
Demonstrating the feasibility of media management in ReCANcentrate

Manuel Barranco, David Gessner, Julián Proenza
Dpt. Matemàtiques i Informàtica

Universitat de les Illes Balears, Spain
manuel.barranco@uib.es

Luı́s Almeida
IEETA / DEEC-FEUP

Universidade do Porto, Portugal
lda@fe.up.pt

Abstract

Star topologies are rising the interest of newer field-
bus communication technologies like TTP/C and FlexRay,
given the dependability advantages stars can offer. How-
ever, it is also possible to take advantage of a mature
technology such as Controller Area Network [1] (CAN),
while benefiting from stars. For that, we developed a CAN-
compliant replicated star called ReCANcentrate. It in-
cludes two hubs that are coupled with each other, thereby
forcing a single broadcast domain that allowed us to de-
fine, in a previous work, a strategy for each node to easily
manage the replicated star. To demonstrate the feasibil-
ity of this management, this paper presents its on-going
implementation as a driver to be executed at each node.

1 Introduction

In the field-bus communication domain there is a grow-
ing interest in using star topologies instead of buses as
the communication infrastructure for highly-reliable dis-
tributed control systems, given the stars potential depend-
ability benefits. For instance, we can find examples of this
transition in in-vehicle systems, such as with TTP/C [2]
and FlexRay [3]. Furthermore, it is also possible to take
advantage of stars to make a mature technology such as
Controller Area Network [1] (CAN) appropriate for the
most demanding dependable systems. This is specially in-
teresting, given the low cost of components and the know-
how gained by the engineers during the last decades.

In particular, in order to overcome the limitations the
CAN bus topology presents in terms of error contain-
ment and fault tolerance, we proposed a CAN-compliant
replicated star topology called ReCANcentrate [4]. As de-
picted in Figure 1, ReCANcentrate includes two hubs and
each node is connected to each of them by a dedicated link
containing an uplink and a downlink. Both hubs are also
interconnected by at least two interlinks, each of which
contains two independent sublinks, one for each direction.

Each hub includes mechanisms to contain errors orig-
inated at nodes, links, interlinks or hubs [4]. Moreover,
in ReCANcentrate each star is a CAN channel that con-
veys a replica of the same data in parallel to provide tol-
erance to hub and link faults. However, to use parallel
CAN channels has an important drawback: due to the
error-signaling and arbitration mechanisms of CAN, a bit

error in one channel is enough for its traffic to evolve dif-
ferent than in the other replicas. Thus, it is not easy for
each node to detect when frames received at different in-
stants of time, each one through a different channel, are
copies of the same frame (duplicates); as well as when a
frame received from one channel is omitted from the oth-
ers (omissions). Moreover, since channels are indepen-
dent, the network can become partitioned if faults prevent
nodes from communicating through different replicas [4].

To overcome these limitations, the hubs of ReCAN-
centrate exchange their traffic through the interlinks and
couple with each other [4]. In this way, both hubs trans-
mit the same value bit by bit in their downlinks, guaran-
teeing the traffic to be the same in both stars. Moreover,
regardless the hub or hubs a node is able to communi-
cate through, all nodes will be able to communicate with
each other, thus preventing partitions [4]. This allowed us
to define a strategy for each node of ReCANcentrate to
easily manage transmissions, receptions and treat faults in
the stars [5]. To demonstrate the feasibility of this manage-
ment, we are implementing it as a software driver to be ex-
ecuted on each node of a real ReCANcentrate prototype.
The current paper explains the driver’s basics and the main
technical problems it has to face. Special emphasis is put
on the characteristics that hide the replicated star architec-
ture, thereby allowing CAN-based applications and pro-
tocols to transparently use ReCANcentrate while at the
same time benefiting from its higher dependability.

2 Media management basics

2.1 Management in the absence of faults
The physical layer of CAN implements a wired-AND

function of every node contribution, thereby providing the
dominant/recessive transmission property [1], which en-
sures that a dominant bit, ‘0’, prevails over a recessive bit,
‘1’. Additionally, the CAN bit synchronization guarantees
the in-bit response property, thanks to which nodes quasi-
simultaneously observe every single bit on the channel.

The hubs of ReCANcentrate perform a special AND-
coupling within a fraction of the bit time, thereby creating
a single logical broadcast domain that keeps the two re-
ferred CAN properties. Thus, both hubs behave like one,
transmitting the same value bit by bit in their downlinks.

This coupling allowed us to define a strategy for each
node to easily manage the replicated star [5]. The node ar-

c©2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. doi:10.1109/ETFA.2009.5347227



 

HubB HubA 

Link 

Transceiver 

CAN 
controller 

Micro 
controller 

Node 

Interlink 

Sublinks Uplink & 
donwlink 

Figure 1. ReCANcentrate architecture

chitecture is depicted in Figure 1 as well. It is constituted
by commercial-off-the-shelf (COTS) components only. It
has one microcontroller and two CAN controllers, each of
which is connected to one hub, using one transceiver for
the uplink and another one for the downlink.

According to our media management strategy, the node
transmits towards one of the hubs only, while receiving
from both hubs at the same time. One controller acts as the
transmission controller (tx controller), so that it is used to
both transmit the frames of its node and receive frames
sent by other nodes (the tx controller does not receive its
own frames). The other controller, the non-transmission
controller (non-tx controller), is used to receive frames
transmitted by its own node and by other nodes.

When a frame is successfully exchanged through the
network, i.e. when a delivery event occurs, each node ex-
pects that its two controllers quasi-simultaneously notify
of that event. Thus, in the absence of faults, the node man-
ages transmissions and receptions as follows. First, if the
node successfully transmits a frame, the tx controller and
the non-tx controller notify of the transmission and recep-
tion of this frame respectively. Then, the node only needs
to accept the notification of the transmission as valid and
release the reception buffer of the non-tx controller. Sec-
ond, if the node receives a frame sent from another node,
it is notified of this reception by its two CAN controllers.
When this happens, the node must merely consume the
frame received at one of the controllers and, then, release
the reception buffers of both controllers.

2.2 Management in the presence of faults
ReCANcentrate’s fault model includes faults at nodes,

links, interlinks or a hub that manifest, from a channel
point of view, as stuck-at or bit-flipping streams [4]. Ad-
ditionally, the model includes CAN controller faults that
manifest as a crash from the node point of view, i.e. faults
that lead a CAN controller to notify nothing to its node.
The only fault assumption is that hubs remain coupled
with each other using at least one non-faulty interlink.

Errors generated by a fault block the communication
in both stars as long as hubs do not isolate it by disabling
the appropriate hub ports [4]. Once isolated, if the fault
affects a link or a CAN controller, it only prevents the cor-
responding node from communicating through the corre-
sponding hub. But if the fault affects a hub, it can provoke
that no node can communicate through that hub. Interlink
faults do not prevent any node from communicating.

To tolerate a fault, it is necessary that any node that

cannot communicate through a given hub as a conse-
quence of that fault does not stop communicating through
the other hub. As explained in [5], a node that cannot com-
municate through a given hub will observe a notification
omission discrepancy: when a delivery event occurs, the
node observes that the controller connected to that hub er-
roneously does not notify that event. Thus, in principle,
the node can tolerate a fault by simply accepting as valid
the transmission/reception notified by the controller that
has no problems. Note that if the controller that cannot
communicate is the non-tx controller, the node need not
even diagnose that controller as faulty. However, if the
controller that cannot communicate is the tx controller,
the node must eventually diagnose it as faulty and, then,
rule it out for communicating. Otherwise, the node will
not be able to transmit anymore. For that, the node ini-
tiates a transmission timer when it requests a transmis-
sion. If the timer expires before the tx controller notifies
of a successful transmission, the node rules it out and uses
the other controller for transmitting/receiving. Addition-
ally, we propose to rule out a CAN controller whenever its
Transmission Error Counter (TEC) or its Reception Error
Counter (REC) [1] reaches a given threshold. This only
allows to rule out a controller that cannot communicate
and that detects errors. But it enhances the node’s fault
diagnosis capabilities, which will allow us to improve in
the future the management strategy to deal with a wider
range of faults [5], e.g. CAN inconsistency scenarios [6]
and forged transmission/reception notifications.

3 Driver basics

3.1 Driver architecture
We are currently implementing the media management

as a driver that abstracts away the details of the node ar-
chitecture and the media replication. Figure 2 depicts the
basic structure of the driver. Specifically, we are imple-
menting this driver to be executed on a dsPIC30F6014A
MicrochipTMmicrocontroller [7], which includes two em-
bedded CAN controllers: CAN 1 and CAN 2 in Figure 2.
The driver also uses one of the timers of this microcon-
troller as the transmission timer (tx timer in Figure 2).

At the top part of the structure we can see the interface
the driver provides to the application, i.e. the driver inter-
face. It includes a set of primitives that abstract away the
existence of two CAN controllers so that, from the appli-
cation point of view, there is only one. In order to take
full advantage of the features of the type of CAN con-
troller embedded in the dsPIC30F6014A, it would be pos-
sible to offer all the primitives that can be found in the
library MicrochipTMprovides to interact with this kind of
CAN controller. However, the objective of this driver is
to demonstrate the feasibility of the media management
we propose for ReCANcentrate. Thus, we decided to im-
plement only a set of basic configuration and communi-
cation primitives, e.g. a primitive to configure basic CAN
parameters such as the bit-rate, or the acceptance filters; a
primitive to request a transmission, etc. Additionally, the



 

CAN event tracker 

Tx routine Rx routine Qua routine 

Tx buffer Rx buffer 

Driver interface

Tx timer CAN 1 CAN 2 

Application

Driver 

Figure 2. Basic driver structure

interface has a set of primitives that provide functionali-
ties specific of ReCANcentrate, e.g. a primitive to check
if any controller has been diagnosed as faulty.

Below the interface, we can find the transmission
buffer (tx buffer) and the reception buffer (rx buffer).
When the application requests to transmit a frame, the
driver not only writes that frame to the hardware transmis-
sion buffer of the tx controller; but it stores a copy of that
frame in the tx buffer. The driver needs this copy for dif-
ferent management operations, e.g. if the driver diagnoses
the tx controller as faulty before that controller success-
fully transmits the requested frame, the driver automati-
cally transfers a copy of that frame to the surviving con-
troller. Regarding the rx buffer, it is a size-variable buffer
that accommodates every frame that is received through
ReCANcentrate. When the driver accepts a frame recep-
tion, it immediately copies the frame from the hardware
reception buffer of one of the controllers and releases the
hardware reception buffers of both controllers.

The major part of the driver functionality is imple-
mented by the management routines: the transmission
routine (tx routine), the reception routine (rx routine), and
the quarantine routine (qua routine). Each of them is an
interrupt service routine (ISR) that handles a given CAN
controller or timer notification. The tx routine and the rx
routine are executed when any of the two CAN controllers
notifies of a transmission and a reception respectively. The
qua routine is executed when the TEC/REC of any of the
two CAN controllers reaches a specific threshold or when
the tx timer expires. To simplify the routines we consid-
ered that they cannot be nested, which requires that all of
them have the same execution priority.

However, none of these ISRs is directly triggered when
a notification occurs. Instead, what a notification triggers
is another ISR called CAN event tracker. This ISR has
the maximum execution priority so that it can preempt any
management routine. When a notification occurs, the CAN
event tracker annotates that it has occurred and, then, trig-
gers the execution of the appropriate management routine
by generating an interrupt. The new management routine
will be pending until the CAN event tracker and any pre-
viously preempted management routine end.

The CAN event tracker can be seen as a dispatcher that
decides which routine must handle each notification. But
its most important functionality is to annotate what noti-
fications occur (and thus what routines it has triggered).
For that, it uses a boolean variable for each type of notifi-
cation, which we call tracking variables. They are needed

to handle each delivery event, as explained next.

3.2 Management routines
Due to space limitations, we cannot explain the details

of the management routines. Some additional information
about their logic structure can be found in [5]. However,
it is important to note here some aspects about how the tx
routine and the rx routine manage a delivery event.

As explained before, when a delivery event occurs, it is
expected that each CAN controller notifies about a trans-
mission/reception, thereby triggering an execution of the
tx routine or rx routine for each notification. If this actu-
ally happens, one of the routines will execute before the
other, but both must collaborate with each other to handle
the event. In contrast, if only one routine is triggered be-
cause a CAN controller omits due to a fault, that routine
must handle the event alone. In any case, a routine must
know if it has to collaborate with another routine to han-
dle an event. For instance, imagine that two rx routines
are triggered to manage the reception of a frame sent by
another node. If they do not collaborate and each one of
them merely transfers to the driver’s rx buffer the frame
received at its corresponding CAN controller, they will
incorrectly accommodate two copies of the frame in the
rx buffer. In order to elucidate whether or not the other
routine has been launched and, thus, if it has to coopera-
tively handle an event, the rx routine (or tx routine) uses
the tracking variables provided by the CAN event tracker.

However, we still have to check two technical aspects
to complete the implementation of this cooperation. On
the one hand, note that before a routine consults the track-
ing variable that indicates if the other routine is also going
to be executed, it must wait enough time to allow the other
routine to be triggered. We think that this time should be
very short, of the order of a fraction of the bit time. On
the other hand, it is worth noting that the routines that
handle a given delivery event must finalize and reset their
respective tracking variables before a new delivery event
occurs. Otherwise, a routine corresponding to a new de-
livery event could incorrectly cooperate with routines that
are handling a previous event. Specifically, the time for
handling a delivery event must not exceed the time for
transmitting the shortest CAN frame.

4 Hardware prototype

We built a ReCANcentrate prototype provided with
two hubs, two interlinks and three nodes. Each hub
is implemented using the VHSIC Hardware Description
Language (VHDL) and synthesized in an FPGA; ex-
cept its hardware interface, which is built using COTS
transceivers. One UTP ethernet cable and a pair of RJ45
connectors are used to implement each link/interlink,
which includes an uplink and an independent downlink
(or two independent sublinks). Each uplink, downlink and
sublink uses two-wire differential lines.

Each node consists of two different boards that are
attached to each other. The first one is a printed board



called dsPICDEMTMthat MicrochipTMprovides for eval-
uation purposes. It includes a dsPIC30F6014A microcon-
troller, which, as already said, has two CAN controllers.
The second board is called starLink and we designed
it specifically for ReCANcentrate. It basically includes
COTS transceivers for connecting the dsPIC30F6014A’s
CAN controllers to the replicated star.

Apart from the fact that the dsPIC30F6014A includes
two CAN controllers, we chose it for other reasons. First,
it offers the possibility of specifying ISRs to handle noti-
fications performed by each of its CAN controllers, which
in particular allows triggering the CAN event tracker when
necessary. Second, it also has many interrupt sources,
each of which can be controlled by means of one of
the dedicated interrupt registers, and handled by a user-
defined ISR. The CAN event tracker can thus use other-
wise unused interrupts to trigger (from software) the exe-
cution of the appropriate management routine in the form
of an ISR. Third, the microcontroller allows specifying
different ISR priorities, so that we can assign a higher
priority for the CAN event tracker than for the manage-
ment routines. Fourth, interrupt nesting can be enabled,
which, combined with the CAN event tracker’s higher pri-
ority, allows the CAN event tracker to interrupt an exe-
cuting management routine to update the tracking vari-
ables. And fifth, its CAN controllers notify when their
TEC/REC reache a threshold, which is required for the
fault-diagnosis strategy described in section 2.2.

Finally, we think that the speed of the dsPIC30F6014A
is also appropriate to operate at the maximum CAN bit
rate (1 Mbps). For that, as explained before, a delivery
event must be handled before a new delivery event occurs.
Most of the routines’ instructions execute in a single cycle
on the dsPIC30F6014A, with exceptions such as program
flow changing instructions, which execute in two or three
instruction cycles. With the oscillators that come with
the dsPICDEMTMboard we cannot reach exactly the max-
imum CAN bit rate (1 Mbps), but we can come close. For
instance, with a clock of 29.48 MHz we can reach around
983 Kbps and get an instruction cycle of about 33.92 ns.
With this configuration we will be able to execute, on av-
erage, 1410 instructions before the shortest CAN frame is
exchanged through the network. This should be enough,
since in a preliminary implementation, without any opti-
mizations, the management routines need less than 700
instruction cycles to handle a given event.

5 Conclusions and future work

This paper focuses on the work we are carrying out
to demonstrate the feasibility of a media management ap-
proach we recently proposed for the ReCANcentrate repli-
cated star. This work consists in implementing a driver (to
be executed at each node of a real ReCANcentrate proto-
type) that hides the replicated star architecture, and that
easily overcomes the typical problems a node has to face
when using replicated CAN channels in parallel.

Once the driver is finalized, we will use it together with

the ReCANcentrate hardware prototype to carry out some
functional and performance tests to demonstrate the fea-
sibility of the media management we have proposed. Re-
garding functional tests, we are going to evaluate whether
or not the driver performs correctly in the absence and
in the presence of faults. Specifically, we will consider
faults affecting one of the CAN controllers or one of the
links of a node, as well as one of the hubs. We want to
experimentally verify that, even in the presence of faults,
nodes can exchange a set of frames while keeping the Log-
ical Link Control (LLC) level properties CAN presents [9]
when inconsistency scenarios [6] do not occur: validity,
agreement, at-most-once delivery, non-triviality and total
order. In what concerns performance tests, we want to
measure the delay with which the driver is able to diag-
nose a CAN controller, a link or a hub as being faulty.
Additionally, we are going to evaluate what should be the
minimum time a tx routine and a rx routine must wait be-
fore consulting the tracking variables to decide how they
must handle an event. Finally, we will test if the driver is
actually able to operate at the maximum CAN bit rate.

Besides these tests, we also plan to formally verify
the correctness of the proposed management and to ex-
tend the driver functionality to cope with a wider range of
faults, e.g. with CAN inconsistency scenarios [6].

6 Acknowledgement

This work was supported in part by the Spanish Sci-
ence and Innovation Ministry with grant DPI2008-02195,
and in part by FEDER funding.

References

[1] ISO, “ISO11898. Road vehicles - Interchange of digital in-
formation - Controller Area Network (CAN) for high-speed
communication”, 1993.

[2] H. Kopetz, “Time-Triggered Protocols for Safety-Critical
Applications”, Presentation, March 2003.

[3] FlexRayTM , “FlexRay Communications System - Protocol
Specification, Version 2.0”, 2003.

[4] M. Barranco, L. Almeida, and J. Proenza, “ReCANcen-
trate: A replicated star topology for CAN networks”, ETFA
2005. 10th IEEE International Conference on Emerging
Technologies and Factory Automation, Catania, Italy, 2005.

[5] M. Barranco, J. Proenza, and L. Almeida, “Designing
and Verifying Media Management in ReCANcentrate”, in
WFCS’08. IEEE Workshop on Factory Communication Sys-
tems, Dresden, Germany, 2008.

[6] J. Proenza and J. Miro-Julia, “MajorCAN: A modification
to the Controller Area Network to achieve Atomic Broad-
cast”, IEEE Int. Workshop on Group Communication and
Computations, Taipei, Taiwan, 2000.

[7] Microchip Technology Inc., dsPIC30F6011A / 6012A /
6013A / 6014A Data Sheet - High-Performance, 16-Bit,
Digital Signal Controllers, 2006.

[8] Microchip Technology Inc., dsPICDEMTM 80-Pin Starter
Development Board, Users’ Guide, 2006.

[9] J. Rufino, P. Verı́ssimo, G. Arroz, C. Almeida, and L. Ro-
drigues, “Fault-tolerant broadcasts in CAN”, FTCS-28, The
28th International Symposium on Fault-Tolerant Comput-
ing, Munich, Germany, 1998.


