelling approach explained in
Section 10.6.3. As shown in Figure 10.13, its structure is very similar to the one of
the CANcentrate submodel: it includes some regions submodels and an evaluator
submodel that are joined by means of the Rep primitive.

Like in the CANcentrate model, the nodeKernelsB and the nodeConnsB sub-
models represent the Node Kernel and the Node Connection regions respectively.
However, notice that a Node Connection region contains fewer entities in the case
of the CAN bus than in the case of CANcentrate, as described in Section 10.6.3.

The CANbus model also includes two additional regions submodels when com-
pared with the CANcentrate model: the inBusSections and the edBusSections sub-

180 Chapter 10. Reliability evaluation of CANcentrate

Figure 10.13: CANbus model

models. The first one represents all the Internal Bus Section regions of the CAN
bus. As explained in Section 10.6.3, an Internal Bus Section region includes the
Attachment entity that represents the section of the CAN bus line that connects two
adjacent nodes that are not located at the extremities of the bus. If a bus includes
N nodes, then it has N − 2 Internal Bus Section regions. The other submodel, the
edBusSections, corresponds to the two Edge Bus Section regions of the CAN bus.
As described in Section 10.6.3, each Edge Bus Section region includes one Termi-
nation entity and the Attachment entity that represents the section of the CAN bus
line that connects a node located at a extremity of the bus with the next node in the
bus line (in a daisy chain configuration).

The last submodel is an evaluator submodel called CANBusFaiEval. It takes
into account the faults that have occurred so far to diagnose when the overall sys-
tem is faulty. To facilitate this diagnosis we further classify the failures modes
that are within the fault model into exclusion failures and blocking failures. The
former refers to a situation in which the fault leads only one node to be prevented
from communicating; whereas the second occurs when the errors generated by the
faulty entity prevent all nodes from communicating. For instance, a Node Connec-
tion that fails transmitting a stuck-at-recessive stream only prevents its node from
communicating and, thus, it is an exclusion failure. In contrast, a stuck-at-recessive
Internal Bus Section does prevent all nodes from communicating and, hence, it is
a blocking failure.

10.8.1 nodeKernelsB submodel

The nodeKernelsB submodel, whose structure is depicted in Figure 10.14, models
all the Node Kernel regions of the CAN bus. Thus, its role is analogous to the one
of the nodeKernelsT submodel of CANcentrate.

As in CANcentrate, since the Node Kernel region is exclusively constituted by

10.8 CANbus model 181

the Node Core entity, the failure rate of the activity nkFailure is calculated taking
into account the failure rate of this entity only.

okNodeKernels → Mark() · nodeCoreFRate

The activity nkFailure has three cases. The first one corresponds to a Node Ker-
nel failure that manifests in a way that is beyond our fault model; whereas the other
two cases represent a Node Kernel failure that is within that fault model. Specif-
ically, the second one models the situation in which the fault of the Node Kernel
manifests as an exclusion failure, whereas the third case represents the situation in
which the Node Kernel fault can lead to a blocking failure.

Figure 10.14: nodeKernelsB submodel

The activity nkFailure selects the first case with probability nodeCoreOfmProp,
since this is the proportion with which a Node Core presents an ofm failure. Re-
garding the proportions of the second and third cases of nkFailure, notice that a
Node Kernel exhibits an exclusion failure when it compels its node to be stuck-at-
recessive, whereas it exhibits a potential blocking failure when it can lead its node
to transmit a stuck-at-dominant or a bit-flipping stream. Thus, the second case is se-
lected with proportion nodeCoreStrProp and the third one with nodeCoreStdProp+
nodeCoreFlipProp. As pointed out in Section 10.7.1, although we assume that it
is almost impossible that a Node Kernel failure leads its node to transmit a stuck-
at-dominant or a bit-flipping stream, the structure of our models still contemplates
this possibility.

If the first case of the activity nkFailureMode is selected, the token is transferred
to the place nkOutFauMod and the instantaneous activity nkNewOfmEval becomes
enabled. This activity evaluates whether or not the Node Kernel that has failed
belongs to a node that was already prevented from communicating. Specifically,
the node is already prevented from communicating if its Node Connection region

182 Chapter 10. Reliability evaluation of CANcentrate

had already suffered from an exclusion failure (a stuck-at-recessive fault). If this
is what actually happened, the activity nkNewOfmEval chooses its second case and
the model does not perform any further action (the case is unconnected). This is
because the Node Connection is the interface between the Node Kernel and the
medium and, hence, if this interface is stuck-at-recessive, the node will continue
transmitting a stuck-at-recessive stream to the medium independently of what the
Node Kernel tries to transmit. Otherwise, if the node to which the Node Kernel be-
longs was not prevented from communicating, the activity nkNewOfmEval selects
its first case and it transfers the token from the place nkNewOfmEval to outFauMod,
which compels CANBusFaiEval to diagnose the overall system as faulty.

In order to calculate the proportions with which the activity nkNewOfmEval se-
lects its cases, we followed a strategy similar to the one we used for calculating the
proportions with which a Node Kernel (or a Node Connection) region is placed in
an already faulty branch in CANcentrate (see Section 10.7.1). More specifically,
the proportion with which the activity nkNewOfmEval selects its first case is calcu-
lated by dividing the number of non-faulty Node Kernels that were placed at nodes
that were not prevented from communicating, by the total number of Node Kernels
that were not faulty before the fault occurred. This expression is:

numNodes − excludedNodes → Mark()
kNodeKernels → Mark() + 1

where numNodes is the parameter that specifies the number of nodes connected
to the CAN bus. The place excludedNodes is shared by the nodeKernelsB, the
nodeConnsB and the CANBusFaiEval submodels, and it represents the number of
nodes that have been prevented from communicating so far.

In order to better understand how the above expression is obtained, it is necessary
to take into account the following aspects. First, we know that a Node Kernel can
be placed either in a node that is prevented from communicating or in a node that is
not, but that a faulty Node Kernel always belongs to a node that is prevented from
communicating. Thus, the number of non-faulty Node Kernels that are placed at
nodes that are not prevented from communicating can be calculated by subtracting
excludedNodes → Mark() from the total number of nodes: numNodes. Second, it
is noteworthy that when the activity nkNewOfmEval has to select one of the cases,
the marking of place okNodeKernels has been already decreased by the activity
nkFailure. Thus, the number of Node Kernels that were not faulty before the fault
occurred is not okNodeKernels → Mark() but okNodeKernels → Mark() + 1.

As concerns the proportion of the second case of the activity nkNewOfmEval, it
is obtained by dividing the number of non-faulty Node Kernels that were placed

10.8 CANbus model 183

at nodes that were already prevented from communicating, by the total number of
Node Kernels that were not faulty before the fault occurred. Thus, the resulting
expression for the proportion of the first case is:

(okNodeKernels → Mark() + 1 − (numNodes − excludedNodes → Mark()))
(okNodeKernels → Mark() + 1)

Notice that the number of non-faulty Node Kernels that were placed at nodes that
were already prevented from communicating is calculated by subtracting numNodes
−excludedNodes → Mark() from the number of nodes that were not faulty before
the fault occurred.

Up to this point, we have discussed what is modelled when the activity nkFail-
ureMode selects the case that represents an ofm failure; but it is still necessary to
describe the actions the model performs when this activity decides that the Node
Kernel fails exhibiting an exclusion failure or a potential blocking failure, i.e. when
it selects its second and third cases respectively. Basically, what the model does
for each one of these two cases is analogous to what we have explained for the first
case of nkFailureMode. When the second case is chosen, the instantaneous activity
nkNewExcEval decides if the node to which the Node Kernel belongs was already
prevented from communicating. For this purpose, it uses the same two expres-
sions just explained above. If affirmative, nkNewExcEval increases the marking
of excludedNodes in one unit in order to reflect that a new node is prevented from
communicating. Otherwise, the model does not need to perform any further action
and, thus, the second case of nkNewExcEval is left unconnected.

Finally, the activity nkBlockingEval also decides whether or not the node was
already prevented from communicating, using for this decision the same expres-
sions as nkNewOfmEval and nkNewExcEval. Its first case sets a token in the place
blockingFault, whereas its second one is left unconnected. The place blockingFault
is shared among all submodels and indicates that the communication is completely
blocked. As will be explained later, this automatically leads the CANBusFaiEval
submodel to diagnose that the overall system is faulty.

10.8.2 nodeConnsB submodel

The nodeConnsB submodel represents all the connection regions of the CAN bus.
As can be seen in Figure 10.15, it is very similar to the nodeKernelsB submodel.
There are two main differences between these two submodels. The first difference
is that the Node Connection region includes several entities and, thus, the failure

184 Chapter 10. Reliability evaluation of CANcentrate

Figure 10.15: nodeConnsB submodel

rates and the failure mode proportions of all these entities must be considered when
calculating the failure rate and the cases’ proportions of the activity ncFailure.

More specifically, the failure rate of the Time To Failure distribution modelled
by ncFailure is:

okNodeConns → Mark() · (ctrlFRate + nodeIOFRate)

where ctrlFRate and nodeIOFRate are the failure rates of the Controller and the
Node IO entities respectively. In this sense, notice again that, conversely to the
Node Connection region of CANcentrate, a Node Connection of the CAN bus only
has one Node IO entity, which corresponds to the only transceiver a node needs to
connect to the bus.

Regarding the cases of the activity ncFailure, the first one models an ofm Node
Connection failure, whereas the second and the third cases respectively represent
a Node Connection that exhibits an exclusion failure (a stuck-at-recessive) and a
blocking failure (stuck-at-dominant or bit-flipping).

The proportion of the first case is calculated following Equation 10.10:

ctrlOfmProp · ctrlFRate + nodeIOOfmProp · nodeIOFRate

Whereas the proportions of the second and third cases adhere to Equations 10.11,
in order to take into account the capacity of the CAN controller to isolate er-
rors generated by faults affecting itself and the Node IO entity placed within its
Node Connection region (see Section 10.4.5 for a detailed explanation of the error-
containment capabilities of the CAN controller). The second case’s proportion is
calculated following the first one of Equations 10.11 as:

10.8 CANbus model 185

nodeIOStrProp · nodeIOInFauProp · nodeIOFRate +

nodeIOStdProp · nodeIOInFauProp · nodeIOFRate +

nodeIOFlipProp · nodeIOInFauProp · ctrlFlipCov · nodeIOFRate +

ctrlStrProp · ctrlFRate +

ctrlStdProp · ctrlFRate · (1.0 · ctrlItselfIsoCov) +

ctrlFlipProp · ctrlFRate · (ctrlFlipCov · ctrlItselfIsoCov) +

nodeIOStrProp · (1.0 − nodeIOInFauProp) · nodeIOFRate)

It is noteworthy that conversely to what is done in the nodeConnsT submodel of
CANcentrate (see Section 10.7.2), stuck-at-recessive Node Connection failures are
not modelled together with stuck-at-dominant Node Connection ones by means of
the same case. This is because a CAN bus does not include a hub that is able to iso-
late stuck-at-dominant faults. In fact, since stuck-at-dominant Node Connections
are blocking failures, they are modelled together with bit-flipping Node Connec-
tion’s ones by means of the third case of the activity ncFailure, as will be explained
later on in this section.

We have written the above expression in separated blocks in order to put em-
phasis on some aspects related to the capacity of the CAN controller to contain
errors. The first block of lines represents the faults of the Node IO entity that do
not deliver errors to the medium, but to the CAN controller reception port. The
percentage of Node IO faults that do not deliver errors to the medium is given by
the parameter nodeIOInFauProp. Notice that this block also reflects the fact that
the CAN controller always diagnoses faults that lead it to receive errors in the form
of stuck-at streams, but that it is only able to diagnose faults that generate bit-
flipping errors with a coverage of ctrlFlipCov. The second block of the expression
corresponds to faults that affect the internals of the CAN controller. It reflects the
error-containment capacities of the CAN controller to treat these faults. First, no-
tice that the CAN controller successfully diagnoses the stuck-at-dominant and the
bit-flipping fault with a coverage of 1.0 and ctrlFlipCov respectively. Second, the
CAN controller is able to isolate faults affecting its internals with a probability of
ctrlItselfIsoCov. The third block of the expression corresponds to the faults of the
Node IO entity that deliver errors to the medium in the form of a stuck-at-recessive
stream.

The third case of the activity ncFailure models the situation in which the Node

186 Chapter 10. Reliability evaluation of CANcentrate

Connection region fails exhibiting a blocking failure, i.e. by issuing a stuck-at-
dominant or a bit-flipping stream to the medium. It is chosen taking into account
the second and the third ones of Equations 10.11:

nodeIOFlipProp · nodeIOInFauProp · (1.0 − ctrlFlipCov) · nodeIOFRate +

ctrlStdProp · ctrlFRate · (1.0 − 1.0 · ctrlItselfIsoCov) +

ctrlFlipProp · ctrlFRate · (1.0 − ctrlFlipCov · ctrlItselfIsoCov) +

nodeIOStdProp · (1.0 − nodeIOInFauProp) · nodeIOFRate +

nodeIOFlipProp · (1.0 − nodeIOInFauProp) · nodeIOFRate

The first block (line) of the above expression represents the faults of the Node
IO entity that deliver bit-flipping errors to the reception port of the CAN controller
and that, additionally, are not contained by that controller. The second block cor-
responds to the CAN controller’s internal faults that the CAN controller does not
successfully diagnose or does not isolate. The last blocks reflects the faults that
lead the Node IO entity to deliver a stuck-at-dominant or a bit-flipping stream to
the medium.

Up to this point we have explained the difference between the nodeKernelsB and
the nodeConnsB submodels as concerns the way in which the failure rate and the
failure mode proportions are calculated. But, as pointed out before, there is another
difference between these submodels. As explained in Section 10.8.1, when a Node
Kernel fails, i.e. when the activity nkFailure fires, the nodeKernelsB submodel
evaluates whether or not the Node Connection of its node had already suffered
from an exclusion failure. If the Node Connection had already suffered from such
a failure, the nodeKernelsB submodel does not perform any further action to model
the propagation of the errors the Node Kernel generates. This is because the value
of the Node Connection’s output prevails over the output of the Node Kernel. In
contrast, notice that nodeConnsB does not always need to check whether or not
the Node Kernel corresponding to the Node Connection had already suffered from
an exclusion failure. Specifically, nodeConnsB does not carry out this check when
the Node Connection exhibits an ofm or a blocking failure. This is because the
errors a faulty Node Connection generates always propagate through the bus, in-
dependently of whether or not its corresponding Node Kernel has already failed.
The only situation in which nodeConnsB checks if the Node Kernel had already
suffered from an exclusion failure is when the Node Connection exhibits an exclu-
sion failure. This check is done by the activity ncNewExcEval. In particular, if the

10.8 CANbus model 187

Figure 10.16: inBusSections and edBusSections submodels

Node Kernel had already suffered from such a failure, then ncNewExcEval does
not add a token to excludedNodes, since the exclusion of the node to which the
Node Connection belongs to was already reflected by the nodeKernelsB submodel
when the Node Kernel failed.

More specifically, the proportions with which the activity ncNewExcEval chooses
its two cases are analogous to the ones with which the activity nkNewExcEval se-
lects its first and second cases (see Section 10.8.1):

(numNodes − excludedNodes → Mark())
(okNodeConns → Mark() + 1)

and

(okNodeConns → Mark() + 1 − (numNodes − excludedNodes → Mark()))
(okNodeConns → Mark() + 1)

10.8.3 inBusSections and edBusSections submodels

Submodels inBusSections and edBusSections respectively model all the Internal
Bus Sections and the two Edge Bus Sections of the CAN bus. Both submodels
have exactly the same structure, as shown in Figure 10.16.

The marking of the places okInBusSecs and okEdBusSecs respectively represent
the number of Internal and Edge Bus Section regions that are not faulty. The initial
marking of okInBusSecs is the value of the parameter numInSections, which must
be equal to numNodes − 2, where numNodes is the parameter that specifies the
number of nodes connected to the CAN bus. In contrast, the initial marking of the
place okEdBusSecs is 2.

188 Chapter 10. Reliability evaluation of CANcentrate

When the activity ibsFailure or the activity ebsFailure fire, a token is erased
from okInBusSecs and okEdBusSecs respectively. The failure rate of the activity
ibsFailure is calculated as busAttchFRate·inBusSecsOk → Mark(). However, since
an edge region includes an Attachment entity and a Termination entity, the failure
rate of the activity ebsFailure takes into account the failure rate of both of them:
(busAttchFRate + termFRate) · edBusSecsOk → Mark().

The two cases of these activities respectively represent the situation in which
the failure mode the bus section exhibits is included in our fault model and the
situation in which it is not. Notice that any bus section failure leads to the failure
of the overall communication subsystem (and the whole system), since the medium
of the bus becomes faulty. This means that to differentiate between these two cases
is not actually necessary. However, we preferred to differentiate between the failure
modes that are included in our fault model and those that are not because, in this
way, we can better integrate the inBusSections and edBusSections submodels with
the rest of submodels.

Activity ibsFailure selects the first and the second cases with proportions: 1.0−
busAttchOfmProp and busAttchOfmProp. In contrast, due to the fact that an Edge
Bus Section includes an Attachment and a Termination entities, the activity ebs-
Failure chooses these cases with proportions:

1.0 − (busAttchOfmProp · busAttchFRate + termOfmProp · termFRate)

and

busAttchOfmProp · busAttchFRate + termOfmProp · termFRate

10.8.4 CANbusFaiEval submodel

As already pointed out, the CANbusFaiEval submodel is the responsible for diag-
nosing when the overall system is faulty.

As shown in Figure 10.17, it shares the places outFauMod, excludedNodes and
blockingFault with the regions submodels to become aware of what kind of faults
have happened in the system. On the one hand, when a regions submodel sets a
token in the place oufFauMod or in blockingFault, the corresponding instantaneous
activity of the CANbusFaiEval submodel immediately transfers that token to the
place generalizedFailure, thereby indicating that the system is faulty.

10.9 Quantitative assessment 189

Figure 10.17: CANbusFaiEval submodel

On the other hand, the CANbusFaiEval submodel writes a token on the place
generalizedFailure whenever the marking of the place excludedNodes exceeds the
value of the parameter kSevere. As with the model of CANcentrate, it is possible
to measure the NFT/AR as well as different degrees of FT/ARk, by specifying the
appropriate value for the parameter kSevere. For instance, if kSevere = 0, then the
probability of having a token in generalizedFailure is the NFT/AR of a system that
relies on the CAN bus.

Moreover, CANbusFaiEval also models the coverage with which an FT/A sys-
tems actually accepts or tolerates the failure or disconnection of a given node, pro-
vided that it can do so. For this purpose, it includes the place prevExcludedNodes,
the activity sysFauTolCoverage and the corresponding input gate. These elements
are analogous to the ones CANcentrateFaiEval includes for carrying out the same
evaluation when the FT/A system relies on CANcentrate. Thus, for more details
concerning the way in which CANbusFaiEval uses these elements, please refer to
Section 10.7.5.

Finally notice that the CANbusFaiEval submodel shares the place generalized-
Failure with all the other submodels. When a token is set at this place each regions
submodel stops evolving. As in the case of CANcentrate, each regions submodel
stops by using an input gate connected to the activity that represents the Time To
Failure distribution of the regions it represents.

10.9 Quantitative assessment

As explained in Section 10.2, in order to quantify the reliability of a system that
relies on CAN and of an equivalent system that relies on CANcentrate, we use
two metrics: the non-fault-tolerant/accepting system reliability (NFT/AR) and the
fault-tolerant/accepting system reliability (FT/ARk) for k = 1. The first one

190 Chapter 10. Reliability evaluation of CANcentrate

is devoted to measuring the reliability of a non-fault-tolerant/accepting system
(NFT/AR), whereas the second aims at calculating the reliability of a fault-tolerant
/ accepting system that is robust to the failure or disconnection of at most 1 out of
N nodes. As already said in Section 10.2, we choose this value for k, since it is the
case that least reflects the benefits of CANcentrate for FT/AR systems.

In particular, we analyze the NFT/AR and the FT/AR1 throughout the interval
of time during which they are equal or greater than a certain value. This is because
a reliable application normally requires that the system it relies on guarantees a
specific and well-defined degree of reliability. In this sense, as already explained in
Section 10.1, we consider just as a reference the reliability requirements of the less
demanding x-by-wire applications in cars. Specifically, we analyze the NFT/AR
and the FT/ARk as long as they are ≥ 0.99999, which is the value of reliability
required by a throttle-by-wire system [MK05].

In order to compare the reliability that can be achieved when using CAN and
CANcentrate, we assess the maximum amount of time during which a system that
relies on them exhibits a reliability (NFT/AR and FT/AR1) equal or greater than the
above-indicated reliability degree. We refer to this amount of time as the mission
time. This concept is defined in [MK05] as the expected length of operation of
one mission for a system. Just as a reference and following the example cited
before, notice that the least demanding x-by-wire applications require a reliability
≥ 0.99999 during a mission time of 10 hours [MK05].

It is also noteworthy that, in principle, we compare the reliability that can be
achieved with CAN and CANcentrate considering the default values we have pro-
posed as reasonable for our models’ parameters. These parameters and their default
values are described in Tables 10.4, 10.5 and 10.6. However, in order to study how
different aspects influence the reliability of a system relying on both networks, we
perform additional sensitivity analyses with respect to some of these parameters,
such as the number of nodes, the fault-tolerance coverages, the hub failure rate, etc.
Specifically, those additional analyses focus on the FT/AR1, since NFT/A systems
cannot actually benefit from the potential advantages of a simplex star topology.

Each one of these sensitivity analyses is basically conducted with respect to one
parameter only. However, we consider 3 and 15 nodes for each one of these anal-
yses (except for the one that assesses the reliability with respect to the number
of nodes itself). We selected 3 as it is the minimum number of nodes needed to
tolerate a fault that prevents one of them from communicating. Additionally, we
consider 15 nodes, since this is the typical average number of nodes of an in-vehicle
CAN subnetwork, e.g. in the body network of a vehicle [BHN07].

Finally notice that as stated before, all dependability parameters were deter-

10.9 Quantitative assessment 191

mined, and options taken, with specific care not to favor CANcentrate. Moreover,
we have not even considered some potential dependability advantages of stars,
such as for example its resilience to spatial proximity failures. This means that
the results herein presented are likely to be lower bounds to the system reliability
achievable with CANcentrate.

10.9.1 NFT/AR vs number of nodes

As explained in Section 10.2, since CANcentrate includes more hardware than
a CAN bus to interconnect the same number or nodes, it is expected that CAN-
centrate reduces the system NFT/AR when compared with the bus. Figure 10.18
quantitatively corroborates this intuitive idea. It shows the NFT/AR of a system
that relies on CAN and of an equivalent system that relies on CANcentrate for dif-
ferent number of nodes (from 3 to 20). As already said, 3 is the minimum number
of nodes needed to tolerate a fault that prevents one of them from communicat-
ing. Besides this minimum, we consider a maximum of 20, which is the typical
maximum number of nodes of an in-vehicle CAN subnetwork [Pau04]. For in-
stance, [BHN07] considers up to 20 nodes3 when presenting NETCARBENCH,
one of the most recent benchmarks devoted to assessing in-vehicle communication
networks.

As depicted in Figure 10.18, the CAN bus is more reliable than CANcentrate
for any number of nodes. This is an expected result given the extra hardware of
CANcentrate with respect to CAN and the fact that an NFT/A system cannot bene-
fit from the error-containment provided by a simplex star topology. If we focus on
the achievable mission times, we see that the reduction provoked by CANcentrate
remains almost constant for any number of nodes (around the 35%). For instance,
for 3 nodes, a system that relies on CAN and an equivalent system that relies on
CANcentrate presents an NFT/AR ≥ 0.99999 during 0.63 and 0.41 hours respec-
tively.

Finally, Figure 10.18 also indicates that a system that relies on CAN or CAN-
centrate only achieves some minutes of mission time; a value that is quite far from
the 10 hours required by the least demanding x-by-wire systems. Nevertheless, it
is worth noting that the system does not show this poor reliability as a consequence
of using CAN or CANcentrate as the underlying communication infrastructure.
In fact, the NFT/AR does not only reflect the dependability properties of the net-
work, but also the reliability of the nodes themselves, which are the least reliable

3To be more specific, a node in an in-vehicle network is basically constituted by an Electronic
Control Unit (ECU)

192 Chapter 10. Reliability evaluation of CANcentrate

0 0.5 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
0.999988

0.999990

0.999992

0.999994

0.999996

0.999998

1

N
FT

/A
R

Hours

bus 3 nodes
bus 4 nodes
bus 8 nodes
bus 12 nodes
bus 16 nodes
bus 20 nodes
CANcentrate 3 nodes
CANcentrate 4 nodes
CANcentrate 8 nodes
CANcentrate 12 nodes
CANcentrate 16 nodes
CANcentrate 20 nodes

Figure 10.18: NFT/AR vs number of nodes

elements of the system. This means that a system appropriate for x-by-wire ap-
plications should be provided with additional mechanisms or better components to
increase the reliability of the nodes themselves and/or of the hub. Another option
would be to include mechanisms at the system level in order to tolerate the failure
or the disconnection of nodes. If this last option is chosen, then the FT/ARk is the
appropriate metric for measuring the reliability of the resultant FT/A system.

10.9.2 FT/AR1 vs number of nodes

Although using CANcentrate implies a loss of system NFT/AR when compared
with CAN, its hub can yield error-containment benefits. This is specially valuable
for improving the reliability of any system that can continue delivering its service
even when not all nodes can communicate, i.e of any FT/A system. As explained
before, we use the fault-tolerant/accepting system reliability (FT/ARk), i.e. the
probability of not suffering a k-severe failure, for measuring the reliability of these
systems. More specifically, notice that here and in the rest of sensitivity analyses,
we assess the FT/AR for k = 1 (FT/AR1), i.e. we measure the reliability of systems

10.9 Quantitative assessment 193

0 1 2 3 4 5 6 7 8
0.999988

0.999990

0.999992

0.999994

0.999996

0.999998

1

FT
/A

R
1

Hours

bus 3 nodes
bus 4 nodes
bus 8 nodes
bus 12 nodes
bus 16 nodes
bus 20 nodes
CANcentrate 3 nodes
CANcentrate 4 nodes
CANcentrate 8 nodes
CANcentrate 12 nodes
CANcentrate 16 nodes
CANcentrate 20 nodes

Figure 10.19: FT/AR1 vs number of nodes

that are robust to the loss of communication with at most 1 out of N nodes. As
already said in Section 10.2, we choose this value for k, since it is the case that
least reflects the benefits of CANcentrate.

Figure 10.19 depicts the FT/AR1 of a system relying on CAN and of an equiv-
alent system that relies on CANcentrate for different numbers of nodes. Results
are, to some extent, the opposite of what we obtained for the NFT/AR. CANcen-
trate is better than CAN for any number of nodes. For instance, the mission times
yielded by CAN and CANcentrate are, respectively, 6.2 and 7.6 hours for 3 nodes,
as well as 1.0 and 3.6 hours for 20. This corroborates that reliability of FT/A sys-
tems can be improved by means of the enhanced error-containment of a simplex
star. Moreover, a higher number of nodes implies a bigger difference between the
mission time achievable with CAN and CANcentrate. For instance, from the just
mentioned mission times it can be seen that CANcentrate improves the mission
time of CAN around the 22% and the 260% for 3 and 20 nodes respectively.

Notice that these results demonstrate that the CAN bus is much more sensitive
than CANcentrate to the number of nodes. Actually, this greater sensitivity of

194 Chapter 10. Reliability evaluation of CANcentrate

the CAN bus is also reflected on the fact that, when the number of nodes is high
enough, CANcentrate exhibits the same or a greater FT/AR than CAN even when
the bus includes fewer nodes than the star. For instance, a system provided with 20
nodes that relies on CANcentrate reaches a higher mission time than a system that
includes 8 nodes and that relies on CAN. This means that CANcentrate supports an
increase in the number of nodes that can be included in the network while ensuring
an FT/AR1 ≥ 0.99999 during a given mission time (an increase of the quantity of
nodes of more than the 150% in the example just mentioned).

Finally, notice that the mission times provided by CAN and CANcentrate are
still quite low when compared with the requirements of the least demanding x-
by-wire systems. However, as it was explained in the previous section for the
case of the NFT/AR, this result does not mean that the reliability of these two
networks cannot be further improved. Additional fault-tolerance mechanisms, can
be included to enhance the nodes and the hub reliability, e.g. the nodes and the
hub could be provided with internal redundancy. Moreover, the reliability of the
components can be also improved, since we are currently considering the lowest
quality for them, i.e. a commercial quality level (see Section 10.4.3).

10.9.3 FT/AR1 vs system fault-tolerance coverage

As explained in Sections 2.4 and 10.4.5, the dependability of a system is extremely
sensitive to the coverage of its fault-tolerance mechanisms. Therefore, it is impor-
tant to assess how these coverages affect the reliability of a system that relies on
CAN and of an equivalent system that relies on CANcentrate.

In particular, as indicated in Section 10.4.5, we have to differentiate between the
fault-tolerance capacities of the system itself and the fault-tolerance mechanisms of
the communication subsystem (CAN or CANcentrate) it relies on. Current section
addresses the coverage of the firstly mentioned capacities, whereas the coverages
of the other ones will be addressed later in Sections 10.9.4 and 10.9.5.

When we talk about the fault-tolerance capacities of the system itself we are
referring to the ability of an FT/A system to accept or tolerate the failure or the
disconnection of a node. More specifically, in order to characterize this ability we
proposed a fault-tolerance coverage we call sysFauTolCov. This coverage was in-
troduced in Section 10.4.5 and we formally defined it as the probability with which
an FT/A system accepts or tolerates the failure or disconnection of a new node, pro-
vided that the number of nodes that have failed or that have become disconnected
so far (including the new one) does not exceed the value of k.

Notice that we are considering FT/A systems that are able to accept the failure

10.9 Quantitative assessment 195

0 1 2 3 4 5 6 7 8
0.999988

0.999990

0.999992

0.999994

0.999996

0.999998

1

FT
/A

R
1

Hours

bus 100% sysFauTolCov
bus 99.99% sysFauTolCov
bus 99% sysFauTolCov
bus 97% sysFauTolCov
bus 96% sysFauTolCov
bus 70% sysFauTolCov
CANcentrate 100% sysFauTolCov
CANcentrate 99.99% sysFauTolCov
CANcentrate 99% sysFauTolCov
CANcentrate 97% sysFauTolCov
CANcentrate 96% sysFauTolCov
CANcentrate 70% sysFauTolCov

Figure 10.20: FT/AR1 vs system’ fault-tolerance coverage for 3 nodes

or disconnection of up to k = 1 of N nodes. Therefore, sysFauTolCov can be
understood here as the probability with which an FT/A system actually accepts
or tolerates that one node fails or becomes disconnected, provided that this FT/A
system can potentially do that.

We proposed a default value for this coverage of 100%. As also explained in Sec-
tion 10.4.5, this value is the one that appropriately characterizes all FT/A systems
that intrinsically do not require that all nodes operate and communicate. Moreover,
this default value is also well suited for an important quantity of FT/A systems that
deliberately include mechanisms to tolerate the failure or disconnection of a given
number of nodes. This is the case of highly-reliable systems, which explicitly in-
clude fault-tolerance mechanisms whose coverages range from 99% up to virtually
100%.

However, there are FT/A systems that do not achieve such a high fault-tolerance
coverage and, hence, it is necessary to quantify what is the minimum value of this
coverage that should be guaranteed in order to improve the system reliability by
means of a simplex star topology such as CANcentrate.

196 Chapter 10. Reliability evaluation of CANcentrate

0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25
0.999988

0.999990

0.999992

0.999994

0.999996

0.999998

1

FT
/A

R
1

Hours

bus 100% sysFauTolCov
bus 99.99% sysFauTolCov
bus 99% sysFauTolCov
bus 98% sysFauTolCov
bus 90% sysFauTolCov
bus 80% sysFauTolCov
CANcentrate 100% sysFauTolCov
CANcentrate 99.99% sysFauTolCov
CANcentrate 99% sysFauTolCov
CANcentrate 98% sysFauTolCov
CANcentrate 90% sysFauTolCov
CANcentrate 80% sysFauTolCov

Figure 10.21: FT/AR1 vs system’ fault-tolerance coverage for 15 nodes

Figure 10.20 shows the FT/AR1 of a system relying on a CAN bus and on CAN-
centrate for different values of sysFauTolCov when 3 nodes are considered. The
first aspect that can be seen is that the FT/AR1 is very sensitive to this coverage.
However, it is important to highlight that it is not necessary to attain a sysFauTol-
Cov greater than 99.99, since the FT/AR1 that is obtained with this value is equal to
the FT/AR1 achieved with a sysFauTolCov of 100%. This last result means that a
simplex star topology achieves its maximum potential for a typical highly-reliable
system such as, for example, the Self-Repairing Flight Control System (SRFCS) of
a military aircraft, which is able to achieve fault-tolerance coverages of the order
of 99.99% and 99.9992% [Wu02].

Another important result observed in Figure 10.20 is that the minimum sysFau-
TolCov that must be accomplished in order to take profit from the error-containment
capabilities of CANcentrate is around 97%. Certainly, this threshold is quite lower
than the typical fault-tolerance coverage of highly-reliable systems. But it is still
high enough to compel designers to devise sufficiently efficient fault-tolerance
mechanisms, if they want to use a simplex star topology for improving the reli-
ability of an FT/A system.

10.9 Quantitative assessment 197

These results become slightly different if we consider a bigger system, e.g. a
system that includes 15 nodes. As can be seen in Figure 10.21, the minimum
sysFauTolCov for which CANcentrate improves the system reliability (FT/AR1)
decreases down to the 90%. This low threshold indicates that when an average
number of nodes is considered, a simplex star topology improves the reliability of
not only highly-reliable FT/A systems, but also of almost every FT/A system.

10.9.4 FT/AR1 vs fail-silent node proportion

Previous section analyzed the FT/AR1 of the system with respect to the coverage
of the fault-tolerance mechanisms of the system itself. The current and the fol-
lowing section assess the FT/AR1 of the system depending on the coverages of the
fault-tolerance mechanisms of the communication subsystem. More specifically,
they evaluate the FT/AR1 with respect to the effectiveness of the error-containment
mechanisms implemented at each CAN controller and of the mechanisms the hub
is provided with.

As concerns the error-containment mechanisms of the CAN controller, notice
again that they are devoted to containing errors generated by faults occurring at
the node it is located at, i.e. ocurring at the Controller itself and at the Node IOs.
Moreover, the CAN controller can also contain errors it receives from faults affect-
ing its local connection to the star (see Section 10.4.5). In this section we focus on
the ability of the CAN controller to contain errors generated by faults happening
at the node itself (at the Controller and at the Node IOs entities), so that, in the
rest of this section, we refer to the capacity of the CAN controller to contain errors
as the ability of the CAN node to fail in a fail-silent way, i.e. to fail by transmit-
ting a stuck-at-recessive stream. By extension, we refer to the analysis carried out
in this section as the sensitivity analysis with respect to the fail-silent node (FS)
proportion.

In Section 10.4.5 we characterized the error-containment capacity of the CAN
controller by means of several coverages: nodeIOInFauProp, ctrlItselfIsoCov and
ctrlFlipCov (see Table 10.4, which gathers the default values we have proposed
for them). Thus, it is possible to obtain different values of the FS proportion by
varying the value of these coverages. This strategy is depicted in Table 10.1, which
shows the correspondence between different values of the CAN controller’s error-
containment coverages and the FS proportion. It is noteworthy that the default
values of the CAN controller’s error-containment coverages imply that, so far, we
were considering that the proportion with which the node fails exhibiting a fail-
silent behavior is around 91.4%. This proportion is maybe slightly overestimated,
and thus biased in favor of the CAN bus.

198 Chapter 10. Reliability evaluation of CANcentrate

ctrlItselfIsoCov ctrlFlipCov nodeIOInFauProp FS (%)
0.00 0.00 0.00 83.30

0.40 0.77 0.50 90.00

0.50 0.85 0.50 91.00

0.60 0.90 0.50 92.00

0.70 0.95 0.50 93.00

0.80 0.99 0.50 94.00

0.92 1.00 0.50 95.00

1.00 1.00 0.54 96.00

1.00 1.00 0.65 97.00

1.00 1.00 0.77 98.00

1.00 1.00 0.89 99.00

1.00 1.00 1.00 100.0

Table 10.1: FS proportion as a function of the node’s error-containment coverages

Figure 10.22 depicts the sensitivity of the FT/AR1 with respect to the FS pro-
portion when 3 nodes are considered. Note, again, that this is the number of
nodes most unfavorable to CANcentrate whose relative advantages over the bus
get stronger with increasing number of nodes. The legend specifies (as a percent-
age) the approximate value of the FS proportion.

The figure shows that when the FS proportion is 100%, the CAN bus is better
than CANcentrate. This was obviously expected since with such a proportion the
fault-treatment mechanisms of the hub become irrelevant. However, it can be seen
that a drop in the proportion of silent faults dramatically affects the FT/AR1 of
a system that relies on the CAN bus, but not the FT/AR1 of a system relying on
CANcentrate. Specifically, Figure 10.22 shows that a CAN-based system reaches
a lower mission time that an equivalent system that relies on CANcentrate when
the FS proportion is equal or lower than the 93% approximately.

In fact, Figure 10.22 shows that the FT/AR1 of a CANcentrate-based system
seems to be almost insensitive to the FS proportion. For instance, a CAN-based
system achieves a mission time of 36.0 and 5.4 hours when the FS proportion is
of the 100% and of the 90% respectively, whereas a CANcentrate-based system
achieves 7.7 and 7.5 hours respectively for these same FS proportions. This means
that when the FS proportion is decreased from the 100% to the 90%, the mission
time is reduced around the 85% with CAN and only around the 3% with CANcen-
trate. The lower sensitivity of the FT/AR1 of a CANcentrate-based system when
compared with an equivalent CAN-based one relies on the fact that the hub is able
to isolate faulty nodes that are not able to isolate themselves, whereas in the CAN

10.9 Quantitative assessment 199

0 1 2 3 4 5 6 7 8 9 10
0.999988

0.999990

0.999992

0.999994

0.999996

0.999998

1

FT
/A

R
1

Hours

bus 100% FS
bus 94% FS
bus 93% FS
bus 90% FS
CANcentrate 100% FS
CANcentrate 94% FS
CANcentrate 93% FS
CANcentrate 90% FS

Figure 10.22: FT/AR1 vs fail-silent node proportion for 3 nodes

bus a non fail-silent node inevitably provokes a severe failure.

Figure 10.23 depicts the FT/AR1 of a system that relies on CAN and of an equiv-
alent system relying on CANcentrate with respect to the FS proportion, but con-
sidering 15 nodes. As indicated before, 15 is the typical number of nodes of an
in-vehicle CAN subnetwork. In general terms, the results are equivalent to those
depicted in the previous figure. On the one hand, Figure 10.23 further demon-
strates that the FT/AR1 of a CAN-based system is more sensitive than the FT/AR1

of an equivalent CANcentrate-based one, even when the system includes an aver-
age number of nodes. For instance, the achievable mission time of a CAN-based
system is around 12.0 and 1.1 hours when the FS proportion is of the 100% and of
the 90% respectively, whereas a CANcentrate-based system achieves 4.3 and 3.9
hours respectively. This means that the mission time is reduced around the 91%
with CAN and only around the 9% with CANcentrate when the FS proportion is
decreased from the 100% to the 90%. Also notice that the sensitivity of FT/AR1

with respect to the FS proportion increases with the number of nodes in both a
CAN-based and a CANcentrate-based system (although this increase in terms of
sensitivity is slightly bigger when using CANcentrate).

200 Chapter 10. Reliability evaluation of CANcentrate

0 1 2 3 4 5 6 7 8 9 10 11 12
0.999988

0.999990

0.999992

0.999994

0.999996

0.999998

1

FT
/A

R
1

Hours

bus 100% FS
bus 99% FS
bus 98% FS
bus 90% FS
CANcentrate 100% FS
CANcentrate 99% FS
CANcentrate 98% FS
CANcentrate 90% FS

Figure 10.23: FT/AR1 vs fail-silent node proportion for 15 nodes

On the other hand, Figure 10.23 reinforces the idea about the fact that the benefits
that CANcentrate yields in terms of system FT/AR1 are bigger as the number of
nodes grows. In particular, Figure 10.23 shows that, when 15 nodes are considered,
it is enough that the FS proportion of nodes drops to around the 98% to turn a CAN-
based system worse than an equivalent CANcentrate-based one.

Finally, it is important to highlight that the analyses presented in this section are
important not only because the real value of the FS proportion is unknown and,
thus, a fair comparison between CAN and CANcentrate requires a sensitivity anal-
ysis with respect to it. In contrast, this analysis is also interesting to estimate the
relevance of using star topologies in communication protocols in general, depend-
ing on the ability of nodes to contain their own errors.

In particular, note that this section’s results constitute a preliminary assessment
of the system reliability benefits that can be achieved with a CANcentrate star,
when compared with a CAN bus where the fail silent behavior of each node is
enforced by a dedicated bus guardian. See Section 4.4 for an explanation on the
use of bus guardians to improve dependability. Specifically, notice that the above

10.9 Quantitative assessment 201

results are obtained without taking into account the failure rate of the bus guardian
in the estimation of the node failure rate. This implies that the reliability we are
considering for the nodes is more optimistic as the FS proportion increases, since it
is expected that the complexity (and thus the failure rate) of the bus guardian itself
increases with its effectiveness. Therefore, a future comparison of CANcentrate
and bus guardians should consider this fact in addition to other bus guardian’s
limitations such as spatial-proximity and common-mode failures.

10.9.5 FT/AR1 vs bit-flipping coverage of the hub

As pointed out above, it is also necessary to assess the sensitivity of the FT/AR1

with respect to the coverage of the error-containment mechanisms the hub of CAN-
centrate is provided with.

The default values we have considered so far for the coverages that characterize
these mechanisms are explained in Section 10.4.5. On the one hand, we consider
that the hub can contain a stuck-at stream at any of its ports with a perfect cover-
age. As already explained in the mentioned section, this assumption is completely
realistic and, therefore, there is no need to perform a sensitivity analysis with re-
spect to this coverage. On the other hand, we suppose that the hub can detect and
isolate bit-flipping streams at any of its ports with a 95% coverage (see parameter
flipLnkCov of Table 10.6). However, as also indicated in that section, the real value
of this coverage is unknown and a coverage of 95% is maybe underestimated for
CANcentrate. In particular, notice again that we assumed the same default value for
the coverage with which the CAN controller diagnoses a bit-flipping fault, i.e. the
default value of the parameter ctrlFlipCov is also 95%. This is detrimental for
CANcentrate, because the error-detection and fault-diagnosis mechanisms of the
hub are more efficient than the ones included in a CAN controller (see Section 8.3
for more details concerning this issue).

In order to asses how the bit-flipping coverage of the hub determines the achiev-
able FT/AR1 of a system that relies on CANcentrate, we measure the FT/AR1 of
such a system for different values of the parameter that specifies this coverage: the
flipLnkCov (see Table 10.6). We do not only assess the FT/AR1 when flipLnkCov
is greater than 95%, but also when the value of flipLnkCov decreases.

Figure 10.24 shows the FT/AR1 of a CANcentrate-based system provided with
3 nodes for different values of flipLnkCov, which are indicated in the legend as
percentages. Notice that, as a reference, the figure also shows the FT/AR1 of an
equivalent system relying on the CAN bus. Results indicate that the FT/AR1 of
a system that relies on CANcentrate is quite sensitive to the value of flipLnkCov.

202 Chapter 10. Reliability evaluation of CANcentrate

0 1 2 3 4 5 6 7 8 9
0.999988

0.999990

0.999992

0.999994

0.999996

0.999998

1

FT
/A

R
1

Hours

CAN bus
CANcentrate 100% flipLnkCov
CANcentrate 99% flipLnkCov
CANcentrate 95% flipLnkCov
CANcentrate 90% flipLnkCov
CANcentrate 80% flipLnkCov
CANcentrate 0% flipLnkCov

Figure 10.24: FT/AR1 vs bit-flipping coverage of the hub for 3 nodes

However the implications of this fact are a bit subtle. Results suggest that the
bit-flipping coverage the hub must provide in order to improve the FT/AR1 when
compared with the CAN bus is not too high. Specifically, notice that CANcentrate
yields a worse mission time than the CAN bus only if flipLnkCov is lower or equal
to 80%. Moreover, results also indicate that it is not so important to achieve a
perfect coverage, which in turn is a practical impossibility. As can be seen in
Figure 10.24, the mission time a system can achieve with a CANcentrate network
whose hub provides a perfect bit-flipping coverage can be almost attained if this
coverage is of the 99%.

Anyway, it is noteworthy that these results are based on the assumption that
bit-flipping faults represent only a third of the faults that manifest in a way that
is included in our fault model. This means that the sensitivity of the FT/AR1 of
CANcentrate should be greater as the proportion of bit-flipping faults increases.

Figure 10.25 shows the results when 15 nodes are considered. In this case, the
results are slightly different. On the one hand, it is necessary that flipLnkCov drops
down to the 45% in order to make a CANcentrate-based system worse than an

10.9 Quantitative assessment 203

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
0.999988

0.999990

0.999992

0.999994

0.999996

0.999998

1

FT
/A

R
1

Hours

CAN bus
CANcentrate 100% flipLnkCov
CANcentrate 99% flipLnkCov
CANcentrate 95% flipLnkCov
CANcentrate 50% flipLnkCov
CANcentrate 45% flipLnkCov
CANcentrate 0% flipLnkCov

Figure 10.25: FT/AR1 vs bit-flipping coverage of the hub for 15 nodes

equivalent CAN-based one in terms of mission time. This further supports the
idea about the fact that the benefits of CANcentrate increase with the number of
nodes; since for an average number of nodes, e.g. 15, the star is better than the bus
even if the error-containment mechanisms of its hub are not very efficient. On the
other hand, notice that the difference of mission time between the case in which
flipLnkCov is 99% and the case in which it is 100% slightly increases when com-
pared with what is depicted in Figure 10.24. This means that the sensitivity of the
FT/AR1 (with respect to flipLnkCov) of a system that relies on CANcentrate grows
with the number of nodes. This is a quite predictable result, since the probability
of fault occurrences, and hence of non-covered faults, increases with the number
of nodes.

10.9.6 FT/AR1 vs bit-flipping proportion

Besides the error-containment coverages, there are also other parameters for which
we have assumed approximate, but intuitive values: the proportion of the different
failure modes that are within our fault model. Therefore, it is important to carry

204 Chapter 10. Reliability evaluation of CANcentrate

out a sensitivity analysis of the FT/AR1 of a system that relies on CAN and on
an equivalent system relying on CANcentrate with respect to these failure modes’
proportions.

What is important in this analysis is to study how the achievable FT/AR1 is
affected by the proportion of the failure modes that are more harmful to the com-
munication among the nodes. This is because, from an intuitive point of view, the
advantages of the star become stronger as the proportion of these faults increase.
For instance, in Section 10.9.4 it has been just demonstrated that the benefits of
CANcentrate decrease as the proportion of fail-silent node failures increases. In
this sense, notice that among all the failure modes that are within our fault model,
bit-flipping failures are the most harmful ones, since neither the CAN controller
nor the hub can provide a perfect error-containment coverage for them. Therefore,
here we perform a sensitivity analysis with respect to the proportion of bit-flipping
faults, while assuming that the rest of failure modes that are within our fault model
are equiprobable.

Parameter Value
nodeIOOfmProp 0.0

nodeIOStrProp 0.40

nodeIOStdProp 0.40

nodeIOFlipProp 0.20

termOfmProp 0.00

termStrProp 0.40

termStdProp 0.40

termFlipProp 0.20

termLossProp 0.0

ctrlOfmProp 0.00

ctrlStrProp 0.70

ctrlStdProp 0.20

ctrlFlipProp 0.10

Table 10.2: 20% bit-flipping proportion sensitivity analysis configuration

Table 10.2 illustrates how the parameters that specify the failure mode propor-
tions of the entities have been varied to perform this analysis. Specifically, this
table shows, as an example, the failure mode proportions of the Node IO, the Ter-
mination and the Controller when the FT/AR1 is assessed for a 20% of bit-flipping
faults.

The Node IO is an example of entity that can exhibit three different failure modes
included in our fault model: stuck-at-recessive, stuck-at-dominant and bit-flipping.

10.9 Quantitative assessment 205

For this type of entities, the proportion of bit-flipping failures is specified as the
20% and the proportion of stuck-at-recessive and stuck-at-dominant faults are cal-
culated as (1.0 − 0.20) · 1

2
= 0.40; which means that one half of Node IO’s non-

bit-flipping faults that are within our fault model manifest as stuck-at-recessive,
whereas the other half manifest as stuck-at-dominant.

The Termination is an example of entity that can exhibit four failure modes in-
cluded in our fault model: a stuck-at-recessive, a stuck-at-dominant, a bit-flipping
and a Termination loss. The proportion of the first three failure modes are speci-
fied as in the case of the Node IO. On the other hand, notice from Table 10.2 that
the parameter that specifies the proportion with which a Termination fails by lead-
ing the medium to loss that termination is specified as the 0%. This is because,
as explained in Section 5.2, a Termination loss indirectly compels the medium to
become bit-flipping. This line of reasoning is also applied to the case of the Attach-
ment entity, so that the proportion with which it suffers from a physical disruption
is also specified as the 0%.

As regards the Controller, notice that it is a type of entity that is different from
the others, in the sense that the parameters that specify its failure modes’ propor-
tions must be calculated taking into account that faults affecting some of its internal
modules cannot manifest as bit-flipping, but can only lead the Controller to trans-
mit a stuck-at stream (see Section 10.4.4). In fact, this is the reason why the de-
fault proportions of stuck-at-recessive, stuck-at-dominant and bit-flipping failures
are not equiprobable in the case of the Controller (see Table 10.4). In particular,
Table 10.2 shows the resultant Controller’s failure mode proportions when it is
considered that the internal modules of the CAN controller that can provoke a bit-
flipping failure do manifest it with a probability of the 20%. For instance, following
the indications of Section10.4.4, the proportion with which the Controller exhibits
a stuck-at-recessive fault (the value of the parameter ctrlStrProp) is calculated as:
4

8
+ 4

8
· 0.20 = 0.70.

At this point and before continuing, it is important to highlight again that we still
assume that when a Node Core exhibits a failure mode included in our fault model,
this failure mode is stuck-at-recessive.

Figure 10.26 shows the FT/AR1 of a system that relies on CAN and of an equiv-
alent system that relies on CANcentrate when 3 nodes are considered. As can be
seen there, the FT/AR1 of a CAN-based system is more sensitive than the FT/AR1

of a CANcentrate-based one to the proportion of bit-flipping faults, i.e. to the flip
proportion. For instance, a CAN-based system achieves a mission time of 8 and
4.3 hours when the flip prop is of the 0% and of the 100% respectively, whereas a
CANcentrate-based system achieves 8.3 and 6.6 hours respectively for these same

206 Chapter 10. Reliability evaluation of CANcentrate

0 1 2 3 4 5 6 7 8 9
0.999988

0.999990

0.999992

0.999994

0.999996

0.999998

1

FT
/A

R
1

Hours

CAN bus 0% flip prop
CAN bus 25% flip prop
CAN bus 50% flip prop
CAN bus 75% flip prop
CAN bus 100% flip prop
CANcentrate 0% flip prop
CANcentrate 25% flip prop
CANcentrate 50% flip prop
CANcentrate 75% flip prop
CANcentrate 100% flip prop

Figure 10.26: FT/AR1 vs bit-flipping proportion for 3 nodes

proportions. This means that when the flip prop is increased from the 0% to the
100%, the mission time is reduced around the 46% with CAN and around the 20%
with CANcentrate. Another example that illustrates the bigger sensitivity of the
FT/AR1 of the CAN bus with respect to the flip prop is the fact that the mission
time achievable with a CANcentrate star where the flip proportion is of the 100%
is slightly better than the mission time achievable with a CAN bus where such
proportion is only of the 25%.

To better understand these results, notice that although we assume that the CAN
controller and the hub can diagnose bit-flipping faults with the same coverage, i.e.
with a 95% of effectiveness, the CAN controller is not always able to isolate such
a type of fault. For instance, when the CAN controller diagnoses a bit-flipping
fault in its transceiver, it cannot contain it if such a fault compels the transceiver
to directly deliver bit-flipping bits to the medium. In contrast, the hub is always
able to isolate a bit-flipping fault when it diagnoses it at any of its ports. As a
consequence, the hub can actually contain bit-flipping bits with a higher coverage
than the CAN controller and, thus, CANcentrate is more resilient to these errors.

10.9 Quantitative assessment 207

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
0.999988

0.999990

0.999992

0.999994

0.999996

0.999998

1

FT
/A

R
1

Hours

CAN bus 0% flip prop
CAN bus 25% flip prop
CAN bus 50% flip prop
CAN bus 75% flip prop
CAN bus 100% flip prop
CANcentrate 0% flip prop
CANcentrate 25% flip prop
CANcentrate 50% flip prop
CANcentrate 75% flip prop
CANcentrate 100% flip prop

Figure 10.27: FT/AR1 vs bit-flipping proportion for 15 nodes

Figure 10.27 analyzes the FT/AR1 of a system relying on CAN and of an equiv-
alent system that relies on CANcentrate with respect to the flip proportion for
15 nodes. Following the first example mentioned before, a CAN-based system
achieves a mission time of 1.7 and 0.9 hours when the flip prop is of the 0% and
of the 100% respectively, which implies a reduction of mission time around the
47%. This indicates that the sensitivity of the FT/AR1 of a CAN-based system
with respect to the flip prop remains almost constant for any number of nodes.

In contrast, if we analyze the case of an equivalent CANcentrate-based system,
we can observe that its mission time is reduced by 44%: from 5.2 hours with a flip
prop of the 0% down to 2.9 hours with a flip prop of the 100%. This means that the
sensitivity of the FT/AR1 of a CANcentrate-based system with respect to flip prop
increases as the number of nodes grows. However, results also indicate that this
bigger sensitivity of the star is compensated by the stronger benefits CANcentrate
yields with an increasing number of nodes. For example, Figure 10.27 shows that
a CAN-based system with a 0% of bit-flipping faults achieves a lower mission time
than an equivalent CANcentrate-based system in which the flip proportion is of the
100%.

208 Chapter 10. Reliability evaluation of CANcentrate

Finally, note that it would be also interesting to study how the proportion of the
other failure modes that are included in our fault model affect the FT/AR1 that can
be achieved with CAN and CANcentrate. For instance, it would be valuable to an-
alyze the FT/AR1 with respect to the proportion of stuck-at-recessive faults, which
are the ones that have the least impact on the communication on a bus topology.
Anyway, this last study concerning stuck-at-recessive faults was somehow carried
out in Section 10.9.4. This is because the nodes are the least reliable elements
of the system and, thus, to assess the FT/AR1 with respect to the fail-silent node
proportion is equivalent to analyzing the FT/AR1 with respect to the proportion of
almost all stuck-at-recessive faults that cannot prevent nodes from communicating
in a bus (note that a stuck-at-recessive bus section will block the bus).

10.9.7 FT/AR1 vs out-of-fault-model proportion

In the previous section we highlighted the necessity of performing a sensitivity
analysis of the FT/AR1 with respect to the proportion of the different failure modes.
In particular, that section focused on the proportion of the failure modes that are
included in our fault model. Conversely, this section analyzes how the proportion
of out-of-fault-model (ofm) faults affects the FT/AR1.

Notice that up to this point we have assumed that this proportion is of the 0%. As
explained in Section 10.4.4, this is necessary for assessing what would be the relia-
bility benefits of CANcentrate in systems that include the appropriate mechanisms
to deal with faults that are beyond the scope of this star. However, to evaluate the
effect of ofm failures on the system reliability is interesting, since it will determine
the importance of dealing with them, e.g. the importance of providing the system
with mechanisms for babbling-idiot faults.

In order to carry out this analysis we varied the proportion of ofm failures of
the entities that can actually fail in this way, i.e. of the entities that can fail by
generating syntactically correct frames that are erroneous from a semantic point of
view (see Section 10.4.4 for a detailed explanation of what we consider as an ofm
failure). In this sense, we only change the ofm proportions of the entities Node
Core and Controller, whereas we keep the ofm proportions of the rest of entities as
0.0. Notice that this is reasonable, since it is almost impossible that a fault affecting
any of the rest of entities, e.g. a cable, builds a syntactically correct CAN frame,
or changes some bits of a CAN frame that is being transmitted in such a way that
they remain undetected by the native error-detection mechanisms of CAN.

In order to measure the FT/AR1 for a given proportion of ofm faults, we set the
parameters that specify the proportion of this kind of fault in each entity to the

10.9 Quantitative assessment 209

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
0.999988

0.999990

0.999992

0.999994

0.999996

0.999998

1

FT
/A

R
1

Hours

CAN bus 0% ofm proportion
CAN bus 5% ofm proportion
CAN bus 10% ofm proportion
CAN bus 24% ofm proportion
CAN bus 25% ofm proportion
CANcentrate 0% ofm proportion
CANcentrate 5% ofm proportion
CANcentrate 10% ofm proportion
CANcentrate 24% ofm proportion
CANcentrate 25% ofm proportion

Figure 10.28: FT/AR1 vs ofm proportion for 3 nodes

desired proportion. For instance, if we consider that the proportion of ofm faults
is of the 20%, then the parameters nodeIOOfmProp, nodeCoreOfmProp, ctrlOfm-
Prop, etc. are set to 0.2. Then, for each entity (except for the Node Core and
the Controller), the rest of the parameters that specify the proportions of the fail-
ure modes that are within our fault model are re-calculated so that those failure
modes are equiprobable. In contrast, the proportions of the failure modes of the
Node Core and the Controller that are within our fault model are re-calculated in
a different way. Since the only type of non-ofm failures that a Node Core can ex-
hibit is a stuck-at-recessive, the parameters that establish the proportion with which
the Node Core exhibits a stuck-at-dominant or a bit-flipping failure are kept as 0.0,
whereas the parameter that specifies the proportion of stuck-at-recessive Node Core
failures, i.e. nodeCoreStrProp, is specified as 1.0−nodeCoreOfmProp. Regarding
the Controller entity, the proportions of its failure modes that are included in our
fault model are also supposed to be equiprobable. Nevertheless, the parameters that
specify the actual proportion with which a Controller exhibits a stuck-at-recessive,
a stuck-at-dominant and a bit-flipping failure are re-calculated taking into account
that some of its internal modules can only provoke a stuck-at-recessive failure. See

210 Chapter 10. Reliability evaluation of CANcentrate

Section 10.4.4 for a detailed explanation of the way in which we suppose that the
internal modules of the CAN controller actually fail.

Figure 10.28 shows the FT/AR1 of a system that relies on CAN and of an equiv-
alent system that relies on CANcentrate for different values of the proportion of
ofm faults, i.e. to the ofm proportion, when 3 nodes are considered. As can be
seen in this figure, the FT/AR1 of both a CAN-based system and an equivalent
CANcentrate-based one are very sensitive to this parameter. However, conversely
to what we observed with the proportion of bit-flipping faults, CANcentrate is
slightly more sensitive to the ofm proportion than the CAN bus. For example,
when the ofm proportion is greater than 24%, then the CANcentrate-based system
achieves a lower mission time than the CAN-based one.

To understand these results it is necessary to recall again that the nodes are
the most unreliable elements of the system. As a consequence, the benefits of
CANcentrate when compared with CAN strongly depend on the effectiveness with
which the hub isolates faults occurring at nodes. In this sense, notice that a similar
effect on the CANcentrate’s FT/AR1 was observed when we studied it with respect
to the bit-flipping coverage of the hub (see Section 10.9.5).

0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.50 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5
0.999988

0.999990

0.999992

0.999994

0.999996

0.999998

1

FT
/A

R
1

Hours

CAN bus 0% ofm proportion
CAN bus 5% ofm proportion
CAN bus 10% ofm proportion
CAN bus 25% ofm proportion
CAN bus 50% ofm proportion
CANcentrate 0% ofm proportion
CANcentrate 5% ofm proportion
CANcentrate 10% ofm proportion
CANcentrate 25% ofm proportion
CANcentrate 50% ofm proportion

Figure 10.29: FT/AR1 vs ofm proportion for 15 nodes

10.9 Quantitative assessment 211

Figure 10.29 supports those results and shows that CANcentrate becomes even
more sensitive as the number of nodes grows. Nevertheless, it shows that the
FT/AR1 of CANcentrate becomes worse than the FT/AR1 of the CAN bus only
for an ofm proportion greater than the 50%. This was somehow expected since in
previous sections we have observed that the benefits of CANcentrate over CAN are
more evident as the number of nodes grows (Section 10.9.2).

In conclusion, in order to benefit from the reliability advantages of a simplex
star topology such as CANcentrate, it can be valuable to provide the system with
mechanisms that isolate node’s faults that manifest in a semantic manner. In partic-
ular, these mechanisms should be specially effective for systems that include a low
number of nodes. However, the need for including these additional mechanisms
depends on the actual proportion of semantic failures. In this sense, this inclusion
is justified only if the proportion of semantic faults a high-enough and, thus, a study
that experimentally assessed this proportion would be very useful.

10.9.8 FT/AR1 vs wires and connectors’ failure rates

As already explained, one of the main disadvantages of using CANcentrate instead
of CAN is the fact that the star requires more hardware components than the bus
to interconnect a given ensemble of nodes, thereby increasing the probability that
faults occur and limiting the star’s reliability benefits. On the one hand, CAN-
centrate includes more quantity of hardware components per node. For instance,
the star includes extra CAN cables and connectors for implementing the Attach-
ment entities that represent the link (the uplink and the downlink) of each node.
Moreover, the star also includes, for each node, hardware for building one extra
Node IO, two Hub IOs, and four Terminations (two Terminations for the uplink
and another two Terminations for the downlink). On the other hand, the star has an
additional entity that is not present in the bus: the Hub Core.

Although this disadvantage of CANcentrate reduces the system NFT/AR when
compared with CAN, we have also seen that the better error-containment capa-
bilities of the star compensate its extra hardware and allow improving the system
FT/AR1. Thus, at this point, it raises the question of whether or not it is possible to
further improve the FT/AR1 of a star-based system by investing in the reliability of
the star’s extra components. In order to partially answer this question, this section
is devoted to carrying out a sensitivity analysis with respect to the reliability of the
CAN cables and connectors, i.e. with respect to the reliability of the Attachment
entities. We believe that it is not strictly necessary to carry out a dedicated sensi-
tivity analysis with respect to the reliability of each one of the other entities whose
amount is bigger in CANcentrate than in CAN, i.e. with respect to the reliability of

212 Chapter 10. Reliability evaluation of CANcentrate

the Node IO, the Hub IO or the Termination. Notice that the failure rates of those
entities are similar to the failure rate of an Attachment entity. Thus, the sensitivity
of the FT/AR1 with respect to the failure rate of each one of these entities can be
indirectly studied by analyzing the FT/AR1 with respect to the Attachment’s failure
rate. As concerns the Hub Core, it represents a single point of failure and, thus, to
perform a sensitivity analysis with respect to its reliability is an issue of paramount
importance that will be addressed in the next section.

Wire failure rate Connector failure rate busAttchFRate lnkAttchFRate
(failures/hour/km) (failures/hour) (failures/hour) (failures/hour)
1.00000 · 10−5 2.07774 · 10−6 4.44310 · 10−6 6.15738 · 10−6

1.00000 · 10−6 2.07774 · 10−7 4.46023 · 10−7 6.17452 · 10−7

1.00000 · 10−7 2.07774 · 10−8 4.63159 · 10−8 6.34588 · 10−8

1.00000 · 10−8 2.07774 · 10−9 6.34519 · 10−9 8.05948 · 10−9

1.00000 · 10−9 2.07774 · 10−10 2.34812 · 10−9 2.51955 · 10−9

Table 10.3: Attachments’ failure rates configuration for 15 nodes

Coming back to the point at issue, we analyze the system FT/AR1 with respect
to the reliability of the Attachment entities of CAN and CANcentrate. As already
explained, an Attachment entity includes a piece of a CAN cable (which includes
four wires), two connectors and the portion of the PCB areas where the connectors
are attached to (see Sections 10.4.1 and 10.4.2). Thus, we varied the reliability
of the Attachment entity by considering different failure rates for some of these
components. More specifically, we changed the order of magnitude of the default
failure rates of the wires and the connectors, while keeping the default PCB areas’
failure rates. Notice that the default failure rates we have considered so far for the
Attachment’s components are: 1.0 · 10−7failures/hour/km for each wire located
within a CAN cable, 2.07774 · 10−8failures/hour for each connector, and 9.52 ·

10−10failures/hour for each connector’s PCB (see Tables 10.5 and 10.6).

Table 10.3 specifies the Attachment’s failure rates we have obtained for a system
composed of 15 nodes, when considering different failure rates for the Attach-
ment’s components just mentioned. In particular, busAttchFRate specifies the fail-
ure rate of the Attachment entity that constitutes a bus section, whereas lnkAttch-
FRate is the failure rate of the Attachment entity that constitutes a link of CAN-
centrate. Note that the value of busAttchFRate depends on the number of nodes
because this number determines the length of each bus section. More specifically,
since we assume that nodes are equidistant in a bus-based system, we obtain this
length by dividing the total bus length (100 m) by the quantity of nodes minus
one (see Section 10.4.1 for a detailed explanation of the assumptions we have

10.9 Quantitative assessment 213

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
0.999988

0.999990

0.999992

0.999994

0.999996

0.999998

1

FT
/A

R
1

Hours

CAN bus 10-9 wire failure rate
CAN bus 10-8 wire failure rate
CAN bus 10-7 wire failure rate
CAN bus 10-6 wire failure rate
CAN bus 10-5 wire failure rate
CANcentrate 10-9 wire failure rate
CANcentrate 10-8 wire failure rate
CANcentrate 10-7 wire failure rate
CANcentrate 10-6 wire failure rate
CANcentrate 10-5 wire failure rate

Figure 10.30: FT/AR1 vs cable and connector’s failure rate for 3 nodes

made concerning different important implementation issues of CAN and CAN-
centrate). In particular, Table 10.3 refers to a system that includes 15 nodes, thus
the busAttchFRate’s values this table specifies are calculated supposing that the
length of each bus section is of 100

15−1
meters. Similarly, the value of lnkAttchFRate

depends on the star’s diameter (100 m) and, more specifically, on the links’ length.
However, in this case, the length of each link does not depend on the number of
nodes, since we have assumed that all links have the same length and that this
length is half the diameter, i.e. 50 m. Thus, conversely to the case of busAttch-
FRate, the values of lnkAttchFRate Table 10.3 specifies are obtained assuming that
the length of a link is always of 50 m.

Figure 10.30 shows the FT/AR1 of a system that relies on CAN and of an equiv-
alent system relying on CANcentrate for the wires and connectors’ failure rates
specified in the two first columns of table 10.3, when 3 nodes are considered. For
the sake of succinctness, each element included in the legend of this figure only
specifies the order of magnitude of the wire’s failure rate. Results indicate that
a CANcentrate-based system achieves a higher FT/AR1 than an equivalent CAN-
based one for all the failure rates we have considered for the wires and connectors.

214 Chapter 10. Reliability evaluation of CANcentrate

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.999988

0.999990

0.999992

0.999994

0.999996

0.999998

1

FT
/A

R
1

Hours

CAN bus 10-9 wire failure rate
CAN bus 10-8 wire failure rate
CAN bus 10-7 wire failure rate
CAN bus 10-6 wire failure rate
CAN bus 10-5 wire failure rate
CANcentrate 10-9 wire failure rate
CANcentrate 10-8 wire failure rate
CANcentrate 10-7 wire failure rate
CANcentrate 10-6 wire failure rate
CANcentrate 10-5 wire failure rate

Figure 10.31: FT/AR1 vs cable and connector’s failure rate for 15 nodes

The figure also shows that the FT/AR1 of the CAN-based system is much more sen-
sitive to the reliability of wires and connectors than the CANcentrate-based one.
Notice that when the failure rates of the wires and connectors are lower than the
default values we have considered so far for them, only the FT/AR1 of the CAN-
based system is drastically reduced. This result indicates that the star should be the
choice when the system includes a small number of nodes and it is not possible to
use reliable-enough cables and connectors.

Furthermore, the low sensitivity of a CANcentrate-based system is also reflected
on the fact that it does not achieve a higher mission time when the order of magni-
tude of the wires and connectors’ failure rates is reduced with respect to our default
case. In contrast, the mission time of an equivalent CAN-based system can be im-
proved by around half an hour if the failure rates of the wires and connectors are
decreased in this way. This indicates that, in principle, when the system is consti-
tuted by a small amount of nodes, to use highly-reliable wires and connectors is an
issue deserving of attention when the system relies on CAN, but not when it relies
on CANcentrate.

10.9 Quantitative assessment 215

However, to try to improve the reliability of a CAN-based network by investing
in the reliability of its cables and connectors has an important practical limita-
tion. Note that it is almost impossible in practice to achieve wires and connectors’
failure rates whose orders of magnitude are lower than those we consider in the
default case, i.e. lower than 10−7 and 10−8 respectively. On the one hand, the
only wire’s failure rate considered by the MIL-HDBK standard is 1.00000 · 10−7

failures/hour/km, whereas other sources have established even higher wire’s fail-
ure rates, e.g. 1.15-1.81 · 10−6 failures/hour in [Lat05]. On the other hand, the
MIL-HDBK standard yields a connector’s failure rate of 1.03887 · 10−8 when the
highest quality level is considered for this type of component.

The second figure, Figure 10.31, qualifies part of the above remarks. Specifi-
cally, it shows that, when an average number of nodes, i.e. 15, is considered, the
FT/AR1 of a system that relies on CANcentrate becomes also very sensitive to
the wires and connectors’ failure rates. Fortunately, this sensitivity only mani-
fests when these failure rates are quite high. In particular, the improvement of the
mission time of a CANcentrate-based system that could be achieved with highly-
reliable wires and connectors is not noticeable if it is compared with the mission
time that can be attained with CANcentrate when the wires and connectors present
the default failure rates we assumed for them.

Moreover, the increased sensitivity of the CANcentrate-based system is widely
compensated by the fact that the relative FT/AR1 benefits of CANcentrate (with re-
spect to CAN) grow with the number of nodes. In this sense, notice that the mission
time reached by a CAN-based system that presents hypothetical highly-reliable
wires and connectors, e.g. wires with a failure rate of 1.0·10−9 failures/hour/km, is
lower than the mission time achieved by an equivalent CANcentrate-based system
where the reliability of those components is quite poor, e.g. where wires present a
failure rate of 1.0 · 10−5 failures/hour/km.

Finally, as mentioned at the beginning of this section, the results obtained in this
analysis can be extrapolated to the case in which we were analyzing the reliability
of other components whose amount is bigger in the star, e.g. of the components
that make up the Node IO. It is important to pay attention to this fact because, con-
versely to what happens with the wires and connectors, it is possible to decrease
the failure rate of the major part of the components that constitute the Node IO,
the Hub IO and the Termination by two orders of magnitude. Note that these enti-
ties are mainly composed of electronic components, whose reliability is specially
sensitive to the quality level. This means that to invest in the reliability of the elec-
tronic components that constitute any of these entities, e.g. in the transceivers, is
an issue deserving of attention, specially for CAN-based system.

216 Chapter 10. Reliability evaluation of CANcentrate

0 1 2 3 4 5 6 7 8 9 10 11 12
0.999988

0.999990

0.999992

0.999994

0.999996

0.999998

1

FT
/A

R
1

Hours

CAN bus
CANcentrate 0.0 hub failure rate
CANcentrate 10-8 hub failure rate
CANcentrate 10-7 hub failure rate
CANcentrate 10-6 hub failure rate
CANcentrate 10-5 hub failure rate

Figure 10.32: FT/AR1 vs hub’s failure rate for 3 nodes

10.9.9 FT/AR1 vs Hub Core failure rate

As mentioned in the previous section, to analyze the sensitivity of the FT/AR1 with
respect to the reliability of the extra components that CANcentrate presents when
compared with the CAN bus is valuable for clarifying if it is useful to invest in the
reliability of those components. In particular, the hub reliability should have a big
impact on the reliability benefits achievable with CANcentrate, since besides being
an additional hardware element present in the star, it is also a single point of failure.
As a consequence, to analyze the importance of investing in the hub reliability is
an issue deserving of special attention.

Current section aims at analyzing the sensitivity of the FT/AR1 of a CANcentrate-
based system with respect to the reliability of the Hub Core, which is the part
of the hub that actually represents the single point of failure. In order to carry
out this analysis, we vary the order of magnitude of the Hub Core’s failure rate.
For example, the default failure rate of a Hub Core that interconnects 3 nodes is
1.20843 · 10−6 failures/hour (see Table 10.6). Thus, for 3 nodes, we take into
account the following Hub Core’s failure rates: 1.20843 · 10−5, 1.20843 · 10−6,

10.9 Quantitative assessment 217

1.20843 · 10−7 and 1.20843 · 10−8. Additionally, we consider a Hub Core’s failure
rate of 0.0 failures/hour.

Figure 10.32 shows the FT/AR1 achievable by a CANcentrate-based system for
different Hub Core’s failure rates when 3 nodes are considered. It also depicts as
a reference the FT/AR1 achieved by an equivalent CAN-based system. This figure
demonstrates that the FT/AR1 of the system that relies on CANcentrate is very
sensitive to the failure rate of its Hub Core and that, hence, it is very important
to invest in its reliability. For example, if the Hub Core’s failure rate increases
in one order of magnitude with respect to our default case, i.e. from 1.20843 ·

10−6 to 1.20843 · 10−5 failures/hour, then the mission time is drastically reduced
from 7.6 to 0.9 hours approximately. In contrast, if the reliability of the Hub Core
is improved in such a way that its default failure rate is decreased in one order
of magnitude, i.e. from 1.20843 · 10−6 to 1.20843 · 10−7 failures/hour, then the
mission time is increased from 7.6 to 43 hours, which means that the mission time
is improved by 466% approximately. But the improvement could be even greater.
The figure indicates that if the Hub Core’s failure rate was around 1.20843 · 10−8

failures/hour, the CANcentrate-based system would reach a mission time of 77
hours, which would represent an improvement around the 913% when compared
with our default case.

Note that since the Hub Core is mainly constituted by an electronic component,
i.e. by the Hub Kernel, which is an IC, it is actually possible to achieve very low
failure rates for it. More specifically, it is possible to reduce the Hub Core’s failure
rate to near 1.20843·10−8 failures/hour by using components of the highest quality
for its construction, e.g. components that are typical of military applications. This
is an important result, because it means that it is feasible to achieve a mission time
near 86 hours, which is the value that would be theoretically reached with a Hub
Core’s failure rate of 0.0 failures/hour. In conclusion, when a small amount of
nodes is considered, the FT/AR1 of a CANcentrate-based system can be boosted
just by investing in the reliability of its Hub Core, while using commercial quality
levels for the rest of the star’s components.

Figure 10.33, which depicts the FT/AR1 for 15 nodes, yields similar results.
However, in this case the improvement of mission time that can be achieved by
investing in the reliability of the Hub Core is lower than in the previous study.
Specifically, the mission times that are achieved with Hub Core’s failure rates of
1.87019 · 10−6 (which is the default value for a hub that interconnects 15 nodes),
1.87019·10−7 and 1.87019·10−8 failures/hour are around 4.1, 12.8 and 15.9 hours
respectively. This means that the mission time can be approximately improved by
212% and 287% with respect to the default case. This is because the contribution
to the FT/AR1 of the reliability of the components that do not compose the Hub

218 Chapter 10. Reliability evaluation of CANcentrate

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0.999988

0.999990

0.999992

0.999994

0.999996

0.999998

1

FT
/A

R
1

Hours

CAN bus
CANcentrate 0.0 hub failure rate
CANcentrate 10-8 hub failure rate
CANcentrate 10-7 hub failure rate
CANcentrate 10-6 hub failure rate
CANcentrate 10-5 hub failure rate

Figure 10.33: FT/AR1 vs hub’s failure rate for 15 nodes

Core grows with the number of nodes and, hence, the relevance of the Hub Core
reliability decreases.

In any case, maybe it is still possible to further improve the FT/AR1 of a system
based on CANcentrate when an average number of nodes is considered, if the
reliability of components different from those that constitute the Hub Core is also
improved. In particular, given the impact that the quality has on the reliability
of electronic components, it would be interesting to analyze the system FT/AR1

when the quality of electronic components other than the Hub Kernel, such as the
microcontroller, the CAN controller, and the transceivers, is also enhanced.

10.10 Conclusions

In this chapter we quantitatively compared the reliability achieved by equivalent
systems relying on CAN and on CANcentrate when permanent hardware faults
can occur. To our best knowledge, this is the first formal (quantitative) comparison
of the system reliability that can be obtained when using a bus and a star that takes

10.10 Conclusions 219

into account the capacity of the hub and nodes to contain errors, different failure
modes of the components, and implementation aspects.

We quantified the reliability that CAN and CANcentrate can yield for two differ-
ent types of systems: non-fault-tolerant/accepting systems (NFT/A systems) and
fault-tolerant/accepting systems (FT/A systems). For this purpose, we modelled
using SANs the reliability of equivalent systems relying on CAN and on CAN-
centrate and, then, we compared their NFT/AR and their FT/AR1, i.e. their non-
fault-tolerant/accepting system reliability and their fault-tolerant/accepting system
reliability.

Besides describing our SANs models in depth, we explained the assumptions
they rely on. We showed that all these assumptions were made favoring, when-
ever possible, the CAN bus and always guaranteeing that results are not biased
towards the star. Most assumptions are reflected as model parameters, for which
we specified default values that can be considered as realistic.

Since CAN was initially designed as an in-vehicle network and there is an in-
creasing interest in enhancing its reliability to make it suitable for highly-reliable
distributed control systems, we take as a reference for the comparison, the reliabil-
ity requirements of in-vehicle communications of x-by-wire systems. In particular,
the reliability analyses herein presented focus on the mission time during which a
system that relies on CAN and of an equivalent system that relies on CANcentrate
exhibits a reliability ≥ 0.99999.

The first two analyses presented in this chapter compare the NFT/AR and the
FT/AR1 of CAN and CANcentrate for different number of nodes. We considered
from 3 up to 20 nodes, thereby embracing typical node numbers in CAN-based
body and powertrain subnetworks in vehicles. Results quantify the drawbacks and
the benefits that a simplex star topology was supposed to yield in terms of NFT/AR
and FT/AR1 respectively.

On the one hand, results show that a simplex star slightly reduces the system
NFT/AR, i.e. the reliability of NFT/A systems. However, the decrease of mission
time that CANcentrate can cause remains almost constant for any number of nodes:
around 35%.

On the other hand, as concerns the FT/AR1, results quantitatively corroborate
that it is possible to improve the reliability of FT/A systems by using CANcentrate
instead of CAN. Moreover, the improvement of mission time yielded by CANcen-
trate increases as the number of nodes grows, e.g. by 22% and 260% for 3 and 20
nodes respectively. The stronger sensitivity of the CAN bus with respect to the
number of nodes means that, when the FT/AR1 is the main concern, CANcentrate
allows the inclusion of more nodes while presenting an FT/AR1 above a specific

220 Chapter 10. Reliability evaluation of CANcentrate

threshold during a given mission time.

Besides the above-mentioned analyses, we quantitatively studied the sensitivity
of the FT/AR1 with respect to different relevant aspects, using for that purpose
different values for the parameters of the models of CAN and CANcentrate. To
our best knowledge, this is also the first time that it has been quantified how those
aspects affect the relevance of using a star topology.

In order to obtain results that are valuable for a wide range of applications, we
performed each sensitivity analysis considering that the system includes 3 and 15
nodes. On the one hand, 3 is the minimum number of nodes needed to tolerate
the failure of one of them, and it could be the number of nodes of a small highly
reliable embedded system. On the other hand, 15 is the average number of nodes
of a typical in-vehicle CAN subnetwork.

The three first sensitivity analyses are devoted to quantifying how the coverage
of different fault-tolerance mechanisms affect the system FT/AR1 achievable with
CAN and CANcentrate. In particular, we differentiated between the fault-tolerance
capacity of the FT/A system itself and the effectiveness of the error-containment
mechanisms of the communication subsystem it relies on.

As concerns the fault-tolerance ability of FT/A systems, we defined a cover-
age called sysFauTolCov, which characterizes the probability with which an FT/A
system actually accepts or tolerates the failure or the disconnection of a node, pro-
vided that the system can potentially accept or tolerate this fault. The default value
we assume for sysFauTolCov is of 100%, since this is the value that better rep-
resents the fault-tolerance capacity of FT/A systems: the ones that intrinsically
accept communication-failed nodes, as well as highly-reliable FT/A systems that
deliberately include highly-efficient fault-tolerance mechanisms. When we varied
the value of this coverage we found out that the FT/AR1 is quite sensitive to it.
However we also showed that the minimum value of sysFauTolCov that should
be attained in order improve the FT/AR1 by means of CANcentrate strongly de-
pends on the number of nodes. On the one hand, this coverage must be quite high,
around 97%, for small networks (3 nodes). This result does not negatively affect
the suitability of CANcentrate for highly-reliable FT/A systems, since they typi-
cally achieve fault-tolerance coverages ≥ 99.99%. But it highlights the necessity
of designing quite efficient fault-tolerance mechanisms in order to use CANcen-
trate for improving the reliability of non-highly-reliable FT/A systems that include
few nodes. On the other hand, for a network that includes an average number
of nodes, e.g. 15, we showed that the minimum sysFauTolCov should be around
≥ 90%. This relatively low threshold indicates that CANcentrate is appropriate for
improving the reliability of almost every medium-size FT/A system.

10.10 Conclusions 221

As regards the sensitivity of the FT/AR1 with respect to the coverage of the error-
containment mechanisms of the communication infrastructure, we firstly studied
the nodes’ ability to contain their own errors, i.e. the fail-silent node proportion.
We found out that this proportion dramatically affects the FT/AR1 yielded by CAN,
but not the FT/AR1 obtained with CANcentrate. In fact, if nodes are always able to
contain their own errors, then the CAN bus is better than CANcentrate. However, a
small decrease in the error-containment capacity of nodes provokes a strong drop in
the mission time achieved by the bus. For example, when 15 nodes are considered,
it is enough that the FS proportion of nodes drops to around the 98% to turn a
CANbased system worse than an equivalent CANcentrate-based one.

Note that the error-containment capabilities of a node are implemented by its
CAN controller. This implies that, in fact, this study quantifies the relevance of us-
ing a simplex star topology depending on the effectiveness of the error-containment
mechanisms provided by the CAN protocol. We believe that the results herein pre-
sented concerning this issue are very valuable, since there is not a real consensus
on the actual value of this effectiveness. Moreover, those results constitute a pre-
liminary assessment of the suitability of using a simplex star topology instead of
bus guardians in order to improve error-containment and thus reliability in CAN
networks.

The second analysis related to the error-containment coverage addresses the abil-
ity of the hub to contain faults that manifest as the transmission of bit-flipping bits.
Results suggest that, for a small number of nodes, it is important to guarantee a
high enough bit-flipping coverage, i.e. a coverage > 80%. However, results also
indicate that for a bigger number of nodes CANcentrate yields benefits even with
low bit-flipping coverages, e.g. until 45% for 15 nodes. Finally, another important
result obtained from this analysis is that, in principle, it is not necessary to make
a great effort to achieve a perfect bit-flipping coverage (which is actually impossi-
ble in practice). In particular, the maximum improvement that can be achieved in
terms of mission time is almost achieved with a bit-flipping coverage of 99%.

Besides these studies related to the fault-tolerance coverages, we analyzed the
sensitivity of the FT/AR1 with respect to the proportion with which faults manifest
as bit-flipping. This additional study is needed because although the default val-
ues we assumed for the component’s failure mode proportions can be considered
as realistic, they are actually intuitive. Results indicate that the CAN bus is much
more sensitive than CANcentrate to the bit-flipping proportion. This was expected
despite the fact that we assume that both the hub and the nodes detect bit-flipping
fault with the same effectiveness (which is pessimistic for CANcentrate). The rea-
son is that the hub is able to isolate bit-flipping faults that the CAN controller can
detect but not passivate. In addition, results also show that the sensitivity of the

222 Chapter 10. Reliability evaluation of CANcentrate

FT/AR1 provided by CANcentrate increases with the number of nodes, but that
this fact is compensated by the stronger reliability benefits the star yields as the
number of nodes grows. For example, for 15 nodes, CANcentrate is better than
CAN even if the bit-flipping proportion is 100% in the star and 0% in the bus.

Apart from analyzing the sensitivity of the FT/AR1 to the bit-flipping proportion,
we also assessed it for the proportion with which faults affecting the node (basically
the microcontroller and the CAN controller) manifest in a way that is not included
in our fault model (out-fault-model failures). More specifically, note that these
faults are those that generate syntactically correct frames that are erroneous from a
semantic point of view. This evaluation is interesting for assessing the importance
of providing the system with mechanisms that deal with this type of fault, e.g. with
babbling-idiot ones. Results show that CANcentrate is slightly more sensitive than
CAN. This is because the nodes are the most unreliable elements of the system
and, thus, the benefits of CANcentrate strongly depend on the effectiveness with
which it can isolate faults occurring at them. However, the need for including these
additional mechanisms is justified only if the proportion of semantic faults is high-
enough. Thus, a study that experimentally assessed this proportion would be very
useful.

The two last sensitive analyses we performed study the impact of the reliability
of the CANcentrate’s extra components on the star’s FT/AR1 benefits. Firstly, we
measured the FT/AR1 with regard to the reliability of the extra components the
star includes per node. On the one hand, results indicate that the CAN bus is very
sensitive to the reliability of those components, whereas the star is not. On the
other hand, we showed that from both, a theoretical and a practical point of view, it
is not possible to achieve a better mission time with the bus than with the star, just
by investing in the reliability of the cables and connectors.

Secondly, we analyzed the FT/AR1 with respect to the Hub Core reliability. Re-
sults confirm that the FT/AR1 achievable by CANcentrate is extremely sensitive
to this parameter. In fact, surprisingly, they show that the mission time of CAN-
centrate can be really boosted just by investing in the Hub Core reliability, e.g. by
investing in its quality. This effect is particularly noticeable in the case of a CAN-
centrate network that interconnects a small number of nodes. For instance, for 3
nodes, the mission time of CANcentrate can be improved by 913% in practice.
When more nodes are considered, the improvement in terms of mission time is
lower, e.g. around 287% for 15 nodes. This is because the contribution of the Hub
Core reliability to the reliability of the network decreases as the number of nodes
increases. As a consequence, to invest in the reliability of other network compo-
nents is necessary to really boost the mission time in those star based systems.

10.10 Conclusions 223

At this point, it is very important to highlight that the above-explained analyses
are not intended to provide absolute figures for CAN or CANcentrate, but to com-
pare the system reliability that can be achieved with both infrastructures in order
to justify the interest of using CANcentrate. In this sense, this chapter pursues the
objective of dependability evaluation, i.e. to guide the design and implementation
of a system by analyzing how different options and decisions affect its dependabil-
ity [TMGT93].

It is also worth noting that results presented in this chapter are likely to be lower
bounds to the system reliability achievable by CANcentrate, given the special con-
cern taken to ensure it was not favored in the analysis and the fact that several other
advantages, such as the minimization of the impact of spatial proximity faults, were
not even modelled, as explained in Section 10.3. Therefore, it can thus be inferred
that even in the case that our analyses should yield a result whereby the FT/AR1

of CAN is equal to the one of CANcentrate, the actual fact is that CANcentrate is
superior.

Although these results refer to the case of CAN, and other technologies, such
as TTP/C or FlexRay, deal with different failure modes, conclusions regarding the
justification of using a star topology depending on the different aspects addressed
in the sensitivity analyses can be extrapolated to these technologies. On the one
hand, they use similar components with similar failure rates. On the other hand,
failure modes can be abstracted so that what really matters is the proportion of
failures that can be covered by the hub and the nodes.

Finally, as explained in Section 10.1, although there is an increasing interest in
providing mechanisms to deal with transient faults, a reliability evaluation taking
them into account is necessarily application dependant. Therefore, transient faults
are beyond the scope of this dissertation and will be addressed in future work.

224 Chapter 10. Reliability evaluation of CANcentrate

Parameter Default value Meaning
kSevere 0 (NFT/AR), 1

(FT/AR1)
Value of k of the concept of k-severe fail-
ure.

sysFauTolCov 1.0 Coverage of the fault-tolerance mecha-
nisms of the system that relies on CAN,
CANcentrate or ReCANcentrate

ctrlFlipCov 0.95 Probability with which the CAN controller
successfully diagnoses a bit-flipping fault

ctrlItselfIsoCov 0.5 Probability with which a CAN controller
that diagnoses itself as faulty can success-
fully isolate its internal fault

nodeIOInFauProp 0.5 Proportion with which the Node IO does
not deliver errors to the medium

nodeCoreFRate 3.25312 · 10−6 Node Core failure rate
nodeCoreOfmProp 0.0 Node Core out-of-fault-model proportion
nodeCoreStrProp 1.0 Node Core stuck-at-recessive proportion
nodeCoreStdProp 0 Node Core stuck-at-dominant proportion
nodeCoreFlipProp 0 Node Core bit-flipping proportion
ctrlFRate 1.25537 · 10−6 Controller failure rate
ctrlOfmProp 0.0 Controller out-of-fault-model proportion
ctrlStrProp 0.6666 Controller stuck-at-recessive proportion
ctrlStdProp 0.1666 Controller stuck-at-dominant proportion
ctrlFlipProp 0.1666 Controller bit-flipping proportion
nodeIOFrate 6.73258 · 10−7 Node IO failure rate
nodeIOOfmProp 0.0 Node IO out-of-fault-model proportion
nodeIOStrProp 0.3333 Node IO stuck-at-recessive proportion
nodeIOStdProp 0.3333 Node IO stuck-at-dominant proportion
nodeIOFlipProp 0.3333 Node IO bit-flipping proportion
termFRate 7.38299 · 10−8 Termination failure rate
termOfmProp 0.0 Termination out-of-fault-model proportion
termStrProp 0.25 Termination stuck-at-recessive proportion
termStdProp 0.25 Termination stuck-at-dominant proportion
termFlipProp 0.25 Termination bit-flipping proportion
termLossProp 0.25 Termination loss proportion

Table 10.4: CAN bus, CANcentrate and ReCANcentrate models’ com-
mon parameters

10.10 Conclusions 225

Parameter Default value Meaning
numNodes 3, 15 Number of nodes connected to the bus.
numInSections 0, 12 Number of bus sections, except the two

ones located at the extremities of the
bus line. This parameter allows to indi-
rectly specify the total number of bus sec-
tions needed to interconnect the amount
of nodes specified by the parameter
numNodes. The total number of sections
is equal to (numInSections + 2) =
(numNodes − 1)

busAttchFRate 6.34588·10−8,
4.63159 · 10−8

Attachment failure rate when it represents
a bus section. This rate decreases with the
number of nodes, since the length of a bus
section is calculated dividing the total bus
length by the number of nodes. The first
and second default values correspond to
the failure rate of each bus section when
the bus interconnects 3 and 15 nodes re-
spectively

busAttchOfmProp 0.0 Attachment out-of-fault-model proportion
when it represents a bus section

busAttchStrProp 0.25 Attachment stuck-at-recessive proportion
when it represents a bus section

busAttchStdProp 0.25 Attachment stuck-at-dominant proportion
when it represents a bus section

busAttchFlipProp 0.25 Attachment bit-flipping proportion when it
represents a bus section

busAttchDisProp 0.25 Attachment physical disruption proportion
when it represents a bus section

Table 10.5: Parameters specific to the CAN bus model

226 Chapter 10. Reliability evaluation of CANcentrate

Parameter Default value Meaning
numBranches 3, 15 Number of star branches. In other words,

the number of nodes connected to the star.
hubCoreFRate 1.20843·10−6,

1.87019 · 10−6

Hub Core failure rate. This rate increases
with the number of nodes, since the hub
needs more hardware to connect a greater
number of them. The first and second de-
fault values correspond to the failure rate
the Hub Core for 3 and 15 nodes respec-
tively

flipLnkCov 0.95 Probability with which the hub success-
fully diagnoses a bit-flipping fault at an up-
link hub port

hubIOFRate 6.73258 · 10−7 Hub IO failure rate
hubIOOfmProp 0.0 Hub IO out-of-fault-model proportion
hubIOStrProp 0.3333 Hub IO stuck-at-recessive proportion
hubIOStdProp 0.3333 Hub IO stuck-at-dominant proportion
hubIOFlipProp 0.3333 Hub IO bit-flipping proportion
lnkAttchFRate 6.34588 · 10−8 Attachment failure rate when it represents

the uplink or the downlink of CANcentrate
lnkAttchOfmProp 0.0 Attachment out-of-fault-model proportion

when it represents the uplink or the down-
link of CANcentrate

lnkAttchStrProp 0.25 Attachment stuck-at-recessive proportion
when it represents the uplink or the down-
link of CANcentrate

lnkAttchStdProp 0.25 Attachment stuck-at-dominant proportion
when it represents the uplink or the down-
link of CANcentrate

lnkAttchFlipProp 0.25 Attachment bit-flipping proportion when it
represents the uplink or the downlink of
CANcentrate

lnkAttchDisProp 0.25 Attachment physical disruption proportion
when it represents the uplink or the down-
link of CANcentrate

Table 10.6: Parameters specific to the CANcentrate model

Chapter 11

ReCANcentrate

11.1 Introduction

Previous sections focused on the motivation, design, implementation and depend-
ability evaluation of CANcentrate. It has been explained that CANcentrate includes
enhanced error-detection and fault-treatment mechanisms that allow it to deal with
errors and to contain them at their ports of origin. Moreover, a quantitative depend-
ability analysis of a system relying on the CAN bus and of an equivalent system
based on CANcentrate demonstrates that CANcentrate can actually improve the
system reliability when compared with the second one. Specifically, it has been
shown that CANcentrate is more suited than a CAN bus for systems that accept
or tolerate the failure or the disconnection of at most 1 out of N nodes, thereby
quantitatively corroborating the advantage that the error containment capabilities
of an adequate simplex star topology intuitively yield in terms of reliability.

However, in some applications the degree of system reliability achieved by CAN-
centrate could be not enough and the presence of a single point of failure unaccept-
able. In these cases, spatial redundancy at the hub level is required so as to tolerate
permanent hub faults.

In order to provide this redundancy, we have proposed a new communication
infrastructure, called ReCANcentrate, that relies on a replicated star topology that
includes two hubs. Besides providing the same capacity of error containment as
CANcentrate, ReCANcentrate further tolerates one hub failure, as well as faults
that affect one of the connections of each node to the hubs (no matter to which
hub).

This chapter is devoted to describing ReCANcentrate. First of all, it explains the

227

228 Chapter 11. ReCANcentrate

existing main approaches for providing CAN with redundancy, paying attention to
the problems they pose and identifying their pros and cons. Then, it describes the
design, the characteristics and the functionalities of ReCANcentrate and addresses
issues related to the cabling length and the bit rate. Finally it also describes the
implementation of a ReCANcentrate prototype and the tests that were conducted
to check its functionalities and performance.

11.2 Redundancy approaches in CAN

Removing all severe points of failure from a communication system can only be
achieved with redundancy, either temporal or spatial. However, permanent commu-
nication faults, such as a physical disruption of the medium, can only be tolerated
with spatial redundancy. This can be found in several existing safety critical pro-
tocols, such as TTP [KG94], FlexRay [Fle05], or FlexCAN [PF04], which rely on
replicated media architectures.

Regardless of the specific topology, we can differentiate between two main uses
of media replication: increased throughput, when the replicated media are used
independently to transmit different data; or fault tolerance, when the replicated
media are used to transmit the same data [Bel02]. Each communication medium is
commonly referred to as channel and in this dissertation we will focus on the use
of replicated channels for fault-tolerance purposes.

The main problem of using replicated channels is that nodes must be able to
manage the redundant frames they receive. Particularly, they must determine when
two received frames are in fact copies of the same frame (duplicates), or when a
frame received from one channel is omitted from the other (omissions). Synchro-
nizing the transmission and the reception of frames across the network is a possible
solution. This synchronization is easily achieved in time-triggered protocols due to
their inherent transmission schema. In fact, each frame is expected to be transmit-
ted quasi-simultaneously in both channels at predefined time slots. Hence, removal
of duplicates and detection of omissions is done on the fly. This is the basic trans-
mission mechanism specified in protocols such as TTP and FlexRay, which provide
communication via dual channel either using a bus topology, a star topology or, in
the case of FlexRay, also using an hybrid topology.

Unfortunately, since CAN is an event-triggered protocol, it does not provide
any mechanism for synchronizing the frames in the different channels. There-
fore, additional mechanisms have been proposed in the literature to provide some
sort of synchronization, as in FlexCAN, SMART-1 [KHJN03], or the Columbus
Egg Idea [RVA99]. FlexCAN uses a strategy based on triplicated CAN buses and

11.2 Redundancy approaches in CAN 229

nodes. The nodes are coordinated by means of a software that uses timers to con-
trol the transmissions and the receptions on the channels. In [KHJN03] the CAN
network used in the lunar mission SMART-1 (Small Missions for Advanced Re-
search in technology) is described. This network includes replicated nodes and
two replicated CAN buses, one active and other inactive that is used as a spare.
Nodes detect when the active channel is faulty and then switch to the spare one,
thus there is no need of synchronization at the frame level. Finally, the Columbus
Egg Idea proposed in [RVA99] uses several CAN buses and eliminates the need of
dealing with duplicates and omissions by coupling the streams received from all
buses, at the bit level, in each node.

In principle, any of these solutions could be used to provide replicated CAN
channels while dealing with duplicates and omissions. Nonetheless, although they
provide synchronization between channels, they still rely on a bus topology, which
still has severe points of failure, e.g. nothing prevents a faulty node from continu-
ously sending erroneous information to all channels.

Instead, since CANcentrate provides improved fault-treatment capabilities with
respect to CAN buses, we decided to replicate this star in order to definitively elim-
inate all severe points of failure. Moreover, notice that CANcentrate is transparent
with respect to any application or CAN-based protocol executed at CAN nodes.
Thus, any of the replication strategies referred above could be even used for repli-
cating CANcentrate, replacing each bus by a hub.

However, we finally found out that none of them is the most suited for replicating
CANcentrate. On one hand, systems such as FlexCAN or SMART-1 rely on a quite
complex solution that increases the requirements of nodes in terms of hardware
and software. On the other hand, the approach proposed in [RVA99] would limit
the dependability features of the replicated star, as will be described later on in
Section 11.4.

Therefore, we proposed to replicate CANcentrate in a way that the resultant
infrastructure does not exhibit these limitations. We called this novel replicated star
topology ReCANcentrate. ReCANcentrate takes advantage of the dependability
properties already achieved by CANcentrate and provides nodes with an easy way
to manage the replicated star. Despite replicated stars being available for protocols
such as TTP and FlexRay, to the best of our knowledge, ReCANcentrate is the first
one for CAN.

230 Chapter 11. ReCANcentrate

11.3 Fault model of ReCANcentrate

In principle, the fault model considered by ReCANcentrate just gathers the same
kind of faults included in the fault model of CANcentrate (see Section 5.2). How-
ever, it is necessary to further discuss some aspects concerning the way in which
faults manifest in ReCANcentrate.

Firstly, note that in this chapter we will explicitly refer to network partition faults.
This is because, conversely to what happens in the case of a simplex star topology,
particular combinations of faults occurring in different ports of the two hubs of
a replicated star may lead nodes to have an inconsistent view of the nodes that
are available for communicating. Figure 11.1 depicts such a situation, showing
the failure of two different links connecting two different nodes to different hubs.
Node A can communicate with nodes B and C. However, nodes B and C cannot
communicate with each other.

Node
C

Node
B

Node
A

Hub1

Hub2 �

�

Figure 11.1: Example of a network partition in a replicated star topology

Secondly, it is noteworthy that in CANcentrate the unique fault assumption made
was that the hub would not fail. Conversely, we relax this supposition for the case
of ReCANcentrate and we consider that at most one of the hubs can fail. As a
consequence, faults may occur not only at nodes and links, but also at one of the
hubs. More specifically, note that a hub cannot build or buffer CAN frames. Thus,
we suppose that a faulty hub can only fail by generating or propagating (in case it
does not isolate a faulty port) syntactic incorrect data, i.e. stuck-at or bit-flipping
bits.

Finally, it is important to note again that ReCANcentrate is provided with mech-
anisms that allow tolerating faults affecting the components that constitute any of
the two connections of each node to the hubs. In particular, as will be seen later
on in Sections 11.4 and 11.7, each one of these two connections includes its own
CAN controller, so that the node can tolerate the failure of one of these controllers.
Because of this reason, to specify that a CAN controller’s fault manifests as the

11.4 Design rationale 231

transmission of stuck-at or bit-flipping bits is not enough. In addition, we need to
specify the way in which a faulty CAN controller manifests from its node point of
view. In this sense, the fault model of ReCANcentrate also includes the possibility
that a CAN controller crashes. If this happens, the CAN controller stops perform-
ing any action, so that it only delivers recessive bits to the network and notifies its
node about nothing (about no transmission, no reception, etc.).

11.4 Design rationale

The main architectural characteristic of ReCANcentrate is that it is constituted
by two CANcentrate hubs interconnected by means of two dedicated links called
interlinks (Figure 11.2). Nodes are connected to each hub via a link that contains
an uplink and a downlink, as in CANcentrate.

A given interlink is also formed by two sublinks used by each hub to send the
coupling of the contributions of its own nodes to the other hub. For the sake of
simplicity, we will refer to this signal as the contribution of that hub. Then, the
resulting signal that each hub broadcasts to its own nodes is the one that results
from coupling its own contribution with the contribution received from the other
hub. This coupling creates a single logical broadcast domain since both hubs be-
have like one, transmitting the same value bit by bit in their downlinks, i.e. in-bit
response [ISO93] is enforced in the whole replicated domain.

This tight coupling has deep consequences on the whole communication system.
Firstly, nodes can be either connected to both hubs, for improved fault tolerance,
or they can be connected to one hub, only. In any case, the node transmissions
will be broadcasted to all nodes. Therefore, regardless the hub or hubs a node is
connected to, all nodes will have a coherent view of which nodes are available for
communicating thus preventing network partitions to occur.

Secondly, nodes connected to both hubs receive the same frames within the same
bit time thus easily distinguish between duplicates and omissions, which is one of
the major problems when designing an event-triggered system that relies on a repli-
cated communication system. Specifically, duplicated frames are always expected
in each reception, whereas an omission can be easily detected by checking, at the
reception of each frame, that two copies of the same frame are effectively received
from both stars.

As concerns the fault-treatment capabilities of ReCANcentrate, note that each
node can be considered as two CAN nodes, each one connected to a different hub.
In such a way, a hub monitors the contribution of a CAN node, regardless the con-

232 Chapter 11. ReCANcentrate

Node
B

Uplink

Interlink Node
A

Hub
Node

C

Hub Downlink

Sublink

Figure 11.2: Architecture of ReCANcentrate

tribution the node sends to the other hub, and isolates the corresponding port when
faulty. Therefore, the fault-treatment capabilities of CANcentrate with respect to
faults occurring at nodes or links apply to the whole network by means of the ac-
tions performed by both hubs at their respective ports.

Additionally, each hub includes mechanisms for detecting and isolating faults
occurring at the interlinks. Specifically, it monitors the two sublinks, within both
interlinks, that carry the contribution from the other hub. When any of these sub-
links fails, the hub isolates it, but continues using the other one. Therefore, hubs
will communicate with each other as far as there are two non-faulty sublinks (re-
gardless the interlinks they are located in) that make possible them to interchange
bits in both directions.

Moreover, the hub also uses these mechanisms to detect and isolate a faulty hub.
Specifically, this occurs when both contributions received from the other hub are
diagnosed as being faulty. In such a way, the errors generated by the faulty hub
cannot propagate through the non-faulty hub to the nodes.

Note that despite ReCANcentrate removes all severe points of failure, the prop-
erties derived from having both hubs coupled only apply when hubs can still cor-
rectly receive the contribution from each other. Otherwise, the communication
system would be equivalent to have two independent CANcentrate stars. This still
provides a valid replicated communication system but losing most of the features
referred above. Namely, the in-bit response may be lost, the domains of each hub
may be strictly isolated from each other and then duplicates could arrive at very dif-
ferent instants in time. However, communication is still possible and thus graceful
degradation is provided.

Finally, different schemas can be used in order to connect a node to both hubs.

11.4 Design rationale 233

CAN
Controller

Txrx Txrx

Tx Rx

Uplink Downlink

CAN
Controller

Txrx Txrx

Tx Rx

Uplink Downlink

Micro
Controller

Links to hub 1 Links to hub 2

Figure 11.3: Architecture of a ReCANcentrate’s node

However, in order to provide a high degree of fault tolerance, we propose the
schema depicted in Figure 11.3. As can be seen there, each node has one mi-
crocontroller and two CAN controllers, each of which is connected to one hub,
using one transceiver (Txrx) for the uplink and another one for the downlink. A
node will only transmit using one of the CAN controllers at a given time, while
receiving from both. This selective behavior in the node transmissions can be en-
forced by several ways. For instance, each node could monitor the state of its CAN
controllers. When a given controller is not able to communicate through the hub it
is connected to, the node switches to the other controller thereby communicating
through the other hub. In Section 11.7 we will explain further details concerning
the way in which the node manages the traffic it observes at both its CAN con-
trollers.

Note that the schema shown in Figure 11.3 allows tolerating, per node, faults
that affect any of the components the node uses to connect to one of the hubs (no
matter which hub), e.g. a fault affecting one of the links of the node. Anyway, for
simplicity of implementation, it is also possible to use a mechanism similar to the
one proposed in [RVA99] to allow nodes to connect to both channels using a single
CAN controller.

Figure 11.4 depicts this alternative schema. The node is composed of one mi-
crocontroller and one CAN controller, which connects to each hub using the cor-

234 Chapter 11. ReCANcentrate

CAN
Controller

Micro
Controller

Txrx Txrx

Tx Rx

Uplink Downlink

Txrx Txrx

Tx

Uplink Downlink

Links to hub 1 Links to hub 2

Rx

R

C

R

C

Rx

Tx

EDh1 EDh2

Figure 11.4: Possible simplified architecture of a ReCANcentrate’s node

11.5 Internal structure of the hub 235

responding pair of transceivers. The transmission pin of the CAN controller is
connected to the transmission pin of the two transceivers that correspond to the
uplinks, so that the node transmits exactly the same bit stream to both hubs. Sim-
ilarly, the reception pin of each one of the two transceivers that correspond to the
downlinks are coupled by means of an AND gate, whose output is then driven into
the reception pin of the CAN controller. However, the reception signal of each one
of these two transceivers is not directly connected to the AND gate. In contrast,
each one of them is previously driven into a specific OR gate together with a dedi-
cated EDhi signal. This signal allows masking the stream received from a specific
downlink, when this stream becomes stuck-at-dominant. Specifically, the value of
an EDhi signal is basically calculated by means of a resistor / capacitor circuit
(RC circuit), whose input is the contribution of the downlink. Note that when this
contribution becomes stuck-at-dominant, the capacitor’s plate that is connected to
the inverter becomes completely discharged, so that the inverter outputs a logical
‘1’ that masks the downlink’s stream at the corresponding OR gate.

Unfortunately this approach is not recommendable when high fault tolerance is
desired. On the one hand, it does not tolerate faults that manifest as a bit-flipping
downlink. Second, note that this mechanism couples both downlinks and uplinks
at the node. Thus, since the CAN controller will send error frames through both
uplinks in response to errors it detects in any of the downlinks, both hubs will
observe these error frames at the respective uplink ports. This will likely cause
both hubs to isolate the node even when the fault only affects the connection of the
node to one of the hubs.

11.5 Internal structure of the hub

In order to replicate CANcentrate, the internal structure of the hub has been slightly
modified. As depicted in Figure 11.5, the ReCANcentrate hub continues being con-
stituted by the same three main modules as in CANcentrate: the Coupler Module,
the Input-Output and the Fault-Treatment Module.

The Coupler Module includes an additional AND gate and two additional OR
gates. The first AND gate, ANDC , plays the same role as in CANcentrate. It
couples the contributions from every node, B1..n, that is connected to the hub.
However, in this case, the output of this AND gate, i.e. the hub contribution (B0),
is not broadcasted to these nodes. Instead, it is sent to the other hub by means
of two identical contributions, B00 and B01, that are routed into different sublinks
within distinct interlinks. By sending these two copies of B0, the failure of the
sublink that carries one of them is tolerated.

236 Chapter 11. ReCANcentrate

Downlink
to a

node

Sublinks
from other

hub

Ena/Dis Ena/Dis

Tr Tr
Tr Tr

B0 CS

Ena/Dis

p

Rx_CAN

Tr Tr

“1”

B1

Tr Tr

ED1

...

Tr Tr

ED’01 ED’00

B’00
B’01

B00 B01

BT

ANDT

ANDC

Uplink
from a
node

Input / Output
Module

Coupler
Module

Fault-Treatment
Module

Sublinks
to other

hub

Hub Ena/Dis1 Hub Ena/Dis0

“1” “1”

Figure 11.5: New internal structure of the hub

The second AND gate, ANDT , is aimed at coupling B0 with the contribution of
the other hub. Two copies of this contribution are received by means of two iden-
tical signals, B′

00 and B′

01, routed within different sublinks. Finally, the resultant
signal from coupling B1..n, B′

00 and B′

01, is then broadcast to the nodes, BT .

As in CANcentrate, each OR gate connected to ANDC is used to enable or dis-
able the contribution of a specific node connected to the hub. In contrast, each one
of the additional OR gates, which are connected to ANDT , is used to enable or
disable one of the signals that carry the contribution from the other hub (either B ′

00

or B′

01).

Note that the output of the gate ANDT within both hubs would be the same
as a CAN bus interconnecting all non-faulty nodes connected to any of the hubs.
Similarly to the case of CANcentrate (see Section 5.4), the frame that results from
coupling the frames from all these nodes is called resultant frame. In such a way,
nodes can consider both hubs as one unique CANcentrate hub. This allows Re-
CANcentrate to keep all the CAN properties related to dependability, as well as to
enforce a synchronization between both stars at bit level.

Furthermore, the usage of two AND gates within the Coupler Module makes it

11.6 Error-detection and fault-treatment mechanisms of the hub 237

possible to separate the contributions of both hubs, thus allowing each hub to detect
errors in the contribution of the other hub and isolate it when faulty.

Regarding the modifications in the Input/Output Module, simply note that four
transceivers have been included for transmitting and receiving the contributions
of both hubs. Two of these transceivers are used to send the copies of the hub
contribution (B00 and B01), whereas the other two are aimed at receiving the copies
of the contribution of the other hub (B ′

00 and B′

01).

Finally, regarding the changes within the Fault-Treatment Module, the internal
structure and functionalities of the modules the hub already included in CANcen-
trate (see Chapters 5 and 6) have not been modified. The only change performed
on these modules is that now they monitor BT , instead of B0 (see Section 5.4), to
know the value of each bit of the resultant frame that is broadcasted to the nodes.

For instance, each Enabling/Disabling Unit (Ena/Dis) in the Figure 11.5) con-
tinues using the coupled signal, now BT , and the set of signals CS together with
the contribution from its corresponding port, Bi, in order to diagnose whether its
port is permanently faulty or not. For removing the contribution of its port, the En-
abling/Disabling Unit also uses the appropriate Enabling/Disabling signal, ED1..n.

Additionally, two new units have been added, namely Hub Enabling/Disabling
units (Hub Ena/Dis0 and Hub Ena/Dis1). Each one of them is responsible for de-
tecting errors in the contribution received from the other hub at a specific sublink
(either B′

00 or B′

01). When one of these signals is permanently faulty, the corre-
sponding Hub Ena/Dis disables it by means of the appropriate Enabling/Disabling
signal.

11.6 Error-detection and fault-treatment mechanisms of
the hub

As explained above, a hub detects errors and treats faults occurring at nodes and
links by means of the Enabling/Disabling Units, whereas it detects/treats errors and
faults occurring at the sublinks by means of the Hub Enabling/Disabling Units.

The error-detection and fault-treatment functionalities performed by each En-
abling/Disabling Unit are kept as they were in CANcentrate. Specifically, these
functionalities consist of detecting and counting errors in the contribution of the
corresponding port, produced by any of the types of faults gathered in the fault
model. For each kind of fault there are specific rules for detecting the errors that
may appear due to the fault and an associated threshold (see Chapters 6 and 7).
When the number of errors related to a given fault exceeds the corresponding

238 Chapter 11. ReCANcentrate

threshold, the port is diagnosed as being permanently affected by that fault.

The Hub Enabling/Disabling Unit performs essentially the same functionalities
as the Enabling / Disabling Unit, but introducing some small changes. Specifically,
the Hub Enabling/Disabling Unit uses slightly different rules for detecting errors
due to bit-flipping faults, i.e. bit-flipping errors; and it uses higher thresholds for
diagnosing each kind of fault.

The Enabling/Disabling Unit detects bit-flipping errors by checking each one of
the bits issued from its corresponding port. Particularly, the Enabling/Disabling
Unit considers that the value of a bit is correct if it matches with the set of allowed
values that are expected for that bit. As in CANcentrate, this set of values are
calculated, bit by bit, taking into account which is the current state of the resultant
frame, as well as which is the role currently played by the node that sends the bit,
i.e. whether it is a transmitter or a receiver (see Section 7.2).

In contrast, the Hub Enabling/Disabling Unit must take into account that the
contribution received from the other hub can be, in fact, the contribution of a trans-
mitting node that sends its frame to the other hub already coupled with the con-
tributions of several receiving nodes connected to that hub. This implies only few
changes in the rules followed for calculating the set of correct values for each bit.

As concerns the differences about the thresholds, notice that as long as a given
hub does not isolate a faulty port, it sends the errors issued through this port to the
other hub. In such situations, the other hub will detect errors in the contribution
received from this hub. Hence, if the thresholds of the Hub Enabling/Disabling
Unit are not higher enough than the thresholds of the Enabling/Disabling Unit,
then faults at some ports of a hub occurring near in time may lead the other hub to
unfairly diagnose that the hub is faulty.

In the worst case, all ports of a hub may consecutively fail. Thus, it may be
required to consider thresholds N times greater in the Hub Enabling/Disabling
Unit, where N is the number of ports. Nevertheless, this would imply a big latency
for detecting a real failure of a hub contribution. Fortunately, since port failures
occurring very near in time are very unlikely, we can consider that a value of N = 3
is wise enough, while not increasing significatively the latency for diagnosing a real
failure of a hub contribution.

11.7 Node’s media management strategy

As explained above, in ReCANcentrate each star is a CAN channel that conveys a
replica of the same data in parallel to provide tolerance to hub and link faults. How-

11.7 Node’s media management strategy 239

HubB HubA

Bus
Stub

Link

Node

Transceiver

CAN
controller

Micro
controller

Node

Interlink

Sublinks Uplink &
donwlink

Figure 11.6: Analogy between ReCANcentrate and CAN with two controllers

ever, as pointed out in Section 11.2, to use parallel channels that rely on an event-
triggered protocol such as CAN has an important drawback: there is no mechanism
to synchronize the traffic between channels. As a consequence, nothing guarantees
the traffic to be the same in all of them, so that each node needs to detect when
frames received at different instants of time, each one through a different channel,
are copies of the same one (duplicates); as well as when a frame received from
one channel is omitted from the others (omissions). Moreover, an event-triggered
transmission schema does not provide a node with mechanisms to diagnose when
a fault prevents it from communicating through a channel.

To overcome these limitations, the hubs of ReCANcentrate perform a special
AND-coupling within a fraction of the bit time, thereby creating a single logical
broadcast domain that keeps the dominant/recessive transmission and the in-bit
response properties of CAN. In this way, both hubs behave like one, transmitting
the same value bit by bit in their downlinks. In fact, as depicted in Figure 11.6,
ReCANcentrate is logically equivalent to a CAN network where nodes have two
connections to a single bus: hubs are equivalent to the bus line, and each link
corresponds to a stub.

As already said in Section 11.4, this coupling allowed us to define a strategy
for each node to easily manage the replicated star, using the node architecture de-
picted in Figure 11.3. According to our media management strategy, the node
triggers each transmission towards one of the hubs only, while receiving from both
hubs at the same time. One controller acts as the transmission controller (tx con-
troller), so that it is used to both transmit the frames of its node and receive frames
sent by other nodes (the tx controller does not receive its own frames). The other
controller, the non-transmission controller (non-tx controller), is used to receive

240 Chapter 11. ReCANcentrate

frames transmitted by its own node and by other nodes.

When a frame is successfully exchanged through the network, i.e. when a deliv-
ery event occurs, each node expects that its two controllers quasi-simultaneously
notify of that event. This notification can occur in two different manners. First, if
the node successfully transmits a frame, the tx controller and the non-tx controller
notify of the transmission and reception of this frame respectively. Second, if the
node receives a frame sent from another node, it is notified of this reception by its
two CAN controllers.

Thus, in the absence of faults, the node manages transmissions and receptions as
follows. First, if the node successfully transmits a frame, the tx controller and the
non-tx controller notify of the transmission and reception of this frame respectively.
Then, the node only needs to accept the notification of the transmission as valid and
release the reception buffer of the non-tx controller. Second, if the node receives
a frame sent from another node, it is notified of this reception by its two CAN
controllers. When this happens, the node must merely consume the frame received
at one of the controllers and, then, release the reception buffers of both controllers.

Note that as long as the hubs are coupled, a single communication domain is
enforced and, thus, each node can also manage the traffic in a simple way when
faults occurs. Certainly, this domain cannot be enforced if faults lead any hub to
continue coupling the contributions of its own nodes, but not to couple with the
other hub. This may happen if all interlinks are faulty, and thus isolated, or if a
hub erroneously decides not to couple with the other hub. Fortunately, the proba-
bility of such situations is almost negligible since there are several interlinks and
the hub could include internal redundancy to reduce the likelihood of an incorrect
decoupling.

How nodes detect and manage two independent stars is beyond the scope of this
dissertation. Next sections are devoted to describing how each node manages the
replicated traffic in the presence of faults when the single communication domain
is enforced.

11.7.1 Faults and discrepancies

Conversely to what typically happens in other replicated media schemes, the nodes
of ReCANcentrate do not need to deal with discrepancies between channels, i.e.
they do not need to execute a distributed or a complex algorithm to differentiate
duplicates from omissions and to reach a consensus on what frames are actually
exchanged through the network. In contrast, when a node observes that its two
controllers differ in their visions of what delivery events take place in the network,

11.7 Node’s media management strategy 241

it can rely on the fact that one of its controllers has an incorrect view of what
actually occurs in the single communication domain.

To analyze the discrepancies between the two controllers of a node, let us differ-
entiate again between faults occurring at the media and at controllers. Media faults
manifest as the generation of stuck-at or bit-flipping bits that usually generate er-
rors that corrupt data. In general, these errors block the channel. Consequently,
as long as the hub/s do not contain them by disabling the adequate hub ports, no
controller notifies about a transmission or a reception and no discrepancy between
controllers can take place. When the media fault is isolated, the channel becomes
unblocked, but only the controllers that have not been isolated so far will commu-
nicate again. Thus, thereafter, each node that has an isolated controller will observe
what we call a notification omission discrepancy, i.e. that only one of its controllers
notifies of a delivery event.

Notice that there are some situations in which a media fault does not prevent
all controllers from communicating, but that does lead them to inconsistently ex-
change frames. First, a frame is inconsistently exchanged in any of the error
scenarios affecting the last-but-one bit of a frame that have been identified for
CAN [PMJ00]. Second, a stuck-at-recessive fault may provoke an inconsistency if
it prevents a controller from monitoring the traffic, or if it impedes that its contribu-
tion reaches its corresponding hub. For instance, if a downlink is stuck-at-recessive
during the broadcast of a whole frame, the controller connected to that downlink
will not observe it. The media management we propose does not take into account
these situations. This is because the probabilities of the scenarios due to errors
in the last-but-one bit are controversial [FOFF04], whereas the probability of an
inconsistency due to a stuck-at-recessive fault should be also very low.

Regarding what discrepancies can be provoked by CAN controller faults, notice
again that we consider that a controller can only exhibit a crash failure. When this
happens its node will also observe a notification omission discrepancy each time a
new frame is exchanged. Certainly, a controller could also suffer from a Byzantine
failure. If this happens, the controller can also provoke a notification omission
discrepancy if it arbitrarily omits a notification. Additionally, a Byzantine CAN
controller could also forge notifications, thereby delivering semantically incorrect
frames to its node. In this case, the fault could manifest as a notification non-
omission discrepancy, which occurs when both controllers of a node notify of a
delivery event, but they do not agree on the frame the event is related to. Anyway,
since the detection of semantically incorrect frames requires knowledge about the
application executed at nodes (and thus is beyond our fault model), we postponed
the treatment of CAN controller’s faults other than crashes for future work.

242 Chapter 11. ReCANcentrate

11.7.2 Treatment of discrepancies and fault-tolerance strategy

As just explained, the errors generated by a fault block the communication in both
stars as long as the hubs do not isolate it by disabling the appropriate hub ports.
Once isolated, it is necessary to carry out further actions in order to tolerate it.
Specifically, it is needed that any node that cannot communicate through a given
hub as a consequence of that fault (e.g. if a hub fault, no node will be able to
communicate through that hub) does not stop communicating through the other
hub. As explained before, a node that cannot communicate through a given hub
will observe a notification omission discrepancy: when a delivery event occurs, the
node observes that the controller connected to that hub erroneously does not notify
that event. Thus, in principle, the node can tolerate a fault by simply accepting as
valid the transmission/reception notified by the controller that has no problems.

Note that if the controller that cannot communicate is the non-tx controller, the
node need not even diagnose that controller as faulty. However, if the controller
that cannot communicate is the tx controller, the node must eventually diagnose
it as faulty and, then, rule it out for communicating. Otherwise, the node will not
be able to transmit anymore and the fault will not be tolerated. To overcome this
problem, the node initiates a transmission timer when it requests a transmission. If
the timer expires before the tx controller notifies of a successful transmission, the
node rules it out and uses the other controller for transmitting/receiving.

Additionally, we propose to rule out a CAN controller whenever its Transmission
Error Counter (TEC) or its Reception Error Counter (REC) [ISO93] reaches a
given threshold. This only allows to rule out a controller that cannot communicate
and that detects errors. But it enhances the node’s fault diagnosis capabilities,
which will allow us to improve in the future the management strategy to deal with
a wider range of faults, e.g. CAN inconsistency scenarios [PMJ00] and forged
transmission/reception notifications.

11.8 Considerations on the cabling and bit rate

As stated in Section 5.6, the length of the cabling is an important factor in a dis-
tributed embedded system, mainly due to its cost in terms of wire and the limita-
tions it imposes on the bit rate. When compared with a bus, CANcentrate demands
a higher amount of cabling, since every node is connected to the hub by means of
two dedicated links. However, as already explained in Section 5.6, signals travel in
parallel to both hubs and then in parallel in all links back to the nodes. Hence, the
maximum length applies only two every pair of links. This feature may represent

11.8 Considerations on the cabling and bit rate 243

a substantial increase in the capacity to interconnect nodes when compared with a
bus topology.

The increment of cabling is even bigger in ReCANcentrate because nodes are
normally connected to two hubs. Nevertheless, since in ReCANcentrate the hubs
are coupled, nodes are not required to be connected to both hubs for communicat-
ing. This allows to achieve higher dependability than CANcentrate without need-
ing to duplicate the cost of the cabling.

Regarding the limitations on the bit rate, CAN imposes an inverse relationship
between the length of the cable an the maximum bit rate, as a consequence of the
synchronization at bit level among all nodes [ISO93]. In both CANcentrate and
ReCANcentrate this synchronization is preserved, thus the same kind of relation-
ship applies.

In CANcentrate it is needed to take into account the extra delay introduced by
the hub (additional transceivers and internal gates) when dimensioning the bit time.
In particular, from the point of view of signal propagation, the hub is equivalent to
have extra cable length. In Section 5.6 it is explained which is the maximum bit
rate, B′, that could be achieved in a CAN bus with a bus length equal to the diame-
ter of a CANcentrate star operating at a maximum bit rate of B (see Equation 5.1).

The comparison between ReCANcentrate an a CAN bus is slightly different.
Note that in ReCANcentrate two nodes communicate simultaneously through dif-
ferent paths, which can include one or both hubs. Hence, in order to allow the
bit value to settle before sampling, the bit time must take into account the slowest
communication path in the network. In such a way, we define a ReCANcentrate
equivalent bus as a CAN bus whose length is equal to the slowest communica-
tion path between two any nodes. Therefore the referred equation must be slightly
modified for accommodating a parameter, nh, that specifies the number of hubs in-
cluded within the slowest communication path. Specifically, nh = 2 or nh = 1 if
this path includes both hubs or not respectively. Equation 5.1 can thus be rewritten
as follows:

B′ =
1

tps
=

1

1/B − nh · th
=

B

1 − B · nh · th
> B (11.1)

Where tps is the bit time of the replicated star equivalent bus, and th is the delay
introduced by the hub (310 ns approximately). Note that since a signal must go
through the hub two times (from the transmitting node to the receiving node and
viceversa), th includes twice the time a signal is delayed when crossing the hub.

The discussion above shows that both CANcentrate and ReCANcentrate are,

244 Chapter 11. ReCANcentrate

from a electrical signal transmission point of view, equivalent to a bus operating at
a higher bit rate. This actually means that the length of the slower communication
path in ReCANcentrate, operating at bit rate B, is the maximum length of stan-
dard CAN operating at bit rate B ′. Moreover, the higher the bit rate, the larger the
difference. For instance, if we consider that both hubs are included in the slower
communication path and that th = 310 ns, the maximum length of a communi-
cation path in ReCANcentrate operating at B = 1 Mbit/s is equal to the length
of a CAN bus operating at B ′ = 2.6 Mbit/s. In contrast, when B = 125 Kbit/s,
the maximum length of a communication path in ReCANcentrate is equal to the
maximum length of a CAN bus operating at B ′ = 135.5 Kbit/s, which implies a
lower reduction in length.

11.9 Prototype implementation

In order to experimentally verify the proposed replicated star topology, we built a
ReCANcentrate prototype as well as an experimental platform very similar to those
we set up for testing CANcentrate (see Chapter 9).

Specifically, the ReCANcentrate prototype was built including two hubs and
three CAN nodes. The internal part of the hubs (the Coupler Module and the
Fault-Treatment Module) was implemented using the VHSIC Hardware Descrip-
tion Language (VHDL) and the Xilinx Spartan-3 XC3S1000 Field Programmable
Gate Array (FPGA), within the XSA-3S1000 Board [X E04]. Only the interface
(the Input/Ouput Module) of each hub with the media was implemented on a ded-
icated board (using the wire-wrap technique) with four pairs of PCA82C250 high-
speed CAN transceivers [PHI00] and four RJ45 plugs (one for each transceiver
pair) providing the connection for four hub ports, i.e. allowing the connection of
three nodes and one interlink. UTP (Unshielded Twisted Pair) Category 5/5e/6 ca-
bles were used for the links and the interlink. Each uplink / downlink pair used two
wire differential lines within the same cable. Similarly, one cable was used for the
interlink, using a two wire differential line for each sublink.

Again, each CAN node was totally implemented using commercial off-the-self
components, and basically includes a PIC microcontroller [Mic04], which incor-
porates one CAN controller, and four CAN transceivers. Each pair of transceivers
was aimed at connecting the node with one of the hubs, following the schema spec-
ified in Section 5.3 and Figure 5.2 for interfacing a CAN node with a CANcentrate
hub.

For managing the replicated channels we used the simplified approach referred
in Section 11.4 and depicted in Figure 11.4, which is similar to the mechanism

11.10 Functional tests 245

proposed in [RVA99]. Despite limiting the fault-tolerance properties of ReCAN-
centrate, this approach is very simple to deploy and still allows verifying the main
features of this architecture, namely the error detection, isolation and masking ca-
pabilities applied to both nodes and hubs.

11.10 Functional tests

Two types of functional tests were carried out to assess the functionality of Re-
CANcentrate under both fault-free conditions and in the presence of faults. These
tests were carried out at the level of the hub VHDL design using the ModelSim XE
II 5.7g simulation tool and at the physical network level using the ReCANcentrate
prototype with different links/interlinks configurations. The bit rate was of 333
Kbit/s for all the functional tests.

During the tests with the ReCANcentrate prototype an arbitration was forced
when transmitting every CAN frame. To do this, 3 CAN nodes were programmed
to transmit frames with different data and lengths continuously in an infinite loop.
Upon each transmission, two nodes always contended to access the medium. Re-
ception of CAN messages was handled by interrupts, clearing the appropriate re-
ception buffer.

In order to assess the fault-treatment functionalities of ReCANcentrate, faults
were both simulated at the VHDL design level and injected into the physical net-
work in different ways. One basic mechanism used to inject physical faults in
the links and interlinks was to mechanically connect and disconnect the respective
cables. This allowed injecting stuck-at-recessive as well as random bit-flipping
faults. However, for more controlled fault injection, we built a dedicated board we
call Faulty renode. This board is very similar to the Faulty node we used to inject
faults in the prototype of CANcentrate (see Section 9.3 and Figure 9.3). The only
difference between these two fault injectors it that the Faulty renode includes two
link interfaces, whereas the Faulty node includes only one link. A given link in-
terface basically consists in a pair of CAN transceivers that allow connection to a
given hub port. In this way, the Faulty renode allowed injecting stuck-at-dominant
faults and steady bit flipping streams at one or two hub ports simultaneously. Fi-
nally, a specific feature was added to the VHDL design of the hubs that allowed
bit-flipping bits and stuck-at (dominant or recessive) bits to be sent through differ-
ent hub ports when pressing a specific button on the corresponding hub’s FPGA
board.

In all the experiments the diagnosis latency was measured, i.e. the time from the
very first bit of a stuck-at or from when a bit-flipping stream is injected until the

246 Chapter 11. ReCANcentrate

corresponding hub port is diagnosed as being permanently faulty. This latency is
also called isolation latency when there are stuck-at-dominant or bit-flipping faults
because these imply the isolation of the corresponding hub port. The reintegration
latency was also measured in some cases. This is the time that elapses from the
end of the last bit of a stuck-at or a bit-flipping stream that is injected until the hub
re-enables the contribution of the corresponding hub port.

11.10.1 Experiments under fault-free conditions

As in the case of CANcentrate, the main aspects that have been tested under fault-
free conditions are:

• Operation of the different state machines that constitute the hub.

• Calculation of the resultant frame upon all node contributions.

• Correct synchronization at bit level and at frame level.

• Assignation of the roles of the nodes after the arbitration phase.

At the VHDL design level several simulations were performed to verify these
aspects. In all cases the hub operated correctly. Special attention was devoted to
checking the correct operation of the different state machines that constitute the
hub, as well as their correct mutual interaction.

Furthermore, the correct operation of ReCANcentrate at the physical network
level was also observed. The prototype of ReCANcentrate was configured with
two hubs and three CAN nodes, and the hubs were interconnected by a single
interlink. This configuration was used throughout the experiments except where
stated otherwise. The test was performed during more than 168 hours, during
which nodes were able to correctly communicate.

11.10.2 Experiments under the presence of faults

The fault treatment capabilities of ReCANcentrate were assessed by means of dif-
ferent fault scenarios, i.e. scenarios involving faults. Again, as in CANcentrate,
the main issues that were checked are the correctness of:

• Operation of the state machines that let us know how the hub is performing
error detection and fault diagnosis.

11.10 Functional tests 247

• Detection of ports suffering stuck-at-recessive faults, as well as the detection
and isolation of ports suffering stuck-at-dominant or bit-flipping faults.

• Reintegration of ports that became non-faulty, following the policy explained
in Section 6.7.

Some basic fault scenarios were simulated at the level of the VHDL design,
checking the behavior and the interaction of the different self-operating mecha-
nisms that constitute the hub. In particular, stuck-at-recessive, stuck-at-dominant
and bit-flipping faults were simulated as occurring at different ports and at different
bit positions in the frames. For example, in order to cause a bit-flipping fault in a
port, a bit-flipping stream was initiated during different frame fields. In all cases,
the hub behaved according to its specifications.

As to tests at the physical level, a logical analyzer and a digital oscilloscope
monitored the test pads. They showed the internal operation of the hub, the con-
tribution of each node received at the respective port, and the value of the coupled
signal. The physical network allowed testing many more fault scenarios than the
simulation tool, as discussed next.

Stuck-at recessive faults at links and interlinks

Stuck-at-recessive faults were injected at both links and interlinks by disconnect-
ing the respective links, one at a time, during communication. It was observed
that some bit-flipping bits were always injected at a port when the respective link
was disconnected, as expected. However these bit-flipping bits were not enough
to make the hubs diagnose a bit-flipping fault. After these bit-flipping bits, the af-
fected hub port received recessive bits only, and the hub correctly diagnosed it as
being stuck-at-recessive. The communication between nodes was never disrupted.

During the execution of these tests, it was also observed that nodes were able
to communicate with each other as long as each of them was connected at least
to one hub. In particular, some links were disconnected in order to achieve the
configuration of the network shown in Figure 11.1, in order to try causing a network
partition. These were never observed, given the coupling of the two hubs forced by
ReCANcentrate.

For injecting stuck-at-recessive faults at interlinks a different configuration was
used with two CAN nodes, each one connected to both hubs, and two interlinks
connecting the hubs. Stuck-at-recessive faults were injected at a given interlink by
disconnecting it. Such fault injection was repeated many times and it was observed

248 Chapter 11. ReCANcentrate

that nodes always continued communicating correctly, with both hubs still cou-
pled by the remaining non-faulty interlink. Moreover, each hub always correctly
indicated the stuck-at-recessive failure of the corresponding interlink.

Stuck-at-dominant and bit-flipping faults at links

In order to test the isolation of stuck-at-dominant and bit-flipping faults at links,
each hub was configured to diagnose a stuck-at-dominant condition when moni-
toring 24 consecutive dominant bits and a bit-flipping fault when counting 24 bit-
flipping errors.

The Faulty renode was used to transmit periodic dominant and recessive levels
in two different ways, as depicted in Figure 11.7: to the port of one hub only (a),
and simultaneously to the ports of both hubs (b). When the frequency of the signal
transmitted by the Faulty renode, i.e. the faulty signal, was low enough compared
to the bit rate, the recessive and dominant values of this signal lasted many bit
times. The affected hub(s) alternately detected the port as being stuck at dominant
and then reintegrated it, as expected. The faulty signal was injected continuously
during 15 hours with the frequency ranging from 62 Hz to 6.6 Khz, thus injecting
between 62 and 6600 stuck-at-dominant faults per second. All faults were correctly
diagnosed and isolated by the affected hub(s). At the lower frequencies, the hub(s)
were also able to reintegrate an isolated port during the recessive pulses. During
all these tests, the global communication activity was disturbed only during the
latency needed to diagnose an affected port as being faulty and isolate it. The
diagnosis and reintegration latencies lasted 73 us and 5.2 ms, respectively.

The faulty signal was also injected at a higher frequency so that the domi-
nant/recessive pulses lasted from anywhere between a few bit times to less than
one bit time. In these situations, the affected hub(s) correctly diagnosed the port
as being permanently bit-flipping. The experiments used 100 bit-flipping streams,
each one causing a bit-flipping fault. The frequencies of the periodic bit-flipping
signal ranged from 6.6 Khz to 2.5 Mhz, toggling between dominant and recessive
levels in a few bits times to several times per bit. The diagnosis latency to detect
the bit-flipping fault depended on the frequency. The following values were mea-
sured 20 times for each frequency: 609 us at 10 Khz, 150 us at 100 Khz and 246
us at more than 1 Mhz. Finally, bit-flipping ports were also reintegrated when the
bit-flipping link was physically disconnected. In this case, the reintegration latency
was also around 5.2 ms.

11.10 Functional tests 249

a) Injection at one uplink hub port

Hub

Hub

Node j

Node k

Faulty
renode

Node i

Hub

Hub

Node j

Node k

Faulty
renode

Node i

b) Simultaneous injection at two uplink hub ports

�

e

�

e

�

e

Figure 11.7: Injection of stuck-at-dominant/bit-flipping faults at links

Stuck-at-dominant and bit-flipping faults at interlinks

Stuck-at-dominant and bit-flipping faults were injected at interlinks using two dif-
ferent network configurations: one with 2 nodes and 2 interlinks, one of which was
replaced by the Faulty renode (Figure 11.8); and the standard one with 3 nodes
and 1 interlink that was replaced by the Faulty renode (Figure 11.9). For both
configurations, each hub was programmed to diagnose a stuck-at-dominant and a
bit-flipping fault at an interlink when detecting 72 consecutive dominant bits and
72 bit-flipping errors, respectively.

Using the first configuration, stuck-at-dominant and bit-flipping faults were in-
jected at the hubs’ interlink ports, either to one or both sublinks, while nodes
were correctly communicating. Stuck-at-dominant faults were injected continu-
ously during 7 hours, using a faulty signal frequency from 62 Hz to 2.3 Khz. The
isolation latency was always around 216 us. In addition, 300 bit-flipping streams
were injected with the faulty signal frequency ranging from 2.3 Khz to 2.5 Mhz.
When a bit-flipping stream was injected in one sublink only, the affected hub cor-
rectly isolated and reintegrated the corresponding faulty port. When injecting in

250 Chapter 11. ReCANcentrate

Hub

Hub

Node i

Node j

Faulty
renode

�

e

�

e

Figure 11.8: 1st injection of stuck-at-dominant/bit-flipping faults at interlinks

both sublinks, both hubs correctly isolated and reintegrated the faulty interlink,
each one at its respective hub port, nearly simultaneously. The measured isolation
latency also depended on the frequency of the faulty signal, being 2.6 ms at 10
Khz, 476 us at 100 Khz and 850 us at 1 Mhz. The reintegration latency was always
about 4.2 ms after the end of either a stuck-at-dominant or bit-flipping fault.

Other experiments were conducted using the second configuration of the net-
work (Figure 11.9). Initially, the three CAN nodes communicated using both hubs,
even though the hubs were not coupled. This is because each node also transmit-
ted simultaneously to both hubs, thus receiving the same bits through both hubs
simultaneously. The Faulty renode started to transmit a stuck-at-dominant or a bit-
flipping signal to both hubs simultaneously at a randomly chosen instant. The hubs
always correctly isolated the faulty interlink at almost the same time. 50 stuck-at-
dominant and 50 bit-flipping streams were injected. The isolation latencies were
exactly the same as for the first network configuration.

Stuck-at-dominant and bit-flipping faults at a hub

Hub failures were also injected using the special feature implemented in VHDL,
which allows the hub to send stuck-at and bit-flipping independent streams through
each port. Nevertheless, the simplified schema implemented at each node for con-
necting it to both hubs (see Figure 11.4) limited the type of faults that actually
could be injected at a hub. As already explained, in this schema the node couples
both its downlinks by means of an AND gate and has the ability of isolating any
one of them suffering from a stuck-at fault. However, the node has no mechanism

11.11 Performance measurements 251

�

e

�

e

Hub

Hub

Node j

Node k

Faulty
renode

Node i

Figure 11.9: 2nd injection of stuck-at-dominant/bit-flipping faults at interlinks

to isolate a downlink that becomes bit-flipping. Thus, it was not possible to inject
faults in a hub that led it to send bit-flipping bits to nodes.

Because of this limitation, the tests were carried out by first sending stuck-at bits
through all ports, and secondly bit-flipping bits to the interlink ports only. In the
first case, the non-faulty hub and the nodes always isolated the faulty hub. Addi-
tionally, the non-faulty hub indicated that the contributions of the other hub were
stuck-at. In the second case, the non-faulty hub correctly isolated the faulty inter-
links, diagnosing them as being bit-flipping. The isolation latencies observed at
the non-faulty hub were equal to those measured when we directly injected faults
at the interlinks. Moreover, analogously to the case of the hubs, the nodes were
configured to isolate a stuck-at-dominant downlink when monitoring 24 consecu-
tive dominant bits. This fact leaded us to observe that the time each node needed
to isolate a stuck-at-dominant hub coincides with the latency with which a hub
isolates a stuck-at-dominant uplink.

11.11 Performance measurements

As in the case of CANcentrate, we measured the extra delay introduced by the core
and the transceivers of the ReCANcentrate hub. We obtained the same results as
in CANcentrate: 35 ns for the core and 120 ns for each transceiver, which means
that the total hub extra delay is of 155 ns (the total delay only includes one time the
transceiver delay). Moreover, we observed again that this delay does not visibly
depend on the number of hub ports.

252 Chapter 11. ReCANcentrate

The performance of the ReCANcentrate prototype was evaluated with the net-
work configuration we used for the functional tests under fault-free conditions, i.e.
the network included three nodes and the hubs were interconnected by means of
one interlink. Arbitration was also forced for each transmitted frame, with the
network bandwidth used at its maximum capacity. The tests basically assessed
the maximum cable length, i.e. star diameter, which can be achieved with a given
bit rate. The diameter was taken as the distance between the two farthest nodes,
including the length of the interlink plus the length of the two longest links.

Due to practical limitations the maximum bit rate used was 625 Kbit/s. At this
bit rate no errors were observed during two hours of constant operation with a star
diameter of 25 m. We will refer to this two-hour period without observing errors
as normal communication. Increasing the diameter to 30 m caused sporadic errors
at an average rate of one every 5 ms. Notice that the maximum length of a CAN
bus operating at 625 Kbit/s would be around 79 m [CiAa]. Moreover, note that
if we apply Equation 11.1 (with nh = 2 hubs and th = 2 · 155 = 310 ns) to
calculate the bit rate, B′, of an equivalent CAN bus with a bus length equal to the
ReCANcentrate diameter, we obtain that B ′ would be of 1 Mbit/s. The maximum
CAN bus length achievable at this bit rate should be of 30 m [CiAa], which is
similar to the diameter at which ReCANcentrate should start experiencing sporadic
errors.

Another bit rate vs star diameter results are the following ones. At 500 Kbit/s
a diameter of 57 m resulted in normal communication, while a sporadic error oc-
curred every 10 ms on average with a diameter of 58 m and a disruption of the
communication occurred for a diameter of 70 m (the maximum length of a bus
operating at 500 Kbit/s would be around 100 m). At 454.5 Kbit/s normal commu-
nication was observed with 68 m while 70 m caused a sporadic error every 10 ms
on average and 72 m disrupted the communication. Finally, at 416.6 Kbit/s normal
communication was observed with 78 m while 80 m caused an error frame every
10 ms and 82 m disrupted the communication.

11.12 Conclusions

CANcentrate improves reliability of CAN-based systems by means of enhanced
error-detection and fault-treatment mechanisms. More specifically, CANcentrate
reduces the multiple severe points of failure that appear in a CAN bus to one single
point of failure, i.e. the hub.

However, more demanding highly-dependable systems require to eliminate any
single point of failure from the communication system. To achieve this while tak-

11.12 Conclusions 253

ing profit from the advantages already achieved by CANcentrate, we proposed a
new communication infrastructure, called ReCANcentrate, that relies on a repli-
cated star topology, and which overcomes the drawbacks of any other replicated
communication system already proposed for CAN.

This infrastructure basically includes two interconnected CANcentrate hubs. In
this way, it eliminates any single point of failure and extends the fault-treatment
capabilities of CANcentrate to the overall of the communication system. Further-
more, ReCANcentrate is still compatible with commercial off-the-shelf CAN com-
ponents and can be used with any CAN-based protocol.

Beyond the good properties of CANcentrate, ReCANcentrate exhibits additional
advantages. First, it provides a synchronization mechanism for transmitting and
receiving frames in both stars, which is very helpful for managing duplicates and
omissions, as well as for treating faults in a replicated event-triggered communi-
cation system. Second, nodes may be able to communicate as long as one of its
links remain non-faulty and is connected to a non-faulty hub. Third, it prevents
network partition fault to occur. Finally, nodes are not required to be connected to
both hubs for communicating, thereby achieving higher dependability than CAN-
centrate without needing to duplicate the cost of the cabling.

In this chapter, we describe the internal structure of the hub and its new func-
tionalities; some possible node’s architectures, focusing on the way in which each
node should manage the replicated traffic and treat faults; some issues concern-
ing the cabling and the bit rate; as well as the implementation and test of our first
prototype of ReCANcentrate.

Chapter 12

Reliability evaluation of
ReCANcentrate

12.1 Introduction

In Chapter 10 we quantified the improvement of system reliability that can be
achieved when using CANcentrate instead of the CAN bus when permanent hard-
ware faults can occur. The results quantitatively corroborate the benefits that the
CANcentrate’s error-containment mechanisms can yield in terms of reliability for
fault-tolerant/accepting (FT/A) systems. However, they also show that a simplex
star topology such as CANcentrate slightly reduces the reliability of non-fault-
tolerant / accepting (NFT/A) systems. Moreover, as already mentioned, the degree
of system reliability achieved by CANcentrate could be not enough for some ap-
plications and the presence of a single point of failure the hubs represents unac-
ceptable.

Therefore, in order to improve the reliability of not only FT/A systems, but also
of NFT/A ones, as well as to satisfy the requirements of highly reliable applica-
tions, we proposed a redundant active star topology called ReCANcentrate, whose
design and first implementation were addressed in Chapter 11. The key feature of
ReCANcentrate is that, besides error-containment, it provides tolerance to hub fail-
ures, as well as to faults that affect one of the connections of each node to a given
hub (no matter to which hub). In this way, ReCANcentrate eliminates the single
point of failure the hub of CANcentrate represents and it theoretically compensates
the bigger probability of suffering from faults in a star topology.

As also mentioned, other technologies such as TTP/C [ABST03] and FlexRay

255

256 Chapter 12. Reliability evaluation of ReCANcentrate

[Fle05] have already adopted a replicated star topology to improve error contain-
ment and fault tolerance. However, despite this interest, and as happens with
simplex star topologies, no one has quantitatively demonstrated that replicated
star topologies improve reliability when compared with other communication in-
frastructures. Current chapter is thus devoted to quantitatively assessing how a
replicated star topology such as ReCANcentrate can improve the system reliability
when compared with a bus and a simplex star topology such as CAN and CAN-
centrate.

For this purpose, we model the reliability of a system relying on ReCANcentrate
using the Stochastic Activity Networks (SANs) formalism. In particular, we follow
the same modelling strategy we proposed for assessing the reliability of a system
relying on CAN and on CANcentrate. This fact was already pointed out in Chap-
ter 10, where we explained that most of the modelling decisions and assumptions
described therein were done to be also appropriate for the case of ReCANcentrate.
Anyway, notice that we make additional assumptions that are exclusively related
to a ReCANcentrate-based system and, again, these new assumptions are made
ensuring that results are not biased towards ReCANcentrate.

It is noteworthy that, as we did in Chapter 10, we model the reliability of a
system relying on ReCANcentrate only when permanent hardware faults can occur.
As already explained, a dependability evaluation that takes into account transient
faults is postponed to a later work. Similarly, the comparison between the system
reliability achievable with ReCANcentrate and other topologies such as replicated
buses is also proposed as a future work.

12.2 Metrics

In order to compare the reliability of a system relying on CAN, CANcentrate and
ReCANcentrate we use the same metrics we adopted for comparing CAN and
CANcentrate in Chapter 10. On the one hand and for quantifying the reliabil-
ity of NFT/A systems, we use the non-fault-tolerant/accepting system reliability
(NFT/AR), which we defined as the probability that all nodes can correctly op-
erate and communicate with each other over time (see Section 10.2). On the
other hand, we quantify the reliability of FT/A systems by means of the fault-
tolerant/accepting system reliability (FT/ARk), which stands for the probability
with which at least N − k of N nodes can correctly operate and communicate
among them throughout time. In particular, as we did for CANcentrate, we mea-
sure the FT/AR1, i.e. the reliability of FT/A systems that are robust to the failure
or disconnection of at most 1 out of N nodes.

12.3 Modelling assumptions 257

12.3 Modelling assumptions

In order to compare the reliability of equivalent systems that rely on CAN, CAN-
centrate and ReCANcentrate we use the models of CAN and CANcentrate de-
scribed in Chapter 10 and we built an additional model for ReCANcentrate. For
this new model, we consider as valid all modelling assumptions we made for the
case of CANcentrate, which were thoroughly described in Section 10.4. However,
we had to consider additional assumptions related to specific ReCANcentrate as-
pects, which are not connected with the case of CANcentrate.

We made all assumptions guaranteeing not only that results do not favor Re-
CANcentrate in the comparison with CAN, but also in the comparison with CAN-
centrate. Moreover, as we did for the models of CAN and CANcentrate, most
of these additional assumptions are reflected as parameters, thereby allowing to
perform sensitivity analyses with respect to them. The parameters the model of
ReCANCentrate has in common with the models of the CAN bus and CANcen-
trate are specified in Table 10.4; whereas Table 12.1 shows the parameters that are
specific to ReCANcentrate.

12.3.1 Implementation assumptions

The first additional assumption we made for ReCANcentrate consists in deciding
what is the number of interlinks that interconnect its two hubs. Since the mo-
tivation of having several interlinks is to eliminate the single point of failure one
interlink would represent, we propose to consider just two interlinks (see parameter
numInterlinks of Table 12.1).

As concerns the length of the links and interlinks of ReCANcentrate, we follow
the same approach as for CANcentrate (see Section 10.4.1). There, we considered
that if an ensemble of nodes need to be interconnected by means of a CAN bus that
is Lb meters long, then each link of CANcentrate needs to be Lb/2 meters long to
interconnect all these nodes. For the case of ReCANcentrate we assume the same
link length and, in addition, we consider that the length of each interlink is also
equal to the half of Lb. These are pessimistic assumptions for ReCANcentrate. On
the one hand, as explained in the section referred above, this link length is over-
estimated. On the other hand, the supposed interlink length is pessimistic because
even with interlinks of 0 meters, a ReCANcentrate star whose links are Lb/2 meter
long can interconnect an ensemble of nodes that require a bus length of Lb meters.

The last implementation assumption regards the schema that each node uses to
connect to both hubs. As explained in Section 11.4, there are different ways to do

258 Chapter 12. Reliability evaluation of ReCANcentrate

this connection. One possible option is to couple both downlinks and uplinks at
the node, which only includes one CAN controller. This schema (see Figure 11.4)
allowed us to easily build a first prototype of ReCANcentrate, with which we ex-
perimentally verified and assessed the main fault-tolerance features of both nodes
and hubs. However, this node’s architecture limits the degree of fault-tolerance that
can be achieved with ReCANcentrate (see Section 11.4 for further details about
this issue). For this reason, we advocate using the other architecture we proposed
and which is depicted in Figure 11.3. As already explained, the node is basically
constituted by one microcontroller and two CAN controllers (one for connecting
to one hub and another one for connecting to the other hub). This schema allows
each node to tolerate the failure of any of the components that connect it to a given
hub. The details about the way in which a node that is based in this architecture
manages the traffic it observes at both hubs, as well as how it tolerates faults can
be found in Section 11.7.

Since this last connection strategy is the one that we proposed for achieving a
high degree of fault tolerance, we assume that each ReCANcentrate node is based
on it for communicating. In this sense, note that the reliability evaluation herein
presented throws light on the suitability of this node architecture prior to the im-
plementation of a new ReCANcentrate prototype that relies on it.

12.3.2 System components and entities

As regards the components and entities that are supposed to constitute the system,
we do not introduce any change with respect to what is considered for CAN and
CANcentrate (see Section 10.4.2 for a detailed explanation about the components
and entities that constitute a system relying on CAN and on CANcentrate). How-
ever, it is important to highlight that now an Attachment entity, which embraces
a piece of a CAN cable and a pair of connectors, is used to represent not only an
uplink, a downlink or a bus section, but also a given sublink, i.e. one of the two
independent and identical links that are included in an interlink and which carries
the contribution of one hub to the other.

12.3.3 Failure mode assumptions

Regarding the failure mode assumptions we have made so far (see Section 10.4.4),
it is not longer suitable to consider that a fault affecting the Hub Core provokes
the failure of the overall system. Notice that, in ReCANcentrate, the failure of a
hub can be treated by the hub that remains non-faulty and by the nodes. Therefore,
since the ability of a hub and nodes to diagnose a hub as faulty depends on the

12.3 Modelling assumptions 259

way in which the failure manifests, it is mandatory to model different hub’s failure
modes and their respective proportions.

In order to afford this new necessity, we model the Hub Core’s failure modes
following the same idea as for the rest of entities. This consists in supposing that
the Hub Core exhibits a 0% of out-of-fault-model (ofm) failures, and that the rest
of its failure modes, i.e. stuck-at-recessive, stuck-at-dominant, and bit-flipping, are
equiprobable. More specifically, we consider that when the Hub Core fails in a way
that is included in our fault model, it transmits a stream composed of the errors cor-
responding to the specific type of fault through all its outgoing ports, i.e. through
the ports corresponding to its downlinks and to the sublinks that carry its contribu-
tion to the other hub. In principle, this assumption can be considered as reasonable,
given that the Hub Core has no mechanism to treat its own faults and, hence, it
cannot prevent that errors propagate through all its outgoing ports. However, this
assumption may also be considered as pessimistic for ReCANcentrate, because a
fault affecting the Hub Core could lead it to transmit the corresponding stuck-at
or bit-flipping stream through some ports only. Moreover, as pointed out in Sec-
tion 10.4.4, a Hub Core could even exhibit a more benign failure mode, e.g. it could
unfairly isolate a correct port.

Another important aspect related to the existence of two hubs in ReCANcentrate
and that must be analyzed is the way in which a hub propagates the errors it re-
ceives from a faulty port it cannot isolate. Notice that if the faulty port corresponds
to an uplink, then the hub will broadcast the errors through all its downlinks and its
outgoing sublinks. Conversely, in case the faulty port belongs to an incoming sub-
link, it will retransmit the errors through the downlinks only. In order to simplify
the model, we do not differentiate between these two cases and we just consider the
worst option for ReCANcentrate, i.e. that the hub propagates the errors through all
its downlinks and its outgoing sublinks. Notice that this way of broadcasting errors
coincides with the way in which the errors generated by a Hub Core failure pollute
the system, i.e. the hub transmits error through all its outgoing ports. Therefore,
from now on, we will consider that a hub is faulty not only when its Hub Core fails,
but also when it is not able to isolate a faulty port.

12.3.4 Coverage assumptions

Finally, the last assumptions that are specific to ReCANcentrate are related to the
fault-tolerance coverages that characterize it. Notice that we assume as valid all
the fault-tolerance coverages proposed in Section 10.4.5 for the models of CAN
and CANcentrate. On the one hand, we assume the same default value for the
sysFauTolCov coverage, which reflects the capacity of an FT/A system to actually

260 Chapter 12. Reliability evaluation of ReCANcentrate

accept or tolerate the failure or disconnection of a node, provided that it can do
so. On the other hand, we accept as correct all default values we proposed for
the error-containment coverages associated with the fault-treatment mechanisms
of the CAN controller and the hub, i.e. the default values of nodeIOInFauProp,
ctrlItselfIsoCov, ctrlFlipCov and flipLnkCov (see Tables 10.4 and 10.6).

However, since ReCANcentrate includes further fault-tolerance mechanisms,
we define some additional coverages to characterize them. The first set of these
new coverages quantify the capacity of the hub to contain errors at its sublink
ports, i.e. at the ports corresponding to each one of its incoming sublinks. In this
sense, we differentiate between the errors generated by a fault occurring at the Hub
Core of the other hub, a fault affecting the sublink itself and a fault affecting one of
the ports of the other hub. As concerns the ability of the hub to contain errors gen-
erated by a fault affecting the other hub’s core or a sublink, notice that the units that
are responsible for diagnosing faulty sublink ports are the Hub Enabling/Disabling
units. The functionalities of these units are very similar to the ones performed
by the Enabling/Disabling units, which are aimed at detecting faulty uplink ports.
Therefore, we assume that the coverages with which the hub diagnoses faults af-
fecting the other hub’s core or the sublinks are the same with which it diagnoses
faults affecting the uplinks ports: 100% for stuck-at faults and 95% for bit-flipping
faults. Anyway, we parameterized the coverage that specifies the probability with
which the hub diagnoses a bit-flipping Hub Core or sublink at the corresponding
port/s. The corresponding parameter is called flipSlnkCov (see Table 12.1).

A deeper analysis is required to characterize the coverage with which a hub con-
tains the errors generated by a fault that affects a port of the other hub. First, notice
that errors only propagate from one hub to the other, if the hub that suffers from a
fault in one of its ports is not able to isolate that port. Since a hub isolates stuck-at
faults with a perfect coverage, the only faults whose errors can propagate from one
hub to the other are those that manifest as bit-flipping. Thus, from now on, let
us focus on bit-flipping faults only. Imagine that the two hubs of ReCANcentrate
are referred to as hub A and hub B, and that the hub A does not successfully iso-
late a bit-flipping stream it receives through one of its ports. If this happens, the
other hub, the hub B, will receive, though all the incoming sublinks, a bit-flipping
contribution from the hub A. Thus, from then on, the hub B considers the hub A
as faulty and, hence, one may wonder whether or not the hub B has any capacity
for isolating the hub A. In principle, the hub B has the same capacity for diagnos-
ing bit-flipping faults as the hub A. Thus, since the hub A could not diagnose the
bit-flipping fault, it seems reasonable to assume that the hub B cannot do it either.
However, the bit-flipping contribution that the hub B receives is not equal to the bit-
flipping contribution that the hub A observes at its faulty port. Conversely, what

12.3 Modelling assumptions 261

the hub B monitors at its incoming sublinks is the result of coupling, at the hub A,
the original bit-flipping stream with the error frames transmitted by the hub A and
the CAN controllers connected to it. Since the erroneous stream the hub B receives
is different from the original one, we believe that the hub B is able to diagnose the
bit-flipping fault at the sublinks with certain coverage. We call this coverage flip-
SlnkPropCov (see Table 12.1). In particular, we decided to assume a conservative
value of 50% for this coverage. We think that a flipSlnkPropCov of the order of the
95% could be considered as optimistic, since it exits the possibility that the original
bit-flipping stream does not compel the hub A and the CAN controllers connected
to it to transmit error frames.

Besides the new coverages that quantify the capacity of the hub to isolate its
sublink ports, we define coverages for other fault-tolerance mechanisms ReCAN-
centrate is provided with. Some of these fault-tolerance coverages represent the
probability with which the node can tolerate a failure that prevents it from com-
municating through a given star, so that it can continue communicating using the
other star. Such a fault can be either a fault that affects any of the entities that
connect the node to one hub, e.g. the CAN controller, or a fault that affects the hub
itself. In order to define these coverages and decide reasonable values for them,
it is necessary to analyze the mechanisms that the node uses to tolerate this kind
of faults. For this purpose, we have to differentiate between the situation in which
the hubs are decoupled and the situation in which they are not, since the specific
fault-tolerance mechanisms the node uses are different in both cases.

We define a coverage called decConnCov (see Table 12.1) for characterizing the
probability with which a node tolerates a fault that prevents it from communicating
through one star when the hubs are decoupled. Since we have not proposed any
mechanism that allows a node to do that, we assume a default value of 0% for this
coverage. However, our model makes it possible to carry out sensitivity analyses
with respect to different values of this coverage in order to assess its influence on
the reliability achievable by a ReCANcentrate-based system.

Similarly, we have defined a coverage called connCov (see Table 12.1) that spec-
ifies what is the probability that a node tolerates a fault that prevents it from com-
municating through one star when the hubs are coupled. The mechanisms the
node uses to tolerate these faults are quite simple and they were described in Sec-
tion 11.7.2. Basically, the node tolerates the situation in which it cannot commu-
nicate through a given hub by merely accepting as valid the transmission/reception
notified by the controller that has no problems for communicating. Additionally,
the node can diagnose, almost in all cases, that it cannot communicate through a
given hub by simply using the fault-diagnosis capacities of its CAN controller that
is connected to that hub. In particular, this diagnosis is essential for the node to

262 Chapter 12. Reliability evaluation of ReCANcentrate

detect when its transmission controller cannot communicate and, then, to start us-
ing its surviving CAN controller as the new transmission controller (otherwise the
node wouldn’t be able to transmit any more). In this sense, recall that there is only
one case in which a node cannot rely on the fault-diagnosis capabilities of its trans-
mission controller. This happens when the transmission controller crashes, so that
it does not notify its faulty status to the node. Fortunately, the node can also easily
overcome this problem by simply associating a given time-out to every transmis-
sion it requests through its transmission controller. Given all these considerations,
we believe that it is reasonable to assume a value for connCov equal to the probabil-
ity with which a CAN controller diagnoses a bit-flipping fault, i.e. 95%. Moreover,
this can also been considered as pessimistic for ReCANcentrate, because a node
can be prevented from communicating through a given hub due to a stuck-at fault
affecting one of its downlinks and, in this case, the corresponding CAN controller
would diagnose the fault with a coverage of 100%.

The last new coverage that has to be taken into account for ReCANcentrate is
the probability with which its nodes successfully star communicating with each
other using two independent stars when the hubs become decoupled. We refer
to this coverage as decCov (see Table 12.1). Again, since we have not proposed
any mechanism that allows nodes to achieve this behavior, we assume a default
value of 0% for decCov. Nevertheless, since we believe that it would be very
valuable to evaluate how this coverage affects the reliability of a system relying on
ReCANcentrate, our model allows performing sensitivity analyses with respect to
values of decCov different from 0%.

12.4 ReCANcentrate model

Current section is devoted to thoroughly describing how we modelled the depend-
ability of a system that relies on ReCANcentrate. As already mentioned, we spec-
ified this new model using the same formalism as for the previous ones, i.e. the
Stochastic Activity Network (SAN) formalism. Once again, we used the Moëbius
software [SoT04] to build and analytically solve the model of ReCANcentrate.

Next subsections are organized as follows. First, we begin explaining the general
modelling strategy. Then, we will point out some important remarks that can help
the reader in understanding the model. Finally, we describe each one the SANs
submodels that compose the overall ReCANcentrate’s model.

12.4 ReCANcentrate model 263

Figure 12.1: ReCANcentrate model

12.4.1 Modelling rationale

The general strategy we followed to model the dependability of a system that relies
on ReCANcentrate is basically the same one we used to model the dependability of
a system relying on CAN and CANcentrate, which we explained in Section 10.6.3.
In this sense, the model of ReCANcentrate is a composition of three types of sub-
models we call regions submodels, coverage submodels and evaluator submodels.
Figure 12.1 depicts the general structure of the ReCANcentrate model.

The regions submodels play the same role as in CAN and CANcentrate: each
one of them represents all the error-containment regions of a given type (see Sec-
tion 10.6.3). Specifically, as can be seen in Figure 12.1, the overall ReCAN-
centrate’s model includes the following regions submodels: nodeKernelsR, node-
ConnsR, hubInConns and hubKernels. The two first ones of these submodels re-
spectively represent all the Node Kernel and all the Node Connection regions of
ReCANcentrate. They are analogous to the nodeKernelsT and nodeConnsT of
CANcentrate’s model and to the nodeKernelsB and nodeConnsB of the model of
the CAN bus. However, it is important to recall here that each Node Connection
region in a star comprises all the entities a node needs to be connected to a given
hub, i.e. one Controller, two Node IOs, two Attachments, two Hub IOs and four
Terminations. This implies that a ReCANcentrate-based system includes two Node
Connection regions per node, whereas a CANcentrate-based system includes only
one for each node. As a consequence, the nodeConnsR submodel of ReCANcen-
trate models double the quantity of Node Connection regions than the nodeConnsR

264 Chapter 12. Reliability evaluation of ReCANcentrate

submodel of CANcentrate.

The third submodel, hubInConns, represents faults happening at each one of
the Hub Interconnection regions that interconnect both hubs. We defined the Hub
Interconnection region specifically for ReCANcentrate. It includes all the entities
that constitute a given sublink: one Attachment, two Hub IO and two Termination
entities. More specifically, the Attachment entity represents the CAN cable and
the pair of straight connectors of the sublink; each Hub IO entity includes the
components that its hub uses to interface the sublink (a transceiver basically); and
each Termination represents one of the two terminations that are used to prevent
signal reflections at the extremities of the sublink.

The last regions submodel is hubKernels, which models faults affecting in any
of the two Hub Kernel regions. Notice that conversely to the hubKernel submodel
of CANcentrate, which represents faults happening in the single Hub Kernel of
CANcentrate, hubKernels models faults occurring at any of the two Hub Kernels
of ReCANcentrate.

The basic structure of a regions submodel of ReCANcentrate is depicted in Fig-
ure 10.6. As can be seen there, it is equal to the structure of this type of submodel
in the case of CAN and CANcentrate (see Section 10.6.3). A regions submodel of
ReCANcentrate still includes the place okRegions, whose marking represents the
number of regions of a given type that are not faulty; the activity regionFailure that
models the Time To Failure of an entity located at any of these regions; and the
places, fmi, that represent how the fault manifests.

Special emphasis should be put on these last places. When a fault occurs in
a given region, the activity regionFailure decides the failure mode with which the
fault manifests and sets a token in the corresponding fmi. In order to choose the way
in which the fault manifests, the cases’ proportions of regionFailure are calculated
taking into account the proportion with which the entities that constitute the region
exhibit different failure modes. In addition, as indicated in Section 10.6.3, the
activity regionFailure of the submodel that represents all the Node Connections of
ReCANcentrate, i.e. of the nodeConnsR submodel, takes into account not only the
failure mode proportions of the entities that constitute the Node Connection that
fails, but also the fact that the errors generated by such a fault can be contained to
some extent by the CAN controller placed at that Node Connection. This feature
is depicted in Figure 10.6, where the error-containment capabilities of the CAN
controller are also used for calculating the cases’s proportions. More specifically,
if a CAN controller successfully isolates a fault affecting its Node Connection,
the activity regionFailure decides that the Node Connection manifests as stuck-at-
recessive.

12.4 ReCANcentrate model 265

�����������	 ����
����	���������

��������������� �������������

�������������

���������������

�����������������������������������	
���
��
�

����
����

��������������

���� ���� ���� ����

����

����

����

����

���� ��������

Figure 12.2: Paths of the coverage process

Anyway, like in the models of CAN and CANcentrate, the occurrence of any
fault initiates a sequential process that models how the errors generated by that
fault propagate, how they are contained and, if appropriate, how the fault is toler-
ated. We refer to this process as the coverage process (see Section 10.6.1). If the
fault happens in a Node Connection, part of this process is carried out by the activ-
ity regionFailure of the corresponding submodel, which as just said takes into ac-
count the error-containment capabilities of the CAN controller placed at that Node
Connection. The rest of the coverage process is carried out by different coverage
submodels, each of which represents, more or less, a specific error-containment or
fault-tolerance mechanism of ReCANcentrate. These models take over when the
regions submodel set a token in any of the places fmi.

Figure 12.2 depicts a diagram that represents the way in which the different

266 Chapter 12. Reliability evaluation of ReCANcentrate

submodels of ReCANcentrate collaborate to implement the different paths of the
coverage process that can be executed when a region fails. The regions and the cov-
erage submodels are represented by means of clear and shaded boxes respectively.
Each one of the paths of the diagram starts at a given regions submodel, since each
coverage process begins when a fault occurs in a given region. Basically, each cov-
erage submodel evaluates whether or not a given mechanism contains the errors,
or whether or not such a mechanism tolerates the fault. Depending on the results
obtained by the mechanism, the coverage submodel finishes the process (this is
indicated in Figure 12.2 by an arrow connected to the word eval) or compels an-
other appropriate coverage submodel to proceed with the evaluation. The coverage
process continues until the errors are contained (or the fault is tolerated) by a given
mechanism, or until all the error-containment and fault-tolerance mechanisms are
exhausted. In next sections, we will explain what coverage submodels are involved
in these processes when a fault affects each type of region, and the actions these
submodels perform.

However, at this point, let us highlight some characteristics of the ofmFauE-
val coverage submodel, which is the one that evaluates whether or not the errors
generated by an ofm fault propagate throughout the system. First, notice that the
presence of ofmFauEval may seem counterintuitive, since there is no mechanism
that can diagnose an ofm failure. However, the errors an ofm failure generates
cannot pollute the system if it occurs in an already isolated region. For instance,
the incorrect messages sent by a CAN controller that suffers from a babbling-idiot
fault cannot affect any node if this CAN controller is already isolated by its node
and the hub it is connected to. Second, it is noteworthy that ofmFauEval is the only
coverage submodel that does not represent any specific fault-treatment or fault-
tolerance mechanism. This is because there is no mechanism that can diagnose
ofm faults. Finally, as can be seen in Figure 12.2, each regions submodel is con-
nected to ofmFauEval (this connection is represented by the word ofm). This is
because all regions are likely to suffer from an ofm fault.

During the coverage process and depending on whether or not the fault is suc-
cessfully isolated and/or tolerated, coverage submodels update a set of places that
make it possible to calculate how many nodes can communicate among them.
These places are then used by the evaluator submodel ReCANcentrateFaiEval (see
Figure 12.2) to decide wether or not the entire system is faulty. Specifically, it
considers that an overall failure happens if there are few than a minimum number
of nodes that can communicate among them. Once again, this number is set up by
means of the parameter kSevere (see Table 10.4) so that the model can be config-
ured to measure the NFT/AR and different degrees of FT/AR. The name and the
meaning of each one of these places will be described in detail in the following

12.4 ReCANcentrate model 267

sections, specially in Section 12.4.3. Finally notice that ReCANcentrateFaiEval
takes its decision at the end of the coverage process. This is shown in Figure 12.2,
where ReCANcentrateFaiEval is represented as a black box where the word eval is
connected to.

12.4.2 Some important preliminary remarks

Before continuing with the explanation of each ReCANcentrate’s submodel, let us
point out some important remarks. First of all, for the sake of clarity, let us refer
to the two hubs of ReCANcentrate as hub A and hub B from now on. In particular,
this notation will facilitate the explanation of some submodels of ReCANcentrate
that are somehow symmetric. More specifically, there are submodels that reflect
the actions carried out by both hubs. Thus, since both hubs are equal to each other,
these submodels are symmetric in the sense that they model actions performed by
a hub twice.

Second, as we pointed out in Section 12.3.3, a hub is considered as faulty in
two different situations: (1) when its Hub Kernel region fails and (2) when the hub
propagates errors as a consequence of not being able to isolate any of its ports.

Third, similarly to what we did for the case of the model of CANcentrate, we
will call each port of the hub a node is connected to either a hub uplink port or
a branch. Additionally, we will refer to each hub port connected to an incoming
sublink as a hub sublink port or an inbranch.

It is also very important to understand when we consider that a branch and an
inbranch are faulty. On the one hand, since a branch can be seen as an uplink
hub port, we consider that it is faulty when the node connected to that port cannot
communicate through it. This implies that a branch is faulty in the following cases:
(1) when the Node Kernel of the node that uses the branch is faulty; (2) when
the Node Connection region corresponding to the branch fails; (3) when the hub
to which the branch belongs suffers from a fault or it cannot contain the errors
received from other hub port. As will be explained, many submodels need to know
how many branches are faulty in order to take their own decisions. For this purpose,
the submodels share the place numFaultyBranches, whose marking indicates the
number of branches that are faulty.

On the other hand, we consider that an inbranch is faulty when the hub that uses
this inbranch to receive the contribution of the other hub receives an incorrect con-
tribution. In this sense, an inbranch is faulty in the following cases: (1) when the
Hub Interconnection region corresponding to the inbranch fails; (2) when any of
the hubs fails (it kernel fails or it cannot contain the errors it receives from any of

268 Chapter 12. Reliability evaluation of ReCANcentrate

its ports) and (3) when the hubs are decoupled. Concerning these two last cases,
notice that when a hub fails, not only the inbranches that carry the contribution
of the faulty hub can be considered as faulty, but also the inbranches that convey
the contribution of the non-faulty hub. This is because, from the communication
point of view, these last inbranches are isolated together with the faulty hub. Simi-
larly, when the hubs are decoupled, their contributions are not related to each other
because each hub constitutes an independent communication domain. Thus, even
if the Hub Interconnection that constitutes a given inbranch is not faulty, the hub
perceives the contribution it receives through that inbranch as erroneous.

Fourth, it is important to highlight when we consider that the hubs are decou-
pled. Specifically, we understand that the hubs are decoupled when both of them
are not faulty, but there are no enough Hub Interconnection regions to carry the
contribution of the hub A to the hub B or viceversa. In this sense, from now on we
will say that the hubs are decoupled when each one of them represents a separate
communication domain that the nodes can use for communicating.

Finally, it is important to note that many submodels based their own decisions
on the capacity of each node of the system to communicate through the hub A
and the hub B. This is because the impact of a fault on the overall system depends
on the communication capabilities of each node that is affected by a fault. To
better understand this issue, let as classify each node of ReCANcentrate into the
following categories, depending on its capacity to communicate through the hub A
and the hub B.

• okAB node. It is a node whose Node Kernel is not faulty (the node is opera-
tive) and that can communicate through hub A and hub B.

• okA node. It is a node whose Node Kernel is not faulty and that tolerated a
fault that prevented it from communicating through hub B. Such a node can
still communicate through hub A.

• stopA node. It is a node whose Node Kernel is not faulty and that did not
tolerate a fault that prevented it from communicating through hub B. As a
consequence, although the node could still communicate through hub A, it
stops communicating.

• okB node. It is a node whose Node Kernel is not faulty and that tolerated a
fault that prevented if from communicating through hub A. Such a node can
still communicate through hub B.

• stopB node. It is a node whose Node Kernel is not faulty and that did not
tolerate a fault that prevented it from communicating through hub A. As a

12.4 ReCANcentrate model 269

consequence, although the node could still communicate through hub B, it
stops communicating.

• noConn node. It is a node whose Node Kernel is not faulty and that can
use no hub for communicating. A noConn node differs from a stopA and a
stopB node in the fact that a noConn node cannot potentially use any hub for
communicating.

• nonOk node. It is a node whose Node Kernel is faulty. It does not matter
whether or not it could potentially communicate through any hub; since its
Node core is faulty, it is not operative and it does not communicate.

Attending to this classification it is easy to see that, for instance, the impact of
a fault affecting a stopA or stopB node will be lower than the impact of a fault
affecting an okA or an okB node. In the first case, the fault does not prevent any
new node from communicating, whereas in the second case it does.

Due to this necessity of knowing the communication capabilities of each node
in order to evaluate the impact of faults, the submodels share a set of places whose
marking represent the number of nodes per category. Specifically, the model of
ReCANcentrate includes a set of shared places, each of which represents the num-
ber of nodes that belong to one of the first five categories of nodes listed above.
These places are: okABNodes, okANodes, stopANodes, okBNodes and stopBNodes
respectively. Notice that it is not necessary to include a place that represents the
number of noConn nodes and a place that models the quantity of nonOk nodes. On
the one hand, the quantity of nodes that belong to any of these two categories can
be calculated by subtracting the number of nodes that belong to the other categories
from the total number of nodes. On the other hand, we do not need to differentiate
between noConn and nonOk nodes, since a fault affecting a node of any of these
two categories has the same impact on the communication.

12.4.3 ReCANcentrateFaiEval submodel

As already said, when a fault occurs and the coverage process finishes, the ReCAN-
centrateFaiEval submodel decides whether or not an overall failure has occurred.
For the sake of clarity, Figure 12.3 depicts a simplified version of the ReCANcen-
trateFaiEval submodel. This version does not show how ReCANcentrateFaiEval
takes into account the value of sysFauTolCov, i.e. the coverage with which an FT/A
system accepts or tolerates the failure or disconnection of a new node, provided
that the number of nodes that have failed or that have become disconnected so far

270 Chapter 12. Reliability evaluation of ReCANcentrate

Figure 12.3: ReCANcentrateFaiEval submodel

(including the new one) can be theoretically accepted or tolerated by that FT/A
system.

Leaving this aspect aside, notice that there are different circumstances that lead
ReCANcentrateFaiEval to diagnose the failure of the overall system. Each one of
these circumstances is detected by a dedicated input gate that monitors the mark-
ing of a set of places ReCANcentrateFaiEval shares with other submodels. When
appropriate, each input gate enables an instantaneous activity that sets a token in
the place generalizedFailure. As in the case of the models of the CAN bus and
CANcentrate, a token in this place indicates that the overall system is faulty and
stops all the submodels (including the ReCANcentrateFaiEval submodel itself), in
order to reduce the state space of the underlying Markov process.

The first one of the referred input gates, allNodesPre, is devoted to detecting sit-
uations in which all nodes are prevented from communicating. Gate allNodesPre
becomes aware about any of these situations when it receives a token in noAvail-
Hub, outFauMod or decNotTol (see Figure 12.3). The specific role of each one
of these places is as follows. ReCANcentrateFaiEval receives a token in the place
noAvailHub when there is not any hub available for communicating, i.e. when both
hubs are faulty. Notice again that a hub is considered as faulty in two different sit-
uations: when its Hub Kernel region fails and when the hub cannot isolate a faulty
uplink hub port or a faulty sublink hub port. As concerns the place outFauMod, it
receives a token when an out-of-fault-model (ofm) fault occurs. Finally, a token
in the place decNotTol indicates that the hubs have become decoupled and that the
nodes were not able to tolerate this situation. Notice that a token in any of these
places implies the failure of the overall system. Thus, the input gate allNodesPre

12.4 ReCANcentrate model 271

compels its instantaneous activity to set a token in generalizedFailure when a token
is set in any of them.

The other two input gates are aimed at detecting situations in which, although not
all nodes are prevented from communicating, the number of nodes that can operate
and communicate among them is not enough to consider that the system can deliver
its services. The difference between both input gates is that hubsCoupNk is devoted
to detecting such a situation when the hubs are coupled with each other, whereas
hubsDeCoupNk aims at detecting this situation when the hubs are decoupled.

To better understand how each one of these gates calculates the number of nodes
that are operative and that communicate, let us describe the role of the places that
are connected to them. As can be seen in Figure 12.3, these places are: decoupled-
Hubs, okABNodes, okANodes and okBNodes.

ReCANcentrateFaiEval receives a token in the place decoupledHubs when both
hubs become decoupled, but nodes are able to continue communicating using both
hubs independently.

The characteristics of the places okABNodes, okANodes and okBNodes were ex-
plained before in Section 12.4.2: they are shared among several submodels and
their markings respectively reflect the number of okAB, okA and okB nodes. No-
tice that these types of nodes embrace every node that is able to communicate
through a hub. Therefore, coverage submodels use the places okABNodes, okAN-
odes and okBNodes to indirectly indicate to hubsCoupNk and hubsDecCoupNk how
many nodes can communicate among them. In other words, these places are the
ones we pointed out before in Section 12.4.1 and whose marking make it possible
for the evaluator submodel to infer the number of intercommunicating nodes.

As concerns the place evalFault, it is used to indicate to hubsCoupNk and hubs-
DecCoupNk that the markings of the places okABNodes, okANodes and okBNodes
are not coherent and, thus, that these places cannot be used for taking any decision.
More specifically, as will be explained later, when a fault occurs, a token is set
in the place evalFault in order to indicate that the markings of referred places are
incoherent until all the corresponding coverage submodels assess how the errors
are propagated and how they are contained or tolerated, i.e. until the coverage pro-
cess ends. Afterwards, this token is erased when the coverage submodels finish.
As already pointed out, this fact is reflected in Figure 12.2, where ReCANcentrate-
FaiEval appears at the end of each path of the coverage process.

Taking into account the above considerations, the expression of hCoupNk is as
follows:

272 Chapter 12. Reliability evaluation of ReCANcentrate

generalizedFailure → Mark() == 0 and

decoupledHubs → Mark() == 0 and

okABNodes → Mark() + okANodes → Mark() +

okBNodes → Mark() < numNodes − kSevere and

evalFault → Mark() == 0

The first term ensures that the input gate is not enabled if an overall failure has
already occurred. The second one guarantees that hubsCoupNk remains disabled
if the hubs are decoupled. The third term compares the number of nodes that
operate and communicate among them, i.e. the quantity of intercommunicating
nodes, with the minimum number of intercommunicating nodes the system needs
in order to deliver its service. Notice that when both hubs are coupled, an opera-
tive node can communicate as long as it can transmit and receive through at least
one hub, no matter which. Thus, the number of intercommunicating nodes can
be calculated by simply adding up the marking of the places okABNodes, okAN-
odes and okBNodes. Once this number is obtained, hCoupNk compares it with
the value of numNodes − kSevere. If the number of intercommunicating nodes is
few than numNodes − kSevere, then a generalized failure occurs. The parameter
numNodes specifies the total number of nodes, whereas kSevere is the maximum
number of non-intercommunicating nodes a system can accept or tolerate. Notice
that the parameter kSevere allows to configure the model to measure the NFT/AR
and different degrees of FT/ARk. For instance, if one is interested in measuring the
NFT/AR, the minimum number of intercommunicating nodes is the total number
of nodes and, thus, kSevere must be specified as 0. Finally, the fourth term refers
to the marking of the place evalFault. Gate hCoupNk remains disabled as long as
evalFault contains a token, since the marking of places like okABNodes, okANodes
and okBNodes are incoherent until the coverage process ends.

Finally, the expression of hubsDecCoupNk basically differs from the above ex-
pression in the way in which the number of nodes that can communicate among
them is calculated:

generalizedFailure → Mark() == 0 and

decoupledHubs → Mark() == 1 and

okABNodes → Mark() + okANodes → Mark()) < numNodes − kSevere and

okABNodes → Mark() + okBNodes → Mark() < numNodes − kSevere and

evalFault → Mark() == 0

12.4 ReCANcentrate model 273

In this case, since the hubs are decoupled, the okA nodes cannot communicate
with the okB nodes. Thus, the input gate calculates the quantity of nodes that
can communicate through the hub A and the hub B, independently. Specifically,
the quantity of nodes that communicate through the hub A is calculated in the
third term, whereas the quantity of nodes that communicate through the hub B is
calculated in the fourth one. If both quantities of nodes are few than numNodes −
kSevere, then a generalized failure occurs. This means that we suppose that the
amount of nodes that communicate among them when the hubs are decoupled is
the maximum of the number of nodes that can communicate through the hub A and
the hub B. This can be accomplished, for instance, if the nodes of the system are
provided with a mechanism that allows them to permanently know which is the hub
that provides service to the maximum number of nodes and then, to communicate
through that hub.

Notice that to assume such a mechanism for ReCANcentrate when the hubs are
decoupled is optimistic, since we could assume a different communication strategy
in which the number of nodes that intercommunicate when the hubs are decoupled
is fewer than the referred maximum. However, the reliability results presented in
this dissertation are not biased towards ReCANcentrate as a consequence of this
assumption. This is because, as explained before, we suppose that nodes do not
tolerate the situation in which hubs become decoupled, i.e. the default value of the
parameter decCov is 0. In contrast, this assumption allows assessing what would
be the maximum system reliability that can be achieved with ReCANcentrate if the
nodes are able to tolerate hub decouplings.

12.4.4 nodeKernelsR submodel

The nodeKernelsR submodel models faults happening at the Node Kernel regions
of ReCANcentrate. Additionally, since a faulty Node Kernel can generate errors
that propagate to the hub through its uplinks, the submodel normally needs to ini-
tiate a path of the coverage process that evaluates how these errors are contained.
More specifically, nodeKernelsR initiates a path of the coverage process if the fault
affects any hub port that has not failed so far, i.e. a hub port that is not already
isolated.

If the Node Kernel suffers from an ofm fault, it activates the ofmFauEval sub-
model, which will be thoroughly described in Section 12.4.14. In contrast, if the
fault manifests in a way that is included in our fault model, nodeKernelsR compels
two different coverage submodels to start the corresponding paths of the coverage
process that evaluate how a faulty Node Kernel is treated and tolerated (see Fig-
ure 12.2) by means of the corresponding ReCANcentrate’s mechanisms. These

274 Chapter 12. Reliability evaluation of ReCANcentrate

coverage submodels are fauLPsEvalAtHubs and fauLPevalAtHub, which are de-
scribed in detail in sections 12.4.9 and 12.4.10 respectively. The specific coverage
submodel that nodeKernelsR compels to take over depends on the number of up-
link hub ports (branches) affected by the errors the faulty Node Kernel generates.
If the fault affects two ports (one placed a the hub A and the other at hub B), then
nodeKernelsR activates the fauLPsEvalAtHubs coverage submodel, which evalu-
ates whether or not each hub contains the errors. If the fault affects only the uplink
port of one of the hubs, nodeKernelsR compels the fauLPevalAtHub coverage sub-
model to proceed. This submodel evaluates if the corresponding hub contains the
errors.

The coverage process continues ahead if one of the hubs does not contain the
errors. As already said, a hub that does not isolate a faulty port is considered
as faulty, since it delivers errors through all its downlinks and sublinks. At this
point, how to model the way in which the errors the hub propagates are treated
depends on whether or not the hubs were coupled before the fault occurred. If
the hubs were coupled, it is necessary to evaluate if the hub that remains non-
faulty successfully isolates the faulty hub by disabling the corresponding sublinks.
The coverage submodel involved in such an evaluation is the fauHubEvalAtHub
submodel. This fact is depicted in Figure 12.2, where both fauLPsEvalAtHubs and
fauLPEvalHub are connected to the this submodel. Moreover, if the non-faulty hub
successfully isolates the faulty one, then it is also necessary to evaluate whether
or not each node that was using the hub that fails for communicating is able to
isolate it and, then, to continue communicating through the non-faulty hub. The
fauHubEvalAtNodes coverage submodel performs this evaluation; as reflected in
Figure 12.2, where fauHubEvalAtHub is connected to this coverage submodel.

In contrast, if the hubs were already decoupled when the fault occurred, then it
has not sense to evaluate if the non-faulty hub is able to isolate the faulty one. This
is because the non-faulty hub would have already isolated the sublinks through
which it receives the contribution of the faulty hub. However, in this situation, the
fact that the model had not stopped although the hubs were decoupled means that
the nodes were still communicating using both hubs independently before the fault
occurred. Therefore, it is necessary to reflect that the nodes will not be able to use
the faulty hub for communicating any more. Once again, this is carried out by the
fauHubEvalAtHub submodel, which is directly activated by the fauLPsEvalAtHub
and by the fauLPevalAtHub submodels when necessary (see Figure 12.2).

As concerns the nodeKernelsR submodel itself, its structure is depicted in Fig-
ure 12.4. As in the case of the corresponding submodels of the CAN bus 10.8.1
and CANcentrate 10.7.1, the marking of the place okNodeKernels represents the
number of Node Kernels that have not failed so far; whereas the place generalized-

12.4 ReCANcentrate model 275

Failure is used to disable the submodel when the overall system is faulty.

Moreover, the activity nkFailure has also the same role as in these two submod-
els: it represents the time that elapses until a non-faulty Node Kernel region fails.
Thus, the failure rate of the Time To Failure distribution it models is, once again:

okNodeKernels → Mark() · nodeCoreFRate

The activity nkFailure also has three cases. The difference between these cases
is that each one of them respectively represents (starting from the upper one) a fault
occurring at an okAB node; at an okA, stopA, okB, or stopB node; and at a noConn
node. The proportion with which the activity nkFailure selects each one of these
cases is basically calculated by dividing the number of Node Kernels that belong
to the corresponding type of node by the total number of non-faulty Node Kernels.
Specifically, the proportion with which the activity nkFailure selects the first case is
basically calculated by dividing the number of Node Kernels that belong to nodes
that can communicate through both hubs, i.e. okAB nodes, by the total number of
non-faulty Node Kernels:

okABNodes → Mark()
okNodeKernels → Mark()

Analogously, the second case of the activity nkFailure, which is the proportion
with which the Node Kernel that fails belongs to an okA, stopA, okB, or stopB
node, is calculated as:

(okANodes → Mark() + stopANodes → Mark() + okBNodes → Mark()+

stopBNodes → Mark()) ·
1

okNodeKernels → Mark()

The proportion of the third case of the activity nkFailure is obtained using the
same strategy. In this case, the number of non-faulty nodes that cannot communi-
cate through any hub, i.e. noConn nodes, is calculated subtracting the number of
nodes that can communicate through two or only one hub from the total number of
nodes whose Node Kernel is not faulty:

276 Chapter 12. Reliability evaluation of ReCANcentrate

Figure 12.4: nodeKernelsR submodel

12.4 ReCANcentrate model 277

[okNodeKernels → Mark() − (okABNodes → Mark() + okANodes → Mark()+

stopANodes → Mark() + okBNodes → Mark() + stopBNodes → Mark())] ·
1

okNodeKernels → Mark()

As can be seen in Figure 12.4, the first case of the activity nkFailure sets two
tokens in the place numFaultyBranches (using an output gate for this purpose) and
one token in the place evalFault. On the one hand, as explained in Section 12.4.2,
the place numFaultyBranches is shared with other submodels and it indicates the
number of branches that are faulty. In this sense, since the first case of the activity
nkFailure represents a Node Kernel failure happening in a node that can commu-
nicate through both hubs, it is necessary to record that the two branches through
which the node can communicate become faulty. On the other hand, the first case of
the activity nkFailure sets a token in the place evalFault, in order to prevent the Re-
CANcentrateFaiEval submodel to evaluate the places okABNodes, okANodes and
okBNodes before their markings are consistent. As explained in Section 12.4.3, the
marking of these places are inconsistent until the corresponding evaluator submod-
els do not finish assessing how the errors generated by the fault are propagated and
contained.

In addition, the first case of the activity nkFailure sets a token in the place
twoConnNode, thereby enabling the instantaneous activity twoConnFaiMod, which
has five cases. These cases cover the different ways in which the Node Kernel fail-
ure manifests at the two uplink hub ports at which it is connected to. In this way,
the first case sets a token in the place stuckStuckLPs, which indicates that the fail-
ure manifests as stuck-at at both uplink hub ports; the second case sets a token in
the place stuckFlipLPs, which indicates that the failure manifests as stuck-at at the
uplink port of the hub A and as bit-flipping at the uplink port of the hub B; and so
on.

However, the last one of these cases (the lower one) sets a token in outFau-
Mode, which provokes that the system is diagnosed as faulty. Note that we could
differentiate between each one of the situations in which the faulty Node Kernel
manifests as ofm at one uplink hub port only, while exhibiting a fault that is in-
cluded in our fault model at the other uplink hub port. Nevertheless, in order to
simply the model, we assumed that a Node Kernel that exhibits an ofm failure at
one of its Node Connections eventually sends ofm errors through its other Node
Connection. This could actually happen if the application decides to send ofm in-
formation through both its Node Connections, as a consequence of observing ofm
errors generated by its Node Kernel through one of them. Of course, this assump-

278 Chapter 12. Reliability evaluation of ReCANcentrate

tion can be considered pessimistic for ReCANcentrate, since a fault that affects a
Node Kernel and that sends ofm error through one Node Connection does not nec-
essarily lead to a generalized failure. For instance, imagine a situation in which the
hubs are decoupled and in which the only node that can communicate through both
hubs suffers from a fault in its Node Kernel. If the faulty Node Kernel sends ofm
information to one of the hubs only, then only the nodes connected to that hub fail.
In this situation, a generalized failure does not occur if the number of nodes that
remain connected to the other hub are enough for the system to deliver its service.

The proportion with which each one of the first four cases of the activity twoCon-
nFaiMod is selected is calculated multiplying the probability with which the Node
Core (the Node Kernel is composed of the Node Core exclusively) compels each
one of its two CAN controllers to transmit the types of errors represented by that
case. For instance, the proportion of the second case is calculated as:

(nodeCoreStrProp + nodeCoreStdProp) · nodeCoreFlipProp

Which is the probability with which the Node Core compels the CAN controller
connected to the hub A and the CAN controller connected to the hub B to respec-
tively transmit a stuck-at and a bit-flipping stream. See the meaning of the above
parameters at Table 10.4). Notice that in Section 10.4.4, we said that it is practically
impossible that a fault affecting a Node Core leads a CAN controller to transmit
a stuck-at-dominant or a bit-flipping stream. However, we decided to model this
possibility for the sake of completeness, even though the parameters that specify
the proportion with which the Node Core manifest as stuck-at-dominant and bit-
flipping are set to 0.

As concerns the proportion of the last case of the activity twoConnFaiMod, i.e.
the one that sets a token in outFauMod, it is calculated in a different way, as fol-
lows:

2 · nodeCoreOfmProp − nodeCoreOfmProp2

As just explained above, we suppose that a Node Kernel that has two non-faulty
Node Connections provokes a generalized failure if it manifests as ofm in any of
its uplink hub ports (no matter which). Thus, the probability with which twoCon-
nFaiMod chooses its fifth case is the sum of the probability of the event in which
the fault manifests as ofm at the hub A and the event in which the fault mani-
fests as ofm at the hub B, i.e. 2 · nodeCoreOfmProp, minus the probability of the
intersection of these two events, i.e. nodeCoreOfmProp2.

12.4 ReCANcentrate model 279

Going back to the first four cases of twoConnFaiMod, notice that besides setting
a token in one of the mentioned places, each one of them always writes a token
at the place updateTwoConnNode. This action enables an instantaneous activity
that is connected to the places okABNodes and fauABLPs by means of an output
gate. On the one hand, this output gate decreases the number of okAB nodes of the
system in one unit, since this point of the nodeKernelsR submodel is reached as a
consequence of a fault affecting the Node Kernel of such a kind of node (the okAB
node becomes a nonOk node). On the other hand, the output gate sets a token at the
place fauABLPs in order to indicate to the fauLPsEvalAtHubs submodel that two
new uplink ports (one of them belonging to the hub A and the other to the hub B)
have become faulty. As said at the beginning of this section, when a faulty Node
Kernel affects two uplink hub ports, nodeKernelsR compels the fauLPsEvalAtHubs
coverage submodel to evaluate if each hub isolates the fault (see Figure 12.2).

Until this point we have discussed the actions that are performed after the ac-
tivity nkFailure selects its first case. As concerns its second case, as explained
above, it represents the situation in which the Node Kernel that fails is placed in
an okA, stopA, okB, or stopB node. This case is also connected to the places
numFaultyBranches and evalFault. However, it increases the marking of the place
numFaultyBranches in one unit. This is because the node was already not able
to communicate through one of the hubs, i.e. the corresponding Node Connection
or Hub Kernel region was already faulty, and thus only one new branch must be
recorded as faulty.

Analogously to the first case, the second case of the activity nkFailure addition-
ally sets a token in the place oneConnNode, thereby enabling the instantaneous
activity oneConnFaiMod. This activity has three cases. The first one is chosen
to model that the Node Core exhibits an ofm failure. The second and third cases
respectively represent the situation in which the Node Core compels the CAN con-
troller, corresponding to the branch through which it can still communicate, to
transmit an erroneous stuck-at and a bit-flipping stream. The proportion of the
first case is calculated as nodeCoreOfmProp; whereas the proportions of the sec-
ond and third ones are calculated by adding the proportions with which the faulty
Node Core compels the CAN controller to transmit a stuck-at or a bit-flipping
stream. Specifically, the proportions of the two cases are nodeCoreStrProp +
nodeCoreStdProp, and nodeCoreFlipProp respectively.

If the activity oneConnFaiMod selects if first case, it sets a token in the place
ofmNkLP. This place is used by nodeKernelsR to activate the ofmFauEval sub-
model when necessary. Notice that this point of the submodel is reached when the
Node Kernel that fails has only one non-faulty Node Connection and, thus, the ofm
errors generated by this Node Kernel only reach the uplink hub port of one of the

280 Chapter 12. Reliability evaluation of ReCANcentrate

hubs. This implies that the fact that these ofm errors propagate throughout the sys-
tem depends on some circumstances, e.g. on whether or not the hubs are coupled.
These circumstances are analyzed by ofmFauEval, which decides whether the ofm
errors pollute all the system or only part of it.

Similarly, when the activity oneConnFaiMod chooses its second or its third case,
it respectively sets a token in the places stuckLP and flipLP, no matter it is an
okA/okB or a stopA/stopB node. As mentioned above, when a Node Kernel fails
in way that is included in our fault model and sends errors to one uplink hub port
only, nodeKernelsR compels the fauLPevalAtHub coverage submodel to evaluate
if the corresponding hub isolates the fault (see Section 12.4.10 for a detailed ex-
planation of this submodel). Specifically, nodeKernelsR shares the places stuckLP
and flipLP with fauLPevalAtHub in order to indicate to it how the Node Kernel
failure manifests at the hub port. However, notice that a token in any of these
places does not compel fauLPevalAtHub to take over. Instead, nodeKernelsR leads
fauLPevalAtHub to proceed later on, by setting a token in the place fauALP or in
the place fauBLP, as will be explained in this section.

The second and third cases of the activity oneConnFaiMod also write a token at
the place updateOneConnNode, thereby initiating a set of actions aimed at deciding
which specific kind of node the Node Kernel that fails is located at, i.e. at a okA,
a stopA, a okB, or a stopB node, and then, to update the marking of the places
okANodes, stopANodes, okBNodes and stopBNodes accordingly.

The first one of this actions is performed by the activity okOrStopNode, which
decides whether the Node Kernel is placed at a node that does communicate through
one hub or that does not. In this sense, the first case of this activity is chosen when
the node is an okA or an okB node, whereas the second one is selected when the
node is a stopA or a stopB node. The proportion of these cases is calculated by
dividing the number of okA and okB nodes, or the number of stopA and stopB
nodes, by the total number of these nodes, respectively. More specifically, the first
case proportion is:

(okANodes → Mark() + okBNodes → Mark()) /

(okANodes → Mark() + stopANodes → Mark() +

okBNodes → Mark() + stopBNodes → Mark())

whereas the proportion of the second case is calculated as:

12.4 ReCANcentrate model 281

(stopANodes → Mark() + stopBNodes → Mark()) /

(okANodes → Mark() + stopANodes → Mark() +

okBNodes → Mark() + stopBNodes → Mark())

When selected, these cases transfer the token to the place updateOkNode and
updateStopNode respectively. The actions carried out when the second case is se-
lected are analogous to the actions performed when the first case is chosen. Thus,
next we only describe what is done when the first case is taken. The activity
okAOrOkBNode decides whether the affected node is an okA or an okB node. For
that, it has two cases whose proportions are calculated using the same strategy just
explained for the activity okOrStopNode; so that okAOrOkBNode selects the first
and second cases with proportions:

okANodes → Mark()
(okANodes → Mark() + okBNodes → Mark())

and:

okBNodes → Mark()
(okANodes → Mark() + okBNodes → Mark())

Each one of the two cases of the activity okAOrBNode is connected to a dedicated
output gate. On the one hand, the output gate decreases the marking of the place
okANodes (or okBNode) in order to reflect that the okA (or the okB) node becomes
a nonOk node. On the other hand, the output gate sets a token in the place fauALP
(or fauBLP), thereby indicating to the fauLPEvalAtHub submodel that a new uplink
port corresponding to the hub A (or the hub B) has become faulty.

Finally, to conclude this section, let us explain why the third case of the activity
nkFailure is unconnected. Notice again that this case is chosen when the faulty
Node Kernel is placed in a noConn node. This implies that the two branches of
this node were already faulty and that, thus, their failure was already recorded in
the place numFaultyBranches. Moreover, it does not matter the type of erroneous
stream or frame that the faulty Node Kernel tries to transmit through both branches,
since the respective uplink hub ports (or the hub itself) were already isolated. Be-
cause of these reasons, the third case of nkFailure is not connected to any place,
which means that no further action is performed when this case is chosen.

282 Chapter 12. Reliability evaluation of ReCANcentrate

12.4.5 nodeConnsR submodel

The nodeConnsR submodel is the responsible for modelling faults happening at the
Node Connection regions of ReCANcentrate. In addition, as explained before, a
regions submodel sometimes needs to compel specific coverage submodels to carry
out a path of the coverage process that evaluates how the faults are treated. In the
case of a fault happening in a Node Connection region, the corresponding coverage
process’s path is initiated in two different situations

First, nodeConnsR compels ofmFauEval to take over when the fault is not in-
cluded in our fault model (see Figure 12.2). The role of ofmFauEval was intro-
duced before and it will be thoroughly described in Section 12.4.14.

Second, nodeConnsR activates the fauLPevalAtNode submodel when the fault
is included in our fault model and affects a branch that was not faulty (and thus
not previously isolated). The fauLPevalAtNode submodel basically evaluates if the
node to whose the Node Connection region belongs to tolerates the fault, i.e. it eval-
uates whether or not the node of the faulty Node Connection will be able to con-
tinue communicating using its other Node Connection region (see Section 12.4.8
for a detailed explanation about this issue). In addition, when fauLPevalAtNode
finishes, it is necessary to evaluate if the hub corresponding to that Node Con-
nection isolates the fault. Thus, as also depicted in the referred figure, fauLPe-
valAtNode further compels fauLPevalAtHub to evaluate this aspect. Notice that
fauLPevalAtHub is the same coverage submodel nodeKernelsR activates when a
Node Kernel fault that is included in our fault model affects only the uplink port
of one of the hubs the node is connected to (see Section 12.4.4). This is because
the error-containment actions a hub carries out when one of its uplink ports fails do
not depend on whether the errors are provoked by a faulty Node Kernel or a faulty
Node Connection. Moreover, also notice that if the hub does not isolate the uplink
port corresponding to the faulty Node Connection, fauLPevalAtHub will activate
the coverage submodels fauHubEvalAtHub and/or fauHubEvalAtNodes following
the same strategy already explained at the beginning of the section that describes
the nodeKernelsR submodel (Section 12.4.4).

The structure of the nodeConnectionsR submodel is depicted in Figure 12.5.
It is similar to the structure of the nodeKernelsR submodel. The marking of the
place okNodeConns is the number of Node Connection regions that are not faulty.
Its initial value is two times the number of nodes, 2 · numNodes, since each node
initially has two non-faulty Node Connection regions (one per hub). See Table 12.1
for the specific default values of the parameter numNodes.

The activity ncFailure models the Time To Failure distribution of all the surviv-
ing Node Connections as a whole. This distribution is exponential and its failure

12.4 ReCANcentrate model 283

Figure 12.5: nodeConnsR submodel

rate is calculated following the same strategy used for all the regions we have ex-
plained so far (see Equation 10.4):

okNodeConns → Mark() ·

(ctrlFRate + 2 · (nodeIOFRate + lnkAttchFRate + hubIOFRate + 2 · termFRate))

Notice that this failure rate coincides with the failure rate of the activity ncFailure
of the submodel that represents the Node Connection regions in CANcentrate: the
nodeConnsT submodel (see Section 10.7.2). This is because a Node Connection
region is composed of exactly the same entities in CANcentrate and in ReCAN-
centrate.

In fact, the structure of both submodels is very similar: compare Figures 10.9
and 12.5. The activity ncFailure of nodeConnsR has two cases, each of which
has exactly the same meaning as in the equivalent activity of CANcentrate. The
first case represents a fault that affects a Node Connection located in a non-faulty
(and thus non-isolated) branch; whereas the second one models a Node Connection
fault that happens in a branch that was already faulty (and thus, in a branch that is
already isolated).

The proportions of both cases are calculated exactly as in the case of the Node
Connection region submodel of CANcentrate. The expression of the first case is:

numBranches − numFaultyBranches → Mark()
okNodeConns → Mark()

284 Chapter 12. Reliability evaluation of ReCANcentrate

And the proportion of the second one is:

(okNodeConns → Mark() − (numBranches − numFaultyBranches → Mark()))
okNodeConns → Mark()

It is noteworthy that, as in CANcentrate, we use the value of the parameter num-
Branches and the marking of the place numFaultyBranches, to calculate the proba-
bilities with which a Node Connection that fails belongs to a non-faulty branch and
to an already faulty branch. For instance, the probability with which a Node Con-
nection that fails is placed in a non-faulty branch is calculated by dividing the num-
ber of non-faulty Node Connections that are placed at non-faulty branches, by the
total number of Node Connections that have not failed so far. Notice that the num-
ber of non-faulty Node Connections located at non-faulty branches coincides with
the number of non-faulty branches, i.e. with numBranches−numFaultyBranches →
Mark(). This is because a faulty Node Connection leads its branch to be faulty and,
hence, a faulty Node Connection cannot be placed in a non-faulty branch.

The actions that nodeConnsR performs after the activity ncFailure fires depend
on the specific case this activity chooses. If it selects its first case (the upper one),
ncFailure sets a token in three places: numFaultyBranches, evalFault, and ulNon-
AlFauBranch. Since this first case represents the failure of a Node Connection that
is located in a non-faulty (and thus non-isolated) branch, it is necessary to record
that a new branch is faulty by increasing the marking of numFaultyBranches in one
unit. In addition, when this first case is selected, it is needed to evaluate how the
errors generated by the fault propagate and are contained, i.e. it is necessary to start
up the corresponding path of the coverage process. The first step needed to do this
consists in inhibiting the ReCANcentrateFaiEval submodel, temporarily, so that it
does not evaluate whether or not the communication system is faulty. As explained
before, this is done by setting a token in the place evalFault.

But what really initiates the coverage process is the token that the first case of
ncFailure writes at the place ulNonAlFauBranch. A token in this place enables the
instantaneous activity ncFailureMode, which decides the way in which the Node
Connection manifests at the uplink hub port. The first case of this activity corre-
sponds to a Node Connection region that fails exhibiting an ofm failure mode. The
proportion of this case is calculated as in the nodeConnsT submodel of CANcen-
trate, i.e. using the Equation 10.10:

12.4 ReCANcentrate model 285

2 · lnkAttchOfmProp · lnkAttchFRate + 2 · nodeIOOfmProp · nodeIOFRate +

ctrlOfmProp · ctrlFRate + 2 · hubIOOfmProp · hubIOFRate +

4 · termOfmProp · termFRate

A node that sends ofm errors to one hub only does not necessarily pollute all the
system with these errors. This was already pointed out in Section 12.4.4, where
we also indicated that the ofmFauEval submodel is the responsible for taking a
final decision concerning this issue. Therefore, what the first case of the activity
ncFailureMode does is to activate this submodel by setting a token in ofmNcLP.

The second case of ncFailureMode models the situation in which the fault man-
ifests as stuck-at, whereas the third one corresponds to a bit-flipping failure mode.
The proportions of each one of this cases are also calculated as in the nodeConnsT
submodel of CANcentrate, i.e. using the Equations 10.11. The proportions of the
first and the second case are (respectively):

(hubIOStrProp + hubIOStdProp) · hubIOFRate +

(termStrProp + termStdProp) · termFRate · 2 +

(lnkAttchStrProp + lnkAttchStdProp) · lnkAttchFRate +

(nodeIOStrProp + nodeIOStdProp) · nodeIOFRate +

[hubIOFlipProp · hubIOFRate +

(termLossProp + termFlipProp) · termFRate · 2 +

(lnkAttchDisProp + lnkAttchFlipProp) · lnkAttchFRate +

nodeIOFlipProp · nodeIOFRate] · ctrlFlipCov +

(ctrlStrProp + ctrlStdProp) · ctrlFRate +

ctrlFlipProp · ctrlFRate · (ctrlFlipCov · ctrlItselfIsoCov) +

(nodeIOStrProp + nodeIOStdProp) · nodeIOFRate +

(termStrProp + termStdProp) · termFRate · 2 +

(lnkAttchStrProp + lnkAttchStdProp) · lnkAttchFRate +

(hubIOStrProp + hubIOStdProp) · hubIOFRate

and

286 Chapter 12. Reliability evaluation of ReCANcentrate

(hubIOFlipProp · hubIOFRate +

(termLossProp + termFlipProp) · termFRate · 2 +

(lnkAttchDisProp + lnkAttchFlipProp) · lnkAttchFRate +

nodeIOFlipProp · nodeIOFRate) · (1.0 − ctrlFlipCov) +

ctrlFlipProp · ctrlFRate · (1.0 − ctrlFlipCov · ctrlItselfIsoCov) +

nodeIOFlipProp · nodeIOFRate +

(termLossProp + termFlipProp) · termFRate · 2 +

(lnkAttchDisProp + lnkAttchFlipProp) · lnkAttchFRate +

hubIOFlipProp · hubIOFRate)

In fact, these expressions are equal to those used by the activity ncFailureMode
of the nodeConnsT submodel. This is because a Node Connection is composed of
the same entities in CANcentrate and in ReCANcentrate, and the error-containment
capabilities of the CAN controller are exactly the same in both infrastructures. A
detailed explanation of these expressions can thus be found in Section 10.7.2.

The second and the third cases of the activity ncFailureMode set a token in
stuckLP and flipLP respectively. In this way, nodeConnsR indicates to the fauLPe-
valAtHub coverage submodel how the Node Connection failure manifests; so that
fauLPevalAtHub can evaluate whether or not the corresponding hub isolates the
fault. However, as we pointed out when explaining the nodeKernelsR submodel,
fauLPevalAtHub does not proceed with the coverage process when it receives a
token in stuckLP or flipLP. In contrast, it starts up when it observes a token in the
place fauALP. In this sense, we showed in Section 12.4.4 that nodeKernelsR sets
a token in this place when necessary. Conversely, nodeconnsR does not directly
compel fauLPevalAtHub to take over by setting a token in fauALP. Instead, it ac-
tivates the fauLPevalAtNode coverage submodel by writing a token in the place
newFauBranch. Afterwards, fauLPevalAtNode will be the responsible for activat-
ing fauLPevalAtHub (see Figure 12.2). As explained at the beginning of current
section, fauLPevalAtNode evaluates whether or not the node to which the Node
Connection region belongs tolerates the failure and, thus, can continue communi-
cating using its other Node Connection region. A detailed description of fauLPe-
valAtNode will be carried out in Section 12.4.8.

Going back to the activity ncFailure, let us explain what actions are carried out
when it selects its second case, i.e. the case that models the failure of a Node Con-

12.4 ReCANcentrate model 287

nection that is placed at an already faulty (and isolated) branch. When this hap-
pens, ncFailure transfers one token from okNodeConns to the place alFauBranch.
This token activates the instantaneous activity ncFbFailureMode, which evaluates
whether the fault manifest as ofm or not. If affirmative, ncFbFailureMode selects
its first case and initiates a path of the coverage process that is intended to evaluate
if the ofm errors generated by the fault propagate throughout the system. For this
purpose, ncFbFailureMode uses an output gate that sets a token in evalFault and in
ofmNcFB. Notice that this last token is the one that actually compels the oufFauE-
val submodel to evaluate the propagation of the ofm errors. Certainly, to activate
oufFauEval may seem counterintuitive because this point of the model is reached
if the faulty Node Connection is placed at an already faulty (and isolated) branch
and, thus, one may think that the errors generated by the ofm fault cannot propa-
gate. However, notice that an ofm Node Connection could lead its Node Kernel to
fail in an ofm manner, so that this Node Kernel sends errors through its other Node
Connection. For instance, this could happen if the Controller placed at the Node
Connection that fails exhibits an ofm failure and notifies its Node Kernel about the
reception of nonexistent frames. Therefore, it is necessary that ofmFauEval ana-
lyzes whether or not the ofm errors propagate through that other Node Connection
of the node.

Finally, if the activity ncFbFailureMode decides that the Node Connection fails
in a way that is included in our fault model, it selects its second case and it does
not perform any further action (the second case of ncFbFailureMode is left uncon-
nected). This is basically because the errors generated by the faulty Node Connec-
tion cannot propagate through its corresponding hub port, since that port (branch)
was already faulty and, thus, isolated. Moreover, since the fault is included in our
fault model, it cannot provoke the failure of the corresponding Node Kernel and
thus, conversely to what happens with an ofm Node Connection, the fault cannot
indirectly provoke the transmission of errors through the other Node Connection
of the node.

12.4.6 hubInConns submodel

The hubInConns submodel models faults happening at any of the Hub Intercon-
nection regions of ReCANcentrate. As explained in Section 12.4.1, a Hub Inter-
connection region includes all the entities that constitute a sublink: one Attachment
entity (the CAN cable and the two connectors of both its ends), two Hub IO entities
(each one corresponding to a different hub) and two Termination entities. Notice
that each interlink includes two Hub Interconnection regions, one for each direc-
tion. This means that a given Hub Interconnection region is used by one hub to

288 Chapter 12. Reliability evaluation of ReCANcentrate

send its own contribution to the other hub.

If the fault is within our fault model and it affects a Hub Interconnection region
that was not already isolated, the hubInConns submodel additionally compels the
fauIPevalAtHubs coverage submodel to start the corresponding coverage process.
On the one hand, fauIPevalAtHubs evaluates if the hub that receives the contri-
bution of the other hub through that interconnection region isolates the fault. On
the other hand, it evaluates if the Hub Interconnection failure implies that all the
interconnections between both hubs are exhausted and, thus, whether or not the
hubs become decoupled (the hubs become decoupled if there are not enough Hub
Interconnections that allow them to exchange their contributions).

The details of fauIPevalAtHubs will be explained in Section 12.4.11. However,
let us point out that this submodel can further compel the fauHubEvalAtHub sub-
model to proceed with the coverage process (see Figure 12.2). As will be described,
this basically happens when the hub that receives the contribution from the faulty
Hub Interconnection region does not isolate the fault, so that it is necessary to
assess if the other hub can contain the errors this hub will propagate.

Figure 12.6 shows the structure of the hubInConns submodel. The marking of
the place okInConnsToA represents the number of Hub Interconnection regions
through which the hub A receives the contribution of the hub B. Analogously,
okInConnsToB models the number of Hub Interconnection regions through which
the hub B receives the contribution of the hub A. The initial marking of each one
of these places is the number of interlinks, which is specified by means of the
parameter numInterlinks (see Table 12.1).

As mentioned in Section 12.4.2, some submodels of ReCANcentrate are sym-
metric in the sense that they model actions carried out by a hub twice (they model
the actions carried out by the hub A and the actions performed by the hub B).
The hubInConns submodel is one of these submodels because it represents faults
happening at Hub Interconnection regions that carry the contribution of the hub
A, as well as at Hub Interconnection regions that convey the contribution of the
hub B. Therefore, from now on we will explain only the actions hubInConns per-
forms when a Hub Interconnection region through which the hub A receives the
contribution of the hub B fails.

The activity hiAFailure models the Time To Failure of the surviving Hub In-
terconnection regions that carry the contribution of the hub B to the hub A. It is
exponentially distributed and its failure rate is calculated as in the previous regions
submodels, i.e. by multiplying the number of surviving regions by the sum of the
failure rates of the entities that constitute the region:

12.4 ReCANcentrate model 289

Figure 12.6: hubInConns submodel

okInConnsToA → Mark() · slnkAttchFRate + 2 · hubIOFRate + 2 · termFRate)

As can be seen in Figure 12.6, hiAFailure has two cases. The first one (the upper
case) corresponds to a situation in which the Hub Interconnection region is placed
at a non-faulty inbranch of the hub A, i.e. to a situation in which the Hub Intercon-
nection region represents a non-faulty (and thus not isolated) sublink that conveys
the contribution of the hub B to the hub A. The second one models the opposite
situation, in which the inbranch was already faulty and thus isolated by the hub
A. In principle, since hiAFailure only models faults happening at non-faulty Hub
Interconnections, it may seem that hiAFailure should always select its first case.
Nevertheless, an inbranch becomes faulty not only when the corresponding Hub
Interconnection region’s entities suffers from a fault, but also when (1) a hub fails,
or (2) when the hubs become decoupled (see Section 12.4.2). Therefore, the num-
ber of non-faulty inbranches may be lower than the number of Hub Interconnection
regions that are not faulty.

In order to know what is the actual number of faulty inbranches, we define the
place numFaultyAIP, whose marking represents the total number of inbranches that
carry the contribution of hub B to hub A and that have failed so far. Likewise, the
marking of place numFaultyBIP represents the total number of faulty inbranches
that are aimed at carrying the contribution of hub A to hub B. In this sense notice
that the first case of hiAFalure sets a token on numFaultyAIP, thereby reflecting that
a new inbranch fails due to the failure of a Hub Interconnection. Additionally, when

290 Chapter 12. Reliability evaluation of ReCANcentrate

a hub fails or when the hubs become decoupled, the marking of numFaultyAIP
(and of numFaultyBIP) is forced to be equal to the number of interlinks, in order to
reflect that all the inbranches of the system are faulty. This is respectively done by
the fauHubEvalAtHub and the fauIPevalAtHubs submodels, as will be explained in
Sections 12.4.12 and 12.4.11.

From the above discussion, it is easy to see that the number of non-faulty in-
branches that carry the contribution of the hub B to the hub A is numInterlinks −
numFaultyAIP. Therefore, the expressions that specify the probabilities with which
hiAFalure chooses its first and second cases are (respectively):

(numInterlinks − numFaultyAIP → Mark())
okInConnsToA → Mark()

and

(okInConnsToA → Mark() − (numInterlinks − numFaultyAIP → Mark()))
okInConnsToA → Mark()

The fraction of the first expression is the probability that the inbranch corre-
sponding to Hub Interconnection that suffers from a fault was not faulty, whereas
the fraction of the second expression is the probability that this inbranch was al-
ready faulty. It is worth noting that the value of each one of these fractions can only
be 0 or 1. On the one hand, the value of numInterlinks − numFaultyAIP is equal
to the marking of okInConnsToA, i.e. it is equal to the number of surviving Hub
Interconnection regions, as long as the hub B does not fail and the hubs are cou-
pled. Thus, in this case, the fraction of the first and second expressions are 1 and 0
respectively. On the other hand, if the hub B fails or the hubs are decoupled, then
numInterlinks − numFaultyAIP becomes 0 and, thus, the values of these fractions
become 0 and 1 respectively.

The second case of hiAFailure is left unconnected. On the one hand, since the
inbranch corresponding to the faulty Hub Interconnection was already faulty and
isolated, there is no need to increase the marking of numFaultyAIP to reflect any
change in the number of faulty inbranches that carry the contribution of the hub B to
the hub A. On the other hand, the errors the faulty Hub Interconnection generates
cannot propagate beyond an already isolated inbranch and, thus, there it is not
necessary to initiate any path of the coverage process.

Conversely, the first case of hiAFailure is connected to three places. Specifically,
the hubInConns submodel proceeds as follows when this case is selected. On the

12.4 ReCANcentrate model 291

one hand, it increases the marking of the place numFaultyAIP in one unit to record
the failure of a new inbranch. On the other hand, it initiates a path of the coverage
process that evaluates how the fault is treated. For this purpose it sets a token in the
place evalFault, which disables the ReCANcentrateFaiEval submodel, and writes
a token in the place newFauHiA. This last token enables the instantaneous activity
hiAFailureMode, which decides if the fault manifests as stuck-at, bit-flipping or in
a way that is not included in our fault model.

The proportions of the cases of hiAFailureMode are calculated following Equa-
tion 10.10. The proportions of the two first cases are (respectively):

(hubIOStrProp + hubIOStdProp) · hubIOFRate · 2 +

(slnkMedStrProp + slnkMedStdProp) · slnkMedFRate +

(termStrProp + termStdProp) · termFRate · 2

and

hubIOFlipProp · hubIOFRate · 2+

(slnkMedDisProp + slnkMedFlipProp) · slnkMedFRate+

(termFlipProp + termLossProp) · termFRate · 2

When the activity hiAFailureMode selects its first and second cases, it sets a
token in the place stuckAIP and in flipAIP respectively. It shares these places
with the fauIPevalAtHubs coverage submodel, thereby compelling it to evaluate
if the hub A is able to isolate the corresponding type of fault exhibited by the
Hub Interconnection region at the corresponding inbranch. Notice that the hubIn-
Conns submodel also shares the places stuckBIP and flipBIP with fauIPevalAtHubs.
The meaning of these places is analogous to the one of stuckAIP and flipAIP:
when the fauIPevalAtHubs coverage submodel receives a token in any of these
two last places, it evaluates if the hub B successfully isolates the corresponding
failure mode at the inbranch. See Section 12.4.11 for a detailed description of the
fauIPevalAtHubs submodel.

Finally, the expression of the last case of the activity hiAFailure reflects the pro-
portion with which the Hub Interconnection region fails exhibiting an ofm fault. In
accordance with Equation 10.10, this proportion is:

slnkAttchOfmProp · slnkAttchFRate + 2 · hubIOOfmProp · hubIOFRate+

2 · termOfmProp · termFRate

292 Chapter 12. Reliability evaluation of ReCANcentrate

When hiAFailure chooses this third case, it merely sets a token in outFauMod,
which leads the ReCANcentrateFaiEval submodel to diagnose the failure of the
overall system. As already said in Section 12.3.3, we suppose that a hub that
receives errors it cannot contain (which is the case of errors generated by an ofm
fault) propagates them through all its outgoing ports. Therefore, the hub A does
not only propagate the ofm errors to its own nodes, but also to the hub B and, then,
to the nodes connected to this other hub.

12.4.7 hubKernels submodel

The hubKernels submodel models faults happening at any of the two Hub Kernel
regions of ReCANcentrate. Additionally, hubKernels sometimes needs to initiate
a path of the coverage process that evaluates how the faulty hub is treated and
tolerated. This is depicted in Figure 12.2, where hubKernels compels the coverage
submodels ofmFauEval, fauHubEvalAtHub or fauHubEvalAtNodes to take over, or
it simply does not initiate any coverage process.

More specifically, hubKernels initiates the coverage process in the following sit-
uations. First, if one of the hubs exhibits an ofm failure and both hubs were not
faulty before the fault occurred, then hubKernels compels outFauMode to assess if
the corresponding ofm errors propagate throughout all the system.

Second, hubKernels compels fauHubEvalAtHub to take over when the fault is
within our fault model and both hubs were coupled before the fault occurred. In
this case, it is necessary to evaluate if the hub that remains non-faulty is able to con-
tain the errors generated by the hub whose kernel has failed. Notice that fauHubE-
valAtHub is also the submodel that proceeds with the coverage process when the
hubs are coupled, but a hub is not able to isolate a fault in any of its uplink or
sublink hub ports. This is because, as said in Section 12.3.3, a hub that is not able
to isolate a fault, broadcasts the errors generated by that fault through all its down-
links and all its outgoing sublinks. Such a coincidence is shown in Figure 12.2,
where there is a dedicated arrow connecting the submodels fauLPsEvalAtHubs,
fauLPevalAtHub, fauIPevalAtHubs and hubKernels with fauHubEvalAtHub.

Finally, if the fault is within our fault model, but the hubs were decoupled,
then the hubKernels submodel activates fauHubEvalAtNodes instead of fauHubE-
valAtHub. Notice that the fact that both hubs were decoupled implies that all the
sublink ports (all inbranches) were already disabled by both hubs. Thus, in this
situation, as already mentioned in Section 12.4.4, it is not necessary to evaluate if
the hub that remains non-faulty is able to contain the errors the hub that fails gen-
erates. However, also notice that the system was not faulty even though the hubs

12.4 ReCANcentrate model 293

were decoupled. This means that the nodes were able to tolerate the hub decou-
pling (when it occurred) and, hence, that they were using both hubs independently
for communicating. Therefore, when a hub fails in this situation, it is necessary to
reflect that the nodes will not be able to communicate through that hub. In order to
do that, hubKernels compels fauHubEvalAtNodes to take over. Notice that the role
of fauHubEvalAtNodes was already introduced in Section 12.4.4, since the sub-
models fauLPevalAtHub and fauLPsEvalAtHubs directly activate it when the hubs
are decoupled and one hub is not able to isolate an uplink port.

The structure of the hubKernels submodel is shown in Figure 12.7. The marking
of the place okHubKernels indicates the number of hubs that are not faulty. Its
initial marking is, thus, equal to 2. The activity hkFailure models the Time To
Failure distribution of the surviving hubs. This distribution is exponential and its
failure rate is: hubCoreFRate · okHubKernels → Mark().

When this activity fires, it is necessary to decide which path of the coverage pro-
cess is initiated to model how the Hub Kernel failure is isolated and/or tolerated.
This is done in several steps. The first one of these steps is carried out by the ac-
tivity hkFailure itself. On the one hand, this activity checks if the Hub Kernels of
both hubs were not faulty before the fault occurred. If one of the Hub Kernels was
already faulty, then the Hub Kernel that has just failed would be the only one that
was still operative. In such a situation, there is no need to initiate any path of the
coverage process, as no hub will be available for communicating. This is mod-
elled by the second case of hkFailure, which sets a token in the place noAvailHub,
thereby compelling the ReCANcentrateFaiEval submodel to diagnose the overall
system as faulty. On the other hand, if the Hub Kernels of both hubs were not
faulty, hkFailure must decide which one of the two hubs the kernel that fails be-
longs to. In particular, the first case of hkFailure models the failure of the kernel of
the hub A, whereas the third one represents the kernel failure of the hub B.

The activity hkFailure respectively calculates the proportions of its first, second
and third cases by means of the following if clauses.

(Case 1)

if (okHubKernels → Mark() > 1)
return 0.5;

else
return 0.0;

294 Chapter 12. Reliability evaluation of ReCANcentrate

Figure 12.7: hubKernels submodel

12.4 ReCANcentrate model 295

(Case 2)

if (okHubKernels → Mark() == 1)
return 1.0;

else
return 0.0;

(Case 3)

if (okHubKernels → Mark() > 1)
return 0.5;

else
return 0.0;

If only one Hub Kernel was not faulty before the fault occurred, the marking
of okHubKernels is equal to 1 when hkFailure fires. Thus, the proportion of the
second case is 1.0, whereas the proportion of the other ones is 0.0. In contrast, if
both Hub Kernels were non-faulty, the marking of okHubKernels is 2. Hence, the
proportion of the second case of hkFailure is 0 whereas the proportions of the first
and third cases are 0.5. Notice that in this last situation, the first and third cases are
selected exactly with the same proportion. This is because both Hub Kernels have
the same probability of failure.

If hkFailure selects its first or its third case, the hubKernels submodel carries out
additional actions to decide with path of the coverage process it initiates. In this
sense, notice that the actions carried out when hkFailure selects its first case are
analogous to the ones performed when hkFailure chooses its third one. Thus, from
now on, we will only focus on the actions that follow when hkFailure takes its first
case, i.e. on the actions performed when hkFailure decides that the faulty kernel
belongs to the hub A.

When the activity hkFailure selects its first case, it sets a token in the place fhAII.
This token enables the instantaneous activity hBFau, which evaluates if the hub B
is faulty. This is because the fact that the kernel of the hub B is non-faulty does not
necessarily mean that this hub is non-faulty. Actually, the hub B is already faulty
if, previously, it was not able to isolate a fault in any of its ports.

The first case of hBFau is selected if the hub B is non-faulty, whereas the second
case is chosen otherwise. The proportions of the first and second cases of hBFau
are respectively calculated as 1 − fauHubB → Mark() and fauHubB → Mark();
where fauHubB is a place shared among different submodels and whose marking

296 Chapter 12. Reliability evaluation of ReCANcentrate

indicates whether or not the hub B is faulty. Specifically, as will be explained in
Sections 12.4.13 and 12.4.14, a token is set in fauHubA and in fauHubB) when
the hub A and the hub B become faulty respectively (this is done independently of
whether the hub failure is provoked by the failure of its own kernel or because it is
not able to isolate a fault in any of its ports).

If the activity hBFau selects its second case, it sets a token in the place noAvail-
Hub and does not initiate any path of the coverage process, since both hubs are
faulty. Otherwise, if it selects if first case, it sets a token in the place fhAIII. This
token enables the instantaneous activity hAalFau, whose role is similar to the one
of the activity hBFau; hAalFau evaluates if the hub A was already faulty before
its kernel failed. Notice that the result of this evaluation is only affirmative if, pre-
viously, the hub A was not able to isolate a fault in any of its ports. The activity
hAalFau bases its decision on the marking of the place fauHubA, whose meaning
is analogous to the one of fauHubB. Specifically, the first case of hAalFau models
the situation in which the hub A was not already faulty and it is selected with pro-
portion 1 − fauHubA → Mark(). The second case of this activity represents the
opposite situation and its proportion is calculated as fauHubA → Mark().

As can be observed in the Figure 12.7, the second case of the activity hAalFau
is left unconnected. This is because if the hub A was already faulty, it was also
already isolated and, thus, the errors generated by its kernel failure cannot pollute
the system. In contrast, the first case of the activity hAalFau sets a token in the
place fhAIV. This token enables the instantaneous activity fhAofm, which evaluates
if the Hub Kernel exhibits an ofm failure. The first case of this activity is chosen
when the kernel exhibits a failure mode that is included in our fault model, whereas
its second case is selected otherwise. Their proportions are respectively calculated
as (1.0 − hubCoreOfmProp → Mark()) and hubCoreOfmProp → Mark().

When fhAofm selects its second case, it sets a token in the place ofmHA, in order
to indicate to the ofmFauEval submodel that the kernel of the hub A exhibits an ofm
failure. As already explained, the ofmFauEval submodel represents the path of the
coverage process that models how the ofm errors propagate. In particular, when it
receives a token in ofmHA, ofmFauEval evaluates if the ofm errors generated by the
kernel of the Hub A propagate throughout both stars, or they only affect the nodes
exclusively connected to that hub (see Section 12.4.14 for a detailed explanation
concerning this issue).

Conversely, when fhAofm chooses its first case, it sets a token in the place fhAin,
which activates the instantaneous activity hkAdec. This activity decides what is
the path of the coverage process that must be initiated to evaluate how the errors
generated by a faulty node kernel that manifest in a way that is included in our

12.4 ReCANcentrate model 297

fault model are treated and/or tolerated. Specifically, this activity checks if both
hubs were coupled before the kernel of the hub A failed. For this purpose, hkAdec
merely consults the marking of the place decoupledHubs. As explained in Sec-
tion 12.4.3, the marking of this place is 1 if both hubs are decoupled and nodes
are using them independently. More specifically, the first case of hkAdec is chosen
when the hubs are coupled, whereas the second case is selected otherwise. Thus,
the proportions of the first and second cases of hkAdec are respectively obtained as
1 − decoupledHubs → Mark() and decoupledHubs → Mark().

When hkAdec selects its second case, i.e. when the hubs were decoupled, it
sets a token in the place fauHubANodeEval. A token in this places activates the
fauHubEvalAtNodes coverage submodel, which will be thoroughly explained in
Section 12.4.13. As pointed out at the beginning of this section, the fact that the
system is not faulty and that both hubs were decoupled and operative before the
kernel of the hub A failed, implies that the nodes were using each hub as an in-
dependent communication domain. Therefore, what fauHubANodeEval does is to
evaluate whether or not the nodes are able to isolate the faulty hub (the hub A in
this case) in order to continue communicating through the other hub. Also notice
that the path of the coverage process initiated by hubKernesR ends at fauHubAN-
odeEval, which activates the ReCANcentrateFaiEval submodel, as depicted in Fig-
ure 12.2.

Regarding the first case of hkAdec, it is chosen when the hubs were coupled be-
fore the kernel of the hub A failed. This case sets a token in the place fhAincou,
thereby enabling the activity hkAFaiMod. This activity instantaneously fires to de-
cide which failure mode of those that are included in our fault model the kernel
of the hub A exhibits (notice that this point of the hubKernels submodel is only
reached if, previously, the activity fhAofm has decided that the failure of the kernel
of the hub A does not manifest as ofm). The proportions of the two first cases of the
activity hkAFaiMod are calculated in accordance with Equation 10.10. Specifically,
the fist case corresponds to a Hub Kernel’s bit-flipping failure, whereas the second
one models a Hub Kernel’s stuck-at. Thus, the expressions of these cases are (re-
spectively) hubCoreFlipProp and 1.0 − hubCoreOfmProp − hubCoreFlipProp).
Notice that the parameters that specify the failure mode’s proportions of a Hub
Core entity do not distinguish between a stuck-at-recessive and a stuck-at-dominant
fault, since we assume that the hubs and the nodes are able to isolate these two types
of Hub Core’s faults with the same coverage (see Table 12.1).

Finally, also notice that a token in flipHubA or isoHubA compels the fauHubE-
valAtHub coverage submodel to continue with the coverage process. As it will be
explained in Section 12.4.12, this submodel evaluates whether or not the hub B
is able to isolate the corresponding type of fault at its incoming sublinks (at the

298 Chapter 12. Reliability evaluation of ReCANcentrate

corresponding in branch).

12.4.8 fauLPevalAtNode submodel

The fauLPevalAtNode coverage submodel evaluates if a node is able to tolerate the
failure of one of its Node Connection regions and, thus, if it is able to continue com-
municating using its other Node Connection region. This was mentioned in Sec-
tion 12.4.5, where we explained that the nodeConnsR submodel compels fauLPe-
valAtNode to proceed with the coverage process when a Node Connection region
placed at a non-faulty branch fails and exhibits a failure mode that is included in
our fault model. Moreover, we also indicated therein that when fauLPevalAtNode
finishes its evaluation, it compels the fauLPevalAtHub submodel to assess if the
corresponding hub isolates the faulty Node Connection region. The interconnec-
tions among these submodels is shown in Figure 12.2.

Figure 12.8 shows the structure of the fauLPevalAtNode submodel. It starts
performing whenever the nodeConnsR submodel sets a token in the place new-
FauBranch. This token enables the instantaneous activity selFauLPHub, which
aims at deciding whether the Node Connection region that fails is connected to
the hub A or to the hub B. Notice that the nodeConnsR submodel did not make
this decision, it merely modelled how the Node Connection failure manifests. See
Section 12.4.5 for more details.

If selFauLPHub decides that the Node Connection region is connected to the hub
A, then it selects its first case; otherwise it chooses its second one. The proportions
of each one of these cases is calculated dividing the number of Node Connection
regions that are connected to the corresponding hub by the total number of Node
Connection regions. It is important to note that we have to take into account only
those Node Connection regions that were placed at non-faulty branches before the
fault occurred. In this sense, notice that all the Node Connection regions that were
placed in a non-faulty branch belonged to either an okAB, an okA, an okB, a stopA
or a stopB node. Thus, we can use the markings of the places okABNodes, okAN-
odes, okBNodes, stopANodes and stopBNodes (which still have not changed as a
consequence of the fault) to indirectly calculate the number of Node Connection re-
gions we are interested in. More specifically, selFauLPHub calculates the number
of Node Connection regions connected to the hub A as:

okABNodes → Mark() + okANodes → Mark() + stopANodes → Mark()

Similarly, the amount of Node Connection regions that are connected to the hub

12.4 ReCANcentrate model 299

Figure 12.8: fauLPevalAtNode submodel

300 Chapter 12. Reliability evaluation of ReCANcentrate

B and that must be taken into account is:

okABNodes → Mark() + okBNodes → Mark() + stopBNodes → Mark()

As concerns the total number of Node Connection regions that were placed in a
non-faulty branch, they can be obtained as:

2 · okABNodes → Mark() + okANodes → Mark() + stopANodes → Mark()+

okBNodes → Mark() + stopBNodes → Mark()

Taking into account all these considerations, the proportions of the first and the
second cases of the activity selFauLPHub are (respectively):

(okABNodes → Mark() + okANodes → Mark() + stopANodes → Mark()) /

(2 · okABNodes → Mark() + okANodes → Mark() + stopANodes → Mark() +

okBNodes → Mark() + stopBNodes → Mark())

and

(okABNodes → Mark() + okBNodes → Mark() + stopBNodes → Mark()) /

(2 · okABNodes → Mark() + okANodes → Mark() + stopANodes → Mark() +

okBNodes → Mark() + stopBNodes → Mark())

Similarly to what happens in some of the submodels we have explained so far, the
actions the fauLPevalAtNode submodel carries out when the activity selFauLPHub
chooses its first case are analogous to the ones it performs when it selects its second
one. Thus, in the rest of this section, we will focus on the actions performed when
the first case is taken.

As depicted in the Figure 12.8, the first case of selFauLPHub sets a token in
the place fauABranch, thereby enabling the instantaneous activity selFauLPNodeA.
This activity decides which is the specific kind of node the Node Connection be-
longs to. The first case corresponds to an okA node, the second one to a stopA node
and the third one to an okAB node. Such a decision is indispensable for evaluat-
ing whether or not the node is able to tolerate the failure of the Node Connection

12.4 ReCANcentrate model 301

region. This is because, the capacity of a node for tolerating this failure depends
on the node’s type. More specifically, the node has the possibility of tolerating the
fault only if it is an okAB node. This is because this is the only case in which, after
the failure, the node still has a non-faulty Node Connection that it can potentially
use for communicating.

The proportions of the three cases of the activity selFauLPNodeA are calculated
following the same strategy as for the proportions of the cases of the activity selF-
auLPHub. The probability with which selFauLPNodeA selects if first case is the
the number of okA nodes divided by the total number of nodes that have a Node
Connection placed in a non-faulty branch of the hub A:

okANodes → Mark()
okABNodes → Mark() + okANodes → Mark() + stopANodes → Mark()

Analogously, the proportions of the second and the third cases are (respectively):

stopANodes → Mark()
okABNodes → Mark() + okANodes → Mark() + stopANodes → Mark()

and

okABNodes → Mark()
okABNodes → Mark() + okANodes → Mark() + stopANodes → Mark()

As depicted in Figure 12.8, each one of the three cases of the activity selF-
auLPNodeA is connected to a dedicated output gate. The output gate correspond-
ing to the first case decreases the marking of okANodes in one unit and sets a token
in fauALP. On the one hand, since the first case of selFauLPNodeA is chosen to
model that the Node Connection region that fails belongs to an okA node, this out-
put gate decreases the marking of okANodes to reflect that such a node becomes a
noConn node. On the other hand, the output gate sets a token in fauALP to compel
the fauLPevalAtHub submodel to proceed with the coverage process. As indicated
at the beginning of this section, fauLPevalAtNode will compel fauLPevalAtHub to
assess if the hub A isolates the faulty Node Connection region. The output gate
of the second case of selFauLPNodeA is analogous to the gate of the first case. It
decreases the marking of stopANodes in one unit and sets a token in fauALP

As concerns the output gate of the third case of selFauLPNodeA, its actions are
slightly different from the ones performed by the previous output gates. On the one

302 Chapter 12. Reliability evaluation of ReCANcentrate

hand, it decreases the marking of the place okABNodes to reflect that the node will
not be able to use one of its Node Connections anymore. On the other hand, it set
a token in the place fauAEvalAtNode, thereby enabling the instantaneous activity
covAtBNode. Besides writing a token in the place fauALP, covAtBNode assesses
whether or not the node is able to tolerate the fault of the Node Connection region.
As a result, it increases the marking of the places okBNodes and stopBNodes ac-
cordingly. More specifically, the first case of covAtBNode represents the situation
in which the node tolerates the fault, so that it is still able to communicate using its
connection to the hub B. For this reason, this case increases the marking of okBN-
odes in one unit. The second case models the opposite situation, in which the node
is not able to use its connection to the hub B even though such a connection is not
faulty. Thus, this case adds a token to stopBNodes.

The proportions with which covAtBNode selects its first and second cases de-
pend on whether or not the hubs are coupled. As explained in Section 12.3.4, the
coverage with which a node tolerates a fault that prevents it from communicating
through one of the stars, when the hubs are coupled, is called connCov and its de-
fault value is of the 95%. In contrast, if the hubs are decoupled, this coverage is
called decConnCov and its default value is of the 0% (see Table 12.1). In order to
use the appropriate coverage, the activity covAtBNode consults the marking of the
place decoupledHubs, which, as already mentioned, has a token if the hubs are de-
coupled. Specifically, the proportions of the first and second cases are respectively
expressed as:

(Case 1)

if (decoupledHubs → Mark() == 0)
return connCov;

else
return decConnCov;

(Case 2)

if (decoupledHubs → Mark() == 0)
return 1.0 − connCov;

else
return 1.0 − decConnCov;

12.4 ReCANcentrate model 303

12.4.9 fauLPsEvalAtHubs submodel

As described in Section 12.4.4, when a faulty Node Kernel manifest in a way that is
included in our fault model and generates errors that propagate through its uplinks
to the hub A and the hub B, the nodeKernelsR submodel compels the fauLPsE-
valAtHubs coverage submodel to evaluate whether or not each hub is able to con-
tain these errors. As mentioned in that section, the submodel nodeKernelsR notifies
about this situation by setting a token in the place fauABLPs. Additionally, it spec-
ifies the way in which the Node Kernel failure manifests at the uplink port of the
hub A and at the uplink port of the hub B, by writing a token in the corresponding
place: fauABLPs, stuckStuckLPs, stuckFlipLPs, flipStuckLPs and flipFlipLPs.

The structure of the fauLPsEvalAtHubs submodel is depicted in Figure 12.9.
When it receives a token in the place fauABLPs, its activity covABLPs immediately
fires (consuming the token) to decide whether or not each hub is able to contain the
errors at its corresponding uplink port. The first case of the activity covABLPs
models the situation in which only the hub B contains the errors; the second case
represents the situation in which both hubs contain the errors; the third one corre-
sponds to the case in which only the hub A contains the errors; and the last case
models the scenario in which none of the hubs is able to contain the errors.

The proportions of each one of these cases is calculated taking into account the
mode in which the fault manifests at the uplink port of each hub and, then, the
coverage with which each one of the hubs isolates the corresponding type of fault
in its uplink. For instance, the proportion of the first case, i.e. the probability that
only the hub B isolates the fault, is calculated as:

stuckStuckLPs → Mark() · 0.0 +

stuckFlipLPs → Mark() · 0.0 +

flipStuckLPs → Mark() · (1.0 − flipLnkCov) +

flipFlipLPs → Mark() · (1.0 − flipLnkCov) · flipLnkCov

Each one of the lines of the above expression represents the probability with
which only the hub B isolates its uplink port, provided that the fault manifests at
the hub A and at the hub B in a specific way. The correspondence between a given
line and a specific failure mode is achieved by using the marking of the place that
represents the failure mode as a multiplying factor in the line. In this way, the lines
that do not correspond to the way in which the fault actually manifests, i.e. that do
not correspond to the place that has the token, are simplified to 0. Specifically, a
token in stuckStuckLPs indicates that the fault manifests as stuck-at at both hubs. In

304 Chapter 12. Reliability evaluation of ReCANcentrate

Figure 12.9: fauLPsEvalAtHubs submodel

12.4 ReCANcentrate model 305

such a situation, the line that calculates the probability that only the hub B isolates
the fault is the first one. Since a hub always isolates a stuck-at port, it is impossi-
ble that only the hub B isolates the fault. Thus, the marking of stuckStuckLPs is
multiplied by 0.0. The second line corresponds to the situation in which the fault
manifests as stuck-at-recessive at the uplink port of the hub A and as bit-flipping at
the uplink port of the hub B (the token is placed in stuckStuckLPs). Thus, the prob-
ability that only the hub B isolates the fault is 0 again. Conversely, when the fault
manifest as bit-flipping at the hub A and as stuck-at at the hub B (the token is placed
in flipStuckLPs), there is a possibility that only the hub B isolates the fault, since the
hub A cannot isolate a bit-flipping fault with a perfect coverage. For this reason, in
the third line, flipStuckLPs → Mark() is multiplied by the probability with which
the hub A does not isolate a bit-flipping fault, i.e. by 1.0− flipLnkCov. Finally, the
last line is written following the same line of reasoning: flipFlipLPs → Mark() is
multiplied by (1.0− flipLnkCov) · flipLnkCov, which is the probability with which
the hub A does not isolate the bit-flipping fault and the hub B does.

The proportions of the rest of the cases of the activity covABLPs are calculated
following the same strategy. For instance, the proportion of the second case, i.e. the
case in which both hubs isolate their respective uplink ports, is:

stuckStuckLPs → Mark() · 1.0 · 1.0 +

stuckFlipLPs → Mark() · 1.0 · flipLnkCov +

flipStuckLPs → Mark() · flipLnkCov · 1.0 +

flipFlipLPs → Mark() · flipLnkCov · flipLnkCov

In this case, in each line we multiply the marking of the place that specifies the
way in which the Node Kernel fault manifests at each hub port by the coverage
with which each hub isolates its uplink in each situation.

Next, we explain the actions that fauLPsEvalAtHubs carries out when its activ-
ity covABLPs fires and selects a case. If covABLPs chooses the first case, i.e. if
only the hub B isolates the errors, a dedicated output gate performs the following
actions. On the one hand, it resets the marking of the places that specify the failure
modes in which the Node Kernel manifests at each uplink hub port. This is needed
for letting the nodeKernelsR submodel to specify, in the future, how a new faulty
Node Kernel manifests at both hubs.

On the other hand, since the hub A was not able to contain the errors, the output
gate sets a token in nisoLPsAHB to continue with the path of the coverage process
and to evaluate how these errors propagate and are treated. The activity isNisoLP-
sADec is the first one involved in the rest of this path. Specifically, it elucidates

306 Chapter 12. Reliability evaluation of ReCANcentrate

whether or not the hubs are coupled with each other. The first case of this activity
corresponds to the situation in which the hubs are coupled. In such a situation it is
necessary to evaluate if the hub B isolates the sublinks through which it receives
the errors propagated by the hub A. As already explained in Section 12.4.4, the
submodel fauHubEvalAtHub carries out this evaluation (see Figure 12.2). The ac-
tivity isNisoLPsADec compels this submodel to take over by setting a token in the
place noIsoFauAtHubA. Also note from Figure 12.2 that if the hub B successfully
contains the errors, the submodel fauHubEvalAtHub further compels the submodel
fauHubEvalAtNodes to evaluate if the nodes connected to the hub A tolerate this
hub failure, so that they can still communicate through the hub B. This will be
explained later in Section 12.4.13.

As concerns the second case of the activity isNisoLPsADec, it corresponds to
the situation in which the hubs are decoupled. In this situation, it is not necessary
to evaluate if the hub B isolates the hub A. Nevertheless, as also explained in Sec-
tion 12.4.4, the fact that both hubs are decoupled does not necessarily mean that the
nodes are not able to communicate with each other using both hubs independently.
In particular, if there are nodes that still use the hub A for communicating, it is
necessary to asses if each one of these nodes is able to tolerate the failure of the
hub A and can continue communicating using the hub B. The submodel fauHubE-
valAtNodes is the responsible for this task and isNisoLPsADec compels it to take
over by setting a token in the place fauHubANodeEval.

In order to calculate the probability with which the activity isNisoLPsADec must
select its first and its second case, we use the marking of the place decoupledHubs.
As already explained, a token in this place indicates that the hubs are decoupled, so
that the nodes are using them independently. If there is a token in decoupledHubs,
the activity isNisoLPsADec selects its first case; if there is no token, then it selects
its second one. The expressions of both cases are: 1 − hubsDecoupled → Mark()
and hubsDecoupled → Mark() respectively.

Up to this point, we have explained what actions are performed when the activ-
ity covABLPs selects its first case. The meaning of the second case of the activity
covABLPs was explained above: it corresponds to the situation in which both hubs
isolate the faulty Node Kernel. Thus, when this case is chosen, the path of the
coverage process that assesses how the errors generated by the Node Kernel are
propagated and contained is finished. For this reason, as can be seen in Figure 12.9,
the second case of the activity covABLPs is connected to an output gate that per-
forms two simple actions. On the one hand, the output gate resets the marking of
the places that specify the failure modes in which the Node Kernel manifests at
each uplink hub port. As said before, this will allow the nodeKernelsR submodel
to specify again how a new faulty Node Kernel manifests. On the other hand,

12.4 ReCANcentrate model 307

the output gate resets the marking of the place evalFault. As already explained
in Section 12.4.4, the nodeKernelsR sets a token in this place to inhibit the Re-
CANcentrateFaiEval submodel from evaluating if an overall system failure occurs.
Hence, by means of this action, the output gate enables again the ReCANcentrate-
FaiEval submodel, so that it can evaluate whether or not the Node Kernel failure
has provoked an overall failure.

As concerns the third case of the activity covABLPs, i.e. the case in which only
the hub A contains the errors generated by a faulty Node Kernel, notice that the
actions carried out when it is selected are analogous to the actions performed when
covABLPs selects its first case, i.e. when the hub B was the only hub that contains
the errors.

Finally, as we also said before, the fourth case of the activity covABLPs models
the situation in which no hub isolates the faulty Node Kernel. This means that from
then on no node will be able to communicate. To model this fact, the fourth case of
covABLPs sets a token in the place noAvailHub. As explained in Section 12.4.3, the
ReCANcentrateFaiEval submodel immediately diagnoses an overall failure when
a token is set in this place.

12.4.10 fauLPevalAtHub submodel

The fauLPevalAtHub coverage submodel evaluates whether or not a given hub is
able to contain the errors it receives through an uplink port, when this errors are
generated by a fault that is included in our fault model. At this point, it is impor-
tant to highlight the difference between this submodel and the one just explained
in previous section: fauLPsEvalAtHubs. Notice that fauLPsEvalAtHubs proceeds
with the appropriate path of the coverage process when a non-ofm fault in a Node
Kernel generates errors that reach the corresponding uplink ports of both hubs. In
contrast, fauLPevalAtHub takes over when a non-ofm fault generates errors that af-
fect the uplink port of one hub only. More specifically, fauLPevalAtHub proceeds
with the coverage process in the following cases. On the one hand, as can be seen
in Figure 12.2, fauLPevalAtHub is activated by nodeKernelsR when a faulty Node
Kernel fails in such a way that it sends errors to just one hub (see Section 12.4.4
for more details). On the other hand, fauLPevalAtHub always participates in the
path of the coverage process initiated when a Node Connection region fails. This
is because the errors generated by a Node Connection can reach the uplink port
of one hub only. In particular, as depicted in Figure 12.2, fauLPevalAtHub takes
over after fauLPevalAtNode assesses if the corresponding node tolerates a Node
Connection region failure (see Sections 12.4.5 and 12.4.8).

308 Chapter 12. Reliability evaluation of ReCANcentrate

Figure 12.10 shows the structure of fauLPevalAtHub. When a fault that is in-
cluded in our fault model occurs in a Node Kernel or in a Node Connection region,
the nodeKernelsR and the nodeConnsR submodels respectively indicate to fauLPe-
valAtHub how the fault manifests at the uplink hub port. Specifically, a token in the
place stuckLP means that the fault manifest as stuck-at, whereas a token in flipLP
informs fauLPevalAtHub that the fault manifests as bit-flipping. However, a token
in any of these places does not activate fauLPevalAtHub. In contrast, what acti-
vates the fauLPevalAtHub submodel is a token in the place fauALP or in fauBLP.
More specifically, the nodeKernelsR and the fauLPevalAtNode (which is activated
by nodeConnsR) submodels set a token in the place fauALP or fauBLP to indicate
that the hub A or the hub B, respectively, receives the stuck-at/bit-flipping errors
through one of its uplink ports.

As can be observed in Figure 12.10, the structure of fauLPevalAtHub is sym-
metric in the sense that the actions performed when a token is set in fauALP are
analogous to those carried out when a token is set in fauBLP. The only difference
is that in the first case the hub that receives the errors is the hub A, whereas in the
second one it is the hub B. Therefore, the rest of this section only describes the
actions fauLPevalAtHub performs when it detects a token in fauALP.

A token in this place enables the instantaneous activity covALP, which evaluates
if the hub A is able to isolate the faulty uplink. The first case of this activity
represents the situation in which the hub A is not able to isolate the fault. The
second case models the opposite situation.

When covALP selects its first case, the corresponding output gate performs the
following actions. On the one hand, it resets the marking of the places stuckLP
and flipLP. In this way, it allows nodeKernelsR and nodeConnsR to respectively
specify, when necessary, how a new faulty Node Kernel and a new faulty Node
Connection region manifest at an uplink port. On the other hand, this output gate
initiates a set of actions devoted to deciding how to continue with the path of the
coverage process, in order to model how the errors propagated by hub A are treated.

The first one of these actions consists in elucidating whether or not the hub B is
non-faulty. This is necessary because if the hub B was already faulty when the fault
that leaded to the activation of fauLPevalAtHub occurred, then the fact that the hub
A has become faulty implies that there is no hub available for communicating. The
activity isNisoLPAHB is the responsible for finding out whether or not the hub B
was faulty. It selects its first case when the hub B is non-faulty and its second one
in the opposite situation. In order to know which case it has to select, isNisoLPAHB
uses the marking of the place fauHubB. As mentioned in Section 12.4.7, a token in
this place indicates that the hub B is faulty because its kernel is faulty or because

12.4 ReCANcentrate model 309

Figure 12.10: fauLPevalAtHub submodel

310 Chapter 12. Reliability evaluation of ReCANcentrate

it was not able to contain a fault in any of its ports. If there is a token in fauHubB,
isNisoLPAHB chooses its second case, otherwise it selects its first one.

If isNisoLPAHB selects its second case, it simply sets a token in the place noAvail-
Hub in order to indicate that there is no hub available for communicating. As it has
been explained before, this token leads the ReCANcentrateFaiEval submodel to
diagnose that the whole system is faulty. In contrast, if isNisoLPAHB selects its
first case, it sets a token in nisoLPAHB thereby enabling the instantaneous activity
isNisoLPADec. This activity checks whether or not the hubs were coupled before
the fault occurred. Then, it decides which submodel must proceed with the cover-
age process in order to assess how the errors the fault generates (and which the hub
A propagates) are treated. On the one hand, if the hubs are coupled, it sets a token
in noIsoFauAtHubA. This activates fauHubEvalAtHub, which assesses whether or
not the hub B isolates the errors propagated by the hub A. On the other hand, if the
hubs are decoupled, then it sets a token in fauHubANodeEval. This token activates
fauHubEvalAtNodes, which is devoted to evaluating if each node that is connected
to the hub A is able to tolerate this hub failure and, thus, if it is able to communicate
exclusively through the hub B.

Notice that isNisoLPADec plays the same role as the activity isNisoLPsADec
of the fauLPsEvalAtHubs submodel (see Section 12.4.9 and Figure 12.9). This
is because fauLPsEvalAtHubs also models a situation in which the hub A does
not contain errors it receives at one of its uplink ports and, therefore, fauLP-
sEvalAtHubs has also to decide, by means of isNisoLPsADec, which submodel
(fauDecHubANodeEval or fauDecHubEvalAtNodes) must proceed with the cov-
erage process. Moreover, the proportions of the cases of these activities are cal-
culated in the same way in both submodels. See Section 12.4.9 for a detailed
explanation of how these proportions are obtained.

It is also noteworthy that, conversely to what fauLPevalAtHub does, fauLPsE-
valAtHubs enables isNisoLPsADec without checking whether or not the hub B was
already faulty. Notice again that fauLPsEvalAtHubs is activated by nodeKernelsR
when the Node Kernel of an okAB node suffers from a non-ofm fault, i.e. when a
non-ofm fault happens in the Node Kernel of a node that is able to communicate
through hub A and hub B. Therefore, fauLPsEvalAtHubs can be sure about the fact
that both hubs were not faulty before the fault occurred.

Finally, as concerns the second case of the activity covALP, i.e. the case of cov-
ALP that corresponds to the situation in which the hub A successfully isolates the
faulty uplink, notice that it is also connected to a dedicated output gate. On the
one hand, this output gate resets the marking of the places stuckLP and flipLP for
the same reasons mentioned above. On the other hand, it resets the marking of the

12.4 ReCANcentrate model 311

place evalFault to indicate to the ReCANcentrateFaiEval submodel that the cover-
age process is finished. This is because if the hub A isolates its uplink, then the
errors are not propagated to the rest of the communication subsystem.

The proportions of the two cases of the activity covALP are calculated taking into
account the way in which the fault manifests at the uplink hub port, as well as the
coverage with which the hub can isolate the specific type of fault. The expressions
of the first and the seconds cases of covALP are (respectively):

1.0 − (stuckLP → Mark() · 1.0 + flipLP → Mark() · flipLnkCov)

and

stuckLP → Mark() · 1.0 + flipLP → Mark() · flipLnkCov

In each one of these expressions, the marking of stuckLP and flipLP is multiplied
by the coverage with which the hub is able to isolate the corresponding type of
fault. More specifically, since the hub is always able to isolate a stuck-at uplink
port, the marking of stuckLP is multiplied by 1.0. In contrast, the hub can only
isolate a bit-flipping uplink port with a flipLnkCov coverage (see Table 12.1) and,
thus, the marking of flipLP is multiplied by the this coverage. Notice that when
covALP fires, the token that indicates the failure mode is located in stuckLP or
in flipLP, but it cannot be placed in both of them. Therefore, each one of the
above expressions is simplified in such a way that it only retains the coverage
associated with the failure mode the uplink port actually manifests. In particular,
if the fault manifests as stuck-at, the proportions of the first and the second cases
are 0.0 and 1.0 respectively, so that covALP selects the second one. Otherwise,
covALP respectively chooses these cases with probabilities 1.0 − flipLnkCov and
flipLnkCov.

12.4.11 fauIPevalAtHubs submodel

The fauIPevalAtHubs coverage submodel is aimed at evaluating how a non-ofm
faulty Hub Interconnection region is isolated by the corresponding hub, i.e. by
the hub that receives the contribution of the other hub through that interconnec-
tion. Moreover, depending on the number of Hub Interconnections regions that
remain non-faulty, the fauIPevalAtHubs submodel decides if the hubs become de-
coupled. The location of fauIPevalAtHubs within the coverage process is depicted

312 Chapter 12. Reliability evaluation of ReCANcentrate

Figure 12.11: fauIPevalAtHubs submodel

in Figure 12.2, where the hubInConns submodel, which represents all the Hub In-
terconnection regions of ReCANcentrate, activates fauIPevalAtHubs when a Hub
Interconnection region fails in a way that is included in our fault model.

Figure 12.11 shows the structure of the fauIPevalAtHubs submodel. As ex-
plained in Section 12.4.6, the hubInConns submodel activates fauIPevalAtHubs
by setting a token in one of the following places: stuckAIP, flipAIP, stuckBIP and
flipBIP. A token in stuckAIP and in flipAIP indicates that a Hub Interconnection
region that carries the contribution of the hub B to the hub A exhibits a stuck-at
and a bit-flipping fault respectively. A token in stuckBIP and in flipBIP also indi-
cates that each one of these types of fault occurs. However, a token in any of these
two last places indicates that the fault has occurred in a Hub Interconnection that
conveys the contribution of the hub A to the hub B.

The set of actions fauIPevalAtHubs performs when it receives a token in stuck-
BIP or in flipBIP are analogous to those it carries out when it receives a token in
stuckAIP or in flipAIP. The difference between both sets of actions is that in the first
case the hub B is the one that must isolate the faulty Hub Interconnection, whereas
in the second one it is the hub A. Thus, for the sake of succinctness, the rest of this
section addresses the actions performed by fauIPevalAtHubs when a token is set in
stuckAIP or in flipAIP, i.e. when the hub A is the responsible for isolating the fault.

As depicted in Figure 12.11, a token in the place flipAIP enables the instanta-
neous activity covAIP. This activity evaluates whether or not the hub A isolates a
bit-flipping Hub Interconnection at the corresponding sublink port (inbranch). The
first case represents the situation in which the hub A isolates the fault, whereas
the second one models the opposite situation. The proportion of the first case is

12.4 ReCANcentrate model 313

merely the coverage with which a hub is able to isolate a bit-flipping Hub Inter-
connection, i.e. a fault occurring at a sublink: flipSlnkCov (see Section 12.3.4 and
Table 12.1). The proportion of the second case is, thus, 1.0 - flipSlnkCov.

If the hub A does not isolate the fault, covAIP sets a token in noIsoFauAtHubA.
This compels the fauHubEvalAtHub submodel to take over in order to assess if the
hub B isolates the hub A. Notice that this is the same place the fauLPsEvalAtHubs
and fauLPevalAtHub submodels use to activate fauHubEvalAtHub when the hub
A does not isolate a non-ofm fault at one of its uplink ports and the hubs were
coupled when the uplink port failed (see Sections 12.4.9 and 12.4.10 and Fig-
ure 12.2). As already explained, fauLPsEvalAtHubs and fauLPevalAtHub do not
activate fauHubEvalAtHub if the hubs were decoupled when the fault occurred
because, in that case, all the Hub Interconnection regions are already isolated at
their respective hub ports. However, also notice that, conversely to what those two
submodels do, fauIPevalAtHubs activates fauHubEvalAtHub without corroborat-
ing that both hubs are coupled. Notice that activity covAIP does not need to check
this condition because if the hubs were decoupled, then fauIPevalAtHubs would
not have been activated by the hubInConns submodel.

To better understand why fauIPevalAtHubs would not have been activated if the
hubs were decoupled, it is necessary to go back to Section 12.4.6. There we ex-
plained that the activity hiAFailure of hubInConns initiates the path of the coverage
process that evaluates how a non-ofm fault happening in a Hub Interconnection is
treated (and thus activates fauIPevalAtHubs), only if the inbranch corresponding to
that Hub Interconnection was not already faulty. Notice again that an inbranch is
faulty in the following conditions: (1) if its Hub Interconnection fails, (2) if a hub
fails, or (3) if the hubs are decoupled. Therefore, the fact that fauIPevalAtHubs is
active implies that none of these conditions is true and, in particular, that the hubs
are not decoupled.

Up to this point, we have explained what happens when covAIP decides that the
hub A does not isolate the faulty Hub Interconnection region, i.e. when the activity
covAIP selects its second case. Regarding the first case of this activity, i.e. the one
that is chosen when the hub A successfully isolates the faulty Hub Interconnection
region, notice that it sets a token in the place stuckAIP. This is also the place at
which fauIPevalAtHubs receives a token when a Hub Interconnection exhibits a
stuck-at fault. This is because an isolated hub port is equivalent to a stuck-at-
recessive hub port and, therefore, the fauIPevalAtHubs submodel must carry out
the same actions in both cases.

The instantaneous activity areAIPexhaust carries out the first one of these ac-
tions. It consists in elucidating whether or not all the inbranches of hub A are

314 Chapter 12. Reliability evaluation of ReCANcentrate

exhausted. This is necessary because the faulty Hub Interconnection region that
has provoked the activation of fauIPevalAtHubs belonged to a non-faulty inbranch
of hub A and, therefore, it is possible that the failure of this interconnection has
affected the last surviving inbranch of that hub. If this is the case, then the hubs
become decoupled as the hub A will no longer receive the contribution of the hub
B. The activity areAIPexhaust selects its first case when there is at least one in-
branch that allows the hub A to receive the contribution of the hub B. Otherwise,
this activity chooses its second case. The proportions of both cases are respectively
calculated as:

(Case 1)

if (numFaultyAIP → Mark() == numInterlinks)
return 0.0;

else
return 1.0;

(Case 2)

if (numFaultyAIP → Mark() == numInterlinks)
return 1.0;

else
return 0.0;

To better understand the above expressions notice that, as already said in Sec-
tion 12.4.6, the total number of inbranches that carry the contribution of the hub B
to the hub A (and viceversa) is equal to the number of interlinks. Moreover, we also
explained there that the marking of the places numFaultyAIP and numFaultyBIP
respectively represent the number of inbranches of the hub A and the hub B that
have failed so far. In particular, we said that when a Hub Interconnection fails, the
hubInConns submodel increases the marking of one of these places accordingly.
Therefore, when areAIPexhaust inspects the marking of numFaultyAIP, it knows
that this marking also reflects the new inbranch failure. In this way, areAIPexhaust
only needs to compare this marking with the total number of interlinks (which is
specified by means of the parameter numInterlinks), in order to know if all the in-
branches of the hub A have become exhausted. As can be inferred from the above
expressions, if the marking of numFaultyAIP is equal to the number of interlinks,
the proportions of the first and second cases of areAIPexhaust are 0.0 and 1.0 re-
spectively. If this marking is lower than numInterlinks then, these proportions are
1.0 and 0.0.

12.4 ReCANcentrate model 315

When areAIPexhaust selects its first case, then a dedicated output gate simply
resets the marking of the place evalFault to finish the coverage process. This is
because the hub A has isolated the faulty Hub Interconnection (so that errors do
not propagate) and there are enough non-faulty inbranches that allow both hubs to
receive the contribution of each other and, thus, to remain coupled.

Conversely, the second case of areAIPexhaust is chosen when both hubs be-
come decoupled and, therefore, it is necessary to evaluate whether or not the nodes
are able to continue communicating using both hubs independently. The instan-
taneous activity covDec evaluates this aspect as soon as it receives a token in de-
couplingEval. The first of the two cases of covDec corresponds to the situation in
which the nodes tolerate the hub decoupling. When covDec selects it, the corre-
sponding output gate carries out different actions. First, it sets a token in the place
decoupledHubs to indicate that the hubs become decoupled. As described in the
corresponding sections, different submodels consult the marking of this place to
elucidate if the nodes are communicating using both hubs independently, e.g. the
ReCANcentrateFaiEval, the hubKernels or the fauLPevalAtNode submodels. Sec-
ond, the output gate forces the marking of the places numFaultyAIP and numFault-
yBIP to their maximum value, i.e. to numInterlinks. This is necessary because,
as already explained in Section 12.4.2 and mentioned in Section 12.4.6, the sub-
link hub ports of both hubs can be considered as faulty when the hubs become
decoupled (each hub will perceive the contribution of the other hub as erroneous).
Finally, the output gate also resets the marking of the place evalFault. Notice that
the coverage process can be considered as finished at this point: the hub A has
isolated the faulty Hub Interconnection, the hubs have become decoupled and the
nodes start communicating using both hubs independently.

Regarding the second case of the activity covDec, it models the situation in which
the nodes are not able to tolerate the hub decoupling. When covDec selects this
case, it sets a token in the place decNotTol, thereby indicating such a situation to
the ReCANcentrateFaiEval submodel and, thus, provoking that the whole system
is diagnosed as faulty.

Finally, the proportions with which covDec selects its first and second cases are
decCov and 1.0 − decCov respectively; where decCov is the coverage with which
the nodes tolerate the hub decoupling (see Section 12.3.4 and Table 12.1).

12.4.12 fauHubEvalAtHub submodel

The fauHubEvalAtHub coverage submodel evaluates whether or not a hub is able
to isolate the other hub when that other hub exhibits a non-ofm failure. As already

316 Chapter 12. Reliability evaluation of ReCANcentrate

explained in Section 12.3.3, a hub is faulty when its kernel fails, as well as when
it is not able to isolate a faulty uplink or a faulty sublink port. In both cases, the
faulty hub broadcasts errors through all its downlinks and its outgoing sublinks.
Also notice again that if the hubs were decoupled before one of the hubs fails, then
it is not necessary to evaluate if the hub that remains non-faulty isolates the faulty
one and, thus, fauHubEvalAtHub is not activated.

Figure 12.2 shows the location of fauHubEvalAtHub within the coverage pro-
cess. If the non-faulty hub does not isolate the faulty one by disabling the cor-
responding inbranches, then fauHubEvalAtHub finishes the coverage process and
ReCANcentrateFaiEval diagnoses that the whole system is faulty. Otherwise, since
the faulty hub also broadcasts errors through its downlinks, fauHubEvalAtHub
compels fauHubEvalAtNodes to further evaluate whether or not each node suc-
cessfully isolates it and continues communicating using the non-faulty hub. This
issue will be explained in detail in Section 12.4.13.

Figure 12.12 depicts the structure of the fauHubEvalAtHub submodel. As can
be observed, it is symmetric because the way in which fauHubEvalAtHub models
how the hub B isolates the hub A is equal to the way in which it models how the
hub A isolates the hub B. Thus, we will only explain the first one of these cases.

As we have seen in previous sections, the different situations that lead a hub
to become faulty are modelled by means of specific submodels, which compel
fauHubEvalAtHub to proceed with the coverage process. These submodels are
(Figure 12.2): fauLPsEvalAtHubs, fauLPevalAtHub, fauIPevalAtHubs and hubKer-
nels. Regarding the fauLPsEvalAtHubs, fauLPevalAtHub and fauIPevalAtHubs sub-
models, notice again that they activate fauHubEvalAtHub by setting a token in
noIsoFauAtHubA. More specifically, fauLPsEvalAtHubs and fauLPevalAtHub set
this token when the hub A does not isolate a non-ofm fault affecting the port cor-
responding to an uplink, whereas fauIPevalAtHubs sets it when the hub A cannot
isolate a non-ofm fault happening in a sublink port. See Sections 12.4.9, 12.4.10
and 12.4.11 for further details.

Note that a non-isolated port that suffers from a non-ofm failure can only be a
bit-flipping port, since a hub isolates stuck-at faults with a perfect coverage. This
means that fauLPsEvalAtHubs, fauLPevalAtHub and fauIPevalAtHubs only acti-
vate fauHubEvalAtHub (and thus set a token in noIsoFauAtHubA) when the hub
A propagates bit-flipping errors. In this sense, as depicted in Figure 12.12, a to-
ken in noIsoFauAtHubA enables an instantaneous activity that evaluates if the hub
B contains the bit-flipping errors that the hub A propagates through its outgoing
sublinks. This activity is called covFauHAProp. Its first and second cases respec-
tively model the situation in which the hub B isolates the hub A and the situation in

12.4 ReCANcentrate model 317

Figure 12.12: fauHubEvalAtHub submodel

318 Chapter 12. Reliability evaluation of ReCANcentrate

which it does not. As described in Section 12.3.4, the probability with which a hub
successfully isolates a bit-flipping stream propagated by the other hub is called flip-
SlnkPropCov (see Table 12.1). Thus, the proportions of the first and second cases
of covFauHAProp are flipSlnkPropCov and 1.0 − flipSlnkPropCov respectively.

If the activity covFauHAprop selects its second case, it sets a token in the place
noAvailHub. As explained in Section 12.4.3, a token in noAvailHub indicates to
the ReCANcentrateFaiEval submodel that there is not any hub available for com-
municating. This leads ReCANcentrateFaiEval to diagnose the system as faulty.
Otherwise, if covFauHAprop selects its first case, it sets a token in the place iso-
HubA to indicate the the hub B successfully isolates the hub A.

At this point and before explaining the actions fauHubEvalAtHub carries out
when a token is set in isoHubA, it is important to recall that this place is one of the
two places that hubKernels uses for activating fauHubEvalAtHub when the kernel
of the hub A fails. More specifically, as explained in Section 12.4.7, hubKernels
activates fauHubEvalAtHub by setting a token in isoHubA and flipHubA, when
the Hub Kernel region of the hub A fails exhibiting a stuck-at and a bit-flipping
failure respectively. The reason why hubKernels submodel directly uses isoHubA
to indicate that the kernel of hub A is stuck-at-recessive is because the hub B is
always able to isolate that type of fault.

In contrast, when hubKernels sets a token in flipHubA, it is necessary to evaluate
whether or not the hub B isolates the bit-flipping bit stream the kernel of the hub A
sends to it through the sublinks. The instantaneous activity covBIPs performs such
an evaluation. Its first case represents the situation in which the hub B successfully
isolates the hub A and, thus, it sets a token in the place isoHubA. The second case of
this activity models the opposite situation and sets a token in the place noAvailHub.

The coverage with which the hub B isolates the bit-flipping failure of the kernel
of the hub A is flipSlnkCov, i.e. the probability with which a hub isolates a bit-
flipping Hub Core or sublink failure (see Section 12.3.4 and Table 12.1). Therefore,
the proportions of the first and second cases of the activity covBIPs are flipSlnkCov
and 1.0 - flipSlnkCov respectively. Notice that the default value of this coverage is
greater than the default value of flipSlnkPropCov, which is the probability that the
activity covFauHAprop takes into account for deciding if the hub B successfully
isolates a bit-flipping stream the hub A propagates. This is because flipSlnkProp-
Cov corresponds to a situation in which the hub B needs to isolate a bit-flipping
stream that is very similar to the stream the hub A was not previously able to iso-
late. See Section 12.3.4 for a further explanation on this issue.

Finally, let us explain what fauHubEvalAtHub does once a token is set in the
place isoHubA, i.e. once it decides that the hub B successfully isolates the hub

12.4 ReCANcentrate model 319

A. When this happens, the instantaneous activity contCovProcFauHA fires and a
dedicated output gate carries out the following actions. First, it forces the marking
of the place decoupledHubs to 0, i.e. it resets decoupledHubs even if it has no
token. As explained before, decoupledHubs is a place shared by several submodels
and its marking is 1 if the hubs are decoupled and 0 otherwise. Notice again that we
understand that the hubs are decoupled when both of them are not faulty, but they
cannot exchange their contributions with each other, i.e. when each hub represents
an independent communication domain (see Section 12.4.2). Therefore, in order
to be consistent with this definition, the output gate makes sure that the marking of
decoupledHubs is 0 when the hub A fails.

Second, the output gate forces the marking of the places numFaultyAIP and num-
FaultyBIP to their maximum value, i.e. to numInterlinks. As already explained in
Section 12.4.11, the marking of these places respectively indicate the number of
inbranches of hub A and hub B that have failed so far. Since one of the reasons
that lead an inbranch to fail is the failure of any of the hubs (see Section 12.4.2),
the output gate modifies numFaultyAIP and numFaultyBIP as indicated, in order to
reflect that all the inbranches are faulty.

The last action that the output gate of the activity contCovProcFauHA performs
is to set a token in the place fauHubANodeEval. This token compels the fauHubE-
valAtNodes submodel to take over. As explained at the beginning of this section
(and mentioned in other sections, e.g. in 12.4.4) when a hub fails and the other
one successfully isolates it, then it is necessary that fauHubEvalAtNodes evaluates
whether or not each node is able to continue communicating using the non-faulty
hub.

12.4.13 fauHubEvalAtNodes submodel

The fauHubEvalAtNodes submodel is activated in two different situations. On the
one hand, the fauHubEvalAtHub submodel activates fauHubEvalAtNodes when the
hubs are coupled and one of them exhibits a non-ofm failure that the other hub
successfully isolates (as just explained in Section 12.4.12). On the other hand, the
hubKernels, hubLPsEvalAtHubs and hubLPevalAtHub submodels directly activate
fauHubEvalAtNodes when the hubs are decoupled and one of them manifests a
non-ofm failure as a consequence of a fault in its kernel, or because it was not able
to isolate a non-ofm fault in any of its uplink ports. All these connections among
the mentioned submodels are depicted in Figure 12.2.

When activated, the fauHubEvalAtNodes submodel evaluates if each node that
is connected to the faulty hub tolerates the failure and, thus, if each node is able

320 Chapter 12. Reliability evaluation of ReCANcentrate

to continue communicating using the non-faulty one. Notice that fauHubEvalAtN-
odes is the last coverage submodel that is involved in several paths of the coverage
process. In this sense, as depicted in Figure 12.2, fauHubEvalAtNodes does not ac-
tivate any coverage submodel. Instead it always compels ReCANcentrateFaiEval
to proceed and to decide if the system is faulty.

The fauHubEvalAtNodes submodel needs to differentiate between the nodes that
have any chance of tolerating the failure of one of the hubs and those that have
not. In this sense, only the nodes that have a non-faulty Node Connection to the
hub that remains non-faulty, and that were using that connection to communicate
through it, have the possibility of tolerating the failure of the other hub. In other
words, if the hub A fails, then the nodes that can potentially tolerate the hub failure
are the okAB nodes and the okB nodes. Analogously, if the hub that fails is the
hub B, then the nodes that must be considered are the okAB and the okA nodes.

As concerns the probability with which a node tolerates a hub failure, notice
that this depends on the type of node, as well as on whether or not the hubs are
coupled. The coverage with which an okAB node tolerates a fault that prevents it
from communicating through one of the hubs is connCov, if the hubs are coupled,
and decConnCov otherwise (see Section 12.3.4 and Table 12.1). Notice that such
a fault can affect either the Node Connection or the hub itself. This is the reason
why connCov and decConnCov are also the coverages that fauLPevalAtNode uses
to decide if an okAB node can continue communicating when one of its Node
Connections fails (see Section 12.4.8). Regarding the okA and the okB nodes,
they can respectively tolerate the failure of the hub B and the hub A with a perfect
coverage. This is because such a kind of nodes have already discarded the hub that
fails for communicating, so that they were exclusively using the hub that remains
non-faulty.

Figure 12.13 shows the structure of the fauHubEvalAtNodes submodel. As hap-
pens with other submodels, its structure is symmetric. The way in which fauHubE-
valAtNodes evaluates how the nodes tolerate the failure of the hub B is analogous
to the way in which it models how they tolerate the failure of the hub A. Thus, we
only describe the case that corresponds to the failure of the hub A.

As already explained, fauHubEvalAtNodes becomes active when it receives a
token in the place fauHubANodeEval (or fauHubBNodeEval). This token enables
the instantaneous activity okStopAExcl, which is connected to a dedicated output
gate. This gate performs the following actions. First, it updates the marking of
the place numFaultyBranches, in order to reflect that all the surviving branches of
the hub A become faulty. This is necessary because a faulty hub does not only
issue errors through all its outgoing sublinks, but also through all its downlinks.

12.4 ReCANcentrate model 321

Figure 12.13: fauHubEvalAtNodes submodel

322 Chapter 12. Reliability evaluation of ReCANcentrate

Specifically, the number of branches of the hub A that were not faulty are those
that belong to an okAB, an okA or a stopA node; since only each one of these
nodes had a non-faulty Node Connection to the hub A. Therefore, the output gate
updates the marking of numFaultyBranches as follows:

numFaultyBranches → Mark() = numFaultyBranches → Mark() +

okABNodes → Mark() + okANodes → Mark() + stopANodes → Mark();

Second, the output gate resets the marking of the places stopANodes and okAN-
odes in order to reflect that each okA and stopA node loses its Node Connection
that is attached to the hub A. Notice that these nodes become noConn nodes and,
as explained in Section 12.4.2, there is no need to explicitly record their quantity.

Third, the output gate forces the marking of fauHubA to 1 to indicate that the
hub A is faulty. As explained before, submodels such as for example hubKernels
and fauLPevalAtHub use this place to elucidate if the hub A is faulty and, then, to
act accordingly.

Finally, the gate starts a process that evaluates whether or not the nodes that can
potentially tolerate the failure of the hub A successfully do it. As just said above,
these nodes are the okAB and the okB nodes. In fact, since okB nodes tolerate the
failure of the hub A with a perfect coverage, it is only necessary to evaluate what
okAB nodes do. In order to initiate the referred process, the output gate proceeds as
follows. On the one hand, it forces the marking of the place numABNodAeval to be
equal to the marking of the place okABNodes, i.e. to the number of okAB nodes.
As will be explained later, the marking of numABNodAeval is used as a counter
that indicates, during the process, what is the number of okAB nodes for which
it is still necessary to decide if the failure of the hub A is tolerated. On the other
hand, the output gate sets a token in the place fauANodeEvaIng. This indicates to
the activity endFauAnodeEval that the fauHubEvalAtNodes submodel is carrying
out the process that evaluates each okAB node. As will be explained at the end of
this section, the activity endFauAnodeEval detects when this process finishes and,
then, it resets the marking of evalFault to indicate to the ReCANcentrateFaiEval
submodel that the whole coverage process is finished too.

As concerns the actions of the process itself, notice that the activities that actu-
ally evaluate if each okAB node tolerates the failure of the hub A are covAtTwoBN-
odes and covAtBNode. In principle, as long as the marking of numABNodAeval
is ≥ 0, one of these two activities fires, does its task, and consumes part of the
tokens of this place and of the place okABNodes. More specifically, the activity
covAtTwoBNodes consecutively fires as long as the marking of numABNodAeval

12.4 ReCANcentrate model 323

is ≥ 2; whereas covAtBNode fires when there is only one token left in this place.
The activity fauHubEvalAtNodes evaluates whether or not each one of two okAB
nodes tolerates the failure, i.e. it evaluates two okAB nodes at a time. For each
one of these two okAB nodes, covAtTwoBNodes increases the marking of okBN-
odes in one unit if the node tolerates the fault, or it adds a token to stopBNodes
otherwise. Additionally, covAtTwoBNodes erases two tokens from both numABN-
odAeval and okABNodes. Likewise, when numABNodAeval has only one token, the
activity covAtBNode evaluates whether or not the single okAB node this token rep-
resents tolerates the failure of the hub A. Then, it adds one token to okBNodes or to
stopBNodes accordingly, and erases one token from numABNodAeval and okABN-
odes. Notice that this process could be done without the activity covAtTwoBNodes,
since we could have used the activity covAtBNode to evaluate all the okAB nodes,
one at a time. However, to evaluate two nodes at the same time by means of the ac-
tivity covAtTwoBNodes reduces the state space of the underlying Markov process.
Moreover, in fact, the fauHubEvalAtNodes includes an activity called covAtThree-
BNodes in order to evaluate three okAB nodes at a time. However, this activity and
its corresponding input and output gates are not depicted in Figure 12.13 for the
sake of simplicity.

In order to control which one of these three activities fires, each one of them
is enabled by means of a dedicated input gate. However, next we only show
the expressions of the input gates of covAtTwoBNodes and covAtBNode. In this
sense, notice that the expression of the input gate of covAtTwoBNodes we specify
here is not exactly the real one, since we had to slightly modify it as the activ-
ity covAtThreeBNodes has been eliminated from the Figure 12.13. Anyway, the
expressions herein specified still retain the underlying strategy we followed to en-
abled/disable the three mentioned activities.

Input gate of covAtTwoBNodes:

numABNodAeval → Mark() ≥ 2 and
(okABNodes → Mark() + okANodes → Mark() + okBNodes → Mark()) ≥
numNodes − kSevere

Input gate of covAtBNode:

numABNodAeval → Mark() == 1 and
(okABNodes → Mark() + okANodes → Mark() + okBNodes → Mark()) ≥
numNodes − kSevere

324 Chapter 12. Reliability evaluation of ReCANcentrate

The first term of each one of the above expressions allows to select the appro-
priate activity depending on the number of okAB nodes that need to be evaluated.
If such a number, which is indicated by the marking of numABNodAeval, is ≥ 2,
then only the activity covAtTwoBNodes is enabled. If this number is 1, then it is not
covAtTwoBNodes, but covAtBNode the activity that fires. Finally, if the marking of
numABNodAeval is 0, both activities are disabled.

Additionally, the second term, which coincides in both expressions, is used to
disable both activities when the number of nodes that can communicate among
them is not enough to guarantee that the system can deliver its services. Notice
that as the evaluation of the okAB nodes progresses, each okAB node can be-
come a stopB node and thus disconnected. As a consequence, it is possible that
the number of communicating nodes decreases below the level that is acceptable
to the system, before all the okAB nodes have been evaluated. If this is the case,
to continue with the process would only generate useless states, since the overall
system will be eventually diagnosed as faulty. Conversely, to disable the activities
covAtTwoBNodes and covAtBNode in advance allows reducing the state space of
the underlying Markov process. Specifically, in order to detect that the number of
communicating nodes is not sufficient, the second term of each input gate uses the
same strategy as the ReCANcentrateFaiEval submodel does (see Section 12.4.3).
Basically, this is accomplished by comparing the number of nodes that can commu-
nicate among them with numNodes − kSevere; where numNodes is the parameter
that specifies the number of nodes of the system and kSevere is the value of k of
the concept of k-severe failure (see Tables 10.4 and 12.1).

It is also noteworthy that the input gates of covAtTwoBNodes and covAtBNode
do not take into account the value of sysFauTolCov to detect that the overall sys-
tem fails in advance. To omit this value is not incorrect, because ReCANcentrate-
FaiEval will take it into account when fauHubEvalAtNodes finishes. However, it
would be possible to further simplify the underlaying Markov process by taking
this coverage into account in the mentioned input gates. For instance, the input
gates could disable covAtTwoBNodes and covAtBNode when the system does not
accept or tolerate that a new okAB node has become a stopB node, i.e. when the
system does not accept or tolerate a new disconnected node, even though the num-
ber of nodes that have become disconnected so far can be theoretically accepted or
tolerated.

As concerns the cases of the activities covAtTwoBNodes and covAtBNode, their
roles and proportions are the following ones. The first case of covAtTwoBNodes
models the situation in which the two okABNodes it is evaluating tolerate the fail-
ure of the hub A. Thus, its proportion is calculated as:

12.4 ReCANcentrate model 325

(Case 1 of covAtTwoBNodes)

if (decoupledHubs → Mark() == 0)
return connCov · connCov;

else
return decConnCov · decConnCov;

where, as indicated at the beginning of this section, connCov and decConnCov
are the coverages with which an okAB node tolerates a fault that prevents it from
communicating through a given hub when the hubs are coupled and decoupled
respectively. When this case is selected, its dedicated output gate increases the
marking of okBNodes in 2 units.

The second case of covAtTwoBNodes represents the situation in which only one
of the two okAB nodes that covAtTwoBNodes is assessing tolerates the fault. As a
consequence, its output gate increases the marking of both okBNodes and stopBN-
odes in 1 unit. The proportion of this case is obtained as:

(Case 2 of covAtTwoBNodes)

if (decoupledHubs → Mark() == 0)
return 2 · connCov · (1.0 − connCov);

else
return 2 · decConnCov · (1.0 − decConnCov);

The third case covAtTwoBNodes is chosen to model that the two okAB nodes that
covAtTwoBNodes is evaluating do not tolerate the failure of the hub A. Its output
gate adds 2 tokens to the place stopBNodes and its proportion is:

(Case 3 of covAtTwoBNodes)

if (decoupledHubs → Mark() == 0)
return (1.0 − connCov) · (1.0 − connCov);

else
return (1.0 − decConnCov) · (1.0 − decConnCov);

Regarding the activity covAtBNode, it has two cases. The first one models the
situation in which the okAB node tolerates the failure of the hub A, whereas the

326 Chapter 12. Reliability evaluation of ReCANcentrate

other one represents the opposite situation. The proportions of these two cases are
connCov and 1.0−connCov respectively, when the hubs are coupled. If the hubs are
decoupled, these proportions are expressed as decConnCov and 1.0−decConnCov
respectively.

To conclude this section, let us explain how fauHubEvalAtNodes indicates to the
ReCANcentrateFaiEval submodel that the path of the coverage process in which
fauHubEvalAtNodes is involved finishes. As mentioned above, the activity end-
FauAnodeEval carries out this notification by setting a token in the place evalFault.
More specifically, as can be seen in Figure 12.13, there is an input gate that decides
when the activity endFauAnodeEval has to fire. This occurs when the activities co-
vAtTwoBNodes and covAtBNode (and covAtThreeBNodes) stop evaluating whether
or not each okAB node tolerates the failure of the hub A. Therefore, the input gate
enables endFauAnodeEval in two cases: when there is no okAB node left to be
evaluated, or when the number of communicating nodes is too low to guarantee
that the system can deliver its services. The expression of the input gate is:

fauANodeEvaIng → Mark() == 1 and
[numABNodAeval → Mark() == 0 or
(okABNodes → Mark() + okANodes → Mark() + okBNodes → Mark()) <
numNodes − kSevere]

12.4.14 ofmFauEval submodel

The role of the ofmFauEval submodel was introduced in some of the previous sec-
tions: it is the responsible for evaluating how the errors generated by an ofm fault
propagate through the system. As depicted in the Figure 12.2, this submodel can
be activated by the submodels: nodeKernelsR, nodeConnsR and hubKernels (see
sections 12.4.4, 12.4.5 and 12.4.7). When ofmFauEval finishes, it merely compels
the ReCANcentrateFaiEval submodel to assess if the whole system is faulty.

Figure 12.14 shows the structure of the ofmFauEval submodel, which becomes
active when it observes a token in ofmNkLP, ofmNcLP, ofmNcFB, ofmHA or ofmHB.
More specifically, the nodeKernelsR submodel sets a token in the place ofmNkLP
when the Node Kernel of a node that can use only one of its Node Connections for
communicating, i.e. an okA, okB, stopA or a stopB node, suffers from a fault that
manifests as ofm at the hub port corresponding to that connection. Notice again
that an ofm Node Kernel placed in an okAB node will send ofm errors to both
hubs, thereby provoking the failure of the overall system. Thus, as explained in
Section 12.4.4, the nodeKernelsR submodel does not activate outFauMod in this

12.4 ReCANcentrate model 327

Figure 12.14: ofmFauEval submodel

328 Chapter 12. Reliability evaluation of ReCANcentrate

last situation, but directly compels ReCANcentrateFaiEval to diagnose the whole
system as faulty.

Regarding the place ofmNcLP, notice again that the nodeConnsR submodel sets
a token in it when a Node Connection that is placed in a non-faulty branch exhibits
an ofm failure. Similarly, the nodeConnsR submodel sets a token in the place
ofmNcFB when a Node Connection that is placed at an already faulty (and isolated)
branch suffers from an ofm failure.

Finally, the hubKernels submodel sets a token in the place ofmHA or in ofmHB
when both hubs are not faulty and the kernel of one of them suffers from an ofm
fault. More specifically, hubKernels sets a token in ofmHA when the kernel that
fails belongs to the hub A, whereas it sets a token in ofmHB otherwise.

A token in ofmNkLP activates the instantaneous activity selOfmNkHub, which is
devoted to selecting the hub to which the Node Kernel that suffers from the ofm
failure is (exclusively) connected to. This is necessary since the nodeKernelsR
submodel does not specify which is this hub. The activity selOfmNkHub calculates
the proportion of the case that corresponds to a specific hub by dividing the number
of Node Kernels that had only one available Node Connection attached to that hub
before the ofm fault occurred, by the total number of Node Kernels that had only
one available Node Connection attached to any hub, no matter which, before the
ofm occurred. For instance, the proportion of the first case, which models the ofm
failure of a Node Kernel that is exclusively connected to the hub A, is calculated
as:

(okANodes → Mark() + stopANodes → Mark()) /

(okANodes → Mark() + stopANodes → Mark()+

okBNodes → Mark() + stopBNodes → Mark())

Notice that the marking of each place that appears in the above expression cor-
rectly reflects what was the quantity of nodes of a given type, before the Node
Kernel suffered from the ofm fault. This is because the nodeKernelsR submodel
does not modify the marking of these places when a Node Kernel fails.

Regarding the actions the activity selOfmNkHub carries out, note that it sets a
token in ofmHA and in ofmHB when it selects its first and second cases respectively.
These two places are also the ones that the hubKernels submodel uses to indicate
to ofmFauEval that the hub A and the hub B exhibit an ofm failure respectively.
This coincidence is due to the fact that a hub propagates ofm errors throughout all
its outgoing ports, i.e. it exhibits an ofm failure itself, when it receives ofm errors
through an incoming port that was not still isolated. For instance, the first case

12.4 ReCANcentrate model 329

of selOfmNkHub models the situation in which the faulty Node Kernel sends ofm
errors to the Hub A, thereby provoking the ofm failure of this hub.

Moreover, for this same reason, note that the activity selOfmNcHub also transfers
a token to ofmHA or ofmHB when it selects its first and second cases respectively.
The first one of these cases models the situation in which an ofm Node Connection
that is placed at a non-faulty branch is connected to the hub A, whereas the second
one represents the situation in which that ofm Node Connection is connected to the
hub B. The proportions of the cases of selOfmNcHub are calculated following a
strategy similar to the one followed by selOfmNkHub. Specifically, selOfmNcHub
obtains the proportions of its cases by dividing the number of non-faulty Node
Connections that were correctly connected to a specific hub before the ofm fault
occurred, by the total number of Node Connections that were non-faulty before
this fault took place. For instance, the proportion of the first case is:

(okABNodes → Mark() + okANodes → Mark() + stopANodes → Mark()) /

(okABNodes → Mark() + okANodes → Mark() + stopANodes → Mark()+

okBNodes → Mark() + stopBNodes → Mark())

Conversely to the above-mentioned activities, ofmNcFBprop sets a token neither
in ofmHA nor in ofmHB. As already pointed out before, nodeConnsR writes a token
in ofmNcFB (thereby activating ofmNcFBprop) when an ofm Node Connection is
placed at an already faulty branch. Thus, since the corresponding hub will not be
directly affected by the errors this fault generates, it is not necessary to elucidate if
this Node Connection is attached to the hub A or the hub B. What ofmFauEval does
when receiving a token in ofmNcFBprop will be addressed later on in this section.
At this point, however, let us firstly explain what are the actions that ofmFauEval
carries out when a token is set in the place ofmHA or ofmHB, i.e. the actions that
are performed once the outFauMod submodel knows which is the hub that directly
receives the ofm errors generated by a Node Kernel, a Node Connection or a Hub
Kernel.

These actions are devoted to evaluating whether or not these ofm errors prop-
agate throughout all the system. Note from Figure 12.14 that the way in which
this evaluation is carried out is independent of whether the hub that is directly af-
fected by the ofm errors is the hub A or the hub B. Thus, we will only focus on
the first case, i.e. when a token is written in ofmHA. A token in this place enables
the instantaneous activity ofmHAdec, which elucidates if the hubs are coupled or
not. For this purpose, it simply uses the marking of the place decoupledHubs. If
the hubs are coupled, then ofmHAdec sets a token in the place outFauMod, thereby

330 Chapter 12. Reliability evaluation of ReCANcentrate

compelling ReCANcentrateFaiEval to diagnose the whole system as faulty. This is
because if the hubs are coupled, then the ofm errors will propagate not only to the
nodes that are connected to the hub A, but also to the hub B and, then, to the nodes
that are connected to that hub. In contrast, if the hubs are decoupled, the ofm errors
are only received by the nodes that are connected to the hub A. In this later case, it
is necessary to evaluate an additional aspects to decide if the entire system fails.

The activity ofmDecHAprop checks this aspect, which consists in elucidating
whether or not there is a node connected to the hub A that can propagate the ofm
errors through the hub B. Note that a node that is communicating through the hub
A will receive ofm errors from that hub. Thus, its Node Kernel can also fail in an
ofm manner, since these errors consist in data that are incorrect from the semantic
point of view. When this actually happens, the Node Kernel of the node can send
ofm errors to the hub B if it has a non-faulty Node Connection attached to that hub.
In other words, a node that receives ofm errors from the hub A can pollute the hub
B with this type of errors if it is an okAB node.

As a consequence, what ofmDecHAprop checks is if there is at least on okAB
node. For this purpose, it uses the marking of the place okABNodes. If there is
one or more tokens in this place, it chooses its second case and sets a token in
outFauMod. Otherwise, ofmDecHAprop selects its first one and compels a dedi-
cated output gate to carry out the following actions. Firstly, it sets a token in the
place fauHubA in order to indicate that the hub A is faulty. As explained before,
submodels such as for example hubKernels and fauLPevalAtHub use this place to
elucidate if the hub A is faulty and, then, to act accordingly. Secondly, it forces the
marking of decoupledHubs to 0. As already explained in Section 12.4.12, this is
necessary to be consistent with the meaning of this place, i.e. with what we under-
stood as a hub decoupling. Thirdly, the output gate resets the marking of the places
okANodes and stopANodes, since the types of nodes these places represent become
nonConn nodes. Notice that the output gate does not reset the marking of okABN-
odes, since this point of the submodel is reached if there is not any okAB node
in the system (otherwise ofmDecHAprop would have set a token in outFauMod).
Finally, the output gate also resets the marking of evalFault in order to compel the
ReCANcentrateFaiEval submodel to take over.

In order to conclude this section, let us explain the actions that ofmFauEval per-
forms when it receives a token in the place ofmNcFB, i.e. when the nodeConnsR
submodel indicates that a Node Connection that is placed at an already faulty (and
isolated) branch suffers from an ofm failure. Note that when this happens, the node
that corresponds to the Node Connection that has failed cannot be an okAB node,
but an okA, an okB, a stopA, a stopB, a nonConn, or a nonOk node. This is be-
cause an okAB node can communicate through two non-faulty branches and the

12.4 ReCANcentrate model 331

Node Connection that has failed was placed at an already faulty branch. Since the
faulty Node Connection did not correspond to an okAB node and it was placed at an
already faulty branch, one could think that the ofm errors it generates cannot pol-
lute the system. However, note that the fact that the Node Connection was placed
at an already faulty branch does not mean that its corresponding Node Kernel has
rule out that Node Connection for communicating. For instance, imagine a branch
that is already faulty because the hub it is attached to is stuck-at-recessive. If this
branch is being used by a CAN controller that acts as the non-tx controller of a
node, then that node does not rule out the branch for communicating, but it simply
accepts the delivery event it receives through its other branch (see Section 11.7.2).

Since it is possible that the Node Connection that fails is still being used by its
node, ofmNcFBprop evaluates if the Node Kernel of that node becomes ofm and
sends ofm errors to the other hub (to the hub that corresponds to the other Node
Connection of the node). Specifically, if the node is an okA or an okB node, then
the activity ofmNcFBprop decides that the node sends the ofm errors to the other
hub, takes its first case and sets a token in outFauMod. This is because only an okA
or an okB node is using its other Node connection for communicating. Otherwise,
if the node is not an okA or an okB node, ofmNcFBprop selects it second case,
which simply resets the marking of the place evalFault, as the ofm errors do not
propagate to the rest of the system.

The proportion of the first case of ofmNcFBprop is calculated by dividing the
number of already faulty branches that belong to the okA and the okB nodes by
the total number of branches that were already faulty before the Node Connection
failed. The resultant expression is:

(okANodes → Mark() + okBNodes → Mark()) /

(okNodeConns → Mark() + 1 −

(numBranches − numFaultyBranches → Mark()))

Note that the total number of branches that were already faulty before the Node
Connection failed is calculated almost as in the second case of the activity ncFail-
ure of the nodeConnsR submodel (see Section 12.4.5). The only difference is that
now it is necessary to add 1 to okNodeConns → Mark(). This is because ncFailure
decreased the marking of okNodeConns after firing.

Finally, the proportion of the second case of ofmNcFBprop is calculated by di-
viding the number of already faulty branches that do not belong to the okA and
the okB nodes by the total number of branches that were already faulty before the
Node Connection failed. Thus, the expression of this case is:

332 Chapter 12. Reliability evaluation of ReCANcentrate

((okNodeConns → Mark() + 1 −

(numBranches − numFaultyBranches → Mark())) −

(okANodes → Mark() + okBNodes → Mark())) /

(okNodeConns → Mark() + 1 − (numBranches −

numFaultyBranches → Mark()))

12.5 Quantitative assessment

In this section we quantitatively assess the reliability that can be achieved by equiv-
alent systems that rely on CAN, CANcentrate and ReCANcentrate. For this pur-
pose, we use the reliability models of the CAN bus and CANcentrate proposed in
Chapter 10 and the reliability model of ReCANcentrate we have just described.

In particular, we compare the system mission time [MK05] achievable with
CAN, CANcentrate and ReCANcentrate, i.e. the maximum amount of time dur-
ing which a system that relies on them exhibits a reliability equal or greater than
a certain value, for different number of nodes. Specifically, we analyze the system
NFT/AR and the FT/AR1 as long as they are ≥ 0.99999. As already said, this
value is just taken as a reference and it corresponds to the reliability required by a
throttle-by-wire system [MK05].

As concerns, the value of the different models’ parameters, we use the default
values specified for them in Tables 10.4, 10.5, 10.6 and 12.1; except for those that
strictly depend on the number of nodes, e.g. numBranches, hubCoreFRate, etc.
Also note that, as already explained in Section 10.4.4, we consider a 0% of ofm
failures, which allows assessing what would be the reliability benefits of our stars in
systems that include the appropriate mechanisms to deal with faults that are beyond
the scope of these stars. In this sense, it is worth noting again that to consider
an ofm greater than 0% would prevent us from analyzing the system reliability
achievable by the CAN bus and our stars, since their contribution to this reliability
would be masked by the effect of faults they do not address. Anyway, the value of
all dependability parameters, e.g. coverages, cables’ failure rates, etc., have been
determined considering assumptions that never favor the stars when compared with
the CAN bus (see Sections 10.4 and 12.3). Therefore, the result herein presented
are likely to be lower bounds to the reliability achievable with CANcentrate and
ReCANcentrate.

Figure 12.15 depicts the NFT/AR of equivalent systems that rely on CAN, CAN-
centrate and ReCANcentrate for different number of nodes. Notice that the reli-

12.5 Quantitative assessment 333

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.999988

0.999990

0.999992

0.999994

0.999996

0.999998

1

N
FT

/A
R

Hours

bus 3 nodes
bus 4 nodes
bus 12 nodes
bus 20 nodes
CANcentrate 3 nodes
CANcentrate 4 nodes
CANcentrate 12 nodes
CANcentrate 20 nodes
ReCANcentrate 3 nodes
ReCANcentrate 4 nodes
ReCANcentrate 12 nodes
ReCANcentrate 20 nodes

Figure 12.15: NFT/AR vs number of nodes

ability results of CAN and CANcentrate that appear in this figure were already
discussed in Section 10.9.1. Specifically, for any number of nodes, CAN yields
a bigger NFT/AR than CANcentrate. As already explained in the mentioned sec-
tion, this is because a CANcentrate-based system includes more hardware than an
equivalent CAN-based one, and an NFT/A system cannot benefit from the error-
containment provided by a simplex star topology (see Section 10.2). However,
notice again that the reduction of mission time provoked by CANcentrate is not
outstanding in absolute terms and is kept almost constant (around the 35%) for any
number of nodes, e.g. for 3 nodes CAN and CANcentrate achieve 0.63 and 0.41
hours respectively.

Regarding ReCANcentrate, this figure shows that the system NFT/AR achiev-
able with it is higher than the one achieved with both CAN and CANcentrate for
any number of nodes. These results, demonstrate that the fault-tolerance mecha-
nisms of ReCANcentrate amply compensate its extra hardware, so that it can be
well suited for improving the reliability of NFT/A systems. More specifically, note
that the mission time improvement is not outstanding in absolute terms, but it is im-
portant from a relative point of view. For instance, when 3 nodes are considered, a
ReCANcentrate-based system achieves a mission time 37% and 110% higher than

334 Chapter 12. Reliability evaluation of ReCANcentrate

0 1 2 3 4 5 6 7 8 9 10
0.999988

0.999990

0.999992

0.999994

0.999996

0.999998

1

FT
/A

R
1

Hours

bus 3 nodes
bus 4 nodes
bus 12 nodes
bus 20 nodes
CANcentrate 3 nodes
CANcentrate 4 nodes
CANcentrate 12 nodes
CANcentrate 20 nodes
ReCANcentrate 3 nodes
ReCANcentrate 4 nodes
ReCANcentrate 12 nodes
ReCANcentrate 20 nodes

Figure 12.16: FT/AR1 vs number of nodes

the mission time of an equivalent system that relies in CAN and CANcentrate, re-
spectively. Similarly, for 20 nodes, ReCANcentrate improves the system mission
time by 33% and 100% when compared with CAN and CANcentrate.

It is noteworthy that the relative mission time improvement achieved by ReCAN-
centrate slightly diminishes as the number of nodes increases. This suggests that
special care should be taken to ensure a good enough reliability for the components
whose amount are bigger in ReCANcentrate, e.g. of transceivers, specially when
addressing a big number of nodes.

Figure 12.16 compares the FT/AR1 of equivalent systems that rely on CAN,
CANcentrate and ReCANcentrate. The results of CAN and CANcentrate were
previously discussed in detail in Section 10.9.2. There we explained that CANcen-
trate achieves a higher FT/AR1 than CAN in all cases and that the improvement
in terms of mission time increases with the number of nodes. For instance, results
indicate that CANcentrate improves the mission time of CAN around the 22% and
the 260% for 3 and 20 nodes respectively.

As concerns the FT/AR1 of a ReCANcentrate-based system, Figure 12.16 shows
that it further improves the reliability of an equivalent FT/A CAN-based system for

12.6 Conclusions 335

any number of nodes. For example, ReCANcentrate yields mission times of 45.0,
7.1 and 4.6 hours for 3, 15 and 20 nodes respectively, whereas CAN yields 6.2, 1.3
and 1.0 hours for these same number of nodes. This implies that ReCANcentrate
represents an improvement of the 626%, the 446% and of the 360%.

Moreover, note that ReCANcentrate improves reliability of FT/A systems much
more than CANcentrate does. In fact, results show that a replicated star topology
is suitable for improving the system reliability that can be achieved with a simplex
star. For instance, for 3, 15 and 20 nodes, an FT/A ReCANcentrate-based system
achieves mission times of 45.0, 7.1 and 4.6 hours respectively, whereas an equiva-
lent CANcentrate-based one presents mission times of 7.6, 4.1, and 3.6 hours. This
means that ReCANcentrate improves the mission time of CANcentrate by 534%,
73% and 28% for 3, 15 and 20 nodes respectively.

All these results concerning ReCANcentrate demonstrate that to include fault-
tolerance mechanisms in addition to error-containment features, by means of a
replicated star, can actually boost the reliability of FT/A systems; specially of those
that include a small or an average number of nodes.

12.6 Conclusions

In this chapter we proposed a SANs model that allows measuring the reliability
(when permanent hardware faults occur) of systems that rely on ReCANcentrate.
In particular, we followed the same strategy we proposed in Chapter 10 for mod-
elling the reliability of systems relying on CAN and on CANcentrate. In this sense,
we decomposed the ReCANcentrate-based system into the same elementary com-
ponents of a CAN and a CANcentrate-based one, and we kept the same assump-
tions we made for these two last types of systems. However, we had to specify
some new entities (aggregations of components), since a ReCANcentrate-based
system includes parts that are not present in the previous systems, e.g. the in-
terlinks that interconnect both its hubs. Moreover, we had also to introduce new
assumptions that are specific to ReCANcentrate, e.g. the length of the interlinks.
Again, all these new assumptions are made taking special care not to favor Re-
CANcentrate in the comparison.

In particular, one important assumption that should be highlighted is related to
the schema that each node uses to connect to both hubs. Specifically, we supposed
that each node includes two CAN controllers and that uses each one of them to
connect to a different hub. We took this option because it is the one we proposed for
achieving a high degree of fault tolerance in ReCANcentrate (see Chapter 11). In
this sense, the reliability evaluation herein presented throws light on the suitability

336 Chapter 12. Reliability evaluation of ReCANcentrate

of this node’s architecture prior to its inclusion in a new ReCANcentrate prototype.

Another aspect that reflects the fact that we followed the modelling strategy pro-
posed in Chapter 10 is that despite being more complex, the structure of the Re-
CANcentrate’s model is analogous to the ones of CAN and CANcentrate. The rea-
son of this bigger model’s complexity is that a ReCANcentrate-based system has a
more complicated structure and its network is provided with more fault-tolerance
mechanisms when compared with CAN and CANcentrate. In particular, this makes
more difficult to model the propagation of the errors generated by faults as well as
the way in which they are contained, i.e. the coverage process and hence the inter-
action between different submodels become much more complex.

We used the ReCANcentrate’s model together with the models we proposed for
CAN and CANcentrate in Chapter 10 to compare the reliability achievable by
equivalent systems relying on ReCANcentrate, CAN and CANcentrate. On the
one hand, results demonstrate that the additional fault-tolerance mechanisms of
ReCANcentrate compensate its extra hardware, so that it is able to improve the
reliability of NFT/A systems when compared with CAN (around the 35% in terms
of mission time). This is an interesting result that quantitatively corroborates the
advantage of the fault-tolerance mechanisms of a replicated star topology over the
dependability-related features of both simplex bus and simplex star topologies. In
fact, the results we obtained renew the interest in using star topologies for NFT/A
systems since, as we quantitatively corroborated in Chapter 10, these kind of sys-
tems cannot benefit from the enhanced error-containment mechanisms of a simplex
star topology. Moreover, this results become even more noticeable if we take into
account that, to our best knowledge, no one has quantitatively assessed the relia-
bility benefits of a replicated star topology.

On the other hand, results quantitatively demonstrate that a replicated star topol-
ogy such as ReCANcentrate can really boost the reliability of FT/A systems in
terms of mission time. For instance, a ReCANcentrate-based system improves the
mission time of an equivalent CAN-based one by the 626%, the 446% and the
360% when 3, 15 and 20 nodes are considered respectively. Furthermore, this im-
provement is outstanding not only in relative terms, but also from an absolute point
of view. Following the last example, a ReCANcentrate-based system achieves mis-
sion times of 45, 7.1 and 4.6 hours for 3, 15 and 20 nodes, whereas an equivalent
CAN-based system achieves 6.2, 1.3 and 1 hours respectively.

Regarding the comparison between CANcentrate and ReCANcentrate, it is note-
worthy that the results we obtained also quantitatively corroborate the advantage
of using a replicated star topology instead of a simplex star for improving the re-
liability of FT/A systems. In fact, we believe that these results really advocate the

12.6 Conclusions 337

use of adequate replicated star topologies for the most demanding highly-reliable
systems. For instance, ReCANcentrate improves the mission time of CANcentrate
by 534%, 73% and 28% for 3, 15 and 20 nodes respectively.

Finally, notice that as already explained in Chapter 10 the results we obtained
with our models can be extrapolated to other technologies. In this sense, the work
presented herein quantitatively corroborates, for the very first time, the suitability
of using replicated star topologies for improving the reliability of FT/A systems.
Moreover, since the assumptions our models rely on may have been too detrimental
for ReCANcentrate, and some potential dependability advantages of stars were not
considered, the results we obtained are likely to be lower bounds to the system
reliability achievable with a replicated star topology such as ReCANcentrate.

338 Chapter 12. Reliability evaluation of ReCANcentrate

Parameter Default value Meaning
numNodes 3, 15 Number of nodes
numBranches 6, 30 Number of total branches of the network

when 3 and 15 nodes are considered re-
spectively (it is supposed that each node is
connected to both hubs)

numInterlinks 2 Number of interlinks that interconnect the
two hubs of ReCANcentrate

flipLnkCov 0.95 Probability with which the hub success-
fully diagnoses a bit-flipping fault at an up-
link hub port

flipSlnkCov 0.95 Probability with which the hub success-
fully diagnoses a bit-flipping fault at its
sublink port/s, when the errors received
through that sublink/s are generated by a
bit-flipping fault affecting the core of the
other hub or a sublink

flipSlnkPropCov 0.5 Probability with which a hub successfully
diagnoses a bit-flipping fault at its sublinks
ports, when the errors received through
that sublinks are generated by a bit-flipping
fault that the other hub has not been able to
diagnose and isolate

connCov 0.95 Probability with which a node is able to
continue communicating through one hub
only, when the hubs are coupled and a fault
prevents it from communicating through
one of them

decConnCov 0.0 Probability with which a node is able to
continue communicating through one hub
only, when the hubs are decoupled and
a fault prevents it from communicating
through one of them

decCov 0.0 Probability with which the nodes of Re-
CANcentrate can still communicate with
each other using two independent stars
when the hubs become decoupled

hubCoreFRate 1.27560·10−6,
1.94095 · 10−6

Hub Core failure rate when it is provided
with 3 and 15 uplink ports respectively

hubCoreOfmProp 0.0 Hub Core out-of-fault-model proportion
hubCoreFlipProp 0.3333 Hub Core bit-flipping proportion
hubIOFRate 6.73258 · 10−7 Hub IO failure rate

12.6 Conclusions 339

hubIOOfmProp 0.0 Hub IO out-of-fault-model proportion
hubIOStrProp 0.3333 Hub IO stuck-at-recessive proportion
hubIOStdProp 0.3333 Hub IO stuck-at-dominant proportion
hubIOFlipProp 0.3333 Hub IO bit-flipping proportion
lnkAttchFRate 6.34588 · 10−8 Attachment failure rate when it represents

the uplink or the downlink of ReCANcen-
trate

lnkAttchOfmProp 0.0 Attachment out-of-fault-model proportion
when it represents the uplink or the down-
link of ReCANcentrate

lnkAttchStrProp 0.25 Attachment stuck-at-recessive proportion
when it represents the uplink or the down-
link of ReCANcentrate

lnkAttchStdProp 0.25 Attachment stuck-at-dominant proportion
when it represents the uplink or the down-
link of ReCANcentrate

lnkAttchFlipProp 0.25 Attachment bit-flipping proportion when it
represents the uplink or the downlink of
ReCANcentrate

lnkAttchDisProp 0.25 Attachment physical disruption proportion
when it represents the uplink or the down-
link of ReCANcentrate

slnkAttchFRate 6.34588 · 10−8 Attachment failure rate when the it repre-
sents a sublink of ReCANcentrate

slnkAttchOfmProp 0.0 Attachment out-of-fault-model proportion
when the it represents a sublink of Re-
CANcentrate

slnkAttchStrProp 0.25 Attachment stuck-at-recessive proportion
when the it represents a sublink of Re-
CANcentrate

lnkStdProp 0.25 Attachment stuck-at-dominant proportion
when the it represents a sublink of Re-
CANcentrate

slnkAttchFlipProp 0.25 Attachment bit-flipping proportion when
the it represents a sublink of ReCANcen-
trate

slnkAttchDisProp 0.25 Attachment physical disruption proportion
when the it represents a sublink of Re-
CANcentrate

Table 12.1: Parameters specific to the ReCANcentrate model

Chapter 13

Conclusions and future work

CAN has been extensively used in a broad range of applications, including highly-
dependable ones. However, the use of CAN in this last context has been contro-
versial due to few factors, some of which arise from its simplex bus topology. The
main drawback of any protocol using a bus topology is that the structure of the
network presents multiple components, which have direct electrical connections to
each other without proper error containment. As a consequence, a fault in any of
them may generate errors that propagate and effectively prevent further communi-
cation to take place. Moreover, even if errors were properly contained in a simplex
bus topology, it lacks mechanisms for tolerating the faults that generate them.

Despite the dependability limitations of CAN, there is still an important interest
in using it, given its low-cost, electrical robustness, good real-time properties and
widespread use. This situation is clear in the industrial automation and the au-
tomotive industry domains, where CAN has played a key role during many years
specially due to its robustness. In particular, among all the dependability attributes,
the work herein presented focuses on the reliability, since the level of this attribute
required by newer applications such as those of the domains just mentioned is
continuously increasing. In fact, alternative highly reliable protocols have been re-
cently developed, e.g. TTP/C [KG94] and FlexRay [Fle05], in order to complement
or compete with CAN in those areas.

Moreover, reliability is also desirable for many other applications such as do-
motics, where CAN has also enjoyed an important position. Nowadays, these kind
of applications are also demanding increasing levels of reliability, since the re-
quirements in number of nodes and services are also growing. This can be seen,
for instance, in the automotive or in the home automation domains, where comfort
or entertainment features are gaining in importance.

341

342 Chapter 13. Conclusions and future work

13.1 Thesis validation and contributions

In response to the above-mentioned limitations of CAN and given the interest in
continuing using it in highly dependable applications, the thesis supported by this
dissertation basically claims that it is possible to improve error containment, fault
tolerance and then reliability of CAN-based systems by changing its simplex bus
topology to adequate star topologies.

This document described the work we have conducted to validate this thesis, as
well as the contributions that resulted from the different tasks we carried out to
attain this objective. Next, we explain how we have validated the different spe-
cific assertions that constitute the above-mentioned thesis, focusing on the main
contributions.

13.1.1 First assertion

The first assertion of the thesis basically states that it is possible to improve error
containment of CAN by using an adequate simplex star topology whose hub is
provided with adequate mechanisms that contain errors at their ports of origin.

The first step towards validating this assertion was to formalize the error contain-
ment limitations of CAN by defining the concept of k-severe failure. We explained
that any network relying on a bus topology presents multiple of these points, since
the fact of relying on a bus topology seriously limits the capacity of CAN nodes
to thoroughly detect and contain errors. More specifically, the single way of con-
taining errors in a CAN bus is to shut down the nodes that are faulty. This requires
that each node diagnoses itself as being faulty when it is the cause of errors that
prevent other nodes from communicating. However, contributions of all nodes are
irreversibly mixed in a CAN bus. This limits the accuracy of the fault-diagnosis
mechanisms nodes are provided with, which can unfairly penalize correct nodes.
Moreover, CAN nodes can fail and stop performing these fault-passivation actions.
Finally, shutting nodes down cannot contain the errors generated by faults that af-
fect other parts of the network, e.g. connectors or cables.

We described some solutions that have been proposed for improving error con-
tainment in CAN. However, we showed that no one of them effectively achieves
this purpose. Some of them are negatively affected by common-mode and/or spa-
tial proximity failures, whereas other ones only deal with a narrow range of types
of errors, or are not even compatible with CAN COTS components, CAN applica-
tions or CAN-based protocols.

Thus, in order to effectively improve error containment in CAN, while overcom-

13.1 Thesis validation and contributions 343

ing the shortcomings of other solutions, we designed a CAN-compliant simplex
star topology called CANcentrate. The hub of CANcentrate receives each node
contribution through a dedicated uplink, couples all contributions and then broad-
casts back the resultant coupled signal to each node through the corresponding
downlink. Since this coupling is done in a fraction of the bit time, CANcen-
trate keeps the recessive/dominant transmission and the in-bit response features
of CAN. This yields two important benefits. First, CANcentrate still presents all
the dependability advantages of CAN that are related to these features. Second, its
compatibility with any CAN-based application or protocol is guaranteed.

In addition, the hub of CANcentrate includes novel error-detection and fault-
treatment mechanisms that go beyond the capacity of CAN and any other previ-
ously proposed solution. On the one hand, its hub is able to contain, at their port of
origin, stuck-at and bit-flipping errors generated by faults that affect nodes and/or
media. This is an important feature of CANcentrate since, as stated above, any
existing CAN-based solution only deals with few types of errors or is not able to
treat faults happening at certain locations, e.g. faults happening at the media. On
the other hand, we showed that the use of a separated uplink/downlink per node
allows the hub to distinguish each node contribution from the coupled signal. In
this way, the hub can implement error-detection and fault-treatment mechanisms
that are more effective than the ones included in any other CAN-based solution.
In particular, this implies that CANcentrate detects errors and treats faults with a
higher coverage than other communication subsystems based on CAN. Such a cov-
erage is well known to be a fundamental parameter, since it has a great impact on
the system dependability.

This document thoroughly described the internal structure of the hub of CAN-
centrate, as well as its error-detection and fault-treatment mechanisms. Special care
was taken when explaining in detail the mechanisms for dealing with bit-flipping
faults. In fact, the ability of the hub of CANcentrate to deal with this type of faults
is one of the main contributions of this work. For this reason, this explanation takes
up an important part of this document.

We also demonstrated the feasibility of the implementation of CANcentrate by
presenting and describing its first prototype based on COTS components. Further-
more, this prototype also allowed us to carry out a first evaluation of the perfor-
mance of CANcentrate, as well as of the effectiveness of the error-detection and
fault-treatment mechanisms by using fault injection.

344 Chapter 13. Conclusions and future work

13.1.2 Second assertion

The second assertion of the thesis claims that the advanced error-containment capa-
bilities of an adequate simplex star topology are suitable to increase the reliability
of a CAN-based system that already accepts or tolerates node failures or discon-
nections.

Thus, in addition to the design and prototyping of CANcentrate, we quantita-
tively assessed, by means of Stochastic Activity Networks (SANs) models, the re-
liability benefits of using it as the underlying communication infrastructure. In
particular, we compared the reliability of a system relying on CAN and of an equiv-
alent system based on CANcentrate in the presence of permanent hardware faults.
To our best knowledge, this is the first formal (quantitative) comparison between a
simplex star and a simplex bus that takes into account the capacity of the hub and
nodes to contain errors, different failure modes of the components, and implemen-
tation aspects.

In order to compare the reliability of equivalent systems relying on CAN and
CANcentrate, we classified them into non-fault-tolerant/accepting systems (NFT/A
systems) and fault-tolerant/accepting systems (FT/A systems). This classification
is based on the system’s requirements for operating, which considerably vary de-
pending on the specific application the system is intended for. In this sense, NFT/A
systems are those that can only deliver their services as long as all their nodes are
non-faulty and can communicate with each other; whereas FT/A systems accept or
tolerate the failure or the disconnection of up to k of N nodes. Since the require-
ments of both types of systems for operating are different, we defined two different
metrics to quantify their reliability. On the one hand, for the case of NFT/A sys-
tems, we specified a metric called non-fault-tolerant / accepting system reliability
(NFT/AR) as the probability with which all nodes of a system can correctly operate
and communicate with each other throughout a given interval of time. On the other
hand, in order to quantify the reliability of FT/A systems, we used a new metric
called fault-tolerant/accepting system k-reliability (FT/ARk), which we defined as
the probability with which at least N − k of the N nodes of a system can correctly
operate and communicate among them throughout a given interval of time. Note
that the FT/ARk can be understood as the probability of not suffering a k-severe
failure. In particular, we measured the FT/AR1, since it is the value for k with
which CANcentrate intuitively yields the least reliability benefits.

The models we proposed for CAN and CANcentrate are complete as they in-
clude parameters for all the relevant aspects that can influence the system reliabil-
ity. Moreover, these parameters allow to both refine the results as more system’s
details are known and carry out sensitivity analyses with respect to different sys-

13.1 Thesis validation and contributions 345

tem’s aspects. Anyway, we proposed default values for all model parameters in
order to set up a case of reference with which we quantified the system reliability
achievable with CAN and CANcentrate. These values should not be taken as real
figures, but as initial reference values that can be considered as realistic.

In particular, notice that in order to compare the reliability achievable with each
one of the referred communication infrastructures it is necessary to assume that
the system includes 100% effective mechanisms that deal with the faults that are
beyond the capacities of CAN and CANcentrate. Otherwise, the contribution of
these two infrastructures to the system reliability would be masked by the effect
of faults they do not address, e.g. by babbling-idiot faults. In fact, in order to
fully benefit from CANcentrate, the system should include mechanisms that deal
with these faults. Moreover, it is important to note that all model parameters that
characterize the CAN-based and the CANcentrate-based systems were determined
with special care not to favor the star in the comparison. Thus, results herein
presented are likely to be lower bounds to the reliability that can be achieved with
a simplex star such as CANcentrate.

The results quantitatively corroborated for the very first time the advantages that
the error-containment capabilities of a simplex star topology such as CANcentrate
yield in terms of FT/AR1. Additionally, we carried out several analyses of the
sensitivity of the FT/AR1 with respect to several parameters such as, for example,
the error-containment coverage of the hub and nodes, the hub’s failure rate, etc.
These analyses constitute an important contribution, since no one has previously
quantified how these aspects influence the reliability benefits yielded by a simplex
star topology over a simplex bus.

Furthermore, besides demonstrating that CANcentrate improves FT/AR1, we
also found out that it reduces the NFT/AR when compared with a CAN bus. This
result was expected since a CANcentrate network includes more hardware than an
equivalent CAN one, so that the probability of suffering from a fault is higher in the
former. However, to quantitatively corroborate and characterize this issue is also
an important contribution of this dissertation. For instance, we showed that the
decrease of mission time that CANcentrate can cause when compared with CAN
is not outstanding in absolute terms and that it remains almost constant for any
number of nodes.

Finally, apart from this CANcentrate’s limitation, we explained that although
CANcentrate reduces the multiple points of severe failure that appear in a CAN
bus to one single point of failure (the hub), the existence of such a point can still
be unacceptable for some applications with high reliability requirements.

346 Chapter 13. Conclusions and future work

13.1.3 Third assertion

The third assertion of the thesis states that it is possible to enhance both error con-
tainment and fault tolerance of CAN and of CAN-based simplex star topologies,
by means of an adequate replicated star topology that includes two hubs that can
contain errors at their ports of origin and also errors generated by the other hub,
and that includes mechanisms to tolerate faults at links and at one of the hubs.

This assertion constitutes our response to the above-mentioned limitations of
CANcentrate. Specifically, in order to validate this claim we designed a CAN-
compliant replicated star topology called ReCANcentrate. To our best knowledge,
ReCANcentrate is the only replicated star topology that has been proposed for
CAN so far.

ReCANcentrate includes two hubs that exchange their traffic through replicated
interlinks. Each hub couples its own traffic with the traffic received from the other
hub, so that both hubs create a single broadcast domain. As in CANcentrate, this
coupling is done in a fraction of the bit time, so that ReCANcentrate presents
recessive/dominant transmission together with in-bit response. Again, this keeps
all the good dependability properties of CAN that are related to these features,
and guarantees compatibility with CAN-based applications, protocols and COTS
components.

Regarding the nodes, each one of them includes two CAN controllers and uses
each one of them to transmit/received to/from a given hub. We explained that hub
coupling forces both hubs to transmit the same value bit by bit in their downlinks,
guaranteeing the traffic to be the same in both stars. In this sense, the hub cou-
pling provides a synchronization mechanism for transmitting and receiving frames
in both stars that simplifies the way in which each node manages the redundant
traffic. This is also an important contribution of this dissertation, since to use event-
triggered communication channels in parallel (such as CAN-replicated channels)
poses serious difficulties in managing the traffic at each node.

Going back to the dependability-related features of ReCANcentrate, we showed
that each one of its hubs includes the same mechanisms as a CANcentrate hub to
contain stuck-at and bit-flipping errors at their ports of origin. Additionally, each
hub is provided with mechanisms to contain these types of errors when they are
generated by faults affecting the interlinks and/or the other hub. Moreover, Re-
CANcentrate further allows tolerating one faulty hub, faults at up to M − 1 of M
interlinks, as well as one faulty link per node. In fact, it can tolerate the simultane-
ous failure of a hub and of one of the links of each node to the hubs as long as all
nodes are connected to a non-faulty hub. Note that in this context we use the term
link not only to refer to the components that constitute an uplink/downlink, but also

13.1 Thesis validation and contributions 347

to the components the node uses for communicating through that uplink/downlink,
e.g. to the CAN controller.

We explained the internals of the hub of ReCANcentrate, focusing on the main
differences with respect to the hub of CANcentrate. Additionally, we outlined the
strategy each node of ReCANcentrate uses to manage the transmissions and the
receptions on the replicated star, as well as to tolerate faults.

Afterwards, we described a first prototype based on COTS components that
demonstrates the feasibility of the implementation of ReCANcentrate. The inter-
connection of each node to the replicated star was simplified, but the prototype still
allowed us to successfully evaluate the main ReCANcentrate error-containment
and fault-tolerance properties, as well as its performance.

13.1.4 Fourth assertion

The last assertion of the thesis states that the improved dependability features of an
adequate replicated star topology are appropriate to increase the reliability of both
CAN-based systems that do not accept or tolerate node failures or disconnections
and CAN-based systems that can do that.

As we did for CANcentrate, we quantitatively evaluated, by means of Stochastic
Activity Networks (SANs), the reliability benefits of using ReCANcentrate. For
that we compared the reliability of equivalent systems relying on CAN, CANcen-
trate and ReCANcentrate in the presence of permanent hardware faults. To our
best knowledge, this is the first formal (quantitative) evaluation of the dependabil-
ity benefits achievable by means of a replicated star topology when compared with
both a simplex bus and a simplex star topology.

We thoroughly described the SANs model we proposed for measuring the re-
liability of a ReCANcentrate-based system. Specifically, we followed the same
modelling strategy we proposed for the case of CAN and CANcentrate. Basi-
cally, we decomposed the ReCANcentrate-based system into the same elementary
components of a CAN and a CANcentrate-based one, and we kept the same as-
sumptions we made for these two last types of systems. However, we had to model
some features and introduce new assumptions and parameters that are specific to
ReCANcentrate. Again, all these new assumptions were made taking special care
not to favor ReCANcentrate in the comparison.

In fact, we showed that the model of ReCANcentrate is much more complex than
the models of CAN and CANcentrate. In particular, it was much more difficult to
model how the errors propagate and how faults are isolated and/or tolerated. More-
over, before adopting a definitive strategy for modelling the reliability of systems

348 Chapter 13. Conclusions and future work

relying on CAN, CANcentrate and ReCANcentrate, we had to explore different
alternatives. This was needed because the ReCANcentrate’s model complexity
can easily lead to inefficiency problems in terms of computation time when using
SANs. In this sense, we believe that the model strategy finally adopted herein is not
only suitable for addressing the referred systems, but it constitutes a good example
that can help other researchers to evaluate the reliability that can be achieved with
other communication topologies and/or technologies.

As regards the reliability results obtained when evaluating ReCANcentrate, note
that they are likely to be lower bounds to the system dependability achievable by
ReCANcentrate, given the special concern taken to ensure it was not favored in the
analyses and the fact that several other advantages of ReCANcentrate, such as the
minimization of the impact of spatial proximity faults, were not even modelled.

Results demonstrated that the ReCANcentrate’s additional fault-tolerance mech-
anisms largely compensate the potential reduction of reliability caused by its extra
hardware. On the one hand, they indicated that ReCANcentrate can improve the
reliability of NFT/A systems when compared with CAN and CANcentrate. Al-
though this improvement is not outstanding in absolute terms, it is an interesting
result that quantitatively corroborates the advantage of the fault-tolerance mecha-
nisms of a replicated star topology over the dependability-related features of both
simplex bus and simplex star topologies. In fact, this result renews the interest in
using star topologies for NFT/A systems since, as said before, these kind of sys-
tems cannot benefit from enhanced error-containment when they rely on a simplex
star topology.

On the other hand, results quantitatively demonstrated that a replicated star topol-
ogy such as ReCANcentrate can really boost the reliability of FT/A systems in
terms of mission time, specially when compared with a CAN bus. Furthermore,
this improvement is outstanding not only in relative terms, but also from an abso-
lute point of view. In this sense, the work presented herein quantitatively supports,
for the very first time, the interest in using replicated star topologies for improving
the reliability of FT/A systems, specially of highly-reliable ones.

In fact, although our analyses refer to the case of CAN, and other technologies,
such as TTP/C or FlexRay, deal with different failure modes, we believe that our
results really advocate the use of adequate star topologies for improving reliability
when using these technologies. On the one hand, they use similar components
with similar failure rates. On the other hand, failure modes can be abstracted so
that what really matters is the proportion of failures that can be covered by the hub
and the nodes.

Finally, we would like to highlight that our reliability analyses are not intended

13.2 Publication of results 349

to provide absolute figures for CAN, CANcentrate or ReCANcentrate, but to com-
pare the system reliability that can be achieved with these infrastructures in order
to justify the interest in using adequate stars. In this sense, our analyses pursue the
objective of dependability evaluation, i.e. to guide the design and implementation
of systems by analyzing how different options and decisions affect their depend-
ability.

13.2 Publication of results

This section gathers the different publications that resulted from the work herein
described, as well as those publications that are directly related to this dissertation.

13.2.1 Preliminary publications

The following publications are prior to the work described in this dissertation.
However, they are directly related to it as some parts of the work therein pre-
sented, e.g. the use of COTS components and programmable hardware for pro-
viding communication facilities at low cost, constitute a source of inspiration for
some of the solutions proposed to validate our thesis.

Peer-reviewed papers published in international conferences:

• Guillermo Rodrı́guez-Navas, Manuel Barranco, Julián Proenza. COTS-Based
Hardware Support to Timeliness in CAN networks. Proceedings of the 2003
IEEE International Conference on Emerging and Factory Automation (ETFA
2003), Lisboa, Portugal, 2003.

• Guillermo Rodrı́guez-Navas, Manuel Barranco, Julián Proenza. Harmoniz-
ing Dependability and Real Time in CAN Networks. Proceedings of the 2nd
Euromicro International Workshop in Real-Time LANS in the Internet Age,
Porto, Portugal, 2003.

13.2.2 Publication of results presented in this dissertation

Next follow different sets of publications that spread the main results and contri-
butions presented in this dissertation.

The first set of publications are concerned with the design, implementation and
tests of CANcentrate. These publications roughly cover Chapters 4, 5, 6, 7 and 8.

350 Chapter 13. Conclusions and future work

Peer-reviewed papers published in international journals:

• Manuel Barranco, Julián Proenza, Guillermo Rodrı́guez Navas and Luı́s
Almeida. An Active Star Topology for Improving Fault Confinement in CAN
Networks. IEEE Transactions on Industrial Informatics, vol. 2, issue 2, May
2006, pp.78-85.

Peer-reviewed papers published in international conferences:

• Manuel Barranco, Guillermo Rodrı́guez-Navas, Julián Proenza, and Luı́s
Almeida. CANcentrate: An active star topology for CAN networks. Pro-
ceedings of the 5th IEEE International Workshop on Factory Communica-
tion System (WFCS 2004), Vienna, Austria, September 2004. BEST-PAPER
AWARD.

Papers published in other international conferences or books:

• Manuel Barranco, Julián Proenza, Guillermo Rodrı́guez Navas and Luı́s
Almeida. A CAN hub with Improved Error Detection and Isolation. 10th
International CAN Conference (ICC 2005), Rome, Italy, March 2005.

The second set of publications explain the basics and main results of the work
we conducted in order to quantify the improvement of system reliability that can
be achieved with CANcentrate over CAN. These publications describe part of the
content of Chapter 10.

Peer-reviewed papers published in international journals:

• Manuel Barranco, Julián Proenza and Luı́s Almeida. Quantitative compari-
son of the error-containment capabilities of a bus and a star topology in CAN
networks. IEEE Transactions on Industrial Electronics. To be published in
2010. Digital Object Identifier: 10.1109/TIE.2009.2036642.

Peer-reviewed papers published in international conferences:

• Manuel Barranco, Julián Proenza and Luı́s Almeida. First results of the as-
sessment of the improvement of error containment achieved by CANcentrate.
Proceedings of the 6th IEEE International Workshop on Factory Communi-
cation Systems (WFCS 2006), Work-in-progress session, Torino, Italy, 2006.

13.2 Publication of results 351

The third set of publications describe the design, implementation and tests of
ReCANcentrate. Note that the three last publications refer to the same paper. This
paper was first published in the SAE (Society of Automotive Engineering) 2006
World Congress. Then, it was selected for inclusion in a SAE book that contains 40
SAE technical papers covering six years (2001-2006) of research on safety-critical
automotive systems, as well as for inclusion in the 2006 SAE Transactions Journal
of Passenger Cars. This third set of publications approximately covers Chapter 11.

Peer-reviewed papers published in international conferences:

• Manuel Barranco, Luı́s Almeida and Julián Proenza. ReCANcentrate: A
replicated star topology for CAN networks. Proceedings of the 10th IEEE
International Conference on Emerging Technologies and Factory Automa-
tion (ETFA 2005), Catania, Italy, September 2005.

• Manuel Barranco, Julián Proenza and Luı́s Almeida. Designing and Verify-
ing Media Management in ReCANcentrate. Proceedings of the 13rd IEEE
International Conference on Emerging Technologies and Factory Automa-
tion (ETFA 2008), Work-in-progress session, Hamburg, Germany, Septem-
ber 2008.

Papers published in other international conferences or books:

• Manuel Barranco, Julián Proenza and Luı́s Almeida. Management of Media
Replication in ReCANcentrate. 12th International CAN Conference (iCC
2008), Barcelona, Spain, March 2008.

• Manuel Barranco, Luı́s Almeida and Julián Proenza. Experimental assess-
ment of ReCANcentrate, a replicated star topology for CAN. SAE 2006
World Congress, Detroit, Michigan, USA, April 2006.

• Manuel Barranco, Luı́s Almeida and Julián Proenza. Experimental assess-
ment of ReCANcentrate, a replicated star topology for CAN. Safety-Critical
Automotive Systems, Society of Automotive Engineers, USA, August 2006.

• Manuel Barranco, Luı́s Almeida and Julián Proenza. Experimental assess-
ment of ReCANcentrate, a replicated star topology for CAN. SAE 2006
Transactions Journal of Passenger Cars: Electronic and Electrical Systems,
Society of Automotive Engineers, USA, 2007.

The fourth set of publications describe the basics and the results of the reliability
modelling of ReCANcentrate, which we carried out to quantify the system relia-

352 Chapter 13. Conclusions and future work

bility improvement achieved by this infrastructure when compared with CAN and
CANcentrate. They correspond to Chapter 12.

Peer-reviewed papers published in international conferences:

• Manuel Barranco, Luı́s Almeida and Julián Proenza. First quantitative re-
sults of the dependability improvement achieved by ReCANcentrate. Pro-
ceedings of the 14th IEEE International Conference on Emerging Technolo-
gies and Factory Automation (ETFA 2009), Work-in-progress session, Palma
de Mallorca, Spain, September 2009.

• Manuel Barranco, Luı́s Almeida and Julián Proenza. Reliability Improve-
ment Achievable in CAN-based Systems by Means of the ReCANcentrate
Replicated Star Topology. To be published in the Proceedings of the 8th
IEEE International Workshop on Factory Communication Systems (WFCS
2010), Nancy, France, 2010.

The fifth set of publications present both CANcentrate and ReCANcentrate in
an integrated and balanced way. They summarize the most important aspects of
Chapters 4, 5, 6, 7, 8 and 11.

Peer-reviewed papers published in international journals:

• Manuel Barranco, Julián Proenza and Luı́s Almeida. Boosting the Robust-
ness of Controller Area Networks: CANcentrate and ReCANcentrate. IEEE
Computer, vol. 42, issue 3, May 2009, pp. 66-77.

Papers published as international book chapters:

• Juan Pimentel, Julián Proenza, Luı́s Almeida, Guillermo Rodrı́guez-Navas,
Manuel Barranco and Joaquim Ferreira. Dependable Automotive CAN Net-
works. Handbook on Automotive Embedded Systems. CRC Press. Edited
by Nicolas Navet and Françoise Simonot-Lion from LORIA (France). 2009.

Papers published in international magazines:

• Manuel Barranco, Julián Proenza, Guillermo Rodrı́guez Navas and Luı́s
Almeida. Pushing error containment and fault tolerance in CAN by means
of star topologies: CANcentrate and ReCANcentrate. CAN Newsletter Au-
tomotive Networks 2006, CAN in Automation GmbH Germany, 2006.

13.3 Applicability of the contributions 353

13.2.3 Publication of future work’s first results

The next publications present the results of some research tasks unveiled as future
work of this dissertation. The first one of them proposes additional mechanisms to
enforce data consistency in ReCANcentrate even when hubs become temporarily
or permanently decoupled. The second one presents the basics and first results of
a new prototype of ReCANcentrate that takes full advantage of the fault-tolerance
capabilities of the media management we proposed in Chapter 11.

Peer-reviewed papers published in international conferences:

• Manuel Barranco, Julián Proenza and Luı́s Almeida. Maintaining data con-
sistency in ReCANcentrate during hub decouplings. Proceedings of the 7th
IEEE International Workshop on Factory Communication Systems (WFCS
2008), Work-in-progress session, Dresde, Germany, May 2008.

• Manuel Barranco, David Geßner, Julián Proenza and Luı́s Almeida. Demon-
strating the feasibility of media management in ReCANcentrate. Proceed-
ings of the 14th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA 2009), Work-in-progress session, Palma de
Mallorca, Spain, September 2009.

13.3 Applicability of the contributions

This section briefly highlights the practical relevance of some of the contributions
that result from the work conducted to validate our thesis.

On the one hand, we believe that the two main contributions of the work pre-
sented in this dissertation, i.e. the design and implementation of CANcentrate and
ReCANCentrate, constitute an important step towards improving reliability in a
wide range of applications, including those where CAN has ruled for many years.

A clear example where our stars are applicable are distributed embedded con-
trol systems for safety-critical applications, e.g. x-by-wire systems, which are now
widespread in several domains, such as avionics and the automotive industry. Ap-
plications that require similar levels of reliability as these ones are robotics and
health-care monitoring systems. In this sense, CANcentrate and ReCANcentrate
can represent a first step towards providing CAN with most of the features con-
cerning error-containment and/or fault-tolerance that are typical of recent highly-
reliable protocols such as TTP and FlexRay. In particular, the reliability advantages
of our stars can be further increased by including new fault-treatment capabilities

354 Chapter 13. Conclusions and future work

within their hubs or by investing in their quality. Moreover, given their compatibil-
ity with CAN, it is also possible to integrate them with other CAN-based solutions
proposed for improving reliability and real-time performance such as, for example,
with FTT-CAN.

Another important field where CANcentrate and ReCANcentrate are also ap-
plicable is factory automation, where CAN has played an important role. This
is because applications of this domain normally require a communication infras-
tructure in which a minimum number of nodes can communicate with each other
throughout a complete interval of time, e.g. in a factory plant it is required that a
fault in any of its components jeopardizes the communication capabilities of the
lower number of nodes as possible.

But CANcentrate and ReCANcentrate can be used in practice not only for im-
proving dependability of highly-reliable applications, but also in other domains
where CAN is nowadays widespread. This is mainly because both stars are fully
compliant with CAN, being transparent for any existing CAN-based application
using Commercial Off-The-Shelf (COTS) CAN components. This brings the op-
portunity for improving dependability in applications such as intra-building com-
munication or home automation, where the main objective is to provide service
to the maximum number of nodes even when faults occur. In this sense note that
CANcentrate and ReCANcentrate bring to CAN valuable fault-diagnosis facilities,
as well as similar features regarding error containment and/or fault tolerance than
hubs bring to Ethernet networks.

Finally, it is noteworthy that due to their practical interest, CANcentrate and
ReCANcentrate have been the subject of two patent filings:

• Julián Proenza, Guillermo Rodrı́guez Navas, Manuel Barranco, Luı́s Almeida.
Red de comunicaciones de protocolo CAN con topologı́a en estrella. Uni-
versitat de les Illes Balears (UIB), Spain, Universidade de Aveiro (UA), Por-
tugal, 2004. Patent number: 200402207.

• Julián Proenza, Manuel Barranco, Luı́s Almeida. Red de comunicaciones
de protocolo CAN con topologı́a en estrella replicada y procedimiento de
acoplamiento de dicha red. Universitat de les Illes Balears (UIB), Spain,
Universidade de Aveiro (UA), Portugal, 2005. Patent number: 200502292.

On the other hand, apart from the applicability of CANcentrate and ReCAN-
centrate, we believe that the models we proposed for quantifying their reliability
are also valuable in practice. Firstly, note that the results we obtained are signifi-
cant not only from the theoretical, but also from the practical point of view, since

13.4 Future research 355

although there has been a growing interest in using star topologies in field-bus com-
munications, e.g. such as in TTP or FlexRay, it was still not so clear whether stars
achieve a higher degree of dependability than buses in the context of distributed
embedded systems.

Secondly, as concerns the engineering contribution of these models, notice that
they are useful for any researcher or engineer working on highly-dependable dis-
tributed embedded applications. Since our models allow performing sensitivity
analyses with respect to some parameters directly related to electronic devices, e.g.
the failure rate of components, they can guide engineers in the process of designing
and implementing an adequate bus or star-based network for achieving a specific
level of dependability in CAN-based systems.

Furthermore, our models also include parameters that allow characterizing dif-
ferent architectural or design options such as, for example, the number of interlinks
or the coverage with which nodes tolerate a hub decoupling in ReCANcentrate.
This means that our models allow engineers to evaluate if making an effort in im-
proving certain architectural aspects or functionalities of a star topology is an issue
deserving of attention.

Finally, we believe that our models are not only relevant in order to quantify
the advantages of star topologies in CAN networks, but they are also valuable
contributions towards helping other researchers to evaluate the reliability that can
be achieved with other communication topologies and/or technologies.

13.4 Future research

The work described in this dissertation opens the door to carry out future research
on different interesting issues.

Single cable CAN-compliant star topologies

The cost of the cabling is an important factor in distributed embedded systems.
Despite the gains or losses in cabling length being highly dependent on the network
physical layout, star topologies generally lead to longer cabling than corresponding
buses, which results in higher costs and difficulties of installation. This problem
is specially relevant in the case of CANcentrate and ReCANcentrate, since their
fault-treatment mechanisms require a separated uplink/downlink per node in order
to separate (and thus distinguish) each node contribution from the coupled signal.

Certainly, both CANcentrate and ReCANcentrate partially mitigate this problem
as they bring the possibility of setting up an hybrid topology combining a bus and

356 Chapter 13. Conclusions and future work

a star topology. However, it would be interesting to further investigate if it is possi-
ble to design and implement CAN-compliant star topologies that use a single CAN
cable for connecting a node to a given hub. In this sense, it would be necessary to
find a mechanism that allows distinguishing each node’s contribution by, for exam-
ple, multiplexing in time the transmission of the nodes and the hub/s.

Design, implementation and dependability evaluation of further hub’s fault-
treatment mechanisms

In the context of this dissertation we focused on star-based solutions for CAN
that are independent of the application. For this reason, the fault-treatment and
fault-tolerance mechanisms of CANcentrate and ReCANcentrate basically deal
with faults whose treatment does not require any knowledge about the applica-
tion, i.e. with faults that manifest as the transmission of syntactically incorrect
data.

However, it would be interesting to provide the hubs with mechanisms that al-
low them to treat and tolerate a wide range of faults that manifest from a semantical
point of view. For example, it seems quite easy to include information within the
hubs concerning the scheduling of the messages, so that they can detect and isolate
babbling-idiot faults.

Design, implementation and dependability evaluation of time-triggered CAN-
compliant star topologies

Maybe the main feature of ReCANcentrate is that both its hubs are coupled, so that
they enforce a single communication domain that allows nodes to easily manage
the replicated traffic as well as to tolerate faults. This characteristic is an advantage
for event-triggered communication protocols such as CAN, since they do not pro-
vide any mechanisms to synchronize different channel replicas when they are used
to transmit the same data in parallel.

However, this feature can also represent a disadvantage. Specifically, the hub
coupling propagates errors generated by faults from one star to the other, thereby
reducing the total bandwidth of the network. Fortunately, in time-triggered com-
munication, e.g. in FTT-CAN, the synchronization among channels is inherently
achieved due to the protocol’s transmission schema and, thus, the hub coupling
could be dispensable when using these protocols. Therefore, it would be interest-
ing to investigate how to adapt ReCANcentrate in order to benefit from its error-
containment and fault-tolerance capabilities while using a time-triggered commu-
nication schema.

13.4 Future research 357

Integration of CANcentrate and ReCANcentrate with other existing CAN-
based dependability-related mechanisms

Apart from the error-containment and fault-tolerance limitations of CAN that are
due to its simplex bus topology, it also presents other dependability limitations
that discourage its use for highly-dependable systems; namely limited data consis-
tency, limited support for node fault-tolerance, and lack of clock synchronization
services [PPA+09]. Fortunately, there have been solutions proposed for overcom-
ing these CAN limitations separately. This unveils propitious possibilities on the
integration of our stars with those independent solutions with the goal of designing,
implementing and validating a complete CAN-based infrastructure for supporting
the execution of highly-dependable distributed control applications.

Further sensitivity analyses of the reliability of systems based on CAN, CAN-
centrate and ReCANcentrate

In spite of all the results presented in this document, the models we have proposed
for measuring the reliability of systems relying on CAN, CANcentrate and Re-
CANcentrate can be further exploited to carry out additional sensitivity analyses.
This is specially relevant for the case of ReCANcentrate, since its model allows
configuring several architectural and functionality options for which we have as-
sumed conservative values, and whose potential benefits on the system reliability
could be an issue deserving of attention. For instance, it would be very valuable to
assess how the reliability of a ReCANcentrate-based system can be improved by
including more interlinks or by allowing nodes to continue communicating even
when hubs become decoupled.

Quantitative comparison of the system reliability achievable by stars and other
topologies different from a simplex bus

One of the objectives of the work presented in this dissertation was to validate the
thesis’s assertion that claims that it is possible to improve the reliability of CAN-
based systems by changing its simplex bus to adequate star topologies. For this
reason, the reliability analyses we carried out compare CANcentrate and ReCAN-
centrate with a simplex CAN bus.

However, it would be also interesting to quantitatively compare star topologies
with other topologies. In particular, since ReCANcentrate includes redundancy,
the next natural step would be to compare the system reliability achievable with
this star with the one achievable with other redundant topologies such as replicated
CAN buses.

358 Chapter 13. Conclusions and future work

Quantitative analysis of the performability of systems relying on CAN, CAN-
centrate and ReCANcentrate in the presence of transient faults.

Although transient faults affecting the communication subsystem cannot prevent
nodes from communicating indefinitely, they negatively affect the system per-
formability. Furthermore, these faults can even provoke a generalized failure. For
instance, deadline violations provoke an overall failure in hard real-time systems.
As already said, the impact of transient faults on dependability is, necessarily, ap-
plication dependent, since deadline violations due to these faults strongly depend
on the scheduling of the application-specific set of messages. Thus, it will be inter-
esting to quantitatively compare the performability of the CAN bus, CANcentrate
and ReCANcentrate under these faults for specific applications.

Quantitative assessment of the system reliability achievable by star topologies
that are based on technologies other than CAN

To our best knowledge, in this dissertation we have provided the first formal (quan-
titative) comparison of the system reliability achievable with a simplex bus and
stars taking into account different technological aspects, failure modes and error-
containment and fault-tolerance coverages.

Another encouraging line of research is to perform this quantitative comparison
in other field-bus communication technologies such as in TTP or FlexRay. In fact,
as already mentioned, the models herein presented can be used for this purpose to
some extent, thus being a good starting point to achieve this objective. Likewise,
it would be also interesting to quantitatively compare the reliability of systems
relying on CAN-stars and stars based on those alternative technologies.

Bibliography

[ABST03] Astrit Ademaj, Günther Bauer, Hakan Sivencrona, and Jan Torin.
Evaluation of Fault Handling of the Time-Triggered Architecture
with Bus and Star Topology. IEEE International Conference on De-
pendable Systems and Networks (DSN 2003), San Francisco, Jun.
2003.

[ACL89] J. Arlat, Y. Crouzet, and J.C. Laprie. Fault injection for dependability
validation of fault-tolerant computing systems. In Proceedings of the
IEEE 19th Int. Symp. on Fault-Tolerant Computing. FTCS-19, pages
348–355, Chicago, USA, June 1989.

[ADS03] Fulya Atiparmak, Berna Dengiz, and Alice E. Smith. Reliability Es-
timation Of Computer Communication Networks: ANN Models. In
Proceedings of the Eight IEEE International Symposium on Comput-
ers and Communication (ISCC 03), pages 1353–1358, June 2003.

[AL81] T. Anderson and P.A. Lee. Fault Tolerance - Principles and Practice.
Prentice Hall, 1981.

[AM02] M. Abdollahi and A. Movaghar. Application of Stochastic Activ-
ity Networks on Network Modelling. SoftCOM’02. 10th Interna-
tional Conference on Software, Telecommunications and Computer
Networks, Split, Dubrovnik, Croatia, 2002.

[Arn73] T. F. Arnold. The Concept of Coverage and Its Effect on the Reliabil-
ity Model of a Repairable System. IEEE Transactions on Computers,
22(3):251–254, March 1973.

[Avi95] Algirdas Avižienis. Building dependable systems: How to keep up
with complexity. Special Issue of the IEEE 25th Int. Symp. Fault-
Tolerant Compuitng. FTCS-25. Pasadena, pages 4–14, June 1995.

359

360 BIBLIOGRAPHY

[BAP05] M. Barranco, L. Almeida, and J. Proenza. ReCANcentrate: A repli-
cated star topology for CAN networks. ETFA 2005. 10th IEEE In-
ternational Conference on Emerging Technologies and Factory Au-
tomation, Catania, Italy, 2005.

[BB03] I. Broster and A. Burns. An Analyzable Bus-Guardian for Event-
Triggered Communication. In Proceedings of the 24th Real-time
Systems Symposium (RTSS), pages 410–419, Cancun, Mexico, Dec
2003. IEEE.

[BCS69] W. G. Bouricius, W. C. Carter, and P. R. Schneider. Reliability mod-
eling techniques for self-repairing computer systems. In Proceedings
of the 1969 24th national conference, pages 295–309, New York, NY,
USA, 1969. ACM.

[Bel02] Ralf Belschner. FlexRay - Requirements Specification, 2002.

[BHN07] C. Braun, L. Havet, and N. Navet. NETCARBENCH: a benchmark
for techniques and tools used in the design of automotive communi-
cation systems. In Proceedings of the 7th IFAC International Confer-
ence on Fieldbuses and Networks in Industrial and Embedded Sys-
tems (FeT 2007), Toulouse, France, November 2007.

[BKS03] Günther Bauer, Hermann Kopetz, and Wilfried Steiner. The central
guardian approach to enforce fault isolation in the time-triggered ar-
chitecture. In Proceedings of the The Sixth International Symposium
on Autonomous Decentralized Systems (ISADS’03), Washington, DC,
USA, page 37. IEEE Computer Society, 2003.

[BMD93] Michael Barborak, Miroslaw Malek, and Anton Dahbura. The con-
sensus problem in fault-tolerant computing. In ACM Computing Sur-
veys, pages 171–220, June 1993.

[BPA06] M. Barranco, J. Proenza, and L. Almeida. First results of the assess-
ment of the improvement of error containment achieved by CAN-
centrate. In WFCS’06. IEEE Workshop on Factory Communication
Systems, Torino, Italy, 2006.

[BPRNA06] M. Barranco, J. Proenza, G. Rodrı́guez-Navas, and L. Almeida. An
Active Star Topology for Improving Fault Confinement in CAN Net-
works. IEEE Transactions on Industrial Informatics, vol. 2, issue 2,
2:78–85, May 2006.

BIBLIOGRAPHY 361

[Cao97] Feng Cao. Reliability Analysis of Partitioned Optical Passive Stars
Networks. In 22nd Annual IEEE International Conference on Local
Computer Networks (LCN’97), page 470, 1997.

[Car82] W.C. Carter. A time for reflection. In Proceedings of the IEEE 12th
Int. Symp. Fault-Tolerant Computing. FTCS-12. Santa Monica, Cal-
ifornia, USA, June 1982.

[Cav05] Salvatore Cavalieri. Meeting Real-Time Constraints in CAN. IEEE
Transactions on Industrial Informatics, pages 124–135, May 2005.

[CDV01] Gianluca Cena, Luca Durante, and Adriano Valenzano. A new CAN-
like field network based on a star topology, July 2001.

[CFJ+91] Joshep A. Couvillion, Roberto Freire, Ron Johnson, W. Douglas Obal
II, M. Akber Qureshi, Manish Rai, William H. Sanders, and Janet E.
Tvedt. Performability Modelling with UltraSAN. IEEE Software,
vol. 8, issue 5, pages 69–80, September 1991.

[CGP99] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The
MIT Press, 1999.

[CiAa] CiA. CAN data link layer. Technical report, CAN in Automation
(CiA), Am Weichselgarten 26.

[CiAb] CiA. CAN physical layer. Technical report, CAN in Automation
(CiA), Am Weichselgarten 26.

[Cor06] Relex Corporation. Relex Reliability Software, 2006.

[DLMSS08] M. Dehbashi, V. Lari, S.G. Miremadi, and M. Shokrollah-Shirazi.
Fault Effects in FlexRay-Based Networks with Hybrid Topology. In
ARES 2008. Third International Conference on Availability, Reliabil-
ity and Security, Barcelona, Spain, March 2008.

[DOD95] DOD. MIL-HDK-217F-2 Military Handbook, Reliability Prediction
Of Electronic Equipment. Department of Defense Washington DC,
1995.

[DT89] Joanne Bechta Dugan and Kishor S. Trivedi. Coverage modeling for
Dependability Analysis of Fault-Tolerant Systems. IEEE Transac-
tions on Computers, 38(5), June 1989.

362 BIBLIOGRAPHY

[DZY09] Jianmin Duan, Liang Zhu, and Yongchuan Yu. Research on FlexRay
communication of Steering-by-Wire system. In IV 2009. IEEE Intel-
ligent Vehicles Symposium, Xi’an, China, June 2009.

[Fle05] FlexRayTM . FlexRay Communications System - Protocol Specifica-
tion, Version 2.1, 2005.

[FLS02] K. Fitzgerald, Shahram Latifi, and P. K. Srimani. Reliability Model-
ing and Assessment of the Star-Graph Network. IEEE Transactions
on Reliability, 51(1):49–57, March 2002.

[FOFF04] J. Ferreira, A. Oliveira, P. Fonseca, and J. Fonseca. An Experiment
to Assess Bit Error Rate in CAN. Proceedings of 3rd International
Workshop on Real-Time Networks, Catania, Italy, 2004.

[Fre02] L.-B. Fredriksson. CAN for critical embedded automotive networks.
IEEE Micro, Special Issue on Critical Embedded Automotive Net-
works, 22(4):28–35, July-August 2002.

[GAW09] Huaqun Guo, Jun Jie Ang, and Yongdong Wu. Extracting Controller
Area Network data for reliable car communications. In IV 2009.
IEEE Intelligent Vehicles Symposium, Xi’an, China, June 2009.

[GKT89] U. Gunneflo, J. Karlsson, and J. Torin. Evaluation of error detection
schemes using fault injection by heavy-ion radiation. In Proceedings
of the IEEE 19th Int. Symp. on Fault-Tolerant Computing. FTCS-19,
pages 340–347, Chicago, USA, June 1989.

[Gmb91] Robert Bosch GmbH. CAN Specification, Version 2.0, 1991.

[HNNP02] Hans A. Hansson, Thomas Nolte, Christer Norström, and Sasiku-
mar Punnekkat. Integrating Reliability and Timing Analysis of
CAN-Based Systems. IEEE Transactions on Industrial Electronics,
49(6):1240–1250, December 2002.

[HPDS08] Brendan Hall, Michael Paulitsch, Kevin Driscoll, and Hakan Siven-
crona. ESCAPE CAN Limitations. In SAE 2007 Transactions Jour-
nal of Passenger Cars: Electronic and Electrical Systems, Detroit,
USA. Society of Automotive Engineers, USA, August 2008.

[HR09] C. Heller and R. Reichel. Enabling FlexRay for avionic data buses. In
DASC 2009. IEEE/AIAA 28th Digital Avionics Systems Conference,
Orlando, USA, October 2009.

BIBLIOGRAPHY 363

[Inf02] Infineon(technologies). CAN-Transceiver TLE 6250, 2002.

[ISO93] ISO. ISO11898. Road vehicles - Interchange of digital information
- Controller Area Network (CAN) for high-speed communication,
1993.

[ISO03a] ISO. ISO11898-1. Controller Area Network (CAN) – Part 1: Data
link layer and physical signalling, 2003.

[ISO03b] ISO. ISO11898-2. Controller Area Network (CAN) – Part 2: High-
speed medium access unit, 2003.

[IXX09] IXXAT. Innovative products for industrial and automotive commu-
nication systems, 2009.

[KG94] Hermann Kopetz and Günter Grunsteidl. TTP - A Protocol for Fault-
Tolerant and Real-Time Systems. IEEE COMPUTER, January 1994.

[KHJN03] M. Törngren K. H. Johansson and L. Nielsen. Vehicle Applications of
Controller Area Network. Technical report, Department of Signals,
Sensors and Systems, Royal Institute of Technology, Stockholm,
Sweden; Department of Electrical Engineering, Linkoping Univer-
sity, Sweden, 2003.

[KNM90] David J. Klinger, Yoshinao Nakada, and Maria A. Menendez. ATT
Reliability Manual. Van Nostrand Reinhold, 1990.

[Kop97] Hermann Kopetz. Dependability. In Real-Time Systems: Design
Principles for Distributed Embedded Applications. Real-Time Sys-
tems. Engineering and Computer Science. Chapter 2.4. Kluwer Aca-
demic Publishers, Boston, Dordrecht, London, pages 39–42, 1997.

[Kop02] H. Kopetz. Fault Containment and Error Detection in TTP/C and
FlexRay. Research Report 23, Vienna University Of Technology, TU
Wien, August 2002.

[Kop03] H. Kopetz. Time-Triggered Protocols for Safety-Critical Applica-
tions. Presentation, March 2003.

[Lap92] Jean-Claude Laprie. Dependability: Basic Concepts and Terminol-
ogy. Springer-Verlag Wien New York, 1992.

[Lap01] J.C. Laprie. Fundamental concepts of dependability. Technical
report, Technical Report 739, University of Newcastle upon Tyne,
School of Computing Science, 2001.

364 BIBLIOGRAPHY

[Lat05] Elizabeth Ann Latronico. Reliability Validation of Group Member-
ship Services for X-by-Wire Protocols. Carnegie Mellon University,
Electrical and Computer Engineering Department, May 2005.

[LJ90] Nanchang Lin and Charles B. Silio Jr. A Reliability Comparison
of Single and Double Rings. In INFOCOM 1990. IEEE Interna-
tional Conference on Computer Communications. San Francisco.
USA, pages 504–511, June 1990.

[Mee95] Victor Meeldijk. ELECTRONIC COMPONENTS, Selection and Ap-
plication Guidelines. Wiley-Interscience Publication, JOHN WILEY
& SONS, INC., 1995.

[Mic04] PIC18FXX8 Data Sheet - 28/40-Pin High-Performance, Enhanced
Flash Microcontrollers with CAN Module, 2004.

[MK05] J. Morris and P. Koopman. Representing Design Tradeoffs in Safety-
Critical Systems. WADS. Workshop on Architecting Dependable Sys-
tems, St. Louis, Missouri, USA, 2005.

[MSH08] P. Milbredt, A. Steininger, and M. Horauer. Automated Testing
of FlexRay Clusters for System Inconsistencies in Automotive Net-
works. In DELTA 2008. 4th IEEE International Symposium on Elec-
tronic Design, Test and Applications, Hong Kong, China, January
2008.

[MT95] M. Mahotra and K. S. Trivedi. Dependability Modeling Using Petri-
Nets. IEEE Transactions on Reliability, 44(3), September 1995.

[NNH05] Thomas Nolte, Mikael Nolin, and Hans A. Hansson. Real-Time
Server-Based Communication with CAN. IEEE Transactions on In-
dustrial Informatics, pages 192–201, August 2005.

[NSSLW05] N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert. Trends in Au-
tomotive Communication Systems. Proceedings of the IEEE, 93(6),
2005.

[Pau04] Ondrej Pauk. Powering Connectivity in Todays Automobiles. Power
Electronics Technology magazine, 2004.

[PdS04] P. Portugal and A. da Silva. A Framework for Dependability Evalu-
ation of Fieldbus Networks. WFCS’04. IEEE Workshop on Factory
Communication Systems, Vienna, Austria, 2004.

BIBLIOGRAPHY 365

[Pet81] J. L. Peterson. Petri Net Theory and the Modeling of Systems. En-
glewood Cliffs, NJ, USA: Prentice-Hall, 1981.

[PF04] Juan R. Pimentel and Jose A. Fonseca. FlexCAN: A Flexible Ar-
chitecture for Highly Dependable Embedded Applications. The 3rd
International Workshop on Real-Time Networks, Catania, Italy, July
2004.

[PHI00] PHILIPS. Data sheet - PCA82C250 - CAN controller interface -
Product Specification, 2000.

[PMJ00] J. Proenza and J. Miro-Julia. MajorCAN: A modification to the Con-
troller Area Network to achieve Atomic Broadcast. IEEE Int. Work-
shop on Group Communication and Computations, Taipei, Taiwan,
2000.

[Pol96] S. Poledna. System model and terminology. In Fault-Tolerant Real-
Time Systems: The Problem of Replica Determinism, Real-Time
Systems, chapter 3. In Engineering and Computer Science, pages
21–30. Kluwer Academic Publishers, Boston, Dordrecht, London,
1996.

[Pow92] D. Powell. Failure Mode Assumptions and Assumption Coverage.
Digest of Papers of the IEEE 22th Int. Symp. Fault-Tolerant Com-
puting FTCS-22, Boston, Massachusetts-USA, pages 386–395, July
1992.

[PPA+09] J. Pimentel, J. Proenza, L. Almeida, G. Rodrı́guez-Navas, M. Bar-
ranco, and J. Ferreira. Dependable Automotive CAN Networks.
Handbook on Automotive Embedded Systems. CRC Press. Edited
by Nicolas Navet and Françoise Simonot-Lion, 2009.

[Pro07] Julián Proenza. Ph. D. Thesis. RCMBnet: A Distributed Hardware
and Firmware Support for Software Fault Tolerance. Universitat
de les Illes Balears, Departament de Ciències Matemàtiques i In-
formàtica., January 2007.

[RD88] G. A. Ray and J. J. Dunsmore. Reliability of Network Topologies.
In INFOCOM 1988. IEEE International Conference on Computer
Communications. New Orleans, USA., pages 842–850, March 1988.

[Ruc94] Michael Rucks. Optical layer for CAN. 1st International CAN Con-
ference, November 1994.

366 BIBLIOGRAPHY

[Rus03] J. Rushby. A Comparison of Bus Architectures for Safety-Critical
Embedded Systems. Contractor report, SRI International, Menlo
Park, California, 2003.

[RVA+98] J. Rufino, P. Verı́ssimo, G. Arroz, C. Almeida, and L. Rodrigues.
Fault-tolerant broadcasts in CAN. FTCS-28, The 28th International
Symposium on Fault-Tolerant Computing, Munich, Germany, 1998.

[RVA99] José Rufino, Paulo Verı́ssimo, and Guilherme Arroz. A Columbus’
Egg Idea for CAN Media Redundancy. FTCS-29. The 29th Inter-
national Symposium on Fault-Tolerant Computing, Winconsin, USA,
June 1999.

[SFF06] V.F. Silva, J.C. Ferreira, and J.A. Fonseca. Dynamic Topology Man-
agement in CAN. In ETFA 2006. 11th IEEE International Confer-
ence on Emerging Technologies and Factory Automation, Prague,
Czech Republic, 2006.

[Sho02] Martin L. Shooman. Reliability of Computer Systems and Networks.
John Wiley & Sons, Inc., 605 Third Avenue, New York, USA, 2002.

[SJA00] DATA SHEET SJA1000 Stand-alone CAN controller, 2000.

[SoT04] W. Sanders and The Board of Trustees. Moebius User Manual Ver-
sion 1.6.0, 2004.

[STP96] Robin A. Sahner, Kishor S. Trivedi, and Antonio Puliafito. Perfor-
mance and Reliability Analysis of Computer Systems. Kluwer Aca-
demic Publisher, 101 Philip Drive, Assinippi Park, Norwell, Mas-
sachusetts 02061, USA, 1996.

[TMGT93] L. Tomek, V. Mainkar, R. Geist, and K. Trivedi. Reliability Modeling
of Life-Critical, Real-Time Systems. Procedings of the IEEE, 1993.

[Wu02] N. Eva Wu. Reliability Analysis for AFTI-F16 SRFCS using ASSIST
and SURE. In Proceedings of American Control Conference, pages
4975–4800, 2002.

[Wu04] N. Eva Wu. Coverage in fault-tolerant control. ELSEVIER,
40(4):537–548, April 2004.

[X E04] X Engineering Software Systems Corporation. XSA-3S1000 Board
V1.0 User Manual, 2004.

Index

ACK bit sent by a receiving node in a
CAN frame, 30

ACK check mechanism of CAN, 32
ACKnowledge (ACK) delimiter of a CAN

frame, 30
ACKnowledge (ACK) error in CAN, 32
ACKnowledge (ACK) field of a CAN

frame, 30
ACKnowledge (ACK) slot of a CAN frame,

30
active error flag of a CAN error frame,

33
active error frame of CANcentrate, 66
active fault, 14
active star coupler, 44
active state of a CANcentrate hub port,

71
age-dependent failure rate, 16
agreement mechanisms, 21
an out of the fault model fault, 19
application-specific fault tolerance, 20
arbitration field of a CAN frame, 30, 31
arbitration misunderstanding in CANcen-

trate, 106
assumption coverage, 19
authentification detectable Byzantine fail-

ure, 17
availability, 14

babbling-idiot fault, 36
BFC Manager Module of an Enabling /

Disabling Unit, 64, 70

bit error in CAN, 32
bit synchronization mechanism of CAN,

28
Bit-Flipping Counter (BFC) of an En-

abling / Disabling Unit, 64
Bit-Flipping Detection Counter (BFDC)

of the CANcentrate hub, 107
Bit-Flipping Detection Threshold (BFDT)

of the CANcentrate hub, 107
bit-flipping fault, 36
Bit-Flipping Threshold (BFT) of an En-

abling / Disabling Unit, 65
bit-wise arbitration mechanism of CAN,

31
bitStuffWaited signal of the CANcentrate

hub, 66
bus guardian, 41
bus-off CAN node, 32
bus-off state of a CAN node, 35
Byzantine or arbitrary failure, 17

CAN base frame format (CAN 2.0 A),
29

CAN bus-free occurrence, 35
CAN extended frame format (CAN 2.0

B), 29
CANcentrate, 49
CANivete board of a CANcentrate node

prototype, 117
Columbus Egg Idea, 229
common-mode failures, 21, 40, 41
contention in CAN, 30

367

368 INDEX

control field of a CAN frame, 30
COTS component, 5
coupled signal (B0) of the hub of CAN-

centrate, 52
Coupler Module of the CANcentrate hub,

52
Coupler Module of the ReCANcentrate

hub, 235
coverage process of the model of reli-

ability of a system that relies
on CAN, CANcentrate or Re-
CANcentrate, 156, 162

coverage submodel of the model of re-
liability of a system that relies
on CAN, CANcentrate or Re-
CANcentrate, 157, 163

crash failure, 18
CRC check mechanism of CAN, 32
CRCPassed signal of the CANcentrate

hub, 67
Current State (CS) signals of the CAN-

centrate hub, 54, 66
current state of the resultant frame in CAN-

centrate, 54
Cyclic Redundancy Code (CRC) delim-

iter of a CAN frame, 30
Cyclic Redundancy Code (CRC) error

in CAN, 32
Cyclic Redundancy Code (CRC) field of

a CAN frame, 30

daisy chain configuration of a CAN net-
work, 134

data consistency, 21, 33
Data field of a CAN frame, 30
data frame of CAN, 29
data frame of CANcentrate, 66
Data Length Code (DLC) of a CAN frame,

30
DBC Manager Module of an Enabling /

Disabling Unit, 64, 68
dependability, 13
disabled state of a CANcentrate hub port,

72
Dominant Bit Counter (DBC) of an En-

abling / Disabling Unit, 64
Dominant Bit Threshold (DBT) of an En-

abling / Disabling Unit, 65, 68
dominant value of a bit in CAN, 28
dominant/recessive transmission property

of CAN, 28
dormant fault, 14
downlink of a CANcentrate network, 51
duplicate in a replicated channel, 228

Enabling/Disabling signal (EDi) of the
ReCANcentrate hub, 237

Enabling/Disabling signal (EDi) of the
CANcentrate hub, 55

Enabling/Disabling Unit (Ena/Dis) of the
CANcentrate hub, 55

Enabling/Disabling Unit (Ena/Dis) of the
ReCANcentrate hub, 237

End Of Frame (EOF) field of a CAN
frame, 30

entity of a system relying on CAN / CAN-
centrate / ReCANcentrate, 136

error, 14
error containment, 1, 21
error delimiter of a CAN error frame, 33
error detection, 19
Error Flag Generator Module of the CAN-

centrate hub, 55
error flag of a CAN error frame, 33
error frame of CAN, 32
error globalization in CAN, 33
error processing, 19
error propagation, 21
error recovery, 19
error types detectable in CAN, 31

INDEX 369

error-active CAN node, 32
error-active state of a CAN node, 34
error-containment coverage, 148
error-containment region, 21
error-containment region in CANcentrate,

49, 76
error-detection mechanisms of CAN, 31
error-passive CAN node, 32
error-passive state of a CAN node, 35
error-signaling mechanisms of CAN, 32
ESCAPE CAN star topology, 45
evaluator submodel of the model of re-

liability of a system that relies
on CAN, CANcentrate or Re-
CANcentrate, 157

event counter of an Enabling / Disabling
Unit, 64

extra delay of the propagation of the elec-
trical signal in CANcentrate, 60

fail-silent failure, 19
fail-uncontrolled failure, 17, 36
failure, 14
failure mode, 16
failure mode assumption coverage, 19,

139
failure rate, 15
failure semantics, 18
fault, 14
fault confinement, 42
fault diagnosis, 20
fault independence, 21
fault injection, 23
fault model, 19
fault passivation, 20
fault tolerance, 19
fault treatment, 19
fault-containment region, 21
fault-tolerant/accepting system reliabil-

ity (FT/AR), 131

fault-tolerant/accepting systems (FT/A sys-
tems), 130

Fault-Treatment Module of the CANcen-
trate hub, 53

Fault-Treatment Module of the ReCAN-
centrate hub, 237

Faulty node of the CANcentrate proto-
type, 120

faulty port in CANcentrate, 49, 54
FlexCAN, 228
format error in CAN, 32
FPGA, 116
frame check mechanism of CAN, 32
frameField vector of signals of the CAN-

centrate hub, 67

hazard rate, 16
hub core of the CANcentrate prototype,

116
Hub Enabling/Disabling Unit (HubEna/Dis)

of the ReCANcentrate hub, 237
hub of a star topology, 42
hybrid topology using CANcentrate, 58

ideal star, 43
IDentifier Extension (IDE) bit of a CAN

frame, 30
identifier of a CAN frame, 30
Idle state of a CAN channel, 30
idle state of a CANcentrate hub port, 71
impulse reward variable of a SANs model,

154
in-bit response property of CAN, 28
inconsistency scenarios of CAN, 34
inconsistent data, 21
inconsistent failure, 17
incorrect computation failure, 17
independent faults, 20
Input/Output Module of the CANcentrate

hub, 52

370 INDEX

Input/Output Module of the ReCANcen-
trate hub, 237

inter frame of CANcentrate, 67
interlink of a ReCANcentrate network,

231
Intermission Frame Space (IFS) of CAN,

30
intermittent fault, 14

Join primitive of a SAN, 154

k-severe failure of communication, 5, 24

leading transmitter in CAN, 28
link of a CANcentrate network, 51
link of a ReCANcentrate network, 231
link of a star topology, 42
local error, 35

malicious failure, 17
manager module of an Enabling / Dis-

abling Unit, 64
Markov Chain, 23
masquerading failure, 17
MIL-HDBK-217 model, 138
mission time of a system, 190
model checker, 23
model checking, 23
monitoring mechanism of CAN, 32

NACK Manager Module of an Enabling
/ Disabling Unit, 64, 68

network partition, 37
network partition fault, 37
Non-Acknowledge Counter (NACKC) of

an Enabling / Disabling Unit,
64

Non-Acknowledge Threshold (NACKT)
of an Enabling / Disabling Unit,
65

non-fault-tolerant/accepting system reli-
ability (NFT/AR), 131

non-fault-tolerant/accepting systems (NFT/A
systems), 130

ofm: out-of-fault model, 139
omission failure, 18
omission in a replicated channel, 228
out-of-fault-model failure mode, 139
overload conditions in CAN, 35
overload delimiter of an overload CAN

frame, 35
overload flag of an overload CAN frame,

35
overload frame of CAN, 35
overload frame of CANcentrate, 66

passive error flag of a CAN error frame,
33

passive error frame of CANcentrate, 67
passive star coupler, 43
penalization policy of the BFC Manager,

108
performability, 14
performance failure, 18
permanent fault, 14
Petri Net, 23
Physical Layer Module of the CANcen-

trate hub, 54
point of k-severe failure of communica-

tion, 5, 24
primary error in CAN, 34

qualitative evaluation, 23
quantitative evaluation, 23

rate reward variable of a SANs model,
154

ReCANcentrate, 227
receiving node in a CAN / CANcentrate

network, 76
Reception Error Counter (REC) of a CAN

node, 34

INDEX 371

recessive value of a bit in CAN, 28
redundancy management, 20
region of the model of reliability of a

system that relies on CAN, CAN-
centrate or ReCANcentrate, 160

reintegration policy of CANcentrate, 65,
70

related faults, 20
reliability, 14
reliability function, 15
remote frame of CAN, 29
remote frame of CANcentrate, 66
Remote Transmission Request (RTR) bit

of a CAN frame, 30
Rep primitive of a SAN, 154
replicated bus topology, 40
reserved bit (R0) of a CAN frame, 30
resultant frame in CANcentrate, 53
resultant frame in ReCANcentrate, 237
reward model, 154
reward variable of a SANs model, 154
role of a node in a CAN / CANcentrate

network, 76
Rx CAN Module of the CANcentrate hub,

54

severe failure, 24
severe point of failure, 24
single broadcast domain enforced by Re-

CANcentrate, 231
single point of failure, 5, 20, 24
SMART-1, 229
spatial redundancy, 20
spatial-proximity failures, 21, 40
star diameter, 59
star topology, 42
StarCAN star topology, 44
starLink board of a CANcentrate node

prototype, 117
Start Of Frame (SOF) field of a CAN

frame, 30
Stochastic Activity Network (SAN) for-

malism, 128, 153
stopping or fail-stop failure, 18
structure state model, 154
stuck-at fault, 36
stuck-at-dominant fault, 36
stuck-at-recessive fault, 36
stuff bit in CAN, 31
stuff error in CAN, 32
stuff rule check mechanism of CAN, 32
stuff rule of CAN, 31
sublink of a ReCANcentrate network, 231
synchronization at bit level in a CAN /

CANcentrate network, 54
synchronization at frame level in a CAN

/ CANcentrate network, 54
sysFauTolcov, 146
systematic fault tolerance, 20

Tellcordia methodology, 138
temporal redundancy, 20
Threshold Control Module of an Enabling

/ Disabling Unit, 65
Time To Failure (TTF), 15
Time To Failure distribution, 15
timing failure, 18
transient fault, 14
Transmission Error Counter (TEC) of a

CAN node, 34
transmitting node in a CAN / CANcen-

trate network, 76

uplink of a CANcentrate network, 51

valueBitStuff signal of the CANcentrate
hub, 66

VHDL, 116

wired-AND function of the medium of
CAN, 28

	List of Figures
	List of Tables
	Introduction
	Problem statement
	The role of star topologies in improving dependability of CAN
	The thesis
	Main contributions
	The simplex star CANcentrate
	The replicated star ReCANcentrate
	Quantifying the dependability improvement

	Organization of the document

	An overview on dependability
	Introduction
	Basic concepts and terminology
	Fault tolerance basics
	Fundamentals of fault-tolerant systems design
	Dependability concepts introduced for this work
	Conclusions

	Controller Area Network (CAN) protocol
	Introduction
	CAN Physical Layer
	CAN Data Link Layer
	Frame format
	Bit-wise arbitration mechanism
	Frame encoding
	Error detection and signalling
	Fault treatment
	Overload signalling

	Types of faults in CAN networks
	Conclusions

	Potential solutions for improving dependability in CAN
	Introduction
	Replicated bus topology
	Reconfigurable bus topology
	Bus guardian
	Star topologies
	Passive star couplers
	Active star couplers
	Bridge star couplers

	Conclusions

	CANcentrate basics
	Introduction
	Fault model
	Design rationale
	Internal structure of the hub
	Hub synchronization in the presence of errors at the coupled signal
	Considerations on the cabling and bit rate
	Conclusions

	CANcentrate error-detection and fault-treatment mechanisms
	Introduction
	Error-detection and fault-treatment rationale
	Current State signals for the Enabling/Disabling units
	Stuck-at-recessive faults
	Stuck-at-dominant faults
	Bit-flipping faults
	Reintegration policy
	Conclusions

	CANcentrate mechanisms for detecting bit-flipping errors
	Introduction
	Bit-flipping error-detection rationale
	Error detection during normal transmission
	Error detection on the transmitter contribution
	Error detection on a receiver contribution

	Error detection upon the occurrence of an error
	Error detection after an error occurs in the resultant frame
	Error detection after an error occurs on a port contribution

	Error detection during an error signaling
	Error detection during an overload signaling
	Conclusions

	Analysis of the mechanisms that deal with bit-flipping faults
	Introduction
	Complexity of the mechanisms
	Advantages of the mechanisms
	Enhanced error detection
	Enhanced fault treatment

	Limitations of the mechanisms and further enhancements
	Unfair error detection during the error signaling
	Unfair error detection after an arbitration misunderstanding

	Penalization policy of the BFC Manager
	Conclusions

	CANcentrate prototype
	Introduction
	Description of the prototype
	Experimental platform
	Functional tests
	Performance measurements
	Conclusions

	Reliability evaluation of CANcentrate
	Introduction
	Metrics
	Modelling limitations
	Modelling assumptions
	Implementation assumptions
	System components and entities
	Basic statistical fault properties
	Failure mode assumptions
	Coverage assumptions

	Modelling formalism
	Modelling rationale
	A dedicated SAN submodel per entity
	A dedicated SAN submodel per entity type
	A dedicated SAN submodel per region type

	CANcentrate model
	nodeKernelsT submodel
	nodeConnsT submodel
	hubKernel submodel
	branchesFailureEval submodel
	CANcentrateFaiEval submodel

	CANbus model
	nodeKernelsB submodel
	nodeConnsB submodel
	inBusSections and edBusSections submodels
	CANbusFaiEval submodel

	Quantitative assessment
	NFT/AR vs number of nodes
	FT/AR1 vs number of nodes
	FT/AR1 vs system fault-tolerance coverage
	FT/AR1 vs fail-silent node proportion
	FT/AR1 vs bit-flipping coverage of the hub
	FT/AR1 vs bit-flipping proportion
	FT/AR1 vs out-of-fault-model proportion
	FT/AR1 vs wires and connectors' failure rates
	FT/AR1 vs Hub Core failure rate

	Conclusions

	ReCANcentrate
	Introduction
	Redundancy approaches in CAN
	Fault model of ReCANcentrate
	Design rationale
	Internal structure of the hub
	Error-detection and fault-treatment mechanisms of the hub
	Node's media management strategy
	Faults and discrepancies
	Treatment of discrepancies and fault-tolerance strategy

	Considerations on the cabling and bit rate
	Prototype implementation
	Functional tests
	Experiments under fault-free conditions
	Experiments under the presence of faults
	Stuck-at recessive faults at links and interlinks
	Stuck-at-dominant and bit-flipping faults at links
	Stuck-at-dominant and bit-flipping faults at interlinks
	Stuck-at-dominant and bit-flipping faults at a hub

	Performance measurements
	Conclusions

	Reliability evaluation of ReCANcentrate
	Introduction
	Metrics
	Modelling assumptions
	Implementation assumptions
	System components and entities
	Failure mode assumptions
	Coverage assumptions

	ReCANcentrate model
	Modelling rationale
	Some important preliminary remarks
	ReCANcentrateFaiEval submodel
	nodeKernelsR submodel
	nodeConnsR submodel
	hubInConns submodel
	hubKernels submodel
	fauLPevalAtNode submodel
	fauLPsEvalAtHubs submodel
	fauLPevalAtHub submodel
	fauIPevalAtHubs submodel
	fauHubEvalAtHub submodel
	fauHubEvalAtNodes submodel
	ofmFauEval submodel

	Quantitative assessment
	Conclusions

	Conclusions and future work
	Thesis validation and contributions
	First assertion
	Second assertion
	Third assertion
	Fourth assertion

	Publication of results
	Preliminary publications
	Publication of results presented in this dissertation
	Publication of future work's first results

	Applicability of the contributions
	Future research

	Bibliography
	Index

