
Evaluation of different approaches for the media
management in ReCANcentrate nodes

David Geßner, Manuel Barranco, Julián Proenza
Dpt. Matemàtiques i Informàtica

Universitat de les Illes Balears, Spain
manuel.barranco@uib.es

Luı́s Almeida
IEETA / DEEC-FEUP

Universidade do Porto, Portugal
lda@fe.up.pt

July 7, 2010

Abstract

CAN, due to its non-redundant bus topology, presents some reliability prob-
lems which limit its use for highly reliable systems. In order to increase CAN’s
reliability we have proposed a CAN-compliant replicated star topology, ReCAN-
centrate, which incorporates a series of fault-treatment and fault-tolerance mecha-
nisms in its hubs and nodes. This paper introduces different potential approaches
for the media management in ReCANcentrate nodes and explains why the ap-
proach we are currently implementing is superior in terms of fault-tolerance.

1 Introduction
Controller Area Network (CAN) is a widespread, inexpensive and electrically robust
multi-master serial bus suitable for real time communication systems. Unfortunately,
because of its bus topology, it presents multiple points where a single fault can prevent
the communication between several nodes [1]. These points are called points of se-
vere failure [2]. Moreover, within a CAN network, data consistency [3] is not always
guaranteed. There are some error scenarios affecting the last-but-one bit of a frame
where some nodes accept a frame while others reject it [3, 4]. The existence of points
of severe failure and the lack of a guarantee of data consistency are two of the most
important shortcomings that make the use of CAN in highly reliable systems, e.g. in
safety-critical ones, controversial.

Some solutions have been already proposed to achieve data consistency in CAN,
e.g. [3, 4]. However, the elimination of all points of severe failure from CAN was still
an open issue. To overcome this limitation, we developed a CAN-compliant replicated
star topology, called ReCANcentrate, which can be fully implemented with commer-
cial of the shelf (COTS) components [2].

ReCANcentrate’s basic architecture is depicted in Figure 1. It includes two hubs
with fault-treatment capabilities which are connected to each other through interlinks,

UIB technical report: A-01-2010



Figure 1: ReCANcentrate architecture.

which are themselves comprised of a sublink for each direction. Moreover, each node
is connected to each hub through a link comprised of an uplink and a downlink [2].
Each hub isolates faulty nodes and links and is also able to isolate the other one if it is
faulty.

Regarding the wired-and functionality of a CAN bus [5], it is performed by the
hubs. Each hub couples the signals received from the nodes through its uplinks in an
internal AND-gate. For a particular hub, this coupled signal is called the contribution
of that hub. Each hub then sends its contribution to the other hub using the interlinks.
Once a hub receives the other hub’s contribution it couples it with its own contribution.
The final result is then broadcast to the nodes through its downlinks. This coupling
ensures that each hub sends the same frame, bit by bit, through its non-faulty down-
links; thereby enforcing a single logical broadcast domain. Moreover, since the hubs
perform the coupling in a fraction of the bit time, each node will receive each bit value
quasi-simultaneously through both its downlinks [2].

Since the traffic is replicated in both hubs, it is necessary to provide nodes with
the adequate media management mechanisms, i.e. with mechanisms that allow each
node to transmit and receive through the replicated star, while tolerating faults. More
specifically, we intend to design media management mechanisms that allow each node
to use the replicated media as a single CAN channel. Moreover, our goal is to also take
advantage of the replicated traffic in order to tolerate some of the inconsistency error
scenarios of CAN.

This paper presents several approaches for the media management in the nodes and
explains the advantages in terms of fault-tolerance of the approach currently developed
for ReCANcentrate.

2 Fault model
ReCANcentrate’s fault model includes stuck-at, medium partition, shorted medium and
bit-flipping faults and furthermore assumes that at least one hub is non-faulty and that
there is at least one non-faulty sublink in each direction [2]. We also include CAN
controller and CAN transceiver stuck-at and bit-flipping faults in ReCANcentrate’s
fault model.

Notice that from the nodes point of view, faults at the media, hubs, transceivers and
CAN controllers manifest themselves as stuck-at or bit-flipping bits received through a
downlink [6]. For the sake of simplicity, from now on, we will say that the node detects
faults at its downlink, even though faults can occur in other network locations.

Notice that it is practically impossible to know the real probabilities of fundamental
dependability parameters such as component failure rates or the proportion with which

2



a component fails exhibiting the different failure modes included in our fault model.
Fortunately, it is still possible to estimate what are widely assumed as realistic values
for these probabilities and, then, to model CAN and ReCANcentrate to compare their
dependability properties. Particularly, it is possible to assume that stuck-at dominant,
stuck-at recessive and bit-flipping faults are equiprobable and, afterwards, to perform
sensitivity analyses with respect to them. Since, in principle, none of the failure modes
can be considered as negligible, the approaches for the media management in the nodes
should deal with all of them.

A comparison of the dependability of CAN and CANcentrate, the predecessor of
ReCANcentrate, has already been done [7]. But it is still ongoing work for ReCAN-
centrate itself.

3 Approaches for the Media management in ReCAN-
centrate nodes

We will consider single CAN controller approaches and two CAN controller approaches
for the media management in the nodes.

3.1 Single CAN controller approaches
The first approach we will consider uses one CAN controller per node with a switch-
ing mechanism which allows each node to connect its controller to either one or the
other hub. The switching mechanism could be implemented with a multiplexer that is
controlled by the node’s microcontroller. When the microcontroller detects that it can-
not communicate through the CAN controller it currently uses, e.g. through the CAN
controller’s error warning notification1, it could connect it to the other hub using the
multiplexer.

The biggest caveat to this approach is that a node cannot receive frames between
the instant where the reception from one hub fails and the instant its controller switches
to the other hub. This loss of frames may lead to data inconsistencies and therefore we
consider this solution unacceptable.

The second approach we will consider, which has been previously implemented
for an experimental assessment of ReCANcentrate [8], is depicted in Figure 2 and is
similar to an approach proposed by Rufino et al. [4]. It incorporates for each node one
CAN controller with four CAN transceivers grouped in two pairs. Each pair connects to
a different hub using one transceiver for the downlink and the other one for the uplink.
Each of the node’s downlinks bifurcates into two branches after having entered the
downlink’s transceiver. One branch enters an OR-gate while the other enters a stuck-at
dominant detector (StDD1 and StDD2 in Figure 2), whose output then enters the same
OR-gate.

This stuck-at-dominant detector is a simple circuit that outputs a logical ’0’ as
long as the number of consecutive dominant bits received through the corresponding
downlink does not exceed a specific threshold. Otherwise, it permanently outputs a
logical ’1’.

In the absence of faults, each of the OR-gates will receive a stream of zeros from its
attached stuck-at dominant detector and, thus, will output the stream received through
the downlink. As ReCANcentrate enforces a single broadcast domain, each bit value

1CAN controllers typically include a threshold for their error counters called error warning limit.

3



Figure 2: Rufino et al. inspired approach.

is quasi-simultaneously received on both of the node’s downlinks. Therefore, as can
be deduced from Figure 2, the node’s CAN controller will receive the bit stream being
broadcast by both hubs.

If a fault manifests as a stuck-at recessive downlink, the sequence of ones coming
from that downlink will enter the AND-gate and therefore the stream of bits that gets
to the CAN controller will be the one from the non-faulty downlink.

If a fault manifests as a stuck-at dominant downlink, the corresponding stuck-at
dominant detector will be the one producing the sequence of ones that passivates the
faulty contribution received through that downlink.

Unfortunately this approach is not recommendable for highly fault tolerant systems.
First, it does not tolerate faults that manifest as a bit-flipping downlink. Second, there
is another big disadvantage of this approach, and in general of any approach where a
node uses a CAN controller that sends the same signal through both uplinks. Notice
that since the CAN controller will send error frames through both uplinks in response
to errors it detects in any of the downlinks, both hubs will observe these error frames
at the respective uplink ports. This will likely cause both hubs to isolate the node even
when the fault only affects the connection of the node to one of the hubs. Finally, and
this also applies to the other one CAN controller approaches, it would require higher
level protocol layers to tolerate Rufino et al.’s inconsistency scenario.

3.2 Two CAN controller approaches
In this section we examine the use of two CAN controllers per node. These approaches
will all use the same hardware architecture, which is shown in Figure 3. A given CAN
controller is connected to only one hub and it uses two transceivers for the connection,
one for the uplink and one for the downlink. The difference between the approaches
considered in this section is how the node’s microcontroller uses its two CAN con-
trollers.

In the first considered approach, one CAN controller is used for both transmission
and reception while the other acts as a spare. When the node’s microcontroller is
notified by the active CAN controller of a communication failure it switches over to
the spare controller. This approach is similar to the first one CAN controller per node

4



Figure 3: Architecture for two CAN controller approaches.

approach we introduced earlier. It also has the same major problem, there is a delay,
during which frames could be missed, between a communication failure on the active
controller and the switch to the spare. Therefore, this approach may also lead to a data
inconsistency.

The next approach uses the two controllers simultaneously, instead of keeping one
as a spare. When the node acts as a receiver, it merely uses each CAN controller to
receive a copy of the frame being broadcast. Similarly, when it acts as the transmitter,
it simultaneously transmits through its two CAN controllers.

More specifically, when the node acts as as a receiver, its microcontroller will ex-
pect to be notified quasi-simultaneously by both its controllers of the reception of a
frame. In response, the node’s microcontroller can then load the frame from either
controller as it will be the same due to ReCANcentrate’s single broadcast domain.

If a fault occurs, it will generate errors that block the communication in all the Re-
CANcentrate domain. This is because since ReCANcentrate enforces a single broad-
cast domain, all CAN controllers will be signalling error frames as long as the fault con-
tinues generating errors. If the fault is temporary, the communication will be reestab-
lished as soon as the fault becomes inactive. Otherwise, the communication will only
resume after the fault is isolated at the corresponding hub ports.

Notice that after a fault is isolated at a given hub port, the CAN controller di-
rectly connected to that port will not be able to communicate any more. Therefore,
the corresponding microcontroller will observe that only one of its CAN controllers
notifies about transmissions and/or receptions. The node can handle this situation just
accepting as valid the notifications received from that surviving CAN controller. Ad-
ditionally, it can discard the CAN controller that cannot communicate, after observing
that this controller omits a specific number of notifications. Moreover, if the CAN
controller isolated at the hub port continues detecting errors, sooner or later, its error
counters will reach a specific threshold, e.g. the error warning limit, and will prompt
the microcontroller. In this case, the node can directly rule out that controller for com-
municating.

Accepting the notifications from the non-omitting controller will permit the node
to tolerate stuck-at and bit-flipping faults at one of its connections. Also, this approach
prevents nodes from missing any frame while a fault is being treated. Thus, so far, this
approach is an improvement in terms of fault-tolerance with respect to the approaches
we outlined before.

Lamentably, to try to transmit frames through two CAN controllers simultaneously
poses some problems. When the node wants to transmit a frame, it instructs both its
controllers to send the same frame. Therefore both transmissions will have the same
priority and consequently both controllers will win the arbitration [5], which inevitably
will lead to a collision. This approach could only work if both controllers initiated
their transmissions simultaneously and sent their bits in exact lockstep with each other,

5



which is very hard to guarantee. Otherwise they might get so out-of-sync that the
controllers would no longer see on the media the bit value they transmitted, and as a
result, both controllers would signal an error [5] and abort the transmission.

The approach that we have adopted for ReCANcentrate uses both controllers si-
multaneously for reception but only one of them to transmit frames, therefore it solves
the previous approach’s transmission problem. The controller that is used to transmit
and receive is called the transmission controller, whereas the other one is called the
reception controller [6].

When the node acts as a receiving node, the reception mechanism is very similar
to the one used in the previous approach, where both controllers are used simultane-
ously for both transmission and reception. The difference is basically that when the
microcontroller discards a CAN controller for communicating, it also has to check if
that controller is the one which is currently marked as the transmission controller. If
affirmative, it will have to assign the transmission controller role to the surviving con-
troller.

This approach has an additional advantage. Notice that when the transmission con-
troller sends a frame to its hub, that frame will be received not only by itself, but also
by the reception controller, due to ReCANcentrate’s single broadcast domain. A trans-
mitting node therefore expects to always receive at the reception controller a frame
that it has sent through the transmission controller. This fact can be used to implement
further fault-tolerance mechanisms. Particularly, it can be used to tolerate the CAN
inconsistency scenarios reported by Rufino et al. [4]. We hope to accomplish exactly
that through a driver we are currently implementing for the nodes.

4 Conclusions and future work
In order to improve the reliability of CAN bus networks, we have developed a repli-
cated star topology called ReCANcentrate, which includes two active hubs. The nodes
of ReCANcentrate are connected to both of them by means of dedicated links, and the
hubs are connected to each other through several interlinks. Each hub of ReCANcen-
trate includes mechanisms to detect and isolate stuck-at and bit-flipping faults occur-
ring at nodes, the media and the other hub.

The hubs exchange their traffic through the interlinks and couple with each other,
within a fraction of the bit time, to create a single logical broadcast domain. As a con-
sequence, each node receives the same bit values from both hubs quasi-simultaneously.
This synchronization between both stars at bit level simplifies the way in which each
node manages the replicated traffic to transmit, receive and tolerate faults.

This paper explores different approaches for this media management at nodes, to
take full advantage of ReCANcentrate’s redundancy. We analyze different management
strategies to allow nodes to continue communicating tolerating different kinds of faults,
while keeping data consistency even in the presence of some CAN inconsistency error
scenarios identified in the literature.

We overview the approaches for the media management we have so far considered.
First we examined approaches using only one CAN controller per node, coming to the
conclusion that they are not adequate when a high level of fault-tolerance is required.
Then we took a look at different approaches where two CAN controllers are used per
node. Although this adds more complexity to the system and therefore might seem to
reduce ReCANcentrate’s reliability, it is in fact possible to use a strategy which actually
increases ReCANcentrate’s reliability by providing better fault-tolerance.

6



After describing some unsatisfactory two CAN controller approaches we intro-
duced our chosen approach. This approach has been formally verified by means of
a model checker and is currently being implemented in a ReCANcentrate prototype to
show its viability.

There are also other, more complex approaches, we have not studied yet. For in-
stance it might be possible to use an approach very similar to the one we are imple-
menting currently. The main difference would be that instead of having a dedicated
transmission controller we would alternate through which controller to transmit (as
long as both are functional and their links non-faulty). A possible advantage of this ap-
proach could be that the blocking time of high priority messages due to lower priority
messages could be reduced as the transmit queue on each controller would be shorter.
On the other hand, the firmware for the microcontroller would be more complex.

Other possible approaches might take even further advantage of ReCANcentrate’s
redundant architecture by allowing a node to communicate as long as it had one non-
faulty uplink and one non-faulty downlink, independent of the hub they are connected
to. This could increase ReCANcentrate’s fault-tolerance, but we cannot say yet if it
would result in an overall increase in reliability as it increases the complexity and
would require more hardware.

References
[1] M. Barranco, J. Proenza, G. Rodrı́guez-Navas, and L. Almeida, “An Active Star Topology

for Improving Fault Confinement in CAN Networks”, IEEE transactions on industrial
informatics, vol. 2, no. 2, pp. 78–85, May 2006.

[2] M. Barranco, L. Almeida, and J. Proenza, “ReCANcentrate: a replicated star topology for
CAN networks”, in 10th IEEE International Conference on Emerging Technologies and
Factory Automation, 2005. ETFA 2005., volume 2, Sept. 2005, Catania, Italy.

[3] J. Proenza and J. Miro-Julia, “MajorCAN: A Modification to the Controller Area Network
Protocol to Achieve Atomic Broadcast”, IEEE International Workshop on Group Commu-
nication and Computations, Taipei, Taiwan, 2000.

[4] J. Rufino, P. Verı́ssimo, G. Arroz, C. Almeida, and L. Rodrigues, “Fault-Tolerant Broadcasts
in CAN”, in FTCS ’98: Proceedings of the The Twenty-Eighth Annual International Sympo-
sium on Fault-Tolerant Computing, 1998, p. 150, Washington, DC, USA. IEEE Computer
Society.

[5] R. Bosch GmbH, “CAN Specification Version 2.0”, Technical report, Robert Bosch GmbH,
1991.

[6] M. Barranco, J. Proenza, and L. Almeida, “Designing and Verifying Media Management in
ReCANcentrate”, in Proceedings of the 13rd IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA 2008), Hamburg, Germany, Sept. 2008.

[7] M. Barranco, “Improving Error Containment of Controller Area Network (CAN) by means
of Adequate Star Topologies”, Technical report, Universitat de les illes balears, Nov. 2008.

[8] M. Barranco, J. Proenza, and L. Almeida, “Experimental Assessment of ReCANcentrate,
a Replicated Star Topology for CAN”, SAE 2006 Transactions Journal of Passenger Cars:
Electronic and Electrical Systems, 2006.

7


