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Abstract

Despite there is a growing interest in using star-based
networks for distributed control systems, the reliability
benefits of this topology have not been appropriately quan-
tified. Thus, in previous work we modelled, by means of
Stochastic Activity Networks (SANs), the system reliabil-
ity that can be achieved with CAN and a simplex star we
proposed for it called CANcentrate. These models quanti-
tatively compared the system reliability of CAN and CAN-
centrate when permanent hardware faults occur. How-
ever, the strategy that underlies these models was not suit-
able, in terms of computation time, for ReCANcentrate, a
replicated star we more recently proposed for CAN. This
paper thoroughly describes a new model that overcomes
this drawback and, then, demonstrates that ReCANcen-
trate can boost the system reliability. Although this pa-
per addresses CAN-based networks, the results herein pre-
sented can be extrapolated to other field-bus technologies.

1 Introduction

Controller Area Network [1] (CAN) is a field bus
communication protocol widely used in distributed con-
trol systems, mainly due to its electrical robustness, low
cost and good real-time properties. Nevertheless, CAN
presents some shortcomings related to dependability [2]
that may discourage its use in highly-dependable applica-
tions, e.g. x-by-wire control systems. One of its major lim-
itations is that it relies on a non-redundant bus topology
with scarce error-containment and fault-tolerance mech-
anisms. To overcome this limitation, we developed two
CAN-compliant star topologies called CANcentrate [3]
and ReCANcentrate [4]. The first one is a simplex star
aimed at improving error containment. Its active hub in-
cludes novel mechanisms to contain errors at their ports of
origin. The second one, ReCANcentrate, is a replicated
star that includes two hubs, similar to the one of CANcen-
trate, to further provide fault tolerance.

Certainly, when compared with buses, stars are in-
herently more resilient to spatial-proximity and common-
mode failures, can yield better error containment and,
in particular, replicated stars can even provide some
fault tolerance [5]. Thus, the interest in using them in-
stead of buses has also been growing in other technolo-
gies, e.g. in in-vehicle systems, such as with TTP/C and
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Figure 1. ReCANcentrate architecture

FlexRay [6]. However, it is not a priori evident that
stars are more dependable than buses, since stars in-
clude more hardware components, thereby increasing the
probability that faults and errors occur. In fact, as far
as we know, no other author has appropriately quanti-
fied the dependability benefits stars achieve when com-
pared with buses. Previous mathematical analyses abstract
away many important details such as the different hardware
components’ failure modes [7]. Moreover, fault injection
tests that quantitatively demonstrate the better stars’ error-
containment, e.g. [8], do not clarify if this better error con-
tainment actually yields a dependability improvement.

For these reasons, the general framework within which
this work is included aims at modelling different bus
and star networks to quantify the effect that the above-
mentioned advantages of star topologies, e.g. better error-
containment, have on the system dependability. Specifi-
cally, among all the attributes of dependability we are in-
terested in reliability, which can be defined as the probabil-
ity with which a system continuously delivers its intended
service throughout a given interval of time [9].

Note that in a distributed control system faults prevent
nodes from operating or communicating, thereby jeopar-
dizing the service they are intended to provide. A star can
play a key role in improving reliability of these systems,
since its error-containment capabilities reduce the number
of nodes that are affected by a specific fault. However,
the actual benefits that a star yields in terms of reliability
strongly depend on the system’s ability to correctly deliver
its service when only a subset of nodes can still operate
and communicate among them. Thus, in order to assess the
reliability benefits of stars, we differentiate between what
we call non-fault-tolerant/accepting (NFTA) and fault-
tolerant/accepting (FTA) systems. NFTA systems can only
deliver their services as long as all their nodes are not faulty
and can communicate with each other. The reliability of
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these systems, i.e. the non-fault-tolerant/accepting system
reliability (NFTAR), can thus be understood as the proba-
bility with which all nodes of a system can correctly oper-
ate and communicate with each other throughout a given
interval of time. In contrast, FTA systems are those that
can correctly operate while accepting or tolerating the fail-
ure or the disconnection of up to k of N nodes. Examples
of these systems could be the intra-building communica-
tion system of a hotel, in which the main objective is to
provide service to the maximum number of rooms thereby
accepting that a certain number of nodes could be not ca-
pable to compute or communicate, as well as highly reli-
able distributed control systems that tolerate faulty or dis-
connected nodes by replicating them. We refer to the reli-
ability of a FTA system as the fault-tolerant/accepting sys-
tem reliability (FTAR). More specifically, we can formally
define this reliability in terms of k as the FTARk, which
stands for the probability with which at least N − k of the
N nodes of a system can correctly operate and communi-
cate among them throughout a given interval of time.

In previous work, [10] and [7], we modelled using
SANs (Stochastic Activity Networks, a generalization of
Stochastic Petri Nets [11]) the reliability of a system rely-
ing on a CAN bus and a CANcentrate star when permanent
hardware faults can occur. We showed that the bigger like-
lihood of faults in a simplex star topology reduces the NF-
TAR. Fortunately, it also quantitatively corroborated that
the error-containment capabilities of a simplex star, such as
CANcentrate, can yield benefits in terms of FTARk when
k = 1 (formerly referred to as PNS). Moreover, in [12] we
presented a preliminary work whose first results indicate
that a replicated star topology like ReCANcentrate can im-
prove not only the FTAR1 but also the NFTAR.

It is noteworthy that in this latter work we proposed
SANs models that follow a different strategy than the
ones presented in [10] and [7], as the original modelling
approaches were extremely inefficient in terms of com-
putation time for ReCANcentrate. However, [12] merely
outlines these new models and a more detailed descrip-
tion is still needed. This paper provides such a descrip-
tion, focusing on the case of ReCANcentrate. We be-
lieve that the model presented here is not only relevant
in order to completely understand our work, but also to
help other researchers to evaluate the reliability that can be
achieved with other communication topologies. Further-
more, this paper updates the results of [12], which still
were not definitive since some models’ features therein
presented were preliminary. Also note that this paper’s in-
tention is not to calculate absolute figures of reliability. In-
stead, it is devoted to fairly comparing the reliability that
can be achieved with CAN, CANcentrate and ReCANcen-
trate (when permanent hardware faults occur), by means of
models that include parameters for all the relevant aspects
of a system relying on these infrastructures. Moreover,
these models’ parameters allow to both refine the results
as more system’s details are known and carry out sensitiv-
ity analyses with respect to each one of these parameters.

2 ReCANcentrate basics
CAN relies on two fundamental properties: the dom-

inant/recessive transmission and the in-bit response [1].
The former means that the medium implements a wired-
AND function of all nodes’ contributions, so that a domi-
nant bit ‘0’ prevails over a recessive bit ‘1’. The second one
guarantees that nodes quasi-simultaneously observe every
single bit on the channel.

These properties are kept in ReCANcentrate [4], whose
architecture is sketched in Figure 1. It includes two hubs
and each node is connected to each of them by a dedi-
cated link containing an uplink and a downlink. Addition-
ally, both hubs are interconnected by at least two interlinks
each of which contains two independent sublinks, one for
each direction. Each hub receives the contribution to each
bit value of each node directly attached to it through the
corresponding uplink. It couples all non-faulty node con-
tributions with a logical AND function to calculate what
we call the hub contribution. Each hub sends to the other
one its own contribution, so that the resulting signal that
each hub broadcasts to its own nodes is the one that results
from coupling its own contribution with the contribution
received from the other hub. Hubs perform this coupling
within a fraction of the bit time, thereby creating a single
logical broadcast domain since both hubs behave like one,
transmitting the same value bit by bit in their downlinks.

Each node is constituted by commercial-off-the-shelf
components only: two CAN controllers, four transceivers
and a microcontroller (Figure 1). Each CAN controller is
connected to only one hub using a transceiver for the up-
link and another one for the downlink. The single broad-
cast domain allows nodes to easily manage the replicated
traffic [13]. Basically, each node transmits through only
one hub, while receiving from both hubs simultaneously.

Regarding the fault model, each hub is able to detect
faults at nodes, links, interlinks or at the other hub that
manifest as stuck-at-recessive, stuck-at-dominant or bit-
flipping streams [3]. Each hub disables any permanently
faulty contribution, thus isolating it at its port of origin.
Moreover, each node can diagnose when a fault, e.g. in a
link or a hub, prevents it from communicating through a
given star. For that it basically uses the Transmit Error
Counter (TEC) and the Receive Error Counter (REC) [1]
of its CAN controllers. Whenever any of these counters
reaches a given threshold, the node stops using the corre-
sponding CAN controller for communicating.

3 Modelling assumptions
The assumptions we made for the models of CAN and

CANcentrate were thoroughly explained in [7]. However,
it is still needed to explain some additional assumptions
that are exclusively related to specific ReCANcentrate as-
pects. Most assumptions are reflected as model parame-
ters, thereby allowing to perform sensitivity analyses with
respect to them. Anyway, so far all assumptions are made
favoring whenever possible the CAN bus and always guar-
anteeing that results are not biased toward stars.



Concerning the networks’ layout, we assume the length
of each link (and interlink) to be half the total CAN bus
length. This is pessimistic for the stars, since a star could
use much less cable to cover the area occupied by the
nodes the bus interconnects. Additionally, we choose a
daisy chain configuration as the way to attach nodes to
the bus. This is the most optimistic case for CAN, since
it needs no stubs and the least number of connectors [7].

Regarding what are the components that constitute the
system, we consider the following ones: microcontrollers,
CAN controllers, transceivers, memory ICs, oscillators,
PCBs, segments of cable, connectors, network termina-
tions, and ASICs (in the case of the hubs).

Concerning component failures, we suppose that they
are independent. The Time To Failure (TTF) distribution,
F(t), of each component is considered to be exponential
with mean 1/λ, where λ is the failure rate expressed in
number of failures per hour. We assume that F(t) is Non-
Defective [14]. If the failure time is X and F(t) is Non-
Defective, then the probability with which the component
fails at or before time t, F(t) = Prob(X ≤ t), is 0 when
t = 0, 1 − e−λ·t when 0 < t < ∞, and 1 when t = ∞. To
calculate the components’ failure rates, we use a software
based on the MIL-HDBK-217 prediction standard [15].

We assume that a component failure can basically
manifest, from the channel point of view, in the follow-
ing modes: stuck-at-recessive, stuck-at-dominant or bit-
flipping [3]. Since there is not a real consensus on the com-
ponents’ failure mode proportions, we consider them as
equiprobable, except for two node components. On the
one hand, we assume that a microcontroller can only cause
a stuck-at-recessive, since it cannot manipulate the CAN
controller in a way that leads that controller to permanently
deliver dominant or bit-flipping values. On the other hand,
a CAN controller has a complex internal structure that in-
cludes some internal modules whose failure cannot lead the
CAN controller to deliver stuck-at-dominant/bit-flipping
streams. After analyzing its structure, we came to the con-
clusion that the proportions with which a CAN controller
exhibits a stuck-at-recessive and a stuck-at-dominant/bit-
flipping failure are around 66.6% and 16.6% respectively.
Due to space limitations, we cannot explain this analysis
in detail. Anyway, these proportions’ values are only rel-
atively important for the presented results, since they are
defined as model’s parameters and we plan to carry out
sensitivity analyses with respect to them.

Additionally, we consider that a component can also
provoke a failure mode we call an out-of-fault-model (ofm)
failure. This mode gathers all faults that are beyond our
fault model and that, thus, cannot be treated, e.g. a CAN
controller that fails in a babbling-idiot manner by continu-
ously sending a message stored in its transmission buffer.
In principle, we consider that components exhibit a 0% of
ofm failures. Otherwise, an ofm greater than 0% would
prevent us from analyzing the reliability achievable by the
CAN bus and our stars, since their contribution to the re-
liability would be masked by the effect of faults they do

not address. In fact, in order to fully benefit from our stars,
the system should include mechanisms that deal with ofm
faults, since it is impossible to increase the system relia-
bility by improving only one of its parts. In this sense, a
ofm proportion of 0% is equivalent to assuming that these
mechanisms are 100% effective. Also note that some of
these mechanisms could be included in our stars. How-
ever, our hubs do not present them, since their design is
application-independent and the knowledge necessary to
address most of these faults, e.g. babbling idiot ones, is
strongly related to the application. Anyway, subsequent
sensitivity analyses with respect to the ofm proportion of
a specific component will allow to analyze the importance
of including the corresponding additional mechanisms.

Finally, note that the system reliability is extremely sen-
sitive to the coverage of its fault-tolerance mechanisms.
We distinguish between the fault-tolerance mechanisms of
the system itself and the fault-tolerance mechanisms of
the communication subsystem (CAN, CANcentrate or Re-
CANcentrate) it relies on. The first set of fault-tolerance
mechanisms refers to the ability of the system to actually
accept or tolerate the failure or the disconnection of a node,
provided that the system is able to accept or tolerate such a
situation. We refer to the coverage related to these mecha-
nisms as the sysFauTolCov. NFTA systems present a sys-
FauTolCov of 0%, whereas for FTA systems we assume a
sysFauTolCov of 100%. We believe that a 100% is the most
representative value for FTA systems. On the one hand, it
is the coverage of FTA systems that intrinsically accept the
failure or disconnection of up to k nodes. On the other
hand, the effectiveness of the fault-tolerance mechanisms
of ultra-reliable FTA systems (in which we are specially
interested) must be virtually of 100%, e.g. [16].

Concerning the coverages of the communication sub-
system’s fault-tolerance mechanisms, next we summa-
rize the most important ones. On the one hand, we con-
sider different error-containment coverages, where such
a coverage can be defined as the probability of detecting
and isolating a fault included in our fault model, given
that this fault occurs. Broadly speaking, we define error-
containment coverages for the capacity of the CAN con-
troller to isolate faults happening at the media, itself or
the rest of its node and that compel it to deliver errors, as
well as for the ability of a hub to isolate faults at its uplink
and interlink ports. Basically, we assume a coverage of
100% and 95% for stuck-at and bit-flipping faults respec-
tively [7]. On the other hand, only for ReCANcentrate, we
model the coverage of the fault-tolerance mechanisms the
nodes are provided with. We define two coverages called
connCov and decConnCov for characterizing the probabil-
ity with which a node can communicate using only one
star when a fault prevents it from communicating through
the other star. The former specifies this probability when
the hubs are coupled and its default value is 95%, as the
corresponding node’s fault-tolerance mechanisms are quite
simple [13]. The second one applies when the hubs are de-
coupled and its default value is the 0%, since we have not



Figure 2. ReCANcentrate model

proposed any mechanism that allows a node to tolerate its
disconnection from one hub in such a situation. The last
nodes’ fault-tolerance coverage quantifies their ability to
communicate with each other using two independent stars
when the hubs become decoupled. We assume a 0% for it
because we have not yet thoroughly proposed any mecha-
nism to tolerate hub decouplings.

4 Modelling rationale

In order to keep a reasonable model complexity, we
do not model the failure of single components, but of
groups of them we call entities. We differentiate the follow-
ing types of entities: (1) the Node Core, which basically
includes the node microcontroller, memory ICs, sockets
and a PCB area; (2) the Controller, which represents a
CAN controller, its socket and PCB area; (3) the Node
IO and Hub IO, which include the components needed
to interface a node and a hub port, respectively, with the
medium, i.e. one CAN transceiver and its corresponding
socket and PCB area; (4) the Attachment, which includes a
CAN cable and a pair of straight connectors (it represents
the uplink/downlink/sublink in the stars, whereas in the
CAN bus it constitutes a given bus section connecting two
adjacent nodes); (5) the Termination, which is merely a re-
sistor (a pair of Terminations are used to prevent signal re-
flections in the bus line, as well as at each uplink, downlink
and sublink); (6) and the Hub Core, which comprises the
IC that implements the hub itself (except its transceivers),
its socket, an oscillator and the necessary PCB area. This
abstraction allowed us to calculate basic entities’ depend-
ability parameters, such as failure rates, failure modes and
different error-containment coverages, in a simple way.

Regarding the basic structure of the models of CAN,
CANcentrate and ReCANcentrate, we built each one of
them as a composition of different SANs submodels that
share specific places by means of the so called join prim-
itive [11]. Figure 2 depicts the whole model of ReCAN-
centrate. More specifically, we distinguish among what we
call regions submodels, coverage submodels and the eval-
uator submodel. A regions submodel is devoted to mod-
elling faults happening at a particular type of region. We
define a region as an ensemble of entities placed at a spe-
cific error-containment region of the system. In this way,
if we consider that each Hub Core is an error-containment
region, then there is one dedicated regions submodel that
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Figure 3. Coverage process

models faults happening in any Hub Core.
In principle, we consider the same types of regions for

CAN, CANcentrate and ReCANcentrate. However, some
regions do not appear in a bus-based or, conversely, in a
star-based system. Thus, some types of regions are not
modelled in the case of a bus or a star. For instance, a sys-
tem that relies on a CAN bus does not include any Hub
Core and, hence, its model does not have the correspond-
ing regions submodel. Next we specify the types of re-
gions we have considered but, for the sake of succinctness,
we exclude those that do not appear in a ReCANcentrate-
based system (it is easy to see the correspondence between
each region type and its regions submodel in Figure 2):
(1) the Node Kernel, which only includes a Node Core;
(2) the Node Connection, which comprises all entities a
node needs to be connected to a given hub, i.e. one Con-
troller, two Node IOs, two Attachments, two Hub IOs and
four Terminations); (3) the Hub Interconnection, which in-
cludes all the entities that constitute a given sublink (one
Attachment, two Hub IOs and two Termination entities);
and (4) the Hub Kernel, which includes a Hub Core.

Note that in our previous models presented in [10]
and [7], we used a dedicated SANs submodel for modelling
faults happening at just one entity or a group of entities
of the same type. In contrast, the models presented here
reduce the number of necessary SANs submodels, since
they include only one submodel per region type. The way
in which each regions submodel still models the failure of
every individual entity of each one of the regions it repre-
sents will be explained later on. At this point, simply note
that when a given entity fails, the corresponding regions
submodel decides the failure mode with which the fault
manifests and initiates an external sequential process that
models how the errors generated by that fault propagate,
how they are contained and, if appropriate, how the fault is
tolerated. We refer to this process as the coverage process.
This process is basically carried out by different coverage
submodels, each of which represents, more or less, a spe-
cific error-containment or fault-tolerance mechanism.

Figure 3 depicts a diagram of the coverage process
of ReCANcentrate. The regions and coverage submodels
are represented by clear and shaded boxes respectively.
Depending on whether or not a given error-containment
or fault-tolerance mechanism succeeds, the corresponding
coverage submodel finishes the process (this is indicated



by an arrow connected to the word eval) or compels an-
other coverage submodel to proceed with the evaluation.
The process continues until the errors are contained (or the
fault is tolerated), or until all error-containment and fault-
tolerance mechanisms are exhausted.

During the coverage process and depending on whether
or not the fault is successfully isolated and/or tolerated,
coverage submodels update a set of places that make it
possible to calculate how many nodes can communicate
among them. These places are then used by the evaluator
submodel, e.g. ReCANfaiEval in the case of ReCANcen-
trate (represented by a black box in Figure 3), to decide
if the entire system fails. As will be explained, this deci-
sion depends on whether the measure of reliability is the
NFTAR or the FTARk. When the evaluator submodel con-
siders that the system is faulty, it writes a token at a place
called genFai. This place is shared among all submodels,
which stop evolving when they observe the referred token,
thereby significantly reducing the size of the state space of
the underlying stochastic process.

Finally, in order to quantify the reliability, we associate
a rate reward variable [11] with the marking of the place
genFai. We call this variable probNonGen and its expres-
sions is 1.0− genFai → Mark(). Where genFai → Mark()
represents the marking of the place genFai. Since the mark-
ing of genFai can be only 0 or 1, the value of the variable is
1 as long as the system is not faulty. Thus, once the model
is analytically solved, the value of this variable at a partic-
ular point in time indicates the system reliability (NFTAR
or FTARk) at that instant of time.

5 ReCANcentrate model

Due to space limitations, we cannot explain our mod-
els in detail. Instead, we describe the structure and the
role of some representative submodels of ReCANcentrate:
ReCANfaiEval, nodeConnsR and fauLPevalAtNode, which
constitute relevant submodels of one of the possible execu-
tion paths of the coverage process in Figure 3. However,
before continuing with their description, let us point out
some remarks. First of all, for the sake of clarity, let us
refer to the two hubs of ReCANcentrate as hub A and hub
B from now on.

Second, we will call each hub’s port to which a node is
connected a branch. Note that we consider that a branch is
faulty when the node connected to that port cannot commu-
nicate through it. This implies that a branch fails when: (1)
the Node Kernel of the node that uses the branch is faulty;
(2) the Node Connection corresponding to the branch fails;
or (3) the hub to which the branch belongs is faulty.

Third, we consider that the hubs are decoupled when
both of them are not faulty, but there are not enough Hub
Interconnections to carry the contribution of the hub A
to the hub B or viceversa, i.e. when each hub represents
an independent communication domain. Submodels model
the hubs’ coupling/decoupling by means of a shared place
called decHubs. The hubs are decoupled if there is a token
in this place, whereas they are coupled otherwise.

Figure 4. ReCANfaiEval submodel

Finally, it is noteworthy that many submodels base their
own decisions on the capacity of each node to communi-
cate through the hub A and on its capacity to do it through
the hub B. This is because the impact of each fault on
the overall system depends on these capabilities. In or-
der to characterize the communication capacities of each
node, submodels share a set of places called: okABNodes,
okANodes, okBNodes, stopANodes and stopBNodes. The
marking of these places respectively represent the num-
ber of nodes of the following categories. (1) okAB nodes:
they are nodes whose Node Kernel is not faulty (the nodes
are operative) and that can communicate through hub A
and hub B. (2) okA and (3) okB nodes: they are operative
nodes that tolerated a fault that prevented them from com-
municating through one hub, so that they only communi-
cate through hub A and hub B respectively. (4) stopA and
(5) stopB nodes: they are operative nodes that could still
communicate through hub A and hub B respectively, but
that stop communicating because they did not tolerate the
fault that prevented them from communicating through the
other hub. Note that this classification leaves aside non-
operative nodes (nodes whose Node Kernel is faulty), as
well as operative nodes affected by faults that prevent them
from communicating through both hubs. This is because
we do not need to differentiate between these two types of
nodes, and the quantity of them can be calculated by sub-
tracting the number of nodes of the mentioned categories
from the total number of nodes .

5.1 ReCANfaiEval submodel
ReCANfaiEval is the evaluator submodel of the Re-

CANcentrate’s model. For the sake of clarity, Figure 4 de-
picts a simplified version of this submodel, which does
not show how it takes into account the value of sysFau-
TolCov (see Section 3). As can be seen in this figure, Re-
CANfaiEval includes three input gates. Each one of them
detects a different type of situation that implies an overall
failure. When one of these situations happens, the appro-
priate input gate becomes enabled and its corresponding
instantaneous activity sets a token in the place genFai.

Gates hCoupNk and hDeCoupNk aim at detecting situa-
tions where nodes communicate, but in which the number
of them that can do so is not enough for the system to de-
liver its service. The former gate detects this general fail-
ure when the hubs are coupled, whereas the other one acts
when the hubs are decoupled. For instance, the expression
of hCoupNk is:



genFai → Mark() == 0 and

decHubs → Mark() == 0 and

(okABNodes → Mark() + okANodes → Mark()+

okBNodes → Mark()) < (numNodes − kSevere) and

evalFault → Mark() == 0

The first term ensures that the input gate is not enabled
if an overall failure has already occurred. The second one
guarantees that hCoupNk remains disabled if the hubs are
decoupled. The third term compares the number of nodes
that operate and communicate among them, i.e. the quan-
tity of intercommunicating nodes, with the minimum num-
ber of intercommunicating nodes the system needs in or-
der to deliver its service. Note that when both hubs are
coupled, an operative node can communicate as long as it
can transmit and receive through at least one hub, no mat-
ter which. Thus, the number of intercommunicating nodes
can be calculated by simply adding up the marking of the
places okABNodes, okANodes and okBNodes. Once this
number is obtained, hCoupNk compares it with the value
of numNodes − kSevere. The parameter numNodes speci-
fies the total number of nodes, whereas kSevere is the max-
imum number of non-intercommunicating nodes a system
can accept or tolerate. Note that the parameter kSevere al-
lows to configure the model to measure the NFTAR and
different degrees of FTARk. For instance, if one is in-
terested in measuring the NFTAR, the minimum number
of intercommunicating nodes is the total number of nodes
and, thus, kSevere must be specified as 0. Finally, the
fourth term refers to the marking of the place evalFault. As
will be explained, a token is set in this place to indicate that
the coverage process is ongoing. Gate hCoupNk remains
disabled as long as evalFault contains a token, since the
marking of places like okABNodes, okANodes and okBN-
odes are incoherent until the coverage process ends.

Until this point we have explained the role of the gates
hCoupNk and hDeCoupNk, focusing on the former. Re-
garding gate allNPre, it is devoted to detecting situations in
which all nodes are prevented from communicating. Gate
allNPre becomes aware about any of these situations when
it receives a token in noAvaHub, outFauMod or decNotTol
(see Figure 4). Specifically, ReCANfaiEval receives a to-
ken in noAvaHub when there is not any hub available for
communicating, i.e. when both hubs are faulty. Similarly,
it receives a token in outFauMod when an ofm fault oc-
curs and its errors pollute all the system. Finally, a token
is received in decNotTol when the hubs become decoupled
and nodes were not able to tolerate this situation, i.e. when
nodes cannot communicate using both hubs independently.

5.2 nodeConnsR submodel
NodeConnsR is the regions submodel responsible for

modelling faults happening at any Node Connection region
of ReCANcentrate. The other regions submodels model
faults following the same strategies we propose in this sec-
tion. The structure of nodeConnsR is depicted in Figure 5.

Figure 5. nodeConnsR submodel

The marking of okNcs is the number of Node Connections
that are not faulty. Its initial value is two times the number
of nodes (2 · numNodes) since each node initially has two
non-faulty Node Connection regions (one per hub). The
activity ncFai models the Time To Failure (TTF) distri-
bution of all the surviving Node Connections as a whole.
Note that this distribution, we call FNodeConns(t), repre-
sents the time that elapses until a fault occurs in any en-
tity of any surviving Node Connection, i.e. it represents the
TTF of every individual entity of every non-faulty Node
Connection region. In order to obtain the expression of
FNodeConns(t), note that all surviving Node Connections
have exactly the same number and types of entities and
that each one of these entities independently fails follow-
ing an exponentially distributed TTF. Thus, if we suppose
that a Node Connection is composed of E entities and that
the failure rate of each one of them is denoted by λi, with
i ∈ [1, E], then FNodeConns(t) can be written as:

FNodeConns(t) = 1 − e−λNodeConns·t

where λNodeConns is the rate with which faults occur
in any surviving Node Connection. More specifically, if
okNcs→Mark() is the marking of okNcs, i.e. the number
of surviving Node Connections, then:

λNodeConns = okNcs → Mark() ·
E

∑

i=1

λi

Once activity ncFai fires, it selects one of its two cases,
which are represented as circles. The first case (the up-
per one) represents a fault that affects a Node Connec-
tion located in a non-faulty branch; whereas the second
one models a fault happening in a Node Connection placed
at a branch that was already faulty, i.e. a Node Connec-
tion attached to an isolated hub port. The proportion with
which ncFai chooses each case reflects the probability that
the Node Connection is placed (or not) at an already faulty
branch. For instance, the first case’s proportion is:

nBrchs − nFauBrchs → Mark()
okNcs → Mark()

Parameter nBrchs indicates the number of total branches
of ReCANcentrate, whereas nFauBrchs is a place that sub-
models share and whose marking indicates the number of
branches that are faulty. Note that the Node Connection
of a non-faulty branch is always non-faulty (otherwise the
branch would be faulty). Therefore, the above expression



can calculate the probability that a surviving Node Con-
nection is placed in a non-faulty branch by simply dividing
the number of surviving branches by the number of Node
Connections that were not faulty. Likewise the proportion
of the second case, which is the probability that the sur-
viving Node Connection that fails is placed at an already
faulty branch, is:

(okNcs → Mark() − (nBrchs − nFauBrchs → Mark()))
okNcs → Mark()

What activity ncFai does after firing depends on the spe-
cific case it chooses. The first case adds a token to three
places. First, it adds a token to nFauBrchs in order to
record that a new branch is faulty. Second, it sets a to-
ken in evalFault and nonAlFauBrch in order to initiate the
coverage process that will evaluate how the errors gener-
ated by the fault are treated. The token set in evalFault in-
hibits ReCANfaiEval until the coverage process is finished.
The token of nonAlFauBrch enables the activity ncFaiMod,
which instantaneously fires.

This activity decides the way in which the Node Con-
nection manifests at the uplink hub port. The first case
corresponds to a Node Connection that exhibits an ofm
failure. Although ofm errors cannot be contained, they do
not necessarily propagate throughout the system, e.g. it de-
pends on whether or not the hubs are coupled. Thus, nc-
FaiMod sets a token in ofmNcLP to compel the ofmFauE-
val submodel to evaluate if the ofm errors pollute the whole
system depending on different circumstances. The second
and third cases of ncFaiMod model that the fault manifests
as stuck-at and bit-flipping and they respectively set a to-
ken in stuckLP and flipLP. The coverage submodel fauLPe-
valAtHub will use these two places to know the Node Con-
nection’s failure mode. This submodel, which is activated
later on (Figure 3), evaluates if the corresponding hub iso-
lates the fault. In this sense, note that nodeConnsR only in-
cludes one place for both stuck-at-recessive/dominant fail-
ures. This is because a hub isolates both types of faults
with a perfect coverage and, thus, it is not necessary to
differentiate between them. Also note that the second and
third cases of ncFaiMod set a token in newFauBrch to com-
pel fauLPevalAtNode to continue before fauLPevalAtHub.

As concerns the second case of ncFai, it sets a token in
alFauBrch to indicate that the faulty Node Connection is
placed at an already faulty hub port. This token activates
ncFbFaiMod, which is analogous to the activity ncFaiMod.
If ncFbFaiMod decides that the fault is included in our
fault model it selects the case that is left unconnected, as
no more actions are needed when a non-ofm fault occurs
in an already faulty, and thus isolated, branch. Otherwise,
ncFbFaiMod sets a token in ofmNcFB to activate the ofm-
FauEval submodel. This is because an ofm Node Connec-
tion may lead its Node Kernel to fail in an ofm manner and
send errors through its other Node Connection.

The proportion with which ncFaiMod and ncFbFaiMod
choose each case reflects the probability with which the
Node Connection that fails exhibits the corresponding type

of fault/s. Thus, at this point, it is necessary to clarify
how we calculate the proportions with which a given re-
gion (a Node Connection in this case) manifests each one
of its failure modes. First, note that we consider that faults
are not near coincident in time, so that the region failure
mode is determined assuming that only one of its enti-
ties has failed. Second, since a region failure can be pro-
voked by any of its entities, the proportion with which a
region manifests a given failure mode reflects the propor-
tion with which each one of its entities exhibits that fail-
ure mode. In this sense, let us consider a region consti-
tuted by E entities that exhibit M different failure modes.
Moreover, imagine that a given failure mode is called fmj

with j ∈ [1,M ], so that the proportion with which an en-
tity i exhibits the failure mode fmj is denoted by fmpi,j

with fmpi,j ∈ [0, 1] ∀i ∈ [1, E] and ∀j ∈ [1,M ]. Then,
the proportion with which a region exhibits the failure
mode fmj is a function that depends on the failure rates
of its constituent entities, λi, as well as on the propor-
tions with which each one of these entities exhibits that
failure mode, fmpi,j . We call this function Fmpj and it
is denoted by Fmpj(λ1, ..., λE , fmp

1,j , ..., fmpE,j). In or-
der to obtain the detailed expression of this function we
can proceed as follows. First, note that the TTF of a re-
gion can be expressed as FRegion(t) = (1− e−λRegion·t) (1);
where λRegion is the failure rate of the region. Thus, the
probability that a region fails exhibiting the failure mode
fmj is (1 − e−λRegion·t) · Fmpj . Moreover, since a region
cannot exhibit more than one failure mode simultaneously,
we can write FRegion(t) = (1 − e−λRegion·t) ·

∑M

j=1
Fmpj

(2). Second, note that we can also write λRegion in terms of
the entities’ failure rates and failure mode proportions as
λRegion =

∑E

i=1
λi =

∑E

i=1

(

λi ·
∑M

j=1
fmpi,j

)

(3). At this
point, we can use equation 3 to expand equation 1 in such
a way that we obtain an expression from which we can
infer the detailed form of Fmpj in terms of the entities’
failure rates and failure mode proportions. Specifically,
FRegion(t) = (1−e−λRegion·t) = (1−e−λRegion·t)·

λRegion
λRegion

=

(1 − e−λRegion·t) ·
∑M

j=1

(
∑

E
i=1

λi·fmp
i,j

λRegion

)

. If we compare
this result with equation (2), we deduce that Fmpj (4) is:

Fmpj =

∑E

i=1
λi · fmpi,j

λRegion
=

∑E

i=1
λi · fmpi,j

∑E

i=1
λi

∀j ∈ [1,M ]

In other words, the proportion with which a region ex-
hibits a given failure mode is the weighted arithmetic mean
of the proportions with which each one of its entities man-
ifests that failure mode. Specifically, the proportion with
which each entity exhibits the failure mode is weighted
considering the contribution of its failure rate to the fail-
ure rate of the region.

However, when we use Equation 4 for calculating the
cases’ proportions of ncFaiMod in the submodel of a Node
Connection, it is necessary to take into account that the
CAN controller placed at the Node Connection is able to
diagnose faults happening at other entities of this region
and, then, to stop operating in order to prevent error prop-



agation. This implies that a given percentage of an entity’s
failure that lead the Node Connection to manifest as stuck-
at-dominant, as well as a given percentage of that entity’s
failure that lead the Node Connection to manifest as bit-
flipping actually will lead the Node Connection to mani-
fest as stuck-at-recessive. Specifically, these percentages
are the coverages with which the CAN controller contains
stuck-at-dominant and bit-flipping errors generated by that
entity respectively. In order to reflect the error-containment
capabilities of the CAN controller in the calculus of the
Node Connection’s failure mode proportions, we basically
apply Equation 4 as follows (5):

Fmpstr =

∑E

i=1
λi · fmpi,str

∑E

i=1
λi

+

∑E

i=1
λi · fmpi,std · stdCovi + λi · fmpi,flip · flipCovi

∑E

i=1
λi

Fmpstd =

∑E

i=1
λi · fmpi,std · (1 − stdCovi)

∑E

i=1
λi

Fmpflip =

∑E

i=1
λi · fmpi,flip · (1 − flipCovi)

∑E

i=1
λi

where now Fmpstr, Fmpstd and Fmpflip are the propor-
tions with which the Node Connection exhibits a stuck-at-
recessive, a stuck-at-dominant and a bit-flipping failure re-
spectively; fmpi,str, fmpi,std and fmpi,flip are the proportions
with which entity i manifests as stuck-at-recessive, stuck-
at-dominant and bit-flipping respectively; and stdCovi and
flipCovi are the coverages with which the CAN controller
detects and isolates the entity i when it manifests as stuck-
at-dominant and bit-flipping respectively. Note again that
in a star it is not necessary to differentiate between a stuck-
at-recessive/dominant failure. Thus, the proportion of the
second case of ncFaiMod is Fmpstr + Fmpstd, whereas the
proportion of the third one is Fmpflip.

5.3 fauLPevalAtNode submodel
As said in previous section, when a non-faulty Node

Connection fails in a way included in our fault model and
causes the failure of a branch that was not already faulty,
nodeConnsR activates the fauLPevalAtNode coverage sub-
model. This submodel evaluates if the corresponding node
tolerates the failure of that connection and, thus, if it is able
to continue communicating using its other Node Connec-
tion. When fauLPevalAtNode finishes, it compels fauLPe-
valAtHub to proceed, in order to assess if the correspond-
ing hub isolates the faulty Node Connection (see Figure 3).

Note that the Node Connection that fails and provoked
the execution of fauLPevalAtNode was placed in a non-
faulty branch (the activity ncFai of nodeConnsR chose its
first case) and, thus, the Node Connection belongs to either
an okAB, an okA, an okB, a stopA or a stopB node. Since
only okAB nodes have the ability to tolerate the failure of
a Node Connection, fauLPevalAtNode must clarify which
is the type of node the Node Connection that fails belongs
to. This is done in two steps. The first one is carried out

Figure 6. fauLPevalAtNode submodel

by activity selHub (see Figure 6), which instantaneously
fires to decide whether the Node Connection that fails is
placed in a non-faulty branch of the hub A (first case) or
in a non-faulty branch of the hub B (second case). In or-
der to calculate these cases’ proportions we simply divide
the favorable possibilities by the total number of them. For
instance, the first case proportion is calculated as:

(okABNodes → Mark() + okANodes → Mark() +

stopANodes → Mark()) /

(2 · okABNodes → Mark() + okANodes → Mark() +

stopANodes → Mark() + okBNodes → Mark() +

stopBNodes → Mark())

The numerator is the number of Node Connections
placed at non-faulty branches of the hub A. All these Node
Connections are non-faulty, except the one that has failed.
The denominator is the total number of Node Connections
placed at non-faulty branches (including the one that has
failed). Note that the marking of okABNodes is multiplied
by 2, since this type of node has two Node Connections:
one placed in a non-faulty branch of the hub A and another
one located in a non-faulty branch of the hub B.

Once selHub decides which is the hub the Node Con-
nection that fails is connected to, fauLPevalAtNode per-
forms the second one of the two steps that determine which
is the type of node that corresponds to this Node Connec-
tion. This is done by activities selLPA and selLPB. Since
they are analogous to each other, let us focus on selLPA.
It selects its first, second and third cases if the node is
an okA, a stopA or an okAB node respectively. The pro-
portions of these cases are calculated following the same
strategy just explained: by dividing the number of fa-
vorable possibilities by the total number of them. For in-
stance, the proportion of the first case is okANodes →

Mark()/(okABNodes → Mark() + okANodes → Mark() +
stopANodes → Mark()). Each case is connected to a ded-
icated output gate [11], which is a SANs primitive that
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allows performing complex marking changes. The output
gate of the first case decreases in one unit the marking
of okANodes to reflect that the node will no longer be an
okA node. Likewise, the output gate of the second case de-
creases the marking of stopANodes in one unit. In addition,
these gates set a token in place fauALP, which compels
fauLPevalAtHub to continue with the coverage process.

Regarding the output gate of the third case of selLPA, it
decreases the marking of okABNodes in one unit to reflect
that the node will no longer be an okAB node. Then, it sets
a token in fAevalNod, which compels covBNode to instan-
taneously evaluate whether or not the okAB node tolerates
the Node Connection failure. The first case of covBNode
adds a token to the marking of okBNodes because it rep-
resents the situation in which the okAB node tolerates the
fault, so that it is still able to communicate using its con-
nection to the hub B. The second case models the opposite
situation and, thus, it increases the marking of stopBNodes.
The proportions with which covBNode selects its first and
second cases depend on whether or not the hubs are cou-
pled. The node tolerates the Node Connection failure with
a coverage of connCov if the hubs are coupled and with
a coverage of decConnCov otherwise (see Section 3). In
order to use the appropriate coverage, covBNode consults
the marking of decHubs, which, as already mentioned, has
a token if the hubs are decoupled. Finally, both cases of
covBNode also set a token in fauALP to compel fauLPe-
valAtHub to proceed with the coverage process.

6 Quantitative assessment
In this section we quantitatively assess the system relia-

bility that can be achieved with CAN, CANcentrate and
ReCANcentrate. For this purpose, we use the reliability
models proposed in this paper. In particular, as already
explained in Section 3, we consider a 0% of ofm fail-
ures, which allows assessing what would be the reliabil-
ity benefits of our stars in systems that include the appro-
priate mechanisms to deal with faults that are beyond the
scope of these stars. However, it is noteworthy that re-
sult herein presented are likely to be lower bounds to the
reliability achievable with CANcentrate and ReCANcen-
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trate. This is because the value of all dependability pa-
rameters that characterize them, e.g. coverages, cables’
failure rates, etc., have been determined considering as-
sumptions that never favor them when compared with the
CAN bus (see Section 3). Some value parameters are:
coverages of 95% (almost in all cases); and failure rates
(failures/hour) of 3.2531245 · 10−6 for the Node Kernel,
1.9286278 · 10−6 for the Node Connection in the CAN
bus, 3.0241227 · 10−6 for the Node Connection in the
stars, 1.275596 · 10−6 for a ReCANcentrate Hub Kernel
with 3 ports, and 2.1193189 · 10−6 for a ReCANcentrate
Hub Kernel with 20 ports.

We compare the system mission time [17] achievable
with CAN, CANcentrate and ReCANcentrate, i.e. the max-
imum amount of time during which a system that relies on
them exhibits a reliability equal or greater than a certain
value. Specifically, we analyze the system NFTAR and
FTAR1 as long as they are ≥ 0.99999. This value is just
taken as a reference and it corresponds to the reliability
required by a throttle-by-wire system [17].

Figure 7 depicts the NFTAR of a system that relies on
CAN, CANcentrate and ReCANcentrate for different num-
ber of nodes. For any number of them, CAN yields a big-
ger NFTAR than CANcentrate. This was expected, since
a CANcentrate-based system includes more hardware than
a CAN-based one and a NFTA system cannot benefit from
the error-containment provided by a simplex star topology
(see Section 1). However, the reduction of mission time
provoked by CANcentrate is not outstanding in absolute
terms and is kept almost constant (around the 35%) for any
number of nodes, e.g. for 3 nodes CAN and CANcentrate
achieve 0.63 and 0.41 hours respectively. This figure also
shows that the system NFTAR achievable with ReCAN-
centrate is higher than the one achieved with both CAN and
CANcentrate for any number of nodes. The mission time
improvement is relatively important, which demonstrates
that the ReCANcentrate fault-tolerance mechanisms am-
ply compensate its extra hardware.

Figure 8 compares the FTAR1. On the one hand, it
shows that CANcentrate achieves a higher FTAR1 than
CAN for any number of nodes. For instance, the mis-



sion times yielded by CAN and CANcentrate are, respec-
tively, 6.2 and 7.6 hours for 3 nodes, as well as 1.0 and
3.6 hours for 20. This corroborates that reliability of FTA
systems can be improved by means of the enhanced error-
containment of a simplex star. Moreover, a higher num-
ber of nodes implies a bigger difference between the mis-
sion time achievable with CAN and CANcentrate. For in-
stance, from the just mentioned mission times it can be
inferred that CANcentrate improves the mission time of
CAN around the 22% and the 260% for 3 and 20 nodes re-
spectively. On the other hand, Figure 8 shows that ReCAN-
centrate further improves the reliability of FTA systems for
any number of nodes, e.g. it yields mission times of 45.0
and 4.6 hours for 3 and 20 nodes respectively, which com-
pared with CAN represent an improvement of the 626%
and of the 460%. This demonstrates that to include fault-
tolerance mechanisms in addition to error-containment fea-
tures, by means of a replicated star like ReCANcentrate,
can actually boost the FTAR1.

7 Conclusions and future work
In this paper we proposed SANs’ models that measure

the reliability (when permanent hardware faults occur) of
systems that rely on CAN, CANcentrate and ReCANcen-
trate. These models are complete as they include parame-
ters for all the relevant aspects that can influence the system
reliability. Moreover, these parameters allow to both refine
the results as more system details are known and carry out
sensitivity analyses with respect to different system’s as-
pects. We used these models for comparing the reliability
achievable with each one of the referred communication
infrastructures. To fulfill this objective, it is worth noting
that the system reliability cannot be increased by improv-
ing only one of its parts. Thus, we supposed that the sys-
tem includes 100% effective mechanisms that deal with the
faults that are beyond the error-containment and/or fault-
tolerance capacities of CAN, CANcentrate and ReCAN-
centrate. Additionally, all model parameters that charac-
terize these infrastructures were determined with special
care not to favor the stars in the comparison. Thus, results
herein presented are likely to be lower bounds to the relia-
bility that can be achieved with the stars. Results quantita-
tively corroborate that the enhanced error-containment fea-
tures of CANcentrate can improve reliability of FTA sys-
tems, whereas the additional fault-tolerance mechanisms
of ReCANcentrate can really boost this reliability. In fu-
ture work we will carry out sensitivity analyses with re-
spect to different models’ parameters such as the error-
containment coverage of the hubs and the ofm proportion.
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