
First quantitative results of the dependability improvement achieved by
ReCANcentrate

Manuel Barranco, Julián Proenza
Dpt. Matemàtiques i Informàtica

Universitat de les Illes Balears, Spain
manuel.barranco@uib.es, julian.proenza@uib.es

Luı́s Almeida
IEETA / DEEC-FEUP

Universidade do Porto, Portugal
lda@fe.up.pt

Abstract

There is a growing interest in using star topologies
instead of buses as the communication infrastructure for
highly-reliable distributed control systems, given the better
dependability stars are supposed to provide. For the Con-
troller Area Network (CAN), we developed a simplex and
a replicated star called CANcentrate and ReCANcentrate
respectively. In a previous work we modelled the depend-
ability of the CAN bus and CANcentrate using Stochas-
tic Activity Networks (SANs). There we presented the first
quantitative analysis of the error-containment benefits of a
simplex star when considering permanent hardware faults.
This paper quantitatively analyzes, for the first time, how
a replicated star such as ReCANcentrate can improve both
error-containment and reliability, also considering perma-
nent hardware faults. We explain our modelling strategy
using SANs and show some first and novel results.

1 Introduction

Controller Area Network [1] (CAN) is a field bus
communication protocol widely used in distributed con-
trol systems, mainly due to its electrical robustness, low
cost and good real-time properties. Nevertheless, CAN
presents some shortcomings that discourage its use in
highly-reliable applications, e.g. x-by-wire control sys-
tems. One of its major limitations is that it relies on a non-
redundant bus topology with scarce error-containment and
fault-tolerance mechanisms. To overcome this limitation,
we developed two CAN-compliant star topologies called
CANcentrate and ReCANcentrate [2]. The first one is a
simplex star aimed at improving error containment. Its ac-
tive hub includes novel mechanisms to contain errors at
their ports of origin. The second one, ReCANcentrate, is a
replicated star that includes two hubs, similar to the one of
CANcentrate, to further provide fault tolerance.

Given the stars potential dependability benefits [3], the
interest in using them instead of buses has also been grow-
ing in other technologies, e.g. in in-vehicle systems, such
as with TTP/C [3] and FlexRay [4]. However, despite this
interest, it is not a priori evident that stars are more de-
pendable than buses: stars include more hardware, thereby
increasing the probability that faults and errors occur.

For this reason, the project within which this work is
included aims at modelling different bus and star networks
to quantitatively asses the improvement of dependability

 

HubB HubA 

Link 

Transceiver 

CAN 
controller 

Micro 
controller 

Node 

Interlink 

Sublinks Uplink & 
donwlink 

Figure 1. ReCANcentrate architecture

stars can achieve. In a previous work [5] we quantified the
improvement of dependability achieved when using CAN-
centrate instead of CAN when permanent hardware faults
can occur. Results quantitatively corroborate the error-
containment benefits that a simplex star was supposed to
yield; but they also show that it slightly reduces the com-
munication subsystem reliability.

The current paper goes further than [5] and presents the
work we are carrying out to quantitatively evaluate, for the
first time, how a replicated star topology such as ReCAN-
centrate can improve not only error containment, but also
reliability when considering the possibility of permanent
hardware faults.

To our best knowledge, before this paper and [5], the
enhancement of dependability that can be achieved when
using a replicated and a simplex star instead of a bus
had never been appropriately quantified. Even fault in-
jection experiments that quantitatively demonstrate that
stars are better suited to prevent error propagation than a
bus, e.g. [6], do not clarify if this better error containment
actually implies a dependability improvement. Moreover,
this paper also shows, for the first time, a quantitative com-
parison between the dependability that can be achieved
with a replicated and a simplex star topology.

2 ReCANcentrate basics

CAN relies on two fundamental properties: the dom-
inant/recessive transmission and the in-bit response [1].
The former means that the medium implements a wired-
AND function of all nodes’ contributions, so that a domi-
nant bit ‘0’ prevails over a recessive bit ‘1’. The second one
guarantees that nodes quasi-simultaneously observe every
single bit on the channel.

These properties are kept in ReCANcentrate [2], whose
general architecture is sketched in Figure 1. ReCANcen-
trate includes two hubs and each node is connected to each
of them by a dedicated link containing an uplink and a

c©2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. doi:10.1109/ETFA.2009.5347228



downlink. Additionally, both hubs are interconnected by
at least two interlinks each of which contains two indepen-
dent sublinks, one for each direction. Each hub receives
the contribution to each bit value of each node directly at-
tached to it through the corresponding uplink. It couples all
non-faulty node contributions with a logical AND function
to calculate what we call the hub contribution. Each hub
sends to the other one its own contribution, so that the re-
sulting signal that each hub broadcasts to its own nodes is
the one that results from coupling its own contribution with
the contribution received from the other hub. Hubs per-
form this coupling within a fraction of the bit time, thereby
creating a single logical broadcast domain since both hubs
behave like one, transmitting the same value bit by bit in
their downlinks.

Each node is constituted by commercial-off-the-shelf
components only: two CAN controllers, four transceivers
and a microcontroller (Figure 1). Each CAN controller is
connected to one hub, only, using a transceiver for the up-
link and another one for the downlink. The single broad-
cast domain allows nodes to easily manage the replicated
traffic [7]. Basically, each node transmits through one hub,
only, while receiving from both hubs simultaneously.

Regarding the fault model, each hub is able to detect
faults at nodes, links, interlinks or at the other hub that
manifest as stuck-at-recessive, stuck-at-dominant or bit-
flipping streams [2]. Each hub disables any permanently
faulty contribution, thus isolating it at its port of origin.
Moreover, each node can diagnose when a fault, e.g. in
a link or a hub, prevents it from communicating through a
given star. For that it basically uses the Transmission Error
Counter (TEC) and the Reception Error Counter (REC) [1]
of its CAN controllers. Whenever any of these counters
reaches a given threshold, the node stops using the corre-
sponding CAN controller for communicating.

3 Modelling rationale
3.1 Metrics and modelling formalism

Among the different dependability properties, we are
interested in error-containment and reliability. To compare
the error containment, we evaluate the capacity of each
network for minimizing the number of nodes that are pre-
vented from communicating when a fault occurs. For that,
we measure the probability with which at least N −k of N
nodes can communicate among them throughout time. We
refer to this as the probability of not suffering a k-severe
failure (PNS). A high PNS is specially relevant for sys-
tems that can tolerate that up to k of N nodes cannot com-
municate. Particularly, we are interested in the PNS when
k = 1. Concerning reliability, we measure the probabil-
ity with which all N nodes can continuously communicate
with each other over time.

Regarding the modelling formalism, we used a stochas-
tic extension to Petri Nets called Stochastic Activity Net-
works (SANs) [8], following a strategy similar to [9]. Once
specified, a whole SANs model can be automatically trans-
formed into a Markov Chain that is analytically solved. In

particular, we used the Moebius software [8] to build and
analytically solve all our models.

A SAN includes tokens, places, activities, input gates
and output gates. The number of tokens located in each
place, i.e. the marking of the places, determines the state
of the modelled system. An activity is connected to one
or more source places and has one or more cases, each one
connected to one or more destiny places. Each activity fires
in accordance with a given statistical distribution to change
the marking of places, thereby modelling the system tran-
sitions through different states, e.g. the failure of a given
component. An input gate defines a condition for an ac-
tivity to fire, which depends on the marking of its source
places. This gate also specifies how to change the marking
of the source places when the activity fires. When firing,
an activity also selects one of its cases to change the mark-
ing of specific destiny places. An output gate is connected
to a given case and specifies the set of marking changes to
be performed in accordance with some conditions.

3.2 Modelling assumptions
Next, we summarize the main assumptions our models

rely on. Most assumptions are reflected as model parame-
ters, thereby allowing to perform sensitivity analysis with
respect to them. Anyway, so far all assumptions are made
favoring whenever possible the CAN bus and always guar-
anteeing that results are not biased toward stars.

Concerning the networks’ layout, we assume the length
of each link (and interlink) to be half the total CAN bus
length. This is pessimistic for the stars, since a star could
use much less cable to cover the area occupied by the
nodes the bus interconnects. Additionally, we choose a
daisy chain configuration as the way to attach nodes to
the bus. This is the most optimistic case for CAN, since
it needs no stubs and the least number of connectors.

Regarding what are the components that constitute
the networks, we consider the following ones: microcon-
trollers, CAN controllers, transceivers, memory ICs, oscil-
lators, PCBs, segments of cable, connectors, network ter-
minations, and ASICs (in the case of the hubs).

Concerning component failures, we suppose that they
are independent. The Time To Failure distribution, F(t),
of each component is considered to be exponential with
mean 1/λ, where λ is the failure rate expressed in number
of failures per hour. More specifically, we assume that F(t)
is Non-Defective [9]. If the failure time is X and F(t) is
Non-Defective, then the probability with which the com-
ponent fails at or before time t, F(t) = Prob(X ≤ t), is 0
when t = 0, 1 − exp(−λ ∗ t) when 0 < t < ∞, and 1
when t = ∞. To calculate each component failure rate,
we use a software based on the MIL-HDBK-217 standard
prediction model [10].

We assume that a component failure can basically man-
ifest, from the channel point of view, in the follow-
ing modes: stuck-at-recessive, stuck-at-dominant or bit-
flipping [2]. Additionally, we consider that a component
can also provoke a failure mode we call an out-of-fault-
model failure. This mode gathers all faults that are be-



 
Node Connection 

to Hub A fails 
Evaluate if Hub A 
isolates the fault 

Evaluate if the node 
tolerates to lose the 
connection to Hub A 

Hub A becomes 
faulty. Evaluate if 
Hub B isolates the 

fault 

(no node can 
communicate) 

For each node evaluate if 
that node tolerates to lose 
the connection to Hub A 

No No 

Yes 

Yes 

Update the number of nodes that 
can communicate through 

Hub A and / or Hub B accordingly 

Figure 2. Schema of how to model an exam-
ple of error propagation and fault treatment

yond our fault model and that, thus, cannot be treated.
Since there is not a real consensus on the failure mode
proportions of components, we initially assume a 5% of
out-of-fault-model failures and the rest of failure modes as
equiprobable; which can be considered as reasonable [11].

Finally, we also model two coverages. On the one
hand, the error-containment coverage, which can be de-
fined as the probability of detecting and isolating a fault
included in our fault model, given that this fault occurs.
In fact, we consider different error-containment coverages:
the one related to the capacity of each CAN controller to
isolate faults affecting its node; the coverage with which
each CANcentrate and ReCANcentrate hub isolates faults
at its uplink ports; and the coverage with which each Re-
CANcentrate hub isolates faults at its interlink ports. On
the other hand, only for the case of ReCANcentrate, we
model what we call the fault-tolerance coverage of the
node. When a fault prevents a node from using one star,
this coverage is the probability with which the node can
continue communicating using the other star.

3.3 Modelling strategy
In order to keep a reasonable model complexity, we do

not model single components, but groups of them we call
network parts. We differentiate the following types of net-
work parts: (1) the Node Core, which basically includes
the node microcontroller, memory ICs and sockets; (2) the
Node Connection, which comprises all the components a
node needs to be connected to the bus line or to a given
hub, i.e. one CAN controller and one transceiver in the case
of the bus or, in the case of the stars, one CAN controller,
two node transceivers and all cables, connectors, termina-
tions and the hub transceivers corresponding to the link; (3)
the Hub Interconnection, which includes the cables, con-
nectors, terminations and hub transceivers of a given sub-
link of ReCANcentrate; (4) the Bus Section, which con-
tains the cable and connectors that constitute the section
that connects two adjacent nodes in a daisy chained CAN
bus; and (5) the Hub Core, which includes all the hub com-
ponents except its transceivers.

We model each one of the networks, i.e. CAN, CAN-
centrate and ReCANcentrate, as a composition of two
types of submodels, we call parts submodel and coverage
submodel. A parts submodel represents all network parts
of a given type, e.g. all Node Connections. Each cover-
age submodel corresponds to a specific fault-treatment or

fault-tolerance mechanism and models whether or not this
mechanism isolates or tolerates a given fault.

A parts submodel basically has a place whose marking
represents the number of parts that are not faulty; an ac-
tivity that models the occurrence of a fault in any of those
parts; places that represent how the fault manifests; and
some places it shares with a given coverage submodel to
indicate to it when a part has failed. When a fault occurs
in a given part, the corresponding parts submodel decides
the failure mode with which the fault manifests and com-
pels coverage submodels to carry out a sequential process
that models how the errors generated by that fault propa-
gate, how they are contained and, if appropriate, how the
fault is tolerated. Depending on whether or not the fault is
successfully isolated and/or tolerated, coverage submodels
update a set of places that represent the number of nodes
that can communicate among them. Figure 2 summarizes,
as an example, how this process is carried out when a Node
Connection part fails in a ReCANcentrate network where
hubs are called Hub A and Hub B.

4 First dependability results

Figures 3 and 4 compare the reliability and the probabil-
ity of not suffering a k-severe failure (PNS) with k = 1 in
the CAN bus, CANcentrate and ReCANcentrate. Specif-
ically, they show the mission time achieved by these net-
works, which here is understood as the time of operation
during which they present a reliability or a PNS ≥ 0.99999
(0.99999 is the value of reliability required for a throttle-
by-wire control system during 10 hours [12]).

Some dependability parameters are: coverages of 95%;
and failure rates (failures/hour) of 3.2531245E-6 for the
Node Core, 1.4044118E-6 for the Node Connection in the
CAN bus, 2.2617741E-6 for the Node Connection in the
stars, 1.3092281E-6 for a ReCANcentrate Hub Core with
4 ports, and 2.1193189E-6 for a ReCANcentrate Hub Core
with 20 ports. Note that most parameters reflect modelling
assumptions that may have been too detrimental for CAN-
centrate and ReCANcentrate, so that results are likely to
be lower bounds to stars dependability.

Figure 3 shows that given a fixed number of nodes,
ReCANcentrante is more reliable than the CAN bus and
CANcentrate. With 4 nodes they respectively achieve mis-
sion times of 0.68, 0.53 and 0.43 hours; whereas with 20
nodes the mission times are 0.13, 0.10 and 0.08 hours.
As expected, the benefits are not outstanding in absolute
terms. This is because ReCANcentrate improves the com-
munication subsystem reliability, but here we measure the
reliability of the overall system. To reflect the full potential
of ReCANcentrate it would be necessary to consider fault-
tolerance mechanisms at other parts of the system, i.e. at
nodes, which are the least reliable elements. This is in fact
what we partially do when measuring the PNS for a spe-
cific value of k, since this metric is not only useful to see
the gain provided by the error containment capabilities, but
it also corresponds to the reliability of a system that is able
to tolerate the fault of k nodes.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.999988

0.999990

0.999992

0.999994

0.999996

0.999998

1

R
el

ia
bi

lit
y

Hours

bus 4 nodes
bus 12 nodes
bus 20 nodes
CANcentrate 4 nodes
CANcentrate 12 nodes
CANcentrate 20 nodes
ReCANcentrate 4 nodes
ReCANcentrate 12 nodes
ReCANcentrate 20 nodes

Figure 3. Reliability comparison

Figure 4 shows that both stars improve the PNS (with
k = 1) of CAN. The mission times of the CAN bus,
CANcentrate and ReCANcentrate respectively are: 4.7,
5.1 and 10.6 hours with 4 nodes; and 1.0, 1.8 and 2.0
with 20. We also observe that ReCANcentrate improves
the mission time of CAN more than CANcentrate does.
With 4 nodes, CANcentrate and ReCANcentrate improve
the mission time by 8% and 125%, whereas for 20 nodes
the improvements are of 80% and 100%. However, it is
worth noting that as the number of nodes grows, the mis-
sion times of both stars tend to converge. We consider that
this is because ReCANcentrate needs more hardware than
CANcentrate for a given number of nodes. Thus, as the
number of nodes grows, the fault-tolerance mechanisms
of ReCANcentrate do not compensate the higher rate with
which faults that cannot be isolated, i.e. not-covered and
out-of-fault-model faults, raise when compared with CAN-
centrate.

5 Conclusions and future work
This paper presents the last results of our on-going work

towards quantitatively assessing the dependability benefits
that star topologies can achieve in the field-bus commu-
nication domain. Specifically, it focuses on the depend-
ability assessment of a replicated star topology, called Re-
CANcentrate, we recently proposed for CAN. First results
corroborate that the error containment and fault-tolerance
capabilities of ReCANcentrate improve the reliability of
CAN-based systems that cannot tolerate the failure of any
node and, even more, of those that can tolerate the failure
of one node. To our best knowledge, this is the first formal
(quantitative) comparison between a bus and a replicated
star. In the short term we will analyze the sensitivity of the
benefits of ReCANcentrate with respect to dependability
parameters such as the different coverages, the proportion
of out-of-fault-model faults, and the components’ failure
rates.

6 Acknowledgement
This work was supported in part by the Spanish Science

and Innovation Ministry with grant DPI2008-02195, and

0 1 2 3 4 5 6 7 8 9 10 11
0.999988

0.999990

0.999992

0.999994

0.999996

0.999998

1

P
N

S

Hours

bus 4 nodes
bus 12 nodes
bus 20 nodes
CANcentrate 4 nodes
CANcentrate 12 nodes
CANcentrate 20 nodes
ReCANcentrate 4 nodes
ReCANcentrate 12 nodes
ReCANcentrate 20 nodes

Figure 4. PNS comparison

in part by FEDER funding.

References

[1] ISO, “ISO11898. Road vehicles - Interchange of digital in-
formation - Controller Area Network (CAN) for high-speed
communication”, 1993.

[2] M. Barranco, J. Proenza, and L. Almeida, “Boosting the
Robustness of Controller Area Networks: CANcentrate
and ReCANcentrate”, IEEE Computer, vol. 42, no. 3, pp.
66–77, May 2009.

[3] H. Kopetz, “Time-Triggered Protocols for Safety-Critical
Applications”, Presentation, March 2003.

[4] FlexRayTM , “FlexRay Communications System - Protocol
Specification, Version 2.0”, 2003.

[5] M. Barranco, J. Proenza, and L. Almeida, “First results
of the assessment of the improvement of error containment
achieved by CANcentrate”, in WFCS’06. IEEE Workshop
on Factory Communication Systems, Torino, Italy, 2006.

[6] A. Ademaj, G. Bauer, H. Sivencrona, and J. Torin, “Evalu-
ation of Fault Handling of the Time-Triggered Architecture
with Bus and Star Topology”, IEEE International Confer-
ence on Dependable Systems and Networks (DSN 2003),
San Francisco, Jun. 2003.

[7] M. Barranco, J. Proenza, and L. Almeida, “Designing
and Verifying Media Management in ReCANcentrate”,
in WFCS’08. IEEE Workshop on Factory Communication
Systems, Dresden, Germany, 2008.

[8] W. Sanders and T. B. of Trustees, “Moebius User Manual
Version 1.6.0”, 2004.

[9] M. Mahotra and K. S. Trivedi, “Dependability Model-
ing Using Petri-Nets”, IEEE Transactions on Reliability,
vol. 44, no. 3, September 1995.

[10] DOD, MIL-HDK-217F-2 Military Handbook, Reliability
Prediction Of Electronic Equipment, Department of De-
fense Washington DC, 1995.

[11] M. Barranco, “Improving Error Containment of Controller
Area Network (CAN) by means of Adequate Star Topolo-
gies”, Official preliminary PhD thesis, Departament de
Ciències Matemàtiques i Informàtica, Universitat de les
Illes Balears, Spain, November 2008.

[12] J. Morris and P. Koopman, “Representing Design Trade-
offs in Safety-Critical Systems”, WADS. Workshop on Ar-
chitecting Dependable Systems, St. Louis, Missouri, USA,
2005.


