
UNIVERSITAT DE LES ILLES BALEARS

DEPARTAMENT DE CIÈNCIES MATEMÀTIQUES I INFORMÀTICA

PROGRAMA DE DOCTORAT D’INFORMÀTICA

PH.D. THESIS

Design and Formal Verification of a Fault-tolerant Clock
Synchronization Subsystem for the Controller Area

Network

Guillermo Rodrı́guez-Navas González

SUPERVISOR

Julián Proenza Arenas

Faig constar que aquesta memòria ha estat realitzada, sota la di-
recció de Julián Proenza Arenas, per Guillermo Rodrı́guez-Navas
González i que constitueix la seva tesi doctoral.

Palma, juny de 2010

Signat: Guillermo Rodrı́guez-Navas González
Estudiant de doctorat

Signat: Julián Proenza Arenas
Director de la tesi
Professor Titular d’Universitat
Departament de Ciències Matemàtiques i Informàtica
Universitat de les Illes Balears

A mis padres.

Aum. saha nāvavatu
saha nau bhunaktu
saha vı̄ryam. karavāvahai
tejasvināvadhı̄tamastu mā vidvis.āvahai
Aum. śāntih. śāntih. śāntih.

Aum. May He protect both of us
May He guide both of us
May we work together with vigor
May our study be brilliant, may there be no dislike between us
Aum. Peace, Peace, Peace.

Shanti Mantra, from the Upanishads.

Resum

El bus de camp Controller Area Network és una tecnologia amplament utilitzada en l’actualitat per
al disseny de sistemes encastats distribuı̈ts. Malgrat haver-se proposat inicialment per comunicacions
dins vehicles, CAN s’ha convertit en un estàndard de facto per tot tipus de comunicacions encastades;
la qual cosa ha reduı̈t el seu cost significativament. Aquest cost assequible, juntament amb la seva
bona resposta en temps real i les potents funcionalitats que incorpora per control d’errors, han generat
molt d’interés en l’aplicabilitat de CAN per sistemes més exigents, com ara el sistemes distribuı̈ts
crı́tics.

No obstant això, i a pesar del seu indiscutible èxit en tants de camps d’aplicació, l’adopció de
CAN per desenvolupar sistemes distribuı̈ts crı́tics és encara una qüestió controvertida. La principal
raó d’aquesta controvèrsia és que CAN pateix algunes limitacions relacionades amb la seva garantia
de funcionament. Alguns investigadors ja han treballat sobre aquest problema i vàries tècniques per
tal de resoldre cada una d’aquestes limitacions ja han estat proposades. Per tot això, malgrat algunes
qüestions romanen obertes, sembla que aquest esforç combinat farà de CAN una solució vàlida fins i
tot per sistemes crı́tics.

La motivació de la nostra recerca és ajudar en aquest intent de millorar les propietas relacionades
amb garantia de funcionament de CAN. La nostra aproximació consisteix a centrar-nos en una de
les limitacions que, en la nostra opinió, mereix més atenció: la falta d’un servei de sincronització
de rellotge. Els autors defensam que la sincronització de rellotge és un requisit imprescindible per
aconseguir garantia de funcionament sobre CAN, i que cal proporcionar aquest servei de tal manera
que sigui garantida una precisió de l’ordre de microsegons inclús en presència de fallades de canal o
dels nodes, a un cost raonable.

En aquesta dissertació describim una nova solució per sincronització de rellotge sobre CAN que
ha estat dissenyada per satisfer aquests requisits. Aquesta solució, la qual hem anomenat Orthogonal
Clock Subsystem for CAN (OCS-CAN), persegueix la consecució de quatre atributs especı́fics: alta
precisió, baixa sobrecàrrega, tolerància a fallades i baix cost.

OCS-CAN està format per un conjunt de dispositius hardware independents, que anomenam clock
units, els quals s’adjunten als nodes del sistema. Cada clock unit disposa del seu propi controlador
CAN per tal d’intercanviar missatges de sincronització amb les altres clock units. Per tant, el conjunt
de clock units constitueix un subsistema independent que s’encarrega de proporcionar el servei de
sincronització de rellotge sense importar l’aplicació concreta executada pels nodes. Diem que aquest
subsistema és ortogonal perquè ha estat concebut com un afegit que pot ser incorporat a un altre
sistema sense haver de reemplaçar cap component hardware ni haver de fer canvis als programes
executats pels nodes.

Les clock units estan equipades amb una circuiteria especı́fica, com ara un mecanisme per posar
segells temporals a cada trama enviada o rebuda, que millora la precisió de la sincronització de rel-
lotge i fan el rang the microsegons viable. Per tal de reduir les sobrecàrregues computacional i de
comunicacions, l’algoritme de sincronització de rellotge implementat per OCS-CAN està basat en un
esquema mestre/esclau. A més, donat que l’existència d’un únic mestre suposaria un punt singular
d’avaria per al sistema, aquest algoritme empra replicació del meste i inclou uns mecanismes per
detectar i reemplaçar un master avariat.

El desenvolupament i testeig d’un primer prototipus de OCS-CAN també és tractat en aquesta
dissertació. L’objectiu del nostre prototipat és comprovar que l’arquitectura suggerida pot ser imple-
mentada amb un cost relativament baix. Al nostre cas, el prototipus s’ha construı̈t amb un dispositiu
de lògica programable tipus FPGA de gamma mitja.

Conjuntament amb la descripció de l’arquitectura d’OCS-CAN, una part significativa d’aquesta
dissertació tracta sobre l’avaluació formal dels mecanismes de tolerància a fallades d’OCS-CAN.
Aquesta avaluació s’ha realitzat de forma analı́tica i també mitjançant model checking. L’avaluació
analı́tica es basa en aproximar els rellotges de les clock units amb funcions lineals a trossos, amb
punts de discontinuı̈tat que coincideixen amb les accions de sincronització. El model checking s’ha
acomplit amb el model checker UPPAAL, que és una eina basada en la teoria d’autòmats temporitzats
i que és emprada habitualment per verificar formalment sistemes de temps real.

Els resultats obtinguts, tant a l’anàlisi com al model checking, demostren que els mecanismes de
tolerancia a fallades d’OCS-CAN funcionen correctament i que és possible determinar la precisió
garantida per diferents hipòtesis de fallades. Però, el que podria ser més interessant és que aquesta
avaluació també proporciona informació valuosa sobre la relació entre les fallades potencials del
sistema i la precisió garantida. En concret, mostra que OCS-CAN exhibeix una propietat coneguda
com a degradació elegant o útil, ja que la precisió empitjora gradualment a mesura que els escenaris
de fallades es tornen més complexes i greus. En la nostra opinió, el fet de proporcionar no només una
solució adequada per sincronització de rellotge sobre CAN, sinó també donar els mitjans apropiats per
avaluar el seu rendiment (en aquest cas, la precisió) és el camı́ que cal seguir per tal de desenvolupar
una arquitectura sobre CAN adequada per a aplicacions amb garantia de funcionament.

Una contribució important d’aquesta dissertació, i que va més enllà de l’objectiu que ens havı́em
fixat de dissenyar un servei de sincronització de rellotge, és el detallat estudi d’una sèrie de patrons
de modelització que permeten l’especificació realista, mitjançant autòmats temporitzats, de sistemes
distribuı̈ts amb rellotges. Dins d’aquest estudi, també presentam una nova tècnica de modelització,
anomenada punters a rellotges, desenvolupada en principi per a la verificació formal d’OCS-CAN
però que permet l’espeficicació d’altres algoritmes de sincronització de rellotge afectats per incon-
sistències transitòries. Aquesta tècnica estén l’aplicabilitat del formalisme del autòmats temporitzats
i podria, a més a més, ser útil en el context general de la verificació formal de sistemes hı́brids.

Abstract

The Controller Area Network (CAN) is a fieldbus technology that is nowadays extensively used for
the design of distributed embedded systems. Although initially intended for in-vehicle communica-
tions, CAN has become a de facto standard for embedded communications, what has importantly
decreased the cost of this technology. Said cost effectiveness, together with the good real-time per-
formance as well as the potent error control capabilities it provides, has risen some significant interest
on the applicability of CAN to more demanding systems, such as critical embedded systems.

Nevertheless, despite its uncontested success in so many application domains, the adoption of CAN
for developing critical distributed embedded systems is still controversial. The main reason for this
controversy is that CAN exhibits many limitations with respect to dependability. Some researchers
have already addressed this matter, and several techniques have been proposed for overcoming each
one of the reported limitations. Thus, although there are still open issues, it seems that this combined
research effort will make CAN a valid solution even for critical systems.

The motivation of our research is to help in this attempt to improve the dependability properties of
CAN. We do it by bringing into focus one of the limitations that, in our opinion, merits more attention:
the lack of a clock synchronization service. We claim that clock synchronization is a requirement that
is implicit in many of the techniques that allow the improvement of dependability over CAN, and that
this service must be provided in a way such that a precision in the order of a few microseconds is
guaranteed even in the presence of either channel or node faults, at a reasonable cost.

In this dissertation we describe a novel solution for clock synchronization over CAN that specif-
ically addresses these requirements. This solution, which we have named the Orthogonal Clock
Subsystem for CAN (OCS-CAN), pursues the fulfillment of four specific attributes: high precision,
low overhead, fault tolerance and low cost.

OCS-CAN is made up of a set of independent hardware devices, called clock units, which are
attached to the nodes of the system. Each clock unit is provided with a CAN controller for exchanging
synchronization messages with the other clock units. Therefore, the set of clock units constitutes an
independent subsystem that is aimed at supplying the clock synchronization service regardless of the
application executed by the nodes. We say that this subsystem is orthogonal because it has been
conceived as an add-on feature, which can be incorporated without the replacement of any hardware
component nor any change of the software executed by the nodes.

The clock units are equipped with a number of hardware mechanisms, such as a mechanism for
timestamping each frame transmitted or received, which improve the precision of the clock synchro-
nization and make the range of microseconds reachable. In order to reduce the computation and
communication overheads, the clock synchronization algorithm implemented by OCS-CAN follows

a master/slave scheme. Furthermore, and given that having only one master would represent a single
point of failure of the system, this algorithm uses master replication and includes some mechanisms
for detecting and replacing a faulty master.

The development and testing of a first prototype of OCS-CAN is also addressed in this dissertation.
The aim of said prototype is to show that the suggested architecture can be implemented with low
cost hardware. In our case, the prototype is built on a medium range FPGA.

Besides the description of the OCS-CAN architecture, a significant part of this dissertation deals
with the formal assessment of the fault tolerance mechanisms of OCS-CAN. This assessment is per-
formed both analytically and by means of model checking. The analytical assessment is addressed by
approximating the clocks of the clock units as piecewise linear functions, with points of discontinuity
that coincide with the synchronization actions. Model checking is performed with the UPPAAL model
checker, which is a tool based on the theory of timed automata that is commonly used for formally
verifying real-time systems.

The results obtained, both analytically and by model checking, prove that the fault tolerance mech-
anisms of OCS-CAN work as intended and that it is possible to determine the precision guaranteed
under the considered fault assumptions. But, perhaps more importantly, this assessment also provides
very valuable information about the relationship that exists between the potential faults of the system
and the achievable precision. It shows that OCS-CAN exhibits graceful degradation of the preci-
sion, since it can be observed that the guaranteed precision worsens gradually as the fault scenarios
become more complex and severe. In our opinion, providing not only a suitable solution for clock
synchronization over CAN, but also the proper means to assess its performance (i.e. the precision)
against different fault conditions, is the way to follow in order to develop an adequate architecture for
supporting dependable applications over CAN.

An important contribution of this dissertation, which goes beyond our initial goal of just designing
a clock synchronization service, is the thorough study of a series of modeling patterns for the realistic
specification, by means of timed automata, of distributed systems with computer clocks. Within this
study, we also present a novel modeling technique, named clock pointers, which we have developed
in principle for the formal verification of OCS-CAN but that has a wider applicability, since it allows
the specification of any clock synchronization algorithm affected by transient inconsistencies. This
technique then extends the applicability of the timed automata formalism and might indeed be useful
in the general context of the formal verification of hybrid systems.

Acknowledgments

En estas lı́neas me gustarı́a expresar mi agradecimiento a todas las personas que de una manera u otra,
voluntaria o involuntariamente, me han ayudado a hacer posible este trabajo. Han sido muchos años
de trabajo y ha sido mucha la gente que me ha apoyado, ası́ que no espero poder recordarlos a todos.
Por ello, antes que nada, un enorme “Gracias a todos”.

Como no puede ser de otra manera, en primer lugar quiero agradecer a mi director de tesis, Julián
Proenza, su incansable e incondicional apoyo durante todo este tiempo. La posibilidad de comenzar
una carrera de investigador surgió hace muchos años en una conversación casual entre nosotros. Por
aquel entonces yo no podı́a concebir siquiera el fascinante mundo que se escondı́a “al otro lado del
espejo”, es decir, de los papers... Siempre le estaré agradecido por darme la posibilidad de trabajar
con él, ası́ como por su paciencia y dedicación en mis primeros años de investigación, en los cuales
me enseñó prácticamente todo sobre el oficio y la ética del investigador.

También quiero dar las gracias a todos mis compañeros del grupo de Sistemes, Robòtica i Visió
(SRV). A Gabriel Oliver, el director del grupo, por poner a nuestra disposición todos los medios
materiales a su alcance y por su continuo esfuerzo en tareas burocráticas, sin perder el buen humor. A
Alberto Ortiz y a Yolanda González, por estar siempre disponibles para ayudar y por ser un ejemplo
a seguir. A mis compañeros desde casi el primer dı́a, Javier Antich, Toni Burguera y José Guerrero
(cited in no particular order), por las muchas conversaciones y risas compartidas, por darme apoyo
moral en múltiples ocasiones, y por ser excelentes compañeros, con una capacidad de trabajo y un
compromiso que resultan realmente inspiradores. A los compañeros que han llegado un poco más
tarde, Tolo Garau, Francesc Bonin y Xisco Bonnin, también les agradezco su apoyo en este tiempo y
la amistad que me han brindado. Mención aparte merece Manuel o engenheiro Barranco, con el cual
he podido trabajar (y viajar) codo con codo, y que es una de las personas más nobles y trabajadoras
que me he cruzado en la vida; espero que podamos seguir colaborando por muchos años. Finalmente,
aun sin ser miembro oficial del SRV, le quiero agradecer a Sebastı̀à Roca su esfuerzo durante la
realización del prototipo de OCS-CAN como parte de su PFC; su implicación y entusiasmo con el
proyecto fueron clave para llevar a buen término esta parte del trabajo.

También me gustarı́a dar las gracias a los compañeros del Departament de Ciències Matemàtiques
i Informàtica. En particular, a los miembros de las diferentes directivas: Arnau Mir, Pep Lluis Fer-
rer, Ricardo Alberich y Margaret Miró, y a los representantes en la Escuela Politécnica: director,
secretarias/os, jefes de estudios... porque sé que su esfuerzo diario hace que muchas cosas puedan
funcionar. Mi más sincero agradecimiento a Maria Fiol por su ayuda con los trámites administrativos
de esta tesis; su eficiencia y su simpatı́a son sin duda el mejor interface que uno puede desear para
tratar con el impredecible universo burocrático. También me siento afortunado por tener compañeros
como Jairo, Mercè, Biel, Chus, Antonio E., Ana Belén, Felip, Esperança, Óscar, Joan Pons, Joan

Rigo, Tomeu Alorda, Cristina, Diana, Toni Buades, Rafel, Pere Palmer, Miquel Mascaró y un largo
etcétera. Ellos hacen cada dı́a de nuestro lugar de trabajo un sitio mejor, más agradable e intelectual-
mente estimulante. Gracias, por último, a Javier Martı́n, por hacer la convivencia diaria en nuestro
despacho tan sencilla, agradable e interesante.

I would like to express my gratitude to the many colleagues that during this time helped me to
understand which parts of my work could be improved and also helped me to overcome some of my
own limitations; they definitely contributed to increasing the quality of this work. First, I remind
some engaging conversations with Alan Burns, Guiem Bernat and Ian Broster, during my short stay
at the University of York, that really sparked the fire of this research. Also, during my stay at the Uni-
versidade de Aveiro, I remember having many nice discussions with Luı́s Almeida, Joaquim Ferreira
and Paulo Pedreiras about CAN and its dependability properties. Since then, they have been always
providing very sincere and useful feedback for my research and this is a gift that must not be under-
estimated. By the way, I also feel muito obrigado pola sua hospitalidade while I was in Aveiro... It
was a great time in my life.

I feel particularly indebted to Hans Hansson, from the Mälardalen University, since he was the
person who taught me the rudiments of UPPAAL and he has been always very supportive of my
research. I also thank Thomas Nolte, Thilo Sauter, Georg Gaderer, Nicolas Navet, Luı́s Pinho, Lucia
Lo Bello and Paul Pettersson for the interesting feedback they have provided at different stages of
this work. My gratitude goes also to the anonymous reviewers of the papers and book chapters we
have written, since their points of view always leaded us to some kind of improvement. Last but not
least, I would like to thank three colleagues from my department, Mercè Llabrés, Antonio E. Teruel
and Gabriel Cardona, which usually help me to review the mathematical notation of my papers. Their
patience and thoroughness has changed not only the aspect of my equations and propositions, but also
my ideas about research; in a positive way, of course! Gabriel Cardona also introduced me to TikZ, a
fantastic tool for drawing graphs with LATEX that has been a blessing in my life.

Para acabar, sólo me queda agradecer a las personas que me han estado ayudando incluso desde
antes de comenzar este trabajo. A mis amigos de siempre, Óscar, César, Fernando, Javi, Jose, Ángela
y Teresa, por su bonita forma de entender la amistad. A mi familia en general por todo su apoyo, pero
en particular a mis abuelas y abuelos, por su actitud ejemplar ante la vida y por todos los sacrificios
que han hecho para que los demás estemos tan bien como estamos. A mis tı́os Miguel y Pili, y a mi
primo Miguel, por la forma en que me ayudaron mientras estuve con ellos en Vigo. A mis hermanos,
Luis, Miguel, Carlos y Pablo, por su particular forma de ayudarme a mantener los pies en la tierra.
Y por último, quiero dar las gracias de corazón a mis padres por todo lo que me han dado, que en su
caso es realmente todo.

Contents

List of Figures v

List of Tables vii

List of UPPAAL Listings viii

1 Introduction 1
1.1 Research context . 1
1.2 Problem statement . 2
1.3 Our approach . 3
1.4 The thesis . 4
1.5 Main contributions . 4
1.6 Organization of the document . 6

2 Background on clock synchronization 9
2.1 Establishing the basic terminology about computer clocks 9

2.1.1 Ideal clocks . 9
2.1.2 Physical clocks . 10
2.1.3 Virtual clocks . 12

2.2 Aims and phases of clock synchronization . 13
2.3 A simple taxonomy of clock synchronization algorithms 16

2.3.1 Software vs. hardware timestamp . 16
2.3.2 Symmetric vs. asymmetric schemes . 16

3 Introduction to model checking and timed automata 19
3.1 Main techniques for system evaluation . 19
3.2 The concept of model checking . 20
3.3 The theory of timed automata . 22

3.3.1 Clocks and clock constraints . 22
3.3.2 Formal definition of timed automaton . 23
3.3.3 Dynamics of a timed automaton . 24

3.4 The challenge of modeling computer clocks with timed automata 26
3.4.1 Some remarks about our nomenclature . 26
3.4.2 Temporal evolution of a set of TA clocks 27
3.4.3 Temporal evolution of a set of computer clocks 28

3.5 The concept of perturbed timed automaton . 29

i

ii CONTENTS

3.6 The UPPAAL model checker . 32
3.6.1 Networks of timed automata . 32
3.6.2 Modeling with UPPAAL . 33
3.6.3 The simulator . 34
3.6.4 The verifier . 35

4 The Controller Area Network from a dependability perspective 37
4.1 Physical aspects of CAN . 37
4.2 CAN interface . 39
4.3 Basic mechanisms of CAN . 40

4.3.1 CAN arbitration for medium access control 40
4.3.2 Error detection and error recovery in CAN 40
4.3.3 The inconsistency scenarios of CAN . 41

4.4 Reported dependability limitations of CAN . 42

5 Clock synchronization for dependable CAN: state of the art 45
5.1 On the relevance of clock synchronization for dependable CAN 46

5.1.1 Techniques for reducing network jitter . 46
5.1.2 Techniques for improving error containment 47
5.1.3 Mechanisms for supporting fault tolerance 47

5.2 Requirements for the clock synchronization service 48
5.3 Available solutions and open issues . 49

6 The Orthogonal Clock Subsystem for CAN 53
6.1 Preliminary remarks about our proposal . 53
6.2 Properties of the orthogonal clock subsystem . 54

6.2.1 High precision . 54
6.2.2 Low overhead . 55
6.2.3 Fault tolerance . 55
6.2.4 Cost issues . 56

6.3 Description of the architecture . 58
6.3.1 Internal structure of the clock unit . 58
6.3.2 Timestamp mechanism . 58
6.3.3 Clock adjustment . 59
6.3.4 Algorithm for managing master redundancy 60

6.4 Prototype and testing of OCS-CAN . 63

7 Analytical assessment of the precision guaranteed by OCS-CAN 67
7.1 Basic definitions and notation . 67

7.1.1 Characterization of the virtual clock . 67
7.1.2 Offset, consonance and precision . 68
7.1.3 Two basic results on virtual clocks . 69

7.2 The clock synchronization algorithm of OCS-CAN 70
7.2.1 Modeling clock adjustment . 70
7.2.2 Clock amortization vs. immediate assignment 71

7.3 Analysis of OCS-CAN in fault-free conditions . 72

CONTENTS iii

7.3.1 The broadcast instants vs. the synchronization instants 72
7.3.2 Precision guaranteed in fault-free conditions 73

7.4 Analysis of OCS-CAN with channel faults . 74
7.4.1 Channel’s failure semantics . 74
7.4.2 Precision with consistent broadcast . 75
7.4.3 Precision with inconsistent duplicates . 75
7.4.4 Precision with inconsistent omissions . 76

7.5 Analysis of OCS-CAN with node faults . 78
7.6 Analysis of OCS-CAN with both channel and node faults 80

7.6.1 Revisiting the channel’s failure semantics 80
7.6.2 Extending the concept of consistent synchronization round 81
7.6.3 Analysis of a specific inconsistency scenario 81

7.7 Discussion . 83

8 Modeling patterns for the realistic specification of computer clocks 85
8.1 Contributions of this chapter . 86
8.2 Description of our case study . 87

8.2.1 Simplified system model . 88
8.2.2 Expected temporal behavior of the system for the different types of computer

clocks . 89
8.2.3 Some remarks about modeling with timers 91

8.3 A modeling pattern for systems with ideal clocks 92
8.3.1 Model templates . 92
8.3.2 System declaration . 94
8.3.3 Formal verification of the modeling pattern 95

8.4 A modeling pattern for systems with physical clocks 97
8.4.1 Model templates . 97
8.4.2 System declaration . 99
8.4.3 Formal verification of the modeling pattern 100

8.5 A modeling pattern for systems with virtual clocks 102
8.5.1 The concept of clock pointer . 102
8.5.2 Model templates . 106
8.5.3 System declaration . 108
8.5.4 Formal verification of the modeling pattern 109

8.6 A modeling pattern for clock synchronization . 111
8.6.1 Model templates with several clock pointers 111

Example 1: modeling physical clocks . 113
Example 2: modeling virtual clocks . 115

8.6.2 How to extend the modeling pattern for including clock synchronization . . . 116
Description of the case study . 118
Model templates . 119
System declaration . 123
Study of the temporal behavior specified . 125

8.7 Discussion . 128

9 Model checking of the precision guaranteed by OCS-CAN 131

iv CONTENTS

9.1 Preliminary remarks about the modeling of OCS-CAN 132
9.1.1 System model . 132
9.1.2 Properties to be verified . 133
9.1.3 Main abstractions of the model . 135

9.2 Description of the UPPAAL model of OCS-CAN . 136
9.2.1 Basic scheme of the UPPAAL model . 136
9.2.2 The process VC module . 137
9.2.3 The process SynM . 138
9.2.4 The process Channel . 140

Modeling TM broadcast and arbitration . 141
Modeling the channel’s bounded response time 143
Modeling TM indication and TM confirm 144
Modeling TM abort . 146
Modeling omissions of the TM . 146

9.2.5 Modeling internal faults of the CU . 150
9.2.6 The final model . 152

Final model of process VC module . 152
Final model of process SynM . 156

9.3 Verification procedure and results . 160
9.3.1 The process Observer . 160
9.3.2 Considered scenarios for formal verification 161
9.3.3 Results obtained and discussion . 162

10 Conclusions and future work 165
10.1 Thesis validation and contributions . 165

10.1.1 Study of the state of the art concerning clock synchronization for dependable
CAN . 166

10.1.2 Design and prototyping of OCS-CAN . 167
10.1.3 Formal assessment of OCS-CAN . 168
10.1.4 Modeling patterns for distributed systems with computer clocks 170

10.2 Publication of results . 171
10.2.1 Preliminary publications . 171
10.2.2 Publications of results presented in this dissertation 172

10.3 Future work . 173
10.3.1 Possible extensions of the work on OCS-CAN 173
10.3.2 Potential applications of the developed techniques 174

Bibliography 177

List of Figures

2.1 The value of an ideal clock always reflects real time 10
2.2 Scheme of the elements that constitute a physical clock 11
2.3 Structure of a node with a physical clock . 12
2.4 Behavior of two drifting physical clocks . 12
2.5 Phases of a clock synchronization algorithm . 15

3.1 Model checking procedure . 21
3.2 Timed automaton A1 . 25
3.3 Possible behavior of timed automaton A1, with three potential traces 25
3.4 Representation of the temporal evolution of two TA clocks belonging to the same TA 28
3.5 Possible temporal evolution of two computer clocks 28
3.6 Graphical representation of the potential uncertainty caused by the physical clock’s drift 31
3.7 Example of a translation to timed automata . 31

4.1 Architecture of a CAN network . 38

6.1 Structure of a CAN bit and location of the sampling point 55
6.2 For each TM broadcast, a timestamp is taken at the sampling point of the Start Of

Frame bit, and it is written in the data field . 56
6.3 Transmission pattern of the master in the absence of faults 57
6.4 Architecture of OCS-CAN . 57
6.5 Block diagram of the clock unit, with the interface between blocks 59
6.6 Master replacement upon failure of two masters . 61
6.7 Algorithm executed by the SynM of master m . 62
6.8 Algorithm executed by the SynM of slave s . 63
6.9 Block diagram of the Timestamp Manager (TSM) 64
6.10 Offset measured for two slave clock units . 65

8.1 Temporal behavior of a node executing Task1 (with an ideal clock) 89
8.2 Temporal behavior of 3 nodes executing Task1 (with physical clocks) 90
8.3 Temporal behavior of 3 nodes executing Task1 (with virtual clocks) 91
8.4 The two UPPAAL templates used for specifying the system 93
8.5 Expected temporal behavior when using ideal timers 96
8.6 The two timed automata used for verifying the precision 97
8.7 The two UPPAAL templates used for specifying the system with physical clocks . . . 98

v

vi LIST OF FIGURES

8.8 Temporal behavior enforced by the modeling pattern for physical clocks (one among
infinite possible execution traces) . 101

8.9 Expected behavior of three tasks using virtual clocks (not directly specifiable with
timed automata) . 104

8.10 Expected behavior of three tasks using virtual clocks (directly specifiable with timed
automata) . 105

8.11 Half timer . 106
8.12 The two timed automata used for specifying the system with virtual clocks 107
8.13 Three nodes using virtual clocks, behavior specified with a Half Timer (HTimer) . . . 110
8.14 Process Half Timer, for multiple clock pointers . 112
8.15 Generic application, for multiple clock pointers . 112
8.16 Three nodes using physical clocks, behavior specified with one Half Timer per node . 115
8.17 Three nodes using virtual clocks, behavior specified with one Half Timer per node . . 117
8.18 A Perturbed Timer for modeling clock synchronization 120
8.19 An application that models master/slave clock synchronization 120
8.20 New process Observer, which also updates the offset of each node after every round . 123
8.21 Four nodes with virtual clocks, example of an inconsistent clock synchronization . . 127

9.1 Scheme of the model checking procedure . 133
9.2 An OCS-CAN subsystem made up of three Clock Units 133
9.3 Block diagram of the clock unit, with the interface between blocks 134
9.4 General scheme of the formal model of OCS-CAN 137
9.5 Algorithm executed by the SynM of master m, with the Sync(n,m) operation ab-

stracted away . 139
9.6 Algorithm executed by the SynM of slave s, with the Sync(n, s) operation abstracted

away . 139
9.7 Automaton of process Channel . 142
9.8 Dummy automaton for enabling synchronization via the urgent channel tx req . . . 142
9.9 Portion of an automaton that models TM.Req(m) and arbitration 143
9.10 Simplified automaton of a master SynM (version I) 145
9.11 Simplified automaton of a master SynM (version II) 147
9.12 Simplified automaton of a master SynM (version III) 148
9.13 Automaton of process Round Ctrl (version I) 149
9.14 Simplified automaton of a master SynM (version IV) 151
9.15 Final timed automaton of VC module (master) . 154
9.16 Temporal behavior of a master VC module . 154
9.17 Final timed automaton of VC module (slave) . 155
9.18 Temporal behavior of a slave VC module . 156
9.19 Final timed automaton of SynM (master) . 157
9.20 Final timed automaton of process Round Ctrl 158
9.21 Final automaton of SynM (slave) . 159
9.22 Final timed automaton of process Observer . 161

List of Tables

2.1 Types of clocks and their characteristics . 14

5.1 A comparison of current solutions for clock synchronization over CAN 51

8.1 Types of clocks and modeling patterns applied . 87
8.2 Results obtained for different values of maxOD . 128

9.1 Fault assumptions and precision guaranteed (in µs) with R = 1 sec 164
9.2 Fault assumptions and precision guaranteed (in µs) with R = 0.5 sec 164

vii

List of UPPAAL Listings

8.1 Two nodes using ideal clocks (variable declaration) 94
8.2 Two nodes using ideal clocks (system declaration) 95
8.3 Three nodes with physical clocks (variable declaration) 99
8.4 Three nodes with physical clocks (system declaration) 100
8.5 Three nodes using virtual clocks (variable declaration) 108
8.6 Three nodes using virtual clocks (system declaration) 109
8.7 Three nodes using physical clocks (variable declaration); multiple clock pointers . . 113
8.8 Three nodes using physical clocks (system declaration); multiple clock pointers . . . 114
8.9 Three nodes using physical clocks (system declaration); multiple clock pointers . . . 116
8.10 Four nodes using virtual clocks (variable declaration) 124
8.11 Four nodes using virtual clocks (system declaration) 125

ix

Chapter 1

Introduction

This chapter presents the goals of this dissertation, together with the organization of the document.

1.1 Research context

Roughly speaking, a distributed embedded system is a computer system constituted by a set of nodes

that cooperate among them in order to fulfill a common goal, which usually implies the control of

another system. Distributed embedded systems always rely on a network for communicating the

nodes, since nodes need to exchange messages to make cooperation possible. The Controller Area

Network (CAN) fieldbus [ISO93] is currently one of the most popular communication networks for

distributed embedded systems.

Even though the CAN fieldbus was originally designed by Bosch for in-vehicle communication, it

has become a de facto standard for a wide range of distributed embedded systems. CAN is nowadays

used not only in vehicles, but also in factory automation, medical equipment and machine control,

among many others [Ets01]. A very important reason for the success experienced by CAN is its in-

stant bit monitoring, along with the mechanisms that are built upon this property [ISO93]. Such mech-

anisms include a number of useful error control capabilities as well as a mechanism for prioritized

access to the medium, the so-called CAN arbitration, which guarantees bounded response time for any

message broadcast, even in the presence of transient channel faults [TBW95, BBRN05, DBBL07].

During more than two decades, these properties proved to be very helpful for the development of

myriads of non-critical distributed embedded systems [CiA].

Despite its uncontested success in so many application domains, the adoption of CAN for devel-

oping critical distributed embedded systems is still controversial. The main reason for this contro-

versy is that CAN exhibits many limitations with respect to dependability. According to the litera-

ture [Tör95, FMD+00, APF02, SP07, PPA+09], the main dependability limitations of CAN are:

1

2 Chapter 1. Introduction

• Low bit rate

• Large and variable jitter

• Limited flexibility

• Limited error containment

• Limited data consistency

• Limited support for fault tolerance

• Lack of clock synchronization

Nevertheless, regardless of such dependability limitations, the enormous popularity of CAN makes

it a very cost-effective technology. Due to this, substantial efforts have been carried out in order

to overcome these dependability limitations and extend the applicability of CAN to more critical

systems, at a reasonable cost. Many researchers have addressed these limitations and several so-

lutions are already available (e.g. in [APF02, SP07, RGR98, BB01, PV03]). Integrating all these

solutions into a single, comprehensive architecture is still a pending issue, which may not be straight-

forward [RNBP03a], but it seems that CAN may become a reasonable choice even for critical appli-

cations [PPA+09].

1.2 Problem statement

The motivation of our research is to help in this effort of improving the dependability properties of

CAN. We do it by bringing into focus one of the dependability limitations that, in our opinion, merits

more attention: the lack of a clock synchronization service. In the context of CAN, the problem of

clock synchronization has been usually addressed only superficially, but we claim that this service

actually plays a fundamental role for the achievement of many dependability attributes. A careful

look into the solutions proposed to overcome the dependability limitations of CAN reveals that most

of them do rely on the existence of a synchronized clock. In this sense, it can be said that clock

synchronization is a “hidden” requirement for having dependable CAN-based systems.

Furthermore, many of the techniques proposed for improving the dependability of CAN impose

some strict requirements on the clock synchronization service. These techniques assume that the

system works with a clock synchronized with very high precision, in the order of a few µs, and

assume that this clock is available to all the nodes of the system. This calls for the adoption of fault

tolerance techniques, which should make the clock synchronization service reliable enough.

1.3 Our approach 3

However, the proposals that are currently available for clock synchronization over CAN [RGR98,

FMD+00, LA03, APSP07, SP07] do not provide a service that fulfills these requirements, especially

in what concerns fault tolerance. Most of current solutions are designed for achieving high-precision

clock synchronization, but the provision of fault tolerance has not been satisfactorily addressed:

whenever fault tolerance techniques have been proposed, they have been only partially defined and

they have not been properly evaluated.

For all these reasons, it is clear that there is room for a novel solution for clock synchronization over

CAN; a solution that must specifically address the requirements imposed by the techniques proposed

for improving the dependability of CAN, i.e. high precision, fault tolerance and low cost.

1.3 Our approach

In this dissertation we present the architecture and the evaluation of a novel solution for clock syn-

chronization over CAN. This solution, which we have named the Orthogonal Clock Subsystem for

CAN (OCS-CAN), is specifically designed to meet the requirements that are required to achieve de-

pendability over CAN.

OCS-CAN pursues four properties: high precision, low overhead, fault tolerance and cost effec-

tiveness. In order to achieve high precision, OCS-CAN is implemented in hardware. However, for

reducing its overall cost, OCS-CAN has been conceived as an orthogonal subsystem: its architecture

is based on an independent hardware circuit, the so-called clock unit, which is attached to each CAN

node of the network and provides the intended clock synchronization service without requiring any

further changes of the nodes. Moreover, for reducing the system overhead and indirectly reduce the

cost of the solution, OCS-CAN implements a master/slave algorithm for clock synchronization, with

master redundancy for providing tolerance to faults of the master.

Besides the discussion of the OCS-CAN architecture, a significant part of this dissertation deals

with the formal assessment of the fault tolerance mechanisms of OCS-CAN. This assessment has

been performed both analytically and by means of model checking with UPPAAL, which is a model-

checking tool based on the theory of timed automata [BDL04]. The results obtained show that the

fault tolerance mechanisms of OCS-CAN work as intended, and that a specific precision is guaranteed

under the considered fault conditions. But, perhaps more importantly, this assessment also provides

very valuable insights about the relationship that exists between the potential faults of the system and

the achievable precision. This will prove that, in the presence of faults, OCS-CAN exhibits a graceful

degradation of the precision, which is indeed a very interesting property for the design of dependable

applications.

In our opinion, providing not only a suitable solution for clock synchronization in CAN, but also the

4 Chapter 1. Introduction

proper means to assess its performance (in this case the precision) against different fault conditions, is

the way to follow in order to develop an adequate architecture for supporting dependable applications

over CAN.

1.4 The thesis

This document presents the work we have conducted in order to demonstrate the truthfulness of the

following thesis:

“It is possible to design a clock synchronization service that fulfills the requirements for imple-

menting dependable applications over CAN. The suitability of the clock synchronization service will

be measured in terms of three attributes: high precision, fault tolerance and cost effectiveness”.

1.5 Main contributions

The work conducted in order to validate our thesis leaded to the following main contributions.

Study of the state of the art on clock synchronization for dependable CAN

This study consists of two parts. In the first part, we analyze the solutions proposed for improving

the dependability of CAN and infer which requirements they impose on the clock synchronization

service. In the second part, we study the available solutions for clock synchronization over CAN and

check whether they satisfy such requirements. The result of this study is that each solution presents

several drawbacks with regard to the considered requirements.

Design and prototyping of OCS-CAN

Given that none of the available solutions for clock synchronization over CAN completely satisfies the

requirements for dependable CAN, we propose a novel solution that is specifically intended to fulfill

the requirements imposed by the techniques suggested for improving the dependability of CAN. This

solution is called OCS-CAN.

OCS-CAN is made up of a set of independent devices, called clock units, which are attached to the

nodes of the system. Each clock unit is provided with a CAN controller for exchanging synchroniza-

tion messages with the other clock units. Therefore, the set of clock units constitute an independent

subsystem that is intended to provide the clock synchronization service regardless of the application

executed by the nodes. We say that this subsystem in orthogonal because it has been conceived as

1.5 Main contributions 5

an add-on subsystem, which can be adopted without the replacement of any hardware component nor

any change of the software executed by the nodes.

The scheme for clock synchronization adopted by OCS-CAN is master/slave because it reduces

both the computation and communication requirements. However, a master/slave scheme introduces

a single point of failure in the system. Therefore, the master should be replicated and a number of

mechanisms will be defined for managing master redundancy and guarantee clock synchronization

despite potential failures of the master. This fault-tolerant algorithm will take advantage of the inher-

ent properties of the CAN network in order to reduce the computation and communication overheads.

In our architecture, the clock units are implemented in hardware because it reduces the response

time of the subsystem, and therefore improves the precision. For reducing the cost of the solution,

the clock units should be implementable with low-cost hardware. In this document, and as a proof of

concept, we will discuss its implementation on a medium range FPGA.

Analytical assessment of the precision guaranteed by OCS-CAN in the presence of faults

The aim of this analysis is to assess the precision guaranteed by OCS-CAN in the presence of both

channel and node faults, for the most likely scenarios. We suggest a mathematical framework based on

piecewise linear functions for modeling the evolution of the clocks of the clock units. This framework

also considers the clock adjustment actions performed by the clock units and their effect on the clocks.

The outcome of the analysis is a series of equations that allow us to quantify the precision degrada-

tion of OCS-CAN in the presence of faults. However, this kind of analysis becomes more complicated

when different types of faults are combined, and it will eventually become unfeasible for the most

complex scenarios. For this reason, we will have to complement our analytical assessment with the

formal verification of OCS-CAN by means of model checking.

Model checking of the precision guaranteed by OCS-CAN in the presence of faults

Model checking is a formal verification technique that allows the user to determine whether a certain

property is fulfilled by a model of the system or not [BK08]. In this work, we will use model checking

for assessing the precision achieved by OCS-CAN in the presence of faults. Among the available tools

for model checking, we will use UPPAAL, since it is a model checker based on the theory of timed

automata [ACD93] that is extensively used for the formal verification of real-time systems [BDL04].

Model checking is a technique that first requires building a formal model of the system under

verification. For the case of OCS-CAN, this model must include the properties of the CAN network

as well as the properties of the clock units, including both the potential faults of the network and of

the clock units. Thus, we will have to model features such as message broadcast, arbitration, channel

6 Chapter 1. Introduction

errors, etc. Given that these features are characteristic of many CAN systems, the techniques we will

develop for modeling them will have broader applicability than just the formal verification of OCS-

CAN. Due to this, these modeling techniques constitute a significant contribution of our research and

will be thoroughly described.

The results obtained with model checking prove that the fault-tolerant master/slave algorithm of

OCS-CAN guarantees a certain precision for different fault conditions. It also shows the precision

degradation exhibited by OCS-CAN as the fault scenarios become more complex and severe, and

therefore complements the analytical assessment mentioned above.

Exhaustive study of the patterns for modeling different types of computer clocks with timed
automata and proposal of a number of new modeling patterns

As previously noted, the UPPAAL model checker is based on the theory of timed automata and,

in principle, allows the modeler to specify the behavior of a system over time in a very natural way.

However, the timed automata formalism also suffers from certain limitations, which we had to address

during the model checking of OCS-CAN.

The main difficulties concern the modeling of drifting computer clocks and the modeling of the

clock adjustment operations executed by the clock units. These two features cannot be directly mod-

eled with the timed automata formalism, in principle. Therefore, we were forced to develop a number

of novel modeling techniques that circumvented this limitation and made the formal verification of

OCS-CAN possible. Although these techniques were specifically developed for OCS-CAN, they are

applicable for the formal verification of many other distributed systems.

This generality gives more relevance to the work carried out. For this reason, in this dissertation

we will include an exhaustive discussion on the patterns we have used for modeling the clock of

the clock units with timed automata. This discussion will start with some modeling patterns that

are widely known by system modelers, and will finish with those modeling patterns that have been

specifically developed through our research.

1.6 Organization of the document

This document is divided into two parts. The first part, which is constituted by Chapter 2, Chapter 3

and Chapter 4, introduces the background concepts that are required for understanding the work

presented in the rest of this dissertation. Chapter 2 discusses the basic notions concerning clocks

and clock synchronization; Chapter 3 introduces the concept of model checking, the theory of timed

automata and the UPPAAL model checker; and Chapter 4 discusses the main features of the CAN

fieldbus from a dependability perspective.

1.6 Organization of the document 7

The second part is constituted by the rest of the chapters, and discusses the specific work that has

been carried out in order to fulfill the aims of this thesis.

Chapter 5 addresses the state of the art in clock synchronization over CAN. It discusses the re-

quirements of the clock synchronization service, which are inferred from the solutions for solving the

dependability limitations of CAN, and then it shows that none of the currently available solutions for

clock synchronization does fulfill such requirements.

In Chapter 6 we present the architecture of OCS-CAN. This chapter thoroughly describes the tech-

niques that have been adopted in order to fulfill the requirements of the clock synchronization service,

and describes the internal structure of the clock unit. The development and testing of the first proto-

type of OCS-CAN is also briefly discussed.

Chapter 7 is devoted to the analytical assessment of OCS-CAN. In this chapter, we present a mathe-

matical framework for modeling the behavior of the clocks of the Clock Units, and use this framework

for assessing the precision guaranteed by OCS-CAN under different fault conditions.

Chapter 8 discusses the main difficulties that are encountered when modeling computer clocks by

means of timed automata, and describes a series of modeling patterns that can be used for overcoming

these limitations. Some of the presented modeling patterns have been specifically developed for the

formal verification of OCS-CAN.

In Chapter 9 we address the model checking of OCS-CAN with UPPAAL. The entire formal model

of OCS-CAN is described in detail, and the results of the formal verification are presented and dis-

cussed.

Finally, Chapter 10 summarizes the work presented in this document, remarks the main contri-

butions of this dissertation, discusses the publications that resulted from the presented work, and

provides some insight for further research.

Chapter 2

Background on clock synchronization

In this chapter we will review some basic concepts about clock synchronization. We will start by

settling the basic terminology about clocks that will be used throughout this document. After that, we

will discuss the main principles for implementing clock synchronization. Finally, we will present a

simple taxonomy for classifying the different types of clock synchronization algorithms.

The aim of this section is not to perform an exhaustive discussion on the topic of clock synchro-

nization, but just to introduce the notions that are required for understanding the work presented in

the document. For further reading on clock synchronization, excellent surveys can be found in the

literature, for instance in [Sch87, AP97, Kop97, VR01].

2.1 Establishing the basic terminology about computer clocks

This section describes the types of clocks that can be found in a computer system, and discusses their

properties. It will be shown that actual clocks tend to diverge as time passes by and that, due to this,

some kind of mechanism for clock adjustment is required.

2.1.1 Ideal clocks

The function of any clock is to measure time. Therefore, prior to any discussion on clocks, we should

establish what time is, or more properly speaking, what model of time we will consider.

In this document we assume the Newtonian concept of time, as is usually done for computer sys-

tems. I.e., time is considered an external and continuous dimension that is perceived equally every-

where. This notion of time, which is often referred to as real time, can be represented by the set of

positive real numbers. Any time instant belonging to this external dimension is usually denoted with

the letter t.

9

10 Chapter 2. Background on clock synchronization

t

Cideal(t)

Cideal(t) = t

Figure 2.1: The value of an ideal clock always reflects real time

An ideal clock is the clock that always reflects the value of real time. Therefore, if we denote the

value of an ideal clock at an instant t as Cideal(t), then Cideal(t) = t for every t. This concept is

represented graphically in Figure 2.1.

It is important to remark that ideal clocks may not have physical existence. Therefore, they can be

considered only theoretically, as an artifact to represent the evolution of real time.

2.1.2 Physical clocks

In order to physically measure real time, computers rely on devices that exhibit an approximately

regular behavior over time: the local oscillators. A local oscillator is an electronic device that makes

use of some kind of piezoelectric material, such as a quartz crystal or a ceramic resonator, to provide

a periodic electrical signal of very precise frequency. Every pulse of the local oscillator is called a

microtick.

Given that the nominal frequency of the local oscillator is known a priori, measuring time would be

equivalent to counting microticks. However, since the frequency of the local oscillators is usually too

high for what needs to be measured, the local oscillator is typically connected to a frequency divider.

The output of the frequency divider is connected to a counter which should be externally accessible.

The value provided by this counter is the value of the physical clock, which will be denoted as Ci(t).

Each pulse generated by the frequency divider is called a tick of the physical clock.

The typical scheme of a physical clock is depicted in Figure 2.2. It is constituted by the three ele-

ments mentioned above: the local oscillator (L.O), the frequency divider and the counter. Figure 2.2

also shows the output provided by each element.

Although the value of Ci(t) increases in discrete steps (tick by tick), it can be satisfactorily ap-

proximated with a continuous function of rate Ċi(t). However, local oscillators inevitably deviate

from their nominal frequency (due to factors such as manufacturing imperfections, aging, tempera-

2.1 Establishing the basic terminology about computer clocks 11

L.O. 1:N Counter
µtick

fol

tick

fc = fol
N

Ci(t)

Figure 2.2: Scheme of the elements that constitute a physical clock

ture changes or variations of the power supply, for instance) and therefore the ticks of any physical

clock can never happen at a perfectly constant rate.

The deviation between the rate of a physical clock and the rate of real time is called the drift of the

physical clock, and it is obtained as follows:

ρ(t) =
Ci(t)− Ci(t0)

t− t0
− 1

A physical clock is said to be non-faulty as long as it exhibits a bounded drift. More rigorously, a

physical clock i is said to be non-faulty if for every time instant t there is a value ρmaxi > 0, such that

1− ρmaxi ≤ Ci(t)− Ci(t0)
t− t0

≤ 1 + ρmaxi

Therefore, it is possible to express the rate of the physical clock in the form Ċi(t) = 1+ρi(t), with

ρi(t) ≤ ρmaxi . The value of ρmaxi is usually in the order of 10−4 to 10−6.

Figure 2.3 shows the most common configuration for a node using a physical clock. In this case, the

frequency divider and the counter (represented in the figure with the block labeled as Physical clock)

are part of the processor, which means that they are implemented in software, at least partially. The

application, which is also executed by the processor, uses the value provided by the physical clock

for its computations.

In a distributed system, this configuration allows each node to work with its own (local) perception

of time. However, given that each physical clock increases with a different drift, the nodes may not

have a consistent perception of time, even if they use physical clocks with the same nominal rate.

This is illustrated in Figure 2.4.

This figure shows the evolution over real time of two physical (and therefore drifting) clocks. For

illustration purposes, the central line shows an ideal clock, which perfectly maps real time. The upper

line shows a fast clock (ρi > 0) whereas the lower line shows a slow clock (ρj < 0). Notice that,

since each physical clock exhibits an individual and different drift, their values tend to diverge, even

if they had the same value initially.

12 Chapter 2. Background on clock synchronization

Figure 2.3: Structure of a node with a physical clock

t

Ci(t), Cj(t)
Ci(t)

Cj(t)

Figure 2.4: Behavior of two drifting physical clocks

At a given instant, the difference between the values of two clocks i,j is called their offset and is

denoted as Φij(t). In Figure 2.4 it can be noticed that the offset between Ci(t) and Cj(t) increases as

time passes by. Therefore, it is obvious that this type of clocks do not guarantee that the nodes share

a common perception of time.

2.1.3 Virtual clocks

Some distributed systems should be built upon the assumption that all the nodes have access to a time

reference which is perceived equally everywhere within the system. The main advantage of having

such a common time reference is that the nodes can rely on this reference in order to coordinate their

operations. Nevertheless, this approach works only as long as every node is able to know the value

of the common time reference very closely. This is a problem because each node only has access, in

principle, to its local physical clock, and, as already discussed, physical clocks tend to diverge. For

2.2 Aims and phases of clock synchronization 13

this reason, an additional mechanism is required.

For solving this problem, each node also implements a periodical procedure, called the clock syn-

chronization algorithm, which is intended to reduce the offset among the nodes and thus guarantee

an approximately consistent perception of time. The clock that a node i obtains after applying the

clock synchronization algorithm on its physical clock is called the virtual clock of node i, and will be

denoted as vci(t). Clock synchronization will be further discussed in Section 2.2 and Section 2.3.

The clock that provides the common time reference of the system is known as the global clock. An

important characteristic of the global clock is that it does not map real time perfectly; it may diverge

up to a certain extent. Moreover, it is important to remark that the global clock can have physical

existence or not. The global clock does exist physically when it is chosen among the available virtual

clocks in the system. This is the case, for instance, in the so-called master/slave approach for clock

synchronization. In that approach, one of the virtual clocks (usually the one with the best-quality

local oscillator) becomes the global clock, or master, and the other virtual clocks become slaves and

try to follow the master’s virtual clock as close as possible.

In contrast, the global clock does not exist physically when it is defined as a function of the values

of a number of virtual clocks. For instance, for a certain time instant t, the value of the global clock

CG(t) may be calculated by averaging the values of four virtual clocks as follows

CG(t) =
vc1(t) + vc2(t) + vc3(t) + vc4(t)

4
.

The specific function that is used for calculating the value of the global clock is called the con-

vergence function. Several convergence functions have been proposed in the literature (for instance,

see [Sch87, AP97]) but discussing them is out of the scope of this chapter. Note that the rate of the

global clock may be obtained in an analogous way, for instance by averaging the rates of a number of

physical clocks.

2.2 Aims and phases of clock synchronization

Table 2.1 shows the types of clocks that have been discussed in Section 2.1, and summarizes their

main properties. According to this classification of clocks, the function of the clock synchronization

algorithm executed by each node is to get its own virtual clock as close as possible to the global clock.

The ultimate goal of this procedure is, however, to guarantee that the values of any two non-faulty

virtual clocks of the system do not differ by more than a given amount Π, which is called the precision.

This property, which is known as the internal clock synchronization property, can also be formulated

as follows: for any pair of non-faulty nodes i, j and any time instant t, it is satisfied that |vci(t) −
vcj(t)| ≤ Π.

14 Chapter 2. Background on clock synchronization

Table 2.1: Types of clocks and their characteristics

Clock name Other names What it measures Exists physically
Ideal clock Newtonian clock, The external and No, it is a theoretical

Perfect clock continuous dimension construction.
we call real time.

Physical clock Hardware clock It counts ticks of a Yes. It consists of a local
local oscillator, attempting oscillator, a frequency
to approximate the value divider and a counter.

of the ideal clock
Virtual clock Logical clock, It approximates the value Yes. It is a physical clock,

Synchronized clock of the clock defined plus a mechanism for
as the time reference clock correction.

Global clock Absolute clock, An absolute reference It may exist physically
Reference clock, time, common to all nodes. or not.

System-wide clock

The quality of a clock synchronization algorithm is inversely proportional to the value of Π. The

lower is the value of Π guaranteed, the better is the precision achieved.

For some distributed systems, maintaining internal clock synchronization is not enough. This is the

case for instance of many large-scale distributed systems, in which the operation of the nodes need to

be synchronized with some external source of time that provides a better approximation to real time,

such as the Universal Time Coordinate (UTC). The fulfillment of this property is known as external

clock synchronization. The aim of external clock synchronization is therefore to guarantee that the

difference between any non-faulty virtual clock of the system and real time is less than a certain value

α, which is called the accuracy, so that: |vci(t)− t| ≤ α.

A well-known result of clock synchronization states that guaranteeing an external clock synchro-

nization of accuracy α enforces internal clock synchronization with precision Π = 2α.

The clock synchronization algorithm is executed by each node individually, and it requires to peri-

odically perform the following three phases [AP97]:

1. Detection of the periodic synchronization event. This event usually consists in the reception of

a preconcerted and periodic message, although other alternatives exist.

2. Estimation of the value of the global clock at that specific time instant.

3. Calculation and correction of the error of the (local) virtual clock.

Figure 2.5 shows a simplified example of clock synchronization with three nodes, in which the exe-

2.2 Aims and phases of clock synchronization 15

t

t

t

Phase 1 Phase 2 Phase 3

Sync

Sync

Sync

τ3

τ2

τ1

TS3

TS2

TS1

TS1

TS1

TS1

TS2

TS2

TS2

TS3

TS3

TS3

Clock adjustment

Clock adjustment

Clock adjustment

Figure 2.5: Phases of a clock synchronization algorithm

cution of these three phases is visible. The figure uses a different timeline for representing the actions

performed by each node. In this example, the synchronization event is the reception of the message

labeled Sync. This message is broadcast by one of the nodes, even though it is not represented in

the figure. Due to the different network latencies, every node receives the Sync message at a slightly

different instant. Then, as soon as a node receives the Sync message, it has to take a sample of its

own virtual clock. This sample is called a timestamp of the Sync message and it is denoted as TSi.

The processing of the just received Sync message needs some time, which should be different

at each node. This delay is represented in Figure 2.5 with the delay τi. Thus, the combination of

both latencies (the network latency and the processing latency) makes the nodes sample their virtual

clocks at different real time instants. This difference causes a certain error that, as it will be discussed

in Section 2.3, has a negative impact on the best achievable precision. Due to this, the separation

among the timestamping instants should be reduced as much as possible.

In Phase 2, the nodes exchange the timestamps they have taken in Phase 1 and use them in order

to obtain the value of the global clock. The number of nodes that send the timestamp depends on the

specific type of clock synchronization being used. For instance, in master/slave clock synchroniza-

tion, only one of the nodes sends its timestamp, and the other nodes take this value as the value of the

global clock. Whereas in distributed clock synchronization, several nodes send their corresponding

timestamps, and then each node applies a predefined convergence function (for example, the average

function) on these values for obtaining the value of the global clock.

In Phase 3, also known as clock adjustment, each node calculates the difference between the value

of its virtual clock and the (estimated) value of the global clock. Using this information, the node

calculates a correction term that has to be applied for correcting the already accumulated offset with

16 Chapter 2. Background on clock synchronization

respect to the global clock as well as for reducing the offset to be accumulated in the near future.

2.3 A simple taxonomy of clock synchronization algorithms

The wide variety of clock synchronization algorithms that are found in the literature is a consequence

of the multiple ways to carry out each one of the phases discussed in Section 2.2. Since it is not

possible to discuss every possible implementation of clock synchronization, in this section we will

focus on the techniques that are particularly relevant for the design of OCS-CAN. More specifically,

we will study some of the techniques that can be applied in Phase 1 and Phase 2 and will discuss how

they affect the properties of precision, fault tolerance and cost effectiveness.

2.3.1 Software vs. hardware timestamp

As explained in Section 2.2, the first phase of any clock synchronization algorithm is detecting the

synchronization event (the Sync message) and taking the associated timestamp. This phase can be

implemented either in software or in hardware.

On the one hand, the choice between software or hardware has a strong impact on the precision,

because the processing latency for detecting the Sync message (τ i in Figure 2.5) is much higher for

the case of a software-implemented mechanism. As indicated in ([Kop97], Table 3.2) whenever the

timestamp is implemented in hardware, the achievable precision is in the order of a few µs, whereas

for a software implementation the precision is only of about hundreds of µs.

On the other hand, the implementation of the timestamp mechanism in software is a better solution

concerning cost-effectiveness. A hardware implementation requires installation of a specific circuit

in every node that performs the detection of the Sync message. Due to this, software detection is, in

principle, more flexible and also has lower installation costs.

2.3.2 Symmetric vs. asymmetric schemes

In Section 2.2, it was indicated that the number of messages to be exchanged in Phase 2 may vary

depending on the implementation. According to the number of messages exchanged, it is said that

Phase 2 follows either a symmetric scheme or an asymmetric scheme.

In a symmetric scheme, every node sends a message conveying its timestamp of the synchronization

event. After that, each node applies the same convergence function in order to obtain the value of the

global clock. This scheme takes takes into account, in principle, the contribution of each clock of

the system. In contrast, in an asymmetric scheme there is one privileged node (the master), and it

2.3 A simple taxonomy of clock synchronization algorithms 17

is the only node allowed to send its timestamp. The rest of nodes (the slaves) use this timestamp to

synchronize to the master.

Concerning precision and accuracy, both the symmetric and the asymmetric scheme can achieve

the same values. Symmetric solutions are often considered more accurate since the use of many

clocks compensates their drifts and results into a global clock that very closely approximates real

time. Nevertheless, a master/slave scheme may also provide very good accuracy as long as the master

has access to an accurate time source; for instance, if the master is provided with a GPS receiver.

In order to reach fault tolerance, the use of a symmetric scheme is more recommendable. Symmet-

ric schemes are naturally redundant and hence favor implementation of more complete fault tolerance

mechanisms. In contrast, in an asymmetric scheme the master constitutes a single point of failure of

the system, since a failure of the master would left all of the nodes unsynchronized. Nevertheless,

the master’s reliability can also be improved by investing in its quality or by means of fault tolerance

techniques such as master replication.

Concerning cost-effectiveness, the asymmetric scheme seems to be more suitable for distributed

embedded systems with limited bandwidth available, since these schemes require transmission of

much less messages. Moreover, symmetric schemes require nodes to manage a high number of mes-

sages in a short time interval, and this overhead can exceed the capacity of certain low-cost processors.

Chapter 3

Introduction to model checking and
timed automata

This chapter introduces the basic knowledge that is required to understand the formal verification of

OCS-CAN. Among the existing possibilities, the formal verification of OCS-CAN has been carried

out by means of model checking, with a tool based on the theory of timed automata called UP-

PAAL [BDL04]. Therefore, this chapter will discuss the fundamentals of model checking, introduce

the theory of timed automata, and present the basic features of UPPAAL.

3.1 Main techniques for system evaluation

There are three common ways to investigate the correctness of a system: simulation, testing and

formal verification. Each one of these techniques exhibits some strengths and some weaknesses,

which make them complementary [Kat98]. For this reason, they are usually combined in order to

obtain the best out of each technique.

Simulation is based on the use of a model that describes the possible behavior of the system. This

model is somehow executed with a software tool (known as the simulator) in order to observe the

reactions of the system on certain stimuli. It is useful for a quick, first assessment of the quality of

a design. But it is less suited to find subtle errors since it is infeasible (and often just impossible) to

simulate all representative scenarios.

In testing, one takes the actual implementation of the system, stimulates it with certain inputs,

observes its reactions (typically measuring the outputs) and checks whether they conform to the re-

quired outputs. The set of inputs used for stimulating the system are called the tests, and they should

be carefully chosen as they should be representative enough. Nevertheless, testing can only show the

19

20 Chapter 3. Introduction to model checking and timed automata

presence of errors, never their absence.

The aim of formal verification is to prove —in the strict mathematical sense of the word— that a

system operates correctly; where correctly means that it does not deviate from its expected behavior.

Thanks to this mathematical approach, formal verification (unlike simulation and testing) can pro-

vide guarantees about the absence of errors in a system. For this reason, this type of evaluation is

particularly important for the design and assessment of fault-tolerant systems.

The procedure that must be followed for formally verifying a system consists of three tasks:

1. Constructing a formal (i.e. mathematical) model of the system under investigation, which must

represent the possible behavior of the system.

2. Writing the correctness requirements in a formal requirement specification, which represent the

desirable behavior of the system.

3. Finding a formal proof (a mathematical demonstration), which shows that the possible behavior

agrees with the desired behavior.

There exist several techniques for formal verification, which can be grouped into two categories:

theorem proving and model checking [Kat98]. Although both groups follow the procedure discussed

above, the way to perform each task may vary from one technique to another. In the rest of this

chapter, we will focus on model checking since it has been the technique adopted for the formal

verification of OCS-CAN.

3.2 The concept of model checking

The idea behind model checking is to use algorithms, executed by computer tools called model check-

ers, to verify the correctness of systems. According to the scheme discussed in Section 3.1, this means

that the last step (finding a formal proof) is left to the computer, whereas the user is still responsible

for providing both a formal model of the system and a formal specification of the requirements (or

properties) to be fulfilled. Figure 3.1 depicts the basic scheme of the model checking procedure.

Models are usually specified in the form of automata, whereas the properties are usually stated in

some kind of temporal logic. Once they are provided, model checking is an automated technique that

systematically checks whether the intended properties hold for the model [CGP01, BK08]. To do so,

the model checker performs an exhaustive state space search of the model of the system: it generates

all the possible states of the model and for each state it checks whether the property is satisfied or not.

In its simplest form, this technique is known as reachability analysis [Kat98].

3.2 The concept of model checking 21

Model

Properties

Model

checker
Yes/No

Figure 3.1: Model checking procedure

Moreover, whenever the system model does not fulfill the intended property, the model checker

provides a counter example (in the form of a trace) to show under which circumstances the property

is violated. This feature is one of the main strengths of model checking, since it makes it possible not

only to find errors in the system design, but also to detect flaws in the formal model as well as in the

requirements specification.

Model checking was proposed in the early 80’s, in the pioneering works by Clarke and Emer-

son [CE82], and Queille and Sifakis [QS82]. Since then, this technique has been continuously in-

vestigated and improved in order to make model checking more efficient and thus suitable for larger

hardware and software system. For instance, the development of Symbolic Model Checking with Or-

dered Binary Decision Diagrams (OBDD), Partial order reduction, and Bounded Model Checking

with propositional satisfiability (SAT) made it possible to apply model checking to complex systems

(e.g. see [Kat98], Chapter 5). Current examples of the industrial application of model checking in-

clude verification of the designs for integrated circuits (particularly microprocessors) as well as com-

munication protocols, software device drivers, real-time embedded systems and security algorithms,

among many others [CGP01, BK08].

As a clear indicator of the success experienced by model checking, ACM (the Association for

Computing Machinery) named Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis the winners

of the 2007 A.M. Turing Award, for their original and continuing research in the quality assurance

process known as model checking . This award is widely considered the most prestigious one in

computing. The Turing Lecture from the winners of the 2007 ACM A.M. Turing Award can be found

in [CES09].

Nevetheless, despite its several advantages, model checking has also certain limitations. A thorough

discussion on these limitations is out of the scope of this work, but we would like to remark the two

limitations that have more importantly affected the formal verification of OCS-CAN.

1. The state-space explotion problem. This is probably the most well-known limitation of model

checking. It is related to the exhaustive state space search, and occurs whenever the full state

space cannot be effectively computed by the model checker. This leads to decidability prob-

22 Chapter 3. Introduction to model checking and timed automata

lems: for some systems it may not be possible to determine whether a given property is satisfied

or not. This limitation is usually circumvented by abstracting away the features of the model

that are irrelevant with respect to the properties to be verified. However, applying the right

abstractions is not straightforward and requires some expertise.

2. Model vs. implementation. By means of model checking one does not check the actual

implementation of the system, but only a model of it. Therefore, the suitability of this technique

strongly depends on the capacity of the user to specify a model that captures the real behavior

of the system under verification.

Because of these two limitations, the use of model checking typically implies a compromise be-

tween complexity and realism. Too much realism (i.e. specifying a too detailed model) may cause

excessive complexity and may lead to decidability problems, whereas too less realism may lead to

wrong or, at least, irrelevant verification results.

For the case of a real-time system, a realistic specification must include not only the functional

aspects of the system, but also its temporal behavior. Fortunately, certain formalisms have been

developed for model checking, which allow specification of temporal aspects without introducing

excessive complexity. For instance, the notion of timed automaton [ACD93], to be discussed in

Section 3.3, extends the idea of finite state automaton with a quantitative representation of time that

has been very useful for model checking real-time systems.

3.3 The theory of timed automata

A timed automaton is basically a discrete automaton extended with a finite set of real-valued variables,

named clocks, for modeling the passage of time. In this section, we introduce the formal definition of

timed automaton and discuss its dynamical behavior with a simple example.

3.3.1 Clocks and clock constraints

Before introducing the concept of timed automaton, we have to define the concepts of clock and clock

constraint, as they constitute a fundamental part of the timed automaton formalism.

Definition 1 (Clock). A clock is a variable ranging over R+.

Clocks are usually denoted with the letters x, y, z. A clock constraint is a condition defined over a

clock x or over a clock difference x− y.

3.3 The theory of timed automata 23

Definition 2 (Clock constraint). For a set C of clocks, with x, y ∈ C, the set of clock constraints over

C, Ψ(C), is defined by

α := x ≺ c | x− y ≺ c | ¬α | (α ∧ α)

where c ∈ N and ≺∈ {<,≤}.

For the sake of brevity, clock constraints of the form ¬(x < c) and ¬(x ≤ c) will be written,

respectively, as x ≥ c and x > c.

3.3.2 Formal definition of timed automaton

The notions of clock and clock constraint are incorporated to the timed automaton formalism as

follows [Kat98].

Definition 3 (Timed automaton). A timed automatonA is a tuple (L, l0, E,Label , C, clocks, guard , inv)

with

• L, a non-empty, finite set of locations with initial location l0 ∈ L

• E ⊆ L× L, a set of edges

• Label : L → 2AP , a function that assigns to each location l ∈ L a set Label(l) of atomic

propositions

• C, a finite set of clocks

• clocks: E → 2C , a function that assigns to each edge e ∈ E a set of clocks, clocks(e), to be

reset

• guard : E → Ψ(C), a function that labels each edge e ∈ E with a clock constraint guard(e)

over C, and

• inv : L→ Ψ(C), a function that assigns to each location an invariant inv(l).

Note that this definition is very similar to the usual definition of discrete automaton. However, there

are two important differences between both types of automata.

24 Chapter 3. Introduction to model checking and timed automata

1. The definition of state in a timed automaton changes from the usual definition of state in a

discrete automaton. In a timed automaton, the state consists of the current location of the

automaton plus the current values of all clock variables. In principle, this makes the number of

possible states of a timed automaton uncountable. However, during the model checking process

the states can be grouped so as to form a finite set; the automaton obtained as a result of this

grouping process is called the equivalent transition system [ACD93, Kat98]. The reachability

analysis is feasible for this transition system, what makes model checking possible.

2. A discrete automaton may change its state only in one way, by means of a discrete transition. In

contrast, a timed automaton may evolve in two different ways. The first one, which coincides

with the discrete automaton’s only way, is called a discrete transition and occurs whenever the

timed automaton traverses an enabled edge and changes to a different location. These transi-

tions take no time. The second way, specific for timed automata, is called a delay transition.

A delay transition causes all the clocks of the timed automaton to increase by an infinitesimal

quantity, while staying in the same location.

In summary, the initial state of a timed automaton is the pair (l0, v0), where l0 is the initial location

of the timed automaton, and v0 is the time assignment assigning 0 to all clock variables. Once

initialized, clocks start incrementing their value implicitly, and they all proceed at the same rate.

Conditions on the values of clocks (i.e. clock constraints) are used as enabling conditions (or guards)

of discrete transitions: only if the clock constraint is fulfilled, the transition is enabled, and can be

taken; otherwise, the transition is blocked.

Clocks can be initialized only when the system makes a discrete transition. The value of a clock

thus denotes the amount of time that has been elapsed since it has been initialized. Invariants on

clocks are used to limit the amount of time that may be spent in a location and to force the model to

progress over time.

3.3.3 Dynamics of a timed automaton

In order to illustrate the dynamics of a timed automaton, let us consider the timed automaton A1

shown in Figure 3.2. For depicting timed automata we adopt the following convention: circles denote

locations and edges are represented by arrows. The initial location is highlighted with a thicker line.

The timed automaton of Figure 3.2 has two clocks, x and y, two locations l0 and l1, and an edge

from location l0 to l1 labeled with the guard y ≥ 1, and the reset set {x}. Location l0 is labeled

with the location invariant x ≤ 2. In the following, invariants will be written in bold face in order to

differentiate them from guards.

3.3 The theory of timed automata 25

l0 x ≤ 2

l1

y ≥ 1

{x}

Figure 3.2: Timed automaton A1

t

x, y

y

x
x

x

1

2

1 2

a
b

c

Figure 3.3: Possible behavior of timed automaton A1, with three potential traces

Assuming that all of the clock variables are initially set to zero and that the initial control location

is l0, the automaton starts in the state (l0, x = y = 0). As the clocks increase (by means of delay

transitions) synchronously with time, it may evolve to all states of the form (l0, x = y = t), where t

is a non-negative real number less than or equal to 2. At any state with t ∈ [1, 2] it may change to

state (l1, x = 0, y = t)) by following the edge from l0 to l1, that resets x.

Figure 3.3 shows over a single graph three possible traces of clocks x and y, according to A1. The

grey area indicates the interval t ∈ [1, 2] in which a discrete transition from l0 to l1 is possible. The

points labeled as a, b and c correspond to the instants t = 1, t = 1.2 and t = 2, respectively. For

each point, a dashed line indicates the behavior of clock x if the transition would be taken. Note that

the timed automaton may not idle forever in location l0 since the location invariant x ≤ 2 forces it to

leave location l0 within 2 time units.

26 Chapter 3. Introduction to model checking and timed automata

3.4 The challenge of modeling computer clocks with timed automata

The main advantage of the notion of clock included in the timed automata theory is that it models

the passage of time in a quantitative manner. This allows both the specification and the verification

of quantitative temporal properties, such as “the automaton stays in location l not longer than t time

units” or “property φ holds for t time units”, to give just some simple examples.

The notion of time featured by these clocks has proved to be especially useful for model checking

real-time systems, since the temporal requirements of this kind of systems are mainly specified quan-

titatively, e.g. in the form of periods, deadlines, etc. Nevertheless, it is also known that the dynamics

of the clocks of a timed automaton are sometimes too idealistic and that for certain systems, typically

distributed systems, these clocks may fail to reflect their real temporal behavior [ATM05].

In this section we will discuss what causes this limitation of the timed automata theory and how

it relates to the problem of model checking OCS-CAN. Later on, in Chapter 8, we will describe the

modeling techniques that will be applied for circumventing this limitation and formally verifying our

system.

3.4.1 Some remarks about our nomenclature

At this point it is interesting to review the nomenclature we established in Chapter 2 for designating

each type of clock that can be considered in a distributed system. In Chapter 2, we indicated that the

nodes of a distributed system may work with three types of clocks: ideal clocks, physical clocks and

virtual clocks.

According to their implementability, these three types of clock can be grouped into two categories.

Ideal clocks belong to the category we define as theoretical clocks, given that they are an abstract

notion that cannot be implemented. In contrast, both physical clocks and virtual clocks belong to the

category we define as computer clocks, given that they can be actually implemented as devices, i.e.

by means of hardware and software. Computer clocks are therefore subject to imperfections, aging

and other phenomena that make their behavior far from being ideal.

In Section 3.3, we indicated that a timed automaton (TA, for short) is basically a discrete automaton

extended with a number of real-valued variables, named clocks. In order to differentiate these clock

variables from the devices known as computer clocks, we will hereafter refer to the former as TA

clocks.

In the following discussion, we will explain why TA clocks cannot be used directly for modeling

computer clocks. Basically, it will be shown that TA clocks are built upon certain assumptions that

do not hold for computer clocks.

3.4 The challenge of modeling computer clocks with timed automata 27

3.4.2 Temporal evolution of a set of TA clocks

As indicated in Section 3.3.3, the semantics of a TA assumes the TA clocks to be continuous and to

evolve at the constant rate of real time. This corresponds to the notion of ideal clock, as introduced

in Chapter 2. However, the devices that computer systems use for measuring time, i.e. the computer

clocks, exhibit a non-ideal behavior. On the one hand, physical clocks always exhibit certain drift with

respect to real time, and also with respect to each other. On the other hand, even when some kind

of mechanism for clock synchronization is applied on the physical clocks, the virtual clocks obtained

still evolve at slightly different rates, since perfect clock synchronization between virtual clocks is

unfeasible in practice.

In Section 2.1, we specifically characterized the behavior of the computer clocks with two variables:

the value and the rate. We also defined a measure for characterizing the synchronization between a

pair of computer clocks: the offset, which is the difference between the clocks’ values. These concepts

can also be used for explaining the problem of realistically modeling computer clocks by means of

TA clocks.

According to the theory of TA, when the operation of a TA starts, at t = 0, the value of each TA

clock equals 0. From that moment on, each TA clock x increases at a constant rate ẋ = 1, which

obviously means that x = t. However, if a TA clock x is reset at a certain instant, for instance at

t = tx, then the value of the TA clock will be x = t− tx from that moment on, until it is reset again.

Figure 3.4 illustrates the implications that this behavior has on the offset between the TA clocks.

This figure shows the evolution of two TA clocks, x and y, that are reset at tx and ty, respectively.

Given that these TA clocks belong to the same automaton, they increase at the same rate. This is

noticeable in the fact that they evolve following parallel lines.

Figure 3.4 also shows that the offset between the TA clocks changes as a consequence of every reset

of a TA clock, but remains unchanged otherwise. In fact, the offset between x and y at any instant

t is a constant that equals the distance between the instant in which y was reset for the last time and

the instant in which x was reset for the last time, since x− y = t− tx − (t− ty) = ty − tx. For the

specific case depicted in Figure 3.4, the offset between the TA clock x and the TA clock y is:


x− y = 0, for 0 ≤ t < tx;
x− y = −tx, for tx ≤ t < ty;
x− y = ty − tx, for t ≥ ty.

This behavior does not correspond to the typical behavior of a pair of computer clocks, as it is

discussed in the next subsection.

28 Chapter 3. Introduction to model checking and timed automata

t

x, y

x

y

x− y = ty − tx

tx ty

Figure 3.4: Representation of the temporal evolution of two TA clocks belonging to the same TA

t

x, y
y

x

(a)

t

x, y

y

x

(b)

Figure 3.5: Possible temporal evolution of two computer clocks: (a) depicts the evolution of two

physical (drifting) clocks; (b) depicts the temporal evolution of two virtual (synchronized) clocks

3.4.3 Temporal evolution of a set of computer clocks

Figure 3.5 depicts the typical temporal evolution of a pair of computer clocks, for the two cases

possible. On the one hand, Figure 3.5(a) represents the evolution of two physical clocks that drift

apart. On the other hand, Figure 3.5(b) represents two virtual clocks that are synchronized such that

virtual clock y is periodically corrected in order to follow virtual clock x.

If we compare the behavior of these computer clocks with the temporal behavior of a pair of TA

clocks, which was shown in Figure 3.4, we will see that there exist two significant differences:

1. Both physical clocks and virtual clocks evolve at a rate different from real time. Since each

computer clock increases at a different rate, the offset between them is not constant but keeps

increasing with time, unless (for the case of the virtual clocks) some kind of clock correction

3.5 The concept of perturbed timed automaton 29

is applied. Notice that, in contrast to the behavior exhibited by TA clocks, the fact of being ini-

tially synchronized with offset 0 does not imply that the computer clocks remain synchronized.

2. For the case of a pair of virtual clocks, both the value and the rate of a given clock may change

abruptly in order to follow the value and the rate of another virtual clock.

The specification of these two characteristics will constitute the main challenge for the realistic

modeling of computer clocks with timed automata. Fortunately, even though computer clocks cannot

be directly modeled by means of TA clocks, it is possible to apply certain modeling patterns, which

will overcome the limitations of the TA clocks and allow the specification of systems conforming to

the behavior of a system that uses computer clocks.

These modeling patterns will rely on two specific techniques. The first technique is the one known

as perturbed timed automaton, which was first described in [ATM05]. The second technique has been

specifically developed for the formal verification of OCS-CAN, and is therefore a significant contribu-

tion of this work. We have coined the term clock pointers for designating this technique. The concept

of perturbed timed automaton will be discussed in Section 3.5, but the concept of clock pointer will

be discussed in Chapter 8, when describing the modeling patterns for systems with computer clocks.

3.5 The concept of perturbed timed automaton

The aim of this section is to introduce a new class of automaton, the so-called perturbed timed au-

tomaton, which will be fundamental in order to model systems with physical and virtual clocks. The

notion of perturbed timed automata was defined in [ATM05] as a means to specify a particular kind

of hybrid systems: those that can be modeled as rectangular hybrid automata [HKPV98]. However,

addressing the topic of formal verification of hybrid systems is out of the scope of this document, and

hence we will only discuss those details that are required for understanding the modeling patterns of

Chapter 8.

A perturbed timed automaton is also a discrete automaton with some real-valued clocks, but the

semantics of a perturbed timed automaton allows one of the clocks to vary within a certain constant

range [xl, xu], such that xl ≤ ẋ ≤ xu. Therefore, a timed automaton as defined in Section 3.3, can

be seen as a trivial case of perturbed timed automaton in which 1 ≤ ẋ ≤ 1 for every clock x.

In [ATM05], it is shown that any perturbed timed automaton can be translated into an equivalent

timed automaton, as long as the bounds over the clock rate (xu and xl, mentioned above) are constant

and known a priori. This result is important because it implies that the class of perturbed timed

automata belongs to the class of automata that can be verified by means of model checking [HKPV98].

30 Chapter 3. Introduction to model checking and timed automata

The rationale behind the translation from perturbed timed automata to timed automata is that having

a clock of bounded rate is equivalent to having an ideal clock and defining the occurrence instants as

time intervals whose lengths depend on the rate boundaries. Therefore, to obtain a timed automaton,

the modeler must place the uncertainty of the clock rate into the guards and invariants.

We will explain this transformation with a simple example. Let us consider a timer that expires

after T time units, and let us consider that this timer uses a physical clock that ticks with a rate in

the range [1 − ρ, 1 + ρ]. Note that this is consistent with the definition of physical clock given in

Section 2.1.2.

Figure 3.6 shows the effect that the physical clock’s drift may have in the expiration instant of the

timer. The upper line depicts the evolution of a clock evolving at the highest rate allowed, whereas

the lower line depicts the evolution of a clock evolving at the lowest rate allowed. These two lines

then define an envelope for the potential behavior of the physical clock, which makes it possible

to determine the earliest and the latest instants in which the timer may expire. These instants are,

respectively, t1 = T
1+ρ and t2 = T

1−ρ . The grey area in the abscise (between t1 and t2) corresponds

therefore to the dense time interval in which the expiration is possible.

The end points of this interval are the key for the transformation into timed automata, because

the same behavior can be achieved if we build the model with a timed automaton that has a guard

condition for the earliest occurrence instant and a time invariant for the latest occurrence instant.

The resulting automaton is depicted in Figure 3.7(a). Assuming that the transition from location l0
to location l1 is the event that the timer triggers, Figure 3.7(a) shows that the temporal behavior of

the timed automata would be the same as the one of the perturbed timed automata, provided that

Tmax = t2 = T
1−ρ and Tmin = t1 = T

1+ρ .

However, and due to the fact that ρ � 1, in our modeling we will apply these appromixations:

Tmax = T
1−ρ ' T(1+ρ), and Tmin = T

1+ρ ' T(1−ρ). The main reason to use these approximations

is to facilitate the work with UPPAAL, because this tool only allows definition of guards over integer

values, and it is easier to be guaranteed with a multiplication than it is with a quotient.

It is important to remark that, when applying this modeling technique, the resulting timed automa-

ton will include all the possible behaviors for every clock rate in the range [1 − ρ, 1 + ρ]. This

constitutes a very positive aspect of the modeling, because it guarantees that the results provided by

model checking are not only valid for one specific clock rate, but for the whole range of possible rates.

This is a significant advantage in front of testing, for instance, in which generating all the possible

clock rates is not possible.

The notion of perturbed timed automata and the transformation into timed automata will be of

paramount importance in order to model the computer clocks of OCS-CAN. The way in which this

modeling technique should be applied will be further discussed in Chapter 8.

3.5 The concept of perturbed timed automaton 31

t

x
x = t

x = (1 + ρ)t

x = (1− ρ)t

T

t1 t2

Figure 3.6: Graphical representation of the potential uncertainty caused by the physical clock’s drift

l0 x ≤ Tmax

l1

x ≥ Tmin

(a)

t

x
x = t

x = (1 + ρ)t

x = (1− ρ)t

T

t1 t2

Tmin

Tmax

(b)

Figure 3.7: Example of a translation to timed automata: (a) is the resulting timed automata, (b) is the

graphical description of the translation

32 Chapter 3. Introduction to model checking and timed automata

3.6 The UPPAAL model checker

UPPAAL is an integrated tool environment for modeling, validation and verification of real-time sys-

tems [BDL04, LPY97, BDH+06]. It was jointly developed, and is jointly maintained, by the Depart-

ment of Information Technology at Uppsala University, in Sweden, and the Department of Computer

Science at Aalborg University, in Denmark. It was first released in 1995, and since then is has become

probably the most widespread model checking tool based on the theory of timed automata [BK08].

More specifically, UPPAAL allows the modeling of systems as networks of timed automata, ex-

tended with certain data types, such as bounded integers and arrays. In addition, UPPAAL not only

performs the verification of the properties of a system model, but also integrates a tool for creating the

models to verify by means of a user-friendly Graphical User Interface (GUI). UPPAAL also includes

a simulator that allows the user to partially test her models before starting the automated verification

of properties.

This section will discuss the modeling features of UPPAAL, together with the simulator and the

verifier that the tool incorporates.

3.6.1 Networks of timed automata

A network of timed automata Ā is the parallel composition A1 | . . . | An of a finite collection

A1, . . . , An of timed automata for a given synchronization function |. The UPPAAL tool uses net-

works of timed automata composed with a CCS-like parallel composition operator [Mil89]. It allows

for individual components to perform internal actions (i.e. interleaving), and for pairs of components

to synchronize on actions.

To describe the notion of a network of timed automata more formally, we define the state of a

network automata Ā as a pair (l̄, v), where l̄ is a location vector in Ā and v is a clock valuation over all

clocks in Ā. We further define the set of actions over alphabet Σ to be {a! | a ∈ Σ}∪{a? | a ∈ Σ}∪τ ,

where τ is a distinct silent action.

A network of timed automata (like a single timed automaton) can only perform two types of tran-

sitions: discrete transitions and delay transitions. Nevertheless, it is possible to distinguish two kinds

of discrete transitions, namely τ -transition and synchronization transition, depending on the number

of automata involved.

On the one hand, a τ -transition only involves one timed automaton of the network. It occurs when-

ever a timed automaton Ai traverses an enabled edge that causes a change of location and potentially

one or more clock resets. On the other hand, a synchronization transition occurs if there are two

enabled edges with complementary synchronization actions, e.g. a! and a?, that are traversed in two

3.6 The UPPAAL model checker 33

different automata of the network. This transition causes a simultaneous change of location in each

automaton involved, plus the potential reset of one or more clocks.

The delay transition is equivalent to the one discussed in Section 3.3. But, for a network of timed

automata, it is important to remark that this kind of transition is possible as long as the conjunction

of the location invariants of all automata is satisfied.

3.6.2 Modeling with UPPAAL

The term used by UPPAAL in order to designate a timed automaton is process. For this reason, it is

said that a UPPAAL model is built as a set of concurrent processes. However, both terms, process and

timed automaton, are equivalent and will be used interchangeably.

A UPPAAL process is represented as a graph which has locations and transition (edges) between

locations. The firing of each transition may depend on a guard and/or a synchronization. Guards

in UPPAAL are expressions defined over the variables and clocks of the model, so they are not only

clock constraints. A synchronization corresponds to the parallel composition operator for networks

of time automata discussed in Section 3.6.1.

Guards and synchronizations are not the only attributes of transitions. Transitions may also have

associated actions that are executed when the transition is taken. Said actions are in the form of the

update of some variables or clocks. For the case of clocks, they can only be updated to the value 0,

which corresponds to the reset action presented in Section 3.3.

In order to define a synchronization for a transition, a channel must be defined in the model. Com-

plementary synchronization actions are denoted a! and a?, as it is common in networks of timed

automata.

The modeling language of the UPPAAL tool features a number of extensions to the concept of timed

automaton discussed in Section 3.3. The most important extensions are:

• Local and global bounded integer variables,

• Committed locations, and

• Broadcast synchronization.

• Urgent locations and channels

Bounded integer variables are simply data variables declared over bounded domains that can be

assigned integer values in their domain. UPPAAL supports integer arithmetic expressions over data

variables, constants, and the arithmetic operators +, −, ∗, and /. Whereas local variables are visible

34 Chapter 3. Introduction to model checking and timed automata

only for a specific process, global variables are visible for every process of the network. Due to this,

global variables may be used in combination with synchronization channels in order to model the

passing of parameters among processes.

Committed locations are used to model atomic behaviors in UPPAAL by declaring a subset of the

locations of an automaton as committed (denoted c© or with prefix c:). If in a state (l̄, v) some location

li ∈ l̄ is committed, then the next transition of the network must be a discrete transition involving

automatonAi, otherwise the network is deadlocked. It is not possible to delay in a committed location.

Broadcast synchronization has been introduced in UPPAAL in order to extend the pair-wise syn-

chronization described in Section 3.3. It requires definition of a so-called broadcast channel. The

broadcasting synchronization involves one sender performing an action transition labeled c!, where

c ∈ Σ, and an arbitrary number of receivers performing complementary action transition c?. Any

process (except the sender) that has an enabled transition labeled c? must take part in the broadcast

synchronization. The number of receivers can be zero or more, hence, the sender can execute the c!

action transition even if there are no receiving automata. This is a significant difference with respect

to the pair-wise synchronization, which is blocking.

UPPAAL defines the concept of urgent location and urgent channel as a means to better specify the

dynamics of the model. Urgent locations are locations in which time is not allowed to pass. An urgent

channel indicates that it is not possible to delay in the current state as long as a synchronization can

be triggered through the urgent channel.

3.6.3 The simulator

Once the model has been built using the features described above, UPPAAL allows the user to simu-

late the behavior of the model and, thereby, detect both modeling mistakes and design errors in the

modeled system.

The simulator graphically displays in a window all the processes included in the model, and contin-

uously indicates which location is active in each process by placing a red dot in those locations. The

simulator also shows in a window the value of all variables and in another window in which a temporal

representation of the evolution of the model —including synchronization among processes— is built

in real-time during the simulation. Finally the simulator records a trace of the performed simulation

which can be saved, replayed and modified afterwards.

The simulator starts with the red dot of each process in the location configured during the mod-

eling process as initial. By clicking on any one of the items in the list of enabled transitions, the

corresponding transition is fired, the red dot passes to the next active location, variables are updated,

and the transition is represented in the temporal diagram and added to the current trace. By choosing

3.6 The UPPAAL model checker 35

different items in the list of enabled transitions it is possible to test different executing paths of the

model. Note that transitions from different processes can interleave. Choosing different transitions

among the enabled ones, different interleavings can be explored.

3.6.4 The verifier

Once the model has been analyzed and debugged using the simulator, it is ready for the last phase

which is the verification. For this phase UPPAAL uses a model-checker engine which acts as a server of

a client-server architecture and can be executed in a different computer than the GUI for performance

improvement. There is also a stand-alone version of the engine that is interfaced through a command

line.

The model-checker engine tests whether a series of properties defined by the user hold in the dy-

namic behaviors of the model. As already indicated, the main idea behind model checking is to build

the full state space of the model and to exhaustively check if the intended properties are satisfied or

not.

When the model-checker engine is interfaced through the GUI, the UPPAAL window is divided into

several horizontal sections. In the upper section, the list of expressions (or queries) appears. Each

query corresponds to one property to be checked. if the corresponding property holds, a bullet next

to the query turns green, and if it does not hold, the bullet turns red. The model-checker engine can

be requested to return a diagnostics trace when a property does not hold. This trace is essentially

an execution path in which the property is violated, and that can be executed step by step using the

simulator.

The next section of the window allows the editing of the query selected in the list above. Likewise,

the next one allows the addition of comments to each query. Finally, the lower section of the window

provides status information about the operation of the engine.

The types of properties that can be directly checked using the UPPAAL queries are quite simple.

UPPAAL designers have taken the approach of not allowing complex queries, in order to improve the

efficiency of the tool. For this reason, the verification of complex properties may need the checking

of many different queries and even the addition into the model of specifically designed observer

automata.

The specific types of properties that can be expressed in the UPPAAL query language can be classi-

fied as:

• Reachability properties: Any property of this class tests whether a specific condition —which

is a boolean condition over locations, variables and clocks— holds in some state of the potential

36 Chapter 3. Introduction to model checking and timed automata

behaviors of the model. This class of properties are always expressed in the form:

– E � p, read as ”exists eventually p”, which tests if there exists an execution path in which

p eventually —i.e. in some state of the path— holds. The notation used for this kind of

expression in UPPAAL is E<> p.

• Safety properties: Properties of this class test whether a specific condition holds in all the states

of an execution path. In fact there are two possibilities for this kind of properties, which are

expressed in the following forms:

– E 2 p, read as ”exists globally p”, which tests whether there exists an execution path in

which p holds for all the states in the path. The notation used for this kind of expression

in UPPAAL is E[] p.

– A 2 p, read as ”always globally p, which tests if for every execution path, p holds for all

the states in the path. The notation used for this kind of expression in UPPAAL is A[] p.

• Liveness properties: Properties of this class test whether a specific condition is guaranteed

to hold eventually. There are again two possibilities for this kind of properties, which are

expressed in the following forms:

– A � p, read as ”always eventually p”, which tests if for every execution path, p holds for at

least one of the states in the path. The notation used for this kind of expression in UPPAAL

is A<> p.

– q p, read as ”q always leads to p”, which tests if every execution path that starts from

a state satisfying q reaches later a state in which p holds. The notation used for this kind

of expression in UPPAAL is q − − > p. This type of liveness property can be written as

A 2 (q → A <> p), whose notation in UPPAAL is A[] (q imply A<> p).

• Deadlock properties: A state is in a deadlock if it is impossible that the model evolves to

a successor state neither by the effect of an invariant nor by a transition between locations.

Properties of this class test if a deadlock is possible or not in the model. UPPAAL allows the use

of the reserved words deadlock and notdeadlock to check this properties. For instance, E<>

deadlock means ”it exists deadlock” whereas A[] notdeadlock means ”there is no deadlock”.

Chapter 4

The Controller Area Network from a

dependability perspective

As already indicated in the Introduction, the CAN fieldbus is a de-facto standard for the design of

non-critical distributed embedded systems. However, its suitability for critical applications is still

controversial because of certain limitations with respect to dependability. This chapter introduces the

main characteristics of CAN and discusses these dependability limitations.

Although in this dissertation we will only address one specific dependability limitation of CAN,

the lack of a clock synchronization service, it is important to understand the general context of the

work, which is the improvement of the dependability characteristics of CAN as a whole [PPA+09].

Moreover, as it will be shown in Section 5.1 and Section 5.2, the solutions proposed for solving some

of the dependability limitations presented in this chapter will influence the requirements to be fulfilled

by the clock synchronization service.

4.1 Physical aspects of CAN

Figure 4.1 shows the most usual architecture of a CAN network. This network is constituted by a

set of nodes (the so-called CAN nodes) connected by means of a shared transmission medium. The

internal structure of the CAN nodes is also depicted in Figure 4.1.

As in any distributed system, the processors of the CAN nodes are intended to execute some kind

of common application. In order to coordinate their actions, the CAN nodes may exchange messages

37

38 Chapter 4. The Controller Area Network from a dependability perspective

CAN node

Processor

CAN

transceiver

CAN

controller

CAN node

Processor

CAN

transceiver

CAN

controller

Transmission medium

Figure 4.1: Architecture of a CAN network

through the network. The communication is performed by means of the CAN protocol, which is

implemented in a hardware device called the CAN controller. The CAN controller provides the pro-

cessor with transmission and reception services that correspond to the Logical Link Layer (Layer 2)

of the OSI model [ISO93].

Every CAN controller is connected to the transmission medium by means of a specific circuit, the

so-called CAN transceiver, which basically performs signal adaptation. CAN networks typically use

a serial bus for communication. Other topologies, such as stars, are possible but rather unusual.

The bits in a CAN network are codified with NRZ (Non-Return to Zero). This causes the insertion

of stuff bits, when required, to force edges of the transmitted signal and thus allow bit synchronization

at the receivers’ side. The main mechanisms of CAN are built upon the assumption that bits may take

either a dominant or a recessive value. A bit value is dominant if it overwrites the existing value on

the bus. A bit value is recessive if it can be overwritten by a dominant value.

In most of the current implementations of CAN, the dominant bit is represented with the logical

value ’0’, whereas the recessive bit is represented with the logical value ’1’. Due to this, it is often said

that the low-level behavior of the CAN bus corresponds to a Wired-AND. In the rest of this document

we will follow this convention.

A very important feature of CAN is the network-wide perception of the bits that it enforces. This

is achieved by having the length of the bits either shortened or lengthened in order to compensate

for clock tolerances and propagation delay. The idea behind this mechanism is to guarantee that all

the CAN controllers of the network have a consistent view of every bit that is being broadcast. This

4.2 CAN interface 39

property is called in-bit response. Some interesting mechanisms are built upon this property, which

are to be described in 4.3.

In order to guarantee the mentioned in-bit response, in CAN there is a relation between the bus

length and the maximum bit rate achievable. Typical values are about 40m network length at 1Mbps

and 1Km length for a transmission rate of 50Kbps.

4.2 CAN interface

As already mentioned, each node of a CAN network includes a controller for implementing the CAN

protocol. The interface of this controller includes four primitives to handle message transmission and

reception, namely Tx.Request, Tx.Confirm, Rx.Indication and Abort.Request. The first three primi-

tives are part of the standard and are supported by any commercial CAN controller. The last primitive

is not part of the CAN standard but it is supported by many available CAN controllers [Ets01].

The actual implementation of each primitive may vary from one CAN controller to another, but

their function and required parameters are the following:

• The Tx.Request(msg id, msg data) primitive is used by the processor to request the broad-

cast of message msg id, containing the data msg data. This transmission may not take place

immediately as it depends on the channel conditions.

• The Tx.Confirm(msg id) primitive is used by the CAN controller to indicate that message

msg id, whose broadcast was previously requested, has been actually transmitted.

• The Rx.Indication(msg id, msg data) primitive is used by the CAN controller to indicate that

message msg id has been received, containing the data msg data.

• The Abort.Request(msg id) primitive allows the processor to request the CAN controller to

abort the broadcast of the message msg id (whose broadcast was requested previously by the

processor itself). It is important to remark that whenever a message transmission is taking place

(i.e., the bits are being transmitted on the bus), it cannot be aborted.

Commercial CAN controllers obviously provide much more functionality than these four basic

primitives, both for handling transmissions and for handling receptions, and therefore their interfaces

are much more complex. However, the aforementioned properties constitute the core of the CAN

protocol. For this reason, in this work we will assume that these are the only services available, and

will not make further assumptions about the interface of the CAN controller.

40 Chapter 4. The Controller Area Network from a dependability perspective

4.3 Basic mechanisms of CAN

On the basis of the guaranteed in-bit response, the CAN protocol builds some interesting mechanisms

for medium access control and error control.

4.3.1 CAN arbitration for medium access control

The CAN protocol implements a prioritized access to the medium based on the message identifiers.

This mechanism constitutes one of the most appealing features of CAN because of its bandwidth

efficiency. Each message has a unique identifier that determines its priority with respect to the other

messages. Assuming the common convention of codifying the dominant bits with the bit ’0’, a lower

identifier implies higher priority.

Whenever the bus is idle, any CAN controller is allowed to transmit. But if more than one controller

start a transmission simultaneously, then a bitwise comparison of the message identifiers is performed

by each one of them. Finally, only the highest priority message is transmitted, whereas the rest of

CAN controllers give up and do not try to transmit until the bus is idle again. This procedure is called

the CAN arbitration.

Thanks to this mechanism, it is possible to bound the worst-case response time of any CAN mes-

sage, as long as the traffic conditions are known in advance. I.e., as long as both the priorities and the

identifiers of the messages sent by the other nodes are known in advance. Such an assumption is very

common in many distributed embedded systems in which the operation conditions must be known in

advance. We will hereafter denote the worst case response time of a certain message m as wcrtm.

The basic equations for calculating wcrtm can be found in [TBW95, DBBL07]. This analysis also

shows that, given two messages m,n such that the priority of m is lower than the priority of n, then

wcrtm < wcrtn.

4.3.2 Error detection and error recovery in CAN

CAN presents five error detection mechanisms to handle five types of channel error; namely bit error,

stuff error, CRC error, acknowledgment error and form error [ISO93]. Whenever a CAN controller

detects that a frame being transmitted suffers one of these errors, it generates a special sequence of

bits (the so-called error frame) that corrupts the frame and makes all non-faulty CAN controllers

consistently reject it, in principle.

This mechanism theoretically guarantees that every frame is either simultaneously received or con-

sistently rejected by all the non-faulty CAN controllers. This special property of CAN is called data

4.3 Basic mechanisms of CAN 41

consistency [ISO93]. Nevertheless, as it will be described later on in this section, it has been reported

that some particular scenarios exist in which this property is not satisfied.

The error-recovery mechanism of CAN is based on automatic frame retransmissions. As long as

the transmitter remains non-faulty, every frame corrupted by an error (and hence by the subsequent

error frame) will be immediately retransmitted.

It is important to remark that, even in the presence of transient channel faults, the CAN arbitration

guarantees a bounded response time for every message broadcast. A number of methods have been

suggested for estimating the value ofwcrtm under different traffic and error conditions. Nevertheless,

the discussion of these methods goes beyond the scope of this document and is not required for

understanding our work. Thus, in the following we will assume that the value of wcrtm is known for

the considered fault model and traffic load. Interested readers are referred to [BBRN05, DBBL07]

for a thorough discussion about determining wcrtm in the presence of faults.

4.3.3 The inconsistency scenarios of CAN

The scenarios in which data consistency is not guaranteed are related to the particular treatment of the

errors in the very last bit of the End Of Frame (EOF) field. As firstly reported in [RVA+98], whenever

an error in the last but one bit of the EOF is only detected by a subset of the nodes, the transmitter

together with the nodes belonging to this subset reject the frame, whereas the rest of nodes accept

it. In the absence of node faults, the transmitter immediately retransmits the frame, thus causing that

some of the nodes receive the message only once whereas the rest of nodes receive it twice. This kind

of failure is called an inconsistent message duplicate (IMD).

As reported in [PMJ00], a second kind of inconsistency is also possible if a subset of nodes de-

tects an error in the last but one bit of the EOF and, moreover, a second channel error prevents the

transmitter from detecting the error frame. In such a situation, the erroneous frame would not be

retransmitted, and then this subset of nodes would not receive a message that the other subset would

have received and accepted. This failure is called an inconsistent message omission (IMO).

In [RVA+98], it is also reported that an IMO may occur whenever a failure of the transmitter makes

it impossible to retransmit a frame that has been inconsistently received. Furthermore, in [RNP03a],

we reported that the inconsistency scenarios are very likely for the extensions of CAN that disable the

automatic frame retransmission, such as the TTCAN protocol.

42 Chapter 4. The Controller Area Network from a dependability perspective

4.4 Reported dependability limitations of CAN

Despite the positive properties achieved by CAN, this protocol has a number of limitations, espe-

cially with regard to dependability, which have been reported in several publications, e.g. in [Tör95,

FMD+00, APF02, SP07, PPA+09]. These limitations are briefly discussed next.

Low bit rate

This limitation is typical in shared serial data networks but it is particularly severe in CAN because of

its dependency on instant bit monitoring while transmitting, a feature that in Section 4.1 was called

in-bit response. Overcoming this limitation while maintaining compatibility with the standard can be

achieved, for example, with different topologies (e.g., star [BARR04]) or, possibly, with segmentation

(e.g., using switches).

Large and variable jitter

The arbitration mechanism implemented by CAN has the negative side effect of causing a substantial

network delay jitter because, without synchronization of the transmission instants, any node will

encounter all possible interference patterns from higher priority traffic when trying to transmit. This

jitter can be controlled, and sometimes eliminated, using global synchronization and relative offset

adjustments. The proposed techniques will be further discussed in Section 5.1.1 because they are

closely related to the problem of clock synchronization.

Flexibility limitations

CAN is normally considered a highly flexible protocol. However, the arbitration mechanism is based

on the message identifiers that establish the message priority and must be unique across the system.

The assignment of IDs to messages has, thus, a strong impact on the timeliness of the communications

and forces a system-wide fixed priority message scheduling approach.

If higher fairness is desired than achieved with fixed priorities scheduling, or to facilitate the as-

signment of IDs without strong consequences on the traffic timeliness, other mechanisms must be

added to CAN, e.g. dynamic update of IDs or external message scheduling by means of transmission

control. Moreover, all kinds of flexibility that imply dynamic changes in the message set conflict with

timeliness. Combining such flexibility with timeliness requires the addition of an admission control

unit that verifies all submitted changes and rejects all those that would compromise timeliness.

4.4 Reported dependability limitations of CAN 43

Limited error containment

Despite its built-in error containment mechanisms, based on error counters that can lead the network

controller to bus-off state, CAN still presents several limitations in this matter. One of the limitations

is that the built-in mechanisms are relatively slow to act, depending on the frequency and type of er-

rors. Other limitation arises from the bus topology, as specified in the standard, since errors occurring

in the node interfaces, bus lines or its connections, spread freely through the network causing inter-

ference with correct traffic. This may also happen with replicated buses via common-mode failures.

A possible solution to this limitation consists in segmenting the network, at the physical level, e.g.,

using a star topology and point-to-point links.

Finally, another limitation concerns the transmission of erroneous messages, in value or timing,

despite correct framing. CAN includes no protection to contain the propagation of such errors. A

typical fault of this kind in the time domain is the babbling idiot fault in which a node remains trans-

mitting a message more often than desired, strongly interfering with the rest of the traffic. Protection

against this kind of faults may include specific hardware support, such as a bus-guardians, i.e., a de-

vice attached to a node that verifies the respective transmissions, blocking untimely ones, as well as

high-layer protocols that restrict the transmission instants of nodes.

Data consistency issues

The inconsistent communication scenarios discussed in Section 4.3.3 are one of the strongest impair-

ments to achieve high dependability over CAN. These scenarios occur due to specific protocol char-

acteristics and they may reveal themselves both as inconsistent message omissions, i.e., some nodes

receive a given message while others do not, and as inconsistent message duplicates, i.e., some nodes

receive the same message several times while others receive only once. Inconsistent communication

scenarios make distributed consensus in its different forms, e.g., membership, clock synchronization,

consistent commitment of configuration changes, or simply the consistent perception of asynchronous

events, more difficult to attain.

Limited support for fault tolerance

Safety-critical applications require very high levels of dependability (typically reliability). In or-

der to reach these levels, fault tolerance techniques must be used. Wide support for fault tolerance

functions is not a common feature in most fieldbus networks. CAN already provides advanced mech-

anisms which prevent some faults from causing a general system failure and even some specific

CAN transceivers implement several mechanisms capable of tolerating specific permanent faults in

44 Chapter 4. The Controller Area Network from a dependability perspective

the communication links. However these mechanisms are not enough for safety-critical applications.

Additional mechanisms are required in order to tolerate node failures and a permanent failure of the

bus (i.e. to support node and bus replication).

Lack of a clock synchronization service

Distributed embedded systems can rely on a clock synchronization service in order to implement

certain services that improve dependability. Unfortunately the CAN standard does not include such

a clock synchronization service. Due to this, whenever a CAN-based distributed system requires a

synchronized clock, it has to be provided at the application level. This is usually achieved by means of

a software-implemented clock synchronization algorithm, although hardware implementations have

been also proposed.

In our opinion, the lack of a clock synchronization service is one the most important limitations

of CAN, mainly because it is a hidden requirement for solving some of the other limitations. In

Section 5.1 we will show that the techniques proposed for reducing network jitter, improving error

containment and supporting fault tolerance all implicitly assume the existence of such a service.

Chapter 5

Clock synchronization for dependable

CAN: state of the art

It is widely accepted that the existence of a global notion of time brings significant benefits for a

distributed system and, due to this, the problem of clock synchronization has received much attention

during the last years, even decades. Consequently, many solutions have been already proposed, as

discussed in Chapter 2. In fact, so many solutions have been already suggested that a currently

generalized belief is that, regarding clock synchronization, “everything has been done”.

However, when it comes to provide clock synchronization in low-cost distributed embedded sys-

tems, such as CAN-based systems, many new problems arise. Whenever a system is constrained with

scarce computation and communication resources, the solutions available for large-scale distributed

systems may not be directly applicable. For instance, solutions that implement fault-tolerant clock

synchronization by means of complex algorithms and massive message exchanges may exceed the

capacity of most low-cost processors as well as the available bandwidth of the network.

The difficulties for achieving clock synchronization in low-cost distributed embedded systems are

epitomized by the case of CAN. As indicated in Section 4.4, the specification of CAN does not

include a clock service, but several solutions have been proposed to implement such a service, e.g.

in [GS94, Tur94, RGR98, FMD+00, RNBP03b], and [LA03]. These solutions are diverse in terms of

the techniques they apply as well as in terms of the requirements they fulfill.

In this chapter we will study to what extent these solutions are adequate as a means to improve

the dependability properties of CAN. For that, we will first study the techniques proposed for solving

the dependability limitations of CAN, which were discussed in Section 4.4, and we will infer the

45

46 Chapter 5. Clock synchronization for dependable CAN: state of the art

requirements they pose for the clock service. Then, these requirements will be taken as the reference

for determining whether a certain solution for clock synchronization over CAN is suitable or not from

a dependability perspective.

5.1 On the relevance of clock synchronization for dependable CAN

Although some of the dependability limitations of CAN may be solved with mechanisms that do

not require any clock service [BPRNA06, RVA+98], a careful analysis of the available solutions

shows that most of them do rely on having a very precise clock synchronization service. This is

especially patent for those solutions that have been proposed for reducing network jitter, improving

error containment and supporting fault tolerance, as it will be shown next.

5.1.1 Techniques for reducing network jitter

The variable network delay jitter of CAN is a consequence of its medium access control mechanism,

which allows any node to start transmission whenever the bus is idle. The only way of reducing the

jitter is by restricting the transmission times and the time available for retransmissions.

Some authors address this limitation by proposing static TDMA schemes over CAN [FMD+00,

SP07], whereas other authors propose more flexible solutions [APF02, BB01, NNH05], which lay

somewhere in between completely event-triggered communication and completely static TDMA. It is

important to remark that all these solutions require the nodes to work with a global clock, what means

that they actually need some mechanism for clock synchronization. Moreover, the precision achieved

by this clock synchronization mechanism has a strong impact on the communication efficiency, as

discussed next.

For instance, TTCAN may work without a synchronized clock (in the so-called TTCAN Level 1

mode), but high bandwidth utilization can only be achieved when a highly synchronized clock (as

defined in TTCAN Level 2) is available. The clock synchronization of TTCAN Level 2 achieves a

precision in the order of µs, which allows definition of longer Basic Cycles and tighter transmission

windows, thus improving the bandwidth utilization.

In [SP07] it is highlighted that, with a bit rate of 1Mbps, an improvement of the precision from

100µs to 10µs yields an increment of the bandwidth utilization close to 40%. In [BB01], authors

indicate that having a precision of 100µs would worsen performance, as it may cause either premature

abortion of too many messages or an excessive number of useless retransmissions. Due to this, they

recommend having a clock synchronized with a precision in the range of µs.

5.1 On the relevance of clock synchronization for dependable CAN 47

An interesting study about the relationship between clock synchronization and message latencies

is presented in [Mah01]. This study shows that the message latencies exhibited by a TDMA scheme

using a clock precision of 20µs may be 27 time lower than the latencies when using ”normal” CAN.

In contrast, the solutions in [APF02, NNH05] do not need, in principle, a clock of high precision.

They are based on a sort of master/slave mechanism, with a central node that periodically “polls” the

nodes according to certain scheduling policy. Nevertheless, it is shown later on in this section that the

mechanisms for tolerating faults of the central node will require a clock of very high precision.

5.1.2 Techniques for improving error containment

CAN includes little protection against propagation of certain faults. On the one hand, its bus topology

allows the faults of certain network components (node interfaces, bus lines or connections) to spread

freely and cause interference with correct traffic [BPRNA06]. On the other hand, the mechanisms to

detect faulty processors or faulty CAN controllers, and isolate them from the system, are insufficient.

A classical example is the babbling idiot failure, which is a node that broadcasts syntactically correct

messages too frequently, thus causing extra interference and jeopardizing the achievement of timeli-

ness properties [FAM+03]. Another example would be a node transmitting out of its corresponding

window when a TDMA scheme is used to reduce network jitter.

Very interesting solutions have been proposed to improve containment of errors caused by network

components, which do not require any clock synchronization service [RVA99, BPRNA06]. Never-

theless, as long as they do not use any temporal information, they have little applicability to contain

faults in the time domain, such as babbling idiots.

Error containment in the time domain can be enforced by incorporating bus guardians and high-

layer protocols that limit the transmission instants, like in [FAM+03] and [BB03]. But these mech-

anisms are efficient only when a synchronized clock is available. This is clear for the case of bus

guardians, since every bus guardian needs to be highly synchronized to the node it supervises. Oth-

erwise timing errors could not be detected, or normal situations could be interpreted as false timing

errors. The precision required by these mechanisms should be in the range of µs, as we discussed

previously for [BB01].

5.1.3 Mechanisms for supporting fault tolerance

Like most of current fieldbuses, CAN does not provide suitable mechanisms to support fault-tolerant

applications. In particular, it does not provide any mechanisms to support node and channel replica-

tions; although various solutions have been already suggested.

48 Chapter 5. Clock synchronization for dependable CAN: state of the art

In [SP07] a channel replication scheme is proposed. However, the authors of such solution claim

that channel replication requires adoption of a TDMA scheme of communication, because otherwise

the complexity of all possible communication patterns is overwhelming. Therefore, clock synchro-

nization appears again as a hidden requirement to improve dependability.

Concerning node replication in CAN, current solutions are mostly built upon the assumption of

high-precision clock synchronization. This is the case for the reliable broadcast service defined

in [PV03]. Moreover, the master replacement mechanisms adopted by TTCAN [FMD+00] and FTT-

CAN [FAF+06] require the nodes to be synchronized with a precision of a few bits (up to µs). This

dependency on clock synchronization is a direct consequence of the bandwidth limitation of CAN,

which discourages the adoption of completely asynchronous protocols, since they usually require

transmission of a high number of messages (e.g. in [RVA+98]).

In [Mah01] it is also shown that for the case of replicated actuators, the lack of clock synchroniza-

tion may be a source of inconsistencies. In that case, this problem is a direct consequence of having

variable message latencies that difficult consensus.

5.2 Requirements for the clock synchronization service

It has been shown that clock synchronization is a vital service for many solutions intended to improve

the dependability of CAN. Moreover, it has been shown that a precision in the order of a few µs is

required by most of the techniques.

The important role played by clock synchronization turns such a service into a sort of single point

of failure of the system. If clock synchronization fails (i.e. if the supplied precision exceeds certain

bound) then many mechanisms that are built upon this assumption would not work properly, leading

to a general failure. Therefore, the clock synchronization service not only has to be able to achieve

high precision, but it must be designed in such a way that the faults of the channel and the faults of

the involved nodes are tolerated.

The limited bandwidth available in CAN imposes an additional challenge to fault tolerance, since

highly-distributed algorithms for clock synchronization are discouraged in favour of centralized ones.

Therefore, the possibility of having Inconsistent Message Duplicates (IMD) and Inconsistent Message

Omissions (IMO), as described in Section 4.3.3, becomes a severe impairment to fault tolerance that

has to be taken into account.

The correctness of any fault tolerance mechanism must be properly evaluated against the faults

it intends to tolerate. In most of the cases, this cannot be done by just testing or simulation since

these techniques are not exhaustive, and cannot explore all possible fault scenarios. The only way to

5.3 Available solutions and open issues 49

provide absolute guarantees is through formal verification [CGP01].

When adding a new service to a system, an important aspect to be considered is the notion of

orthogonality with respect to the rest of the system. This attribute is very desirable for two reasons.

On the one hand, it allows the system designer to avoid failures caused by improper interactions

between the existing mechanisms and the new service [Pro07]. On the other hand, it reduces the cost

of the additional service because it requires minor changes in the rest of the system.

Our solution for clock synchronization will pay special attention to the support of fault tolerance.

This constitutes one of the main contribution of OCS-CAN. Moreover, notions such as orthogonality

and formal verification, which were not fully considered before in the context of clock synchroniza-

tion over CAN, are specifically addressed.

5.3 Available solutions and open issues

The provision of a clock synchronization service for CAN has been studied since the emergence of

this protocol. As early as in the 1st International CAN Conference, in 1994, two solutions for clock

synchronization were presented [GS94, Tur94]. But these solutions mainly focused on precision and

performance, and paid little attention to fault tolerance.

Later on, some other researchers envisaged the possibility of using CAN in more critical sys-

tems and suggested various algorithms which, in principle, provide fault-tolerant clock synchroniza-

tion [RGR98, FMD+00, LA03, APSP07, SP07]. However, the contradiction of those solutions is that

they do not address fault tolerance with the desirable rigor when aiming at critical applications.

It is remarkable that, among these proposals, only the one in [RGR98] deals with a fault model that

considers both node and channel faults, including the possibility of inconsistent message omissions

and duplicates discussed in Section 4.3.3. Unfortunately, this clock synchronization algorithm causes

high communication overhead and only achieves a precision in the order of 100µs. Thus, it does not

satisfy some of the requirements posed by the techniques described in Section 5.2 and then cannot be

considered a suitable solution, in general terms, for dependable CAN.

The other solutions exhibit better figures regarding overhead and precision, but they are quite in-

complete with respect to fault tolerance. On the one hand, the solutions in [FMD+00], [APSP07]

and [SP07] propose a master/slave scheme for clock synchronization, but do not define adequate

mechanisms to eliminate the single point of failure that the master represents. In [APSP07] and [SP07],

master replication is not mentioned, whereas in TTCAN Level 2 it is only partially solved [FMD+00].

In particular, TTCAN Level 2 defines a number of backup masters which are intended to replace the

active master whenever it fails, but the algorithm to manage master replacement assumes that those

50 Chapter 5. Clock synchronization for dependable CAN: state of the art

masters exhibit fail-silent behavior, and does not consider the possibility of message inconsistencies.

However, these assumptions are not properly substantiated, as it would be desirable in a fault-tolerant

system.

On the other hand, the solution in [LA03] relies on having several nodes that execute an agreement

protocol in order to get the right time reference and spread it throughout the network. This protocol

theoretically tolerates faults of several nodes. Nevertheless, it does not consider potential message

inconsistencies and, more specifically, in the presence of IMOs it would not work properly.

Concerning the evaluation of the fault tolerance mechanisms, it is important to remark that the

mentioned solutions have been all verified only by means of simulation or testing. None of them

has been formally verified; not even the one in [RGR98]. Since simulation and testing are never

exhaustive and cannot give absolute guarantees, then there is no certainty that these solutions will

supply the desired level of service in every possible situation. Particularly, it is not clear that the

precision values that are claimed in [LA03], [APSP07] and [SP07], which were in fact obtained in

very specific experiments, would be also guaranteed in different fault scenarios.

Although it might seem that the clock synchronization service of TTCAN has been verified by

model checking [LH06], it is important to remark that the model of TTCAN actually verified does

not include the mechanisms for clock synchronization. More specifically, it states that “all clocks

are assumed to proceed at the same rate”. This circumstance contrasts with the formal verification of

other time-triggered protocols, in which the clock synchronization service was the first mechanism

formally verified [PSvH99].

Table 5.1 summarizes the main characteristics of the available solutions for clock synchronization

over CAN. Due to their limitations, we think that at present none of the examined solutions can be

considered well suited for building dependable applications over CAN. Moreover, and apart from any

dependability consideration, another criticism that can be expressed about these solutions is their lack

of independence (orthogonality) with respect to the rest of the system. The following dependencies

are observed:

• One of the solutions requires a specific CAN controller [FMD+00], so its adoption in an exist-

ing system would require the replacement of the CAN controller of each node. This would also

imply changes in the application software, mainly in the low-level communication routines.

• Some solutions require a TDMA scheme of communications [FMD+00, APSP07, SP07]. In

contrast, other solutions would work only under an event-triggered scheme of communication,

as they do not restrict the transmission times of the nodes, and assume that erroneous frames

are automatically retransmitted [RGR98, LA03].

• Software-implemented solutions have a strong impact on the CPU schedule [RGR98, LA03,

5.3 Available solutions and open issues 51

Table 5.1: A comparison of current solutions for clock synchronization over CAN

Claimed Caused Addressed Evaluation Comm. Hw Appl.-

Solution precision overhead fault model method scheme supp. indep.

[GS94] ∼100 µs Low Not addressed Testing Any No No

[Tur94] ∼10 µs Low Not addressed Testing Any Yes No

[RGR98] ∼100 µs High Node & Simulation E-T No No

channel faults & Testing

[LA03] ∼4 µs Medium Only node faults Testing E-T No No

[FMD+00] ∼10 µs Low Node & (consist.) Testing T-T Yes No

channel faults

[APSP07] ∼2 µs High Not addressed Testing T-T No No

[SP07] ∼2 µs High Channel faults Testing T-T No No

APSP07, SP07]. Clock synchronization is a demanding task, which has to be executed with

a very high priority in order to get high precision. Moreover, whenever fault tolerance is to

be provided with massive message exchanges, like in [RGR98] and [LA03], the computation

requirements raise significantly.

Chapter 6

The Orthogonal Clock Subsystem for

CAN

In Chapter 4, we reviewed the main limitations of CAN concerning dependability and we indicated

that one of the most important limitations is the lack of a clock synchronization service. In Chapter 5

we showed that the provision of a precise clock synchronization service is required for implementing

many solutions for dependability on CAN, and discussed which requirements these solutions impose

upon the clock service.

In Chapter 5, we also presented the available solutions for implementing clock synchronization

over CAN, and showed that none of them really provides a service fulfilling the stated requirements.

Therefore, there is room for a new solution. This chapter discusses the design and implementation

of our proposal for providing clock synchronization over CAN: the Orthogonal Clock Subsystem for

CAN (OCS-CAN). This novel solution is intended to fulfilling the strict requirements imposed by the

techniques for dependable CAN.

6.1 Preliminary remarks about our proposal

OCS-CAN is a proposal for clock synchronization over CAN that specifically addresses the require-

ments discussed in Section 5.2. OCS-CAN attempts to balance the advantages and drawbacks of the

previous solutions, with the aim of providing a service more suitable for dependable applications.

Another important premise of our solution is simplicity; not only because simplicity reduces the cost

53

54 Chapter 6. The Orthogonal Clock Subsystem for CAN

of the solution, but also because it simplifies the provision of fault tolerance as well as the evaluation

of the system.

In this sense, we have to stress that the novelty of the design is not one of the main strengths of

our proposal. Most of the techniques that are adopted in the design of OCS-CAN are not innovative.

However, what is innovative in our solution is the thorough evaluation of the correctness of the fault

tolerance mechanism, together with the formal assessment of the effect that faults may have on the

precision provided by OCS-CAN.

The assessment of OCS-CAN will be performed analytically and also by means of model checking;

these evaluations will be discussed in Chapter 7 and in Chapter 9, respectively. The aim of our

assessment will be to quantify the relationship between the faults of the system and the achievable

precision. We will be able to characterize the graceful degradation exhibited by our solution in the

presence of faults. In our evaluation of OCS-CAN by means of model checking, we had to overcome

some serious limitations of the timed automata formalism. This is a very important contribution of

this work, that goes beyond our initial goal, and will be discussed in Chapter 8.

OCS-CAN has been also developed and evaluated in the laboratory. However, this implementation

is meant as a proof of concept, which shows that our design can be implemented as a relatively simple

digital system, and in particular over a medium-range Field Programmable Gate Array (FPGA).

6.2 Properties of the orthogonal clock subsystem

In accordance to the requirements discussed in Section 5.2, OCS-CAN pursues four properties: high

precision, low overhead, fault tolerance and cost effectiveness. The techniques that are adopted to

achieve those attributes are discussed here.

6.2.1 High precision

The precision achieved by a clock synchronization algorithm basically depends on the latency of the

mechanism for timestamping the resynchronization event of the first phase. Whenever this mechanism

is implemented in hardware, the precision is in the order of a few µs, whereas in software the precision

is only of about hundreds of µs ([Kop97], Table 3.2).

To improve precision, OCS-CAN adopts the hardware mechanism suggested by Turski [Tur94] to

timestamp incoming frames. This mechanism relies on a modified CAN controller that signals the

sampling point (shown in Figure 6.1) of a very particular bit of every frame: the Start of Frame (SOF)

bit. By applying this mechanism, the offset between nodes can be calculated very accurately, because

6.2 Properties of the orthogonal clock subsystem 55

Nominal bit time

Synchronization
Segment

Propagation
Segment

Phase2
Segment

Phase1
Segment

Sampling
Point

Figure 6.1: Structure of a CAN bit and location of the sampling point

timestamps are free from the uncertainty caused by network jitter as well as by message processing

jitter.

Unfortunately, at present there are no available CAN controllers that signal the sampling point of

the SOF bit. Although in the past this feature was supported by at least one CAN controller [Tur94], it

seems that manufacturers do not include this service any longer. This forces us to develop a modified

CAN controller, especially tailored to signal this event.

6.2.2 Low overhead

In order to reduce overhead, OCS-CAN uses a master/slave algorithm. This means that, in principle,

only one node (the master) is allowed to spread its time view and the rest of nodes (the slaves) syn-

chronize to it. To spread its time view, the master periodically broadcasts a synchronization message,

which is called the Time Message (TM). Therefore, the timestamp mechanism described above has

to be applied to the SOF bit of this particular message.

Moreover, and it order to further reduce the number of required messages, the master piggybacks

its timestamp within the data field of the TM. This mechanism, which is illustrated in Figure 6.2, is

very similar to the one used with the reference message of TTCAN Level 2 [FMD+00]. Note that in

this manner, the Phase 1 and Phase 2 of the clock synchronization algorithm are merged into a single

phase. The resultant communication scheme when no channel error exist is shown in Figure 6.3.

In case of channel errors, every subsequent retransmission of the TM will contain the timestamp

corresponding to the new SOF bit.

6.2.3 Fault tolerance

Concerning fault tolerance, OCS-CAN presents several advantages with respect to previous solutions.

Our strategy for fault tolerance is based on three points:

56 Chapter 6. The Orthogonal Clock Subsystem for CAN

t

SOF

TS
x

Data Field

TS

Figure 6.2: For each TM broadcast, a timestamp is taken at the sampling point of the Start Of Frame

bit, and it is written in the data field

1. Restriction of the failure semantics of the nodes to crash failure semantics. The design of the

mechanisms to ensure this property has not been addressed in this work, but in the literature

about fault tolerance it is possible to find several techniques for restricting the failure semantics

of a computer system. For instance, with a duplication and comparison scheme as the one

described in [PPMJ99], and assuming that nodes are simple enough to be free from design

errors, it is theoretically possible to ensure crash failure semantics. However, the adaptation of

these techniques to the particular case of OCS-CAN has not been investigated yet.

2. Use of master replication in order to eliminate the single point of failure that the master repre-

sents. This is thoroughly discussed in Section 6.3.4.

3. Use of formal verification in order to assess the correctness of the fault tolerance mechanisms.

This formal verification shall consider a wide fault model, explicitly including the possibility

of message inconsistencies. The formal verification of OCS-CAN is performed by means of

model checking, and it will be discussed in detail in Chapter 9.

Permanent failures of the channel, such as bus partition or stuck-at-dominant, are not addressed by

OCS-CAN. Nevertheless, they could be tolerated with mechanisms such as the one defined in [RVA99],

which are fully compatible with our architecture.

6.2.4 Cost issues

The cost of our solution is inevitably higher than the cost of a CAN system without our clock synchro-

nization service. However, such an increment is justified by the strict requirements that our solution

fulfills. First, addition of extra hardware is required in order to improve the precision of the times-

tamp, and second, extra hardware has to be also incorporated to restrict the failure semantics of the

nodes. Nevertheless, we can still reduce the cost associated to the new service thanks to the notion of

orthogonality.

Our proposal achieves orthogonality by implementing the clock synchronization service into a set

6.2 Properties of the orthogonal clock subsystem 57

t

TM TM TM
R R

Figure 6.3: Transmission pattern of the master in the absence of faults

Figure 6.4: Architecture of OCS-CAN

of independent modules. As depicted in Figure 6.4, OCS-CAN is made up of a set of hardware

components, named clock units (CU), such that a clock unit is attached to every node in the system.

Every clock unit can behave either as a master or as a slave.

In order to send (only for the case of master clock units) and receive TMs, every clock unit is

connected to the same CAN bus as the processor. Nevertheless, the clock unit does not use the

same CAN fieldbus controller (FC in Fig. 6.4), since each clock unit is provided with its own CAN

controller and CAN transceiver. This is described in more detail in Section 6.3.1, when discussing

the internal structure of the clock unit.

In this manner, OCS-CAN does not require replacement of previous CAN controllers nor repro-

gramming of existing applications. Moreover, the processor is released from executing the clock

synchronization algorithm so that the impact on the application software, as well as on the processor

scheduling, is drastically reduced. Furthermore, this independence simplifies the design of the clock

unit, and more importantly, makes the results of the formal verification not depend on the character-

istics of the system to which OCS-CAN is incorporated. Our aim is that system designers be able to

add our clock service very easily to any CAN architecture, knowing that the service is reliable and

that no side-effects exist.

58 Chapter 6. The Orthogonal Clock Subsystem for CAN

6.3 Description of the architecture

Once the main mechanisms of OCS-CAN have been presented, we can delve deeper into the descrip-

tion of its architecture.

6.3.1 Internal structure of the clock unit

The internal structure of the clock unit, without considering the duplication and comparison mecha-

nism, is depicted in Figure 6.5. It is made up of the following blocks: the Virtual Clock module, the

Synchronization Module, the Timestamp Manager and the Enhanced CAN Controller. It is impor-

tant to remark that the only difference between a master and a slave clock unit is the behavior of the

Synchronization Module. The rest of modules remain unchanged.

The Virtual Clock module provides the current value of time (vc) to the processor and to the mod-

ules that need it. This module also performs the third phase of the clock synchronization algorithm,

the clock adjustment procedure, upon request via the Sync primitive.

The Synchronization Module (SynM) is intended to perform the high-level functions of our syn-

chronization algorithm, including the mechanism for managing master redundancy to be discussed in

Section 6.3.4. This module also calculates the offset with respect to the master time reference when

appropriate, and signals through the Sync primitive the moment to recalculate the clock adjustment.

The Timestamp Manager (TSM) deals with the low-level functions of the clock synchronization

algorithm, which mainly concern the timestamping of every outgoing and incoming TM. This is better

explained later on in this section, after introducing the function of the Enhanced CAN Controller.

The Enhanced CAN controller (EnCAN) provides the usual transmission and reception functions

of any CAN controller, plus two additional services: the signaling of the sampling point of every SOF

bit and the possibility of overwriting the data field while a CAN frame is being transmitted. Both

services allow TSM to implement a very accurate timestamp of every TM, as discussed next.

6.3.2 Timestamp mechanism

Timestamps are obtained by TSM, in coordination with its corresponding EnCAN, by means of a

simple mechanism: whenever EnCAN signals the sampling point of a SOF bit, TSM takes a sample

of vc. This is called the local timestamp of the message and is denoted with T iloc.

Note that each SOF signaling may be caused either by a message which is being transmitted by

EnCAN or by a message which is being received. In each case, the local timestamp will be treated

6.3 Description of the architecture 59

Figure 6.5: Block diagram of the clock unit, with the interface between blocks

differently. If EnCAN is the transmitter of the message then TSM uses the Piggyback primitive to

overwrite the data field of the message with the value of the local timestamp. In contrast, if EnCAN

is receiving the message then TSM waits until it has been entirely received, which is notified with

the Rx.Indication primitive, and then checks the message identifier. If the received message is

a TM then TSM extracts the (piggybacked) remote timestamp (denoted as T irem) and saves it locally.

After that, the reception of the TM is notified to SynM (with a TM.Indication) and both the local

and the remote timestamps are passed on to that module.

6.3.3 Clock adjustment

For every resynchronization round i, the current offset (Φi) is calculated as the difference between the

remote and the local timestamps: Φi = T irem−T iloc. The aim of the clock adjustment is to compensate

the current offset and try to minimize the offset for the next resynchronization round.

Nevertheless, the clock adjustment should also consider the adjustment done in previous rounds,

and keep it. Note that a value Φi = 0 does not mean that the clock adjustment must be stopped, but

it means that the same clock adjustment must be performed during the next round. We define the

accumulated offset (θi) to account for this factor. For every resynchronization round i, it is calculated

as θi = θi−1 + Φi.

In OCS-CAN, clock adjustment is carried out by means of amortization, what means that the

60 Chapter 6. The Orthogonal Clock Subsystem for CAN

correction term is not applied in a discrete step, but it is progressively applied throughout all the

resynchronization round. Such smooth adjustment is more suitable from the application’s point of

view and does not cause any loss of precision [SC90].

The value of the virtual clock is supplied by a counter, which is fed by a frequency divider that

provides a clock of frequency fosc
N . The way to apply the correction term is by speeding up or slowing

down the output of the frequency divider. In our system, this is performed by substracting/adding 1

unit from/to N.

The proportion of ticks that are affected by a change of N depends on the absolute value of the

correction term: a large correction term requires more frequent changes than a small one. Our mech-

anism forces 1 of every k ticks to be shortened/lengthened. The value of k is recalculated in every

resynchronization round i as follows.

ki =
T irem − T i−1rem

|θi + Φi| · N
(6.1)

The sign of θi−1 + Φi indicates whether the length of the virtual clock ticks must be shortened of

lengthened. If the sign is positive then 1
k of the virtual clock ticks will have length N− 1 ticks of the

local oscillator, whereas if it is negative then 1
k of the ticks will have length N + 1.

6.3.4 Algorithm for managing master redundancy

Although the failure semantics of the clock units is restricted, failures of the master may still occur,

so the system must be ready to deal with such situations. As already indicated in Section 6.2.3,

OCS-CAN defines a number of backup masters, one of which shall replace the master whenever it

fails.

The mechanism for master replacement assumes that masters are organized hierarchically. The pri-

ority of a master is defined with two parameters. First, the identifier of the TM codifies the priority of

the master that broadcasts it. Following the common convention in CAN, a lower identifier implies

higher priority. Second, in every resynchronization round, every master releases its TM at a different

instant. This time instant is called the broadcast instant, and it is defined, for master m in the resyn-

chronization round k, as Trlsm = kR+∆m, where R is the resynchronization period (the same for all

masters) and ∆m is a small delay, whose length is inversely proportional to the priority of the master.

This mechanism can be formalized as follows. The set of masters with higher priority than a given

master m is denoted as hp(m). Then, for every pair of masters n,m in an OCS-CAN system, the

following conditions are satisfied:

• If n ∈ hp(m) then the identifier of the TM broadcast by master n is lower than the identifier of

6.3 Description of the architecture 61

t

TM0 TM2 TM2

R R

Trls0 = kR + ∆0

Trls1 = kR + ∆1

Trls2 = kR + ∆2

Trls0 = kR + ∆0

Trls1 = kR + ∆1

Trls2 = kR + ∆2

Figure 6.6: Master replacement upon failure of two masters

the TM broadcast by master m.

• If n ∈ hp(m) then ∆n < ∆m.

This assignment of identifiers, combined with the definition of the broadcast instants, guarantees

that in a synchronization round, a master may successfully broadcast its TM before a master of higher

priority only if the latter is faulty. This is depicted in Figure 6.6, for the case of three masters. Notice

that, although ∆m is by definition much shorter than the period (R), this difference is not visible in

Figure 6.6. This has been done for the sake of clarity, since the purpose of the graph is only to show

how the master replacement takes place.

This hierarchical approach significantly simplifies the algorithm to be executed by the SynM of a

master clock unit. This algorithm is shown in Figure 6.7 for master m. Every master (in fact, the

SynM of every master) implements the same algorithm, being the only difference the value of ∆m

and the value of the TM identifier.

The initial state of SynM is Idle1. While being in this state, three events may occur.

1. A TM of lower priority can be received. This is expressed with the condition TM.Ind(n)∧ n /∈
hp (m). Whenever this happens, the received TM is just ignored and SynM remains in the

same state.

2. A TM of higher priority may be received. This is expressed with the condition TM.Ind(n)∧ n ∈
hp (m), where n is the identifier of the TM just received. In this case, SynM notifies the VC

module through the Sync(n,m) primitive that the procedure for clock adjustment has to be

executed, and goes to state Idle2.

3. The master may reach its broadcast instant, which is expressed with the condition vcm(t) =

kR+∆m. Whenever this happens, SynM requests the broadcast of its TM, via the TM.Req(m)

primitive, and steps into state Queue.

62 Chapter 6. The Orthogonal Clock Subsystem for CAN

Idle1 Queue Idle2
vcm(t) = kR + ∆m

TM.Req(m)

TM.Ind(n) ∧ n 6∈ hp(m) TM.Ind(n) ∧ n 6∈ hp(m)

TM.Conf(m)

TM.Ind(n) ∨ TM.Conf(m)

TM.Ind(n) ∧ n ∈ hp(m)

TM.Abort(m),

Sync(n,m),

tsync = vcm(t)

TM.Ind(n) ∧ n ∈ hp(m)

Sync(n,m),

tsync = vcm(t)

vcm(t) = tsync + R
2

k = k + 1

Figure 6.7: Algorithm executed by the SynM of master m

In state Queue, three events are possible.

1. A TM of lower priority can be received. This is expressed again with the condition TM.Ind(n)∧ n /∈
hp (m). Whenever this happens, the received TM is ignored.

2. A TM of higher priority may be received. This is expressed also with the condition TM.Ind(n)∧ n ∈
hp (m), where n is the identifier of the TM just received. In this case, the previously re-

quested broadcast is aborted (with the TM.Abort(m) primitive) and SynM notifies the VC

module (through the Sync(n,m) primitive) that the procedure for clock adjustment has to be

executed.

3. The broadcast of the TM may be successful. This would be indicated by TSM with the

TM.Conf(m) primitive. In this case, SynM steps into state Idle2 without performing any

particular action.

Regarding the TM.Abort(m) primitive, it is important to remark that under some particular circum-

stances it may not be successful. More specifically, due to the inherent latency in the processing of

any received message, SynM issues the TM.Abort(m) with a short delay after the reception of the

TM. It is possible that during this delay, EnCAN has gained access to the bus and is actually trans-

mitting the TM that should be aborted. In such a case, the abortion could not take place. As any other

6.4 Prototype and testing of OCS-CAN 63

Idle1 Idle2
TM.Ind(n)

Sync(n, s),

tsync = vcs(t)

TM.Ind(n)

vcs(t) = tsync + R
2

Figure 6.8: Algorithm executed by the SynM of slave s

CAN controller, EnCAN can only abort those messages that are waiting for transmission, but not the

one that it is transmitting.

An unsuccessful abortion of the TM would cause the reception of two different TM within the same

resynchronization round. In order to prevent the second TM from causing another resynchronization,

the master waits for R2 time units after every synchronization (in state Idle2), before being available

for synchronizing again. Meanwhile, every received TM is ignored, regardless of its priority. If the

master was not able to timely abort its previous broadcast, the TM.Conf(m) primitive is also ignored.

In Section 7.4 it will be shown that this technique is also useful to avoid problems with duplicates of

the TM caused by channel faults.

Figure 6.8 depicts the algorithm executed by the SynM of the slave s. The behavior of a slave is

very simple: it synchronizes to the first TM received in every round, regardless of the clock unit that

generated the TM. In order to avoid double resynchronizations caused by TM duplicates, only TMs

that are at least R2 time units apart are considered.

6.4 Prototype and testing of OCS-CAN

The prototyping of OCS-CAN has been addressed as a Projecte Final de Carrera of the degree of

Enginyeria Tècnica Industrial, especialitat Electrònica Industrial at the UIB [Fer08]. The first aim

of this project was to fully develop the internal structure of the modules that constitute the clock unit,

and to prove that the resulting circuit can be implemented at a reasonable cost with a Programmable

Logic Device (PLD).

For illustration purposes, Figure 6.9 shows the block diagram that corresponds to TSM, as it

appeared in [Fer08]. This module includes a number of submodules (Priority check, Rx ref msg,

Tx ref msg and Timestamp module) and a more complex interface than shown in Figure 6.5. How-

ever, these low-level details of the implementation will not be discussed here.

64 Chapter 6. The Orthogonal Clock Subsystem for CAN

Figure 6.9: Block diagram of the Timestamp Manager (TSM)

The prototype of the clock unit was finally implemented on an EP20K200EFC484-2X, which is an

FPGA belonging to the family APEX20KE from Altera [Alt]. This device can be currently considered

a low-range PLD, what confirms that the hardware requirements of OCS-CAN are not hard to meet.

The second aim of the prototyping of OCS-CAN was to measure the precision achieved by the

clock adjustment procedure, and determine whether this precision satisfies the requirements discussed

in Section 5.2. To obtain this measure, we set up a simple system, made up of only one master and

two slaves, connected with a CAN network at 500Kbps.

In our setup, every clock unit is clocked with a local oscillator of frequency 25MHz, which feeds

the frequency divider that generates the ticks of the virtual clock (see Section 6.3.3). For testing

purposes, the output of this frequency divider is connected to an output pin of the FPGA, which we

will call vc tick hereafter. The frequency divider works with a default value of N = 50 so that the

period of the virtual clock (and hence of vc tick) is 2 µs.

It is important to remark that having a virtual clock of period 2 µs (a relatively slow clock) limits

the precision achievable in our experiment. With this clock granularity, even simultaneous events can

be timestamped with an error of 2 µs, which implies that the timestamps already include some error

that cannot be corrected. For this reason, our has to use a short resynchronization period (R).

6.4 Prototype and testing of OCS-CAN 65

Figure 6.10: Offset measured for two slave clock units

The offset among the virtual clocks is measured by periodically sampling the outputs vc tick of

the master and the two slaves. The samples are taken with a digital oscilloscope Yokogawa DL7440, at

a frequency of 2 Msamples/s. This oscilloscope has four channels, three of which are used to monitor

the pin vc tick of each clock unit. This guarantees that the samples are taken simultaneously.

After that, the recorded samples are processed off-line with Matlab in order to obtain the value of

each virtual clocks, and compare it with the value of the master’s virtual clock.

Figure 6.10 depicts the results that were obtained with a resynchronization period R = 0.3 s. The

horizontal axis indicates time, measured in seconds, whereas the vertical axis indicates the offset

with respect to the master’s virtual clock, measured in ticks of the master. Initially, the slave virtual

clocks have an offset of 60 and -100 ticks (120 µs and -200 µs, respectively). Both initial offsets are

generated artificially in order to check the convergence of the clock adjustment.

As Figure 6.10 shows, the offset is corrected in only one resynchronization round. After that,

the virtual clocks of the slaves keep oscillating around the central value. The maximum offset with

respect to the master is±5 ticks, which means that the system achieves a precision of 10 ticks (20 µs).

As indicated in Section 5.2, this value stays within the range of acceptable values for the design of

dependable CAN. Although it is clear that more experiments are required in order to further investi-

gate the precision achieved by our prototype, we consider that the results obtained so far show that

the proposed architecture can be implemented with relatively economic hardware.

Nevertheless, it is important to remark that, when aiming at dependable systems, testing is not

enough. Tests can show the existence of design errors, and can also help to assess the average behavior

of the system, but tests cannot prove that the system behaves as expected in every possible situation.

In order to provide such guarantees a formal approach is required. This will be discussed in the next

chapter, in which we present the analytical assessment of OCS-CAN.

Chapter 7

Analytical assessment of the precision

guaranteed by OCS-CAN

This chapter addresses the analysis of the precision achieved by OCS-CAN under diverse fault condi-

tions. This analysis considers the clock units independently from the rest of the distributed embedded

system. This is possible thanks to the orthogonality of the clock subsystem.

7.1 Basic definitions and notation

In this section, we present the equations that model the behavior of the virtual clocks, and use them to

give a formal definition of the internal clock synchronization property. Two basic results to be used

in the subsequent analysis of OCS-CAN are also presented.

7.1.1 Characterization of the virtual clock

In this work we assume the Newtonian concept of time, as it is usually done in computer systems.

This notion of time, which is also referred to as real time, is represented by the set of positive real

numbers, R+. Any time instant belonging to this external dimension will be denoted by t.

The virtual clock is a counter that uses a local oscillator for measuring real time as accurately as

possible. The signal generated by the local oscillator goes through a frequency divider, which divides

by a constant number N . The virtual clock therefore increases in one unit every N
fosc

seconds. For

67

68 Chapter 7. Analytical assessment of the precision guaranteed by OCS-CAN

any clock unit a, we denote the value of its virtual clock (measured in seconds) as vca(t) ∈ R+.

Note that the virtual clock can only take discrete values because it increases stepwise (tick by

tick). Nevertheless, to simplify our analysis we assume that vca(t) is a continuous, differentiable and

monotonically increasing function, such that v̇ca(t) > 0 for every time instant t. Since the increment

caused by a tick is very little, and ticks are actually very close to each other, this approximation does

not cause a significant error. It is indeed a common assumption when addressing the study of clock

synchronization [Sch87, FC95, PSvH99].

According to this definition, an ideal virtual clock is the one that perfectly maps real time, and thus

satisfies v̇ca(t) = 1 for any time instant t. However, actual virtual clocks never exhibit such an ideal

behavior, mainly because local oscillators inevitably deviate from their nominal frequency.

For any clock unit a, the rate of its virtual clock is defined as v̇ca(t) = 1 + ρa(t), where ρa(t) ∈ R
is called the drift of virtual clock a. The drift of a non-faulty virtual clock a is always bounded by a

value ρmaxa , which is called its maximum drift, such that |ρa(t)| ≤ ρmaxa ∀ t ∈ R+.

The value of ρmaxa is much lower than 1, usually in the order of 10−4 to 10−6, what implies that

virtual clocks approximately evolve at the pace of real time.

The drift of a local oscillator (and thus of a virtual clock) is a combination of two components:

the stochastic drift and the systematic drift. The systematic drift, which is caused by manufacturing

imperfections and aging, but also by environmental conditions such as temperature variations, is two

or three orders of magnitude higher than the stochastic one. Due to this, the stochastic drift is usually

neglected.

Since the systematic drift changes very smoothly, it is common to assume that ρ̇m(t) ' 0. This

assumption is called long-term stability and implies that for short periods of time, and as long as

the rate is not changed by any clock synchronization action, v̇ca(t) is constant and thus the function

vca(t) can be satisfactorily approximated by a linear function.

7.1.2 Offset, consonance and precision

The consistency in the perception of time among a set of clock units is usually studied by means of a

measure called the offset, which is defined as follows.

Definition 4 (Offset). Let a, b ∈ A be two clock units. The offset between clock unit a and clock unit

b at time t is Φab(t) = vca(t)− vcb(t).

In order to perform coordinated actions in a distributed system, the most desirable situation would

be to have an offset equal to 0 between every pair of clock units, as it would allow them to easily make

7.1 Basic definitions and notation 69

consistent decisions on the basis of time. Unfortunately, such a desirable situation is not possible in

real systems, since every virtual clock evolves at a slightly different rate, because of its specific drift,

and therefore the values of the virtual clocks tend to diverge.

The speed at which two virtual clocks diverge depends on a measure called the consonance, which

indicates their relative rate difference.

Definition 5 (Consonance). Let a, b ∈ A be two clock units. The consonance between clock unit a

and clock unit b at time t is γab(t) = v̇ca(t)− v̇cb(t) = ρa(t)− ρb(t).

When vca(t) and vcb(t) are approximated by linear functions, the offset and the consonance are

related as follows Φab(t) = Φab(t0) + (t − t0)γab(t0) or, expressed in absolute value, |Φab(t) −
Φab(t0)| = (t − t0)|γab(t0)|. This means that the tendency of the offset is to increase (in absolute

value) as time passes by; except for the ideal case when γab(t0) = 0.

Therefore, as long as virtual clocks are allowed to run free, it is not possible to rely on their values

in order to have a consistent perception of time. As indicated in Section 2.2, this can be solved with

a clock synchronization algorithm that ensures the property known as internal clock synchronization.

This property is formalized as follows.

Definition 6. [Internal clock synchronization] Let A be a set of clock units. Set A is internally

synchronized with precision Π if there exists a constant Π ∈ R+, which is called the precision, such

that for every pair a, b ∈ A of non-faulty clock units, |Φab(t)| ≤ Π, ∀ t ∈ R+.

For short, we will say hereafter that a set of clock units fulfilling this property is Π-synchronized.

7.1.3 Two basic results on virtual clocks

Thanks to the linearity properties assumed for vca(t), the following two lemmas can be derived.

Lemma 1. Let a ∈ A be a non-faulty clock unit, and t1, t2 ∈ R+ be two time instants such that

t1 < t2. If there exist four values τl, τu, vl, vu ∈ R+ such that τl ≤ t2 − t1 ≤ τu, and vl ≤ v̇ca(t) ≤

vu ∀ t ∈ [t1, t2], then

τl · vl ≤ vca(t2)− vca(t1) ≤ τu · vu.

Proof. Assuming that vca(t) is a linear function, we know that vca(t2)− vca(t1) = (t2− t1)v̇ca(t1).

70 Chapter 7. Analytical assessment of the precision guaranteed by OCS-CAN

Then, by hypotheses,

τl · vl ≤ (t2 − t1) · vl ≤ (t2 − t1)v̇ca(t1) ≤ (t2 − t1) · vu ≤ τu · vu.

Lemma 2. Let a ∈ A be a non-faulty clock unit, and t1, t2 ∈ R+ be two time instants such that

t1 < t2. If there exist four values xl, xu, vl, vu ∈ R+ such that xl ≤ vca(t2) − vca(t1) ≤ xu, and

vl ≤ v̇ca(t) ≤ vu ∀ t ∈ [t1, t2], then

xl
vu
≤ t2 − t1 ≤

xu
vl
.

Proof. Assuming that vca(t) is a linear function, we know that vca(t2)− vca(t1) = (t2− t1)v̇ca(t1)

and therefore
vca(t2)− vca(t1)

v̇ca(t1)
= t2 − t1 .

Then, by hypotheses,

xl
vu
≤ xl
v̇ca(t1)

≤ t2 − t1 ≤
xu

v̇ca(t1)
≤ xu

vl
.

Both lemmas are extensively used in the analysis that is carried out in the following sections.

7.2 The clock synchronization algorithm of OCS-CAN

In this section we give the equations that model the operation of the clock synchronization algorithm

of OCS-CAN, assuming that faults may not exist. This analysis will be complemented in Section 7.4

and Section 7.5 with the assessment of the fault tolerance mechanisms of OCS-CAN.

7.2.1 Modeling clock adjustment

Let a be a slave clock unit, and let tisync be the value of real time at the sampling point of the SOF bit

of the TM that the master broadcasts in round i. Then, after the complete reception of the TM, clock

7.2 The clock synchronization algorithm of OCS-CAN 71

unit a has two timestamps of that instant: the one sent by the master, vcm(tisync), and the one it has

taken, vca(tisync). The first value is called the remote timestamp of the TM and is denoted by T irem,

whereas the second value is called the local timestamp of the TM and is denoted by T iloc. Both values

can be used in order to estimate the offset with respect to the master, since Φ̂ma(t
i
sync) = T irem−T iloc.

Due to the hardware-implemented timestamp mechanism of OCS-CAN, explained in Section 6.3.2,

the obtained estimation is very accurate and satisfies the following property

|Φma(t
i
sync)− Φ̂ma(t

i
sync)| ≤ ε0 .

Furthermore, every clock unit can also calculate its consonance with respect to the master. For this

calculation, the timestamps from two consecutive synchronization rounds must be used as follows

γ̂ma(t
i
sync) =

T iloc − T i−1rem

T irem − T i−1rem

.

Thanks to the accuracy of the timestamps, such an estimate of the consonance approximates the

real consonance very closely. Thus, the property |γma(tisync)− γ̂ma(tisync)| ≤ γ0 is fulfilled.

Once a slave clock unit has calculated both its offset and its consonance with respect to the master,

the clock adjustment can be easily carried out. It is divided into two steps: the offset adjustment and

the drift adjustment. The offset adjustment can be performed by means of an assignment to the virtual

clock, as follows

vca(t
i
sync) := vca(t

i
sync) + Φ̂ma(t

i
sync) .

Note that after this assignment, and assuming that it takes no time, |Φma(t
i
sync)| ≤ ε0 and thus for

any pair of clock units a, b it holds that

|Φab(t
i
sync)| ≤ 2ε0 .

In contrast, the drift adjustment is done by adapting the ratio of the frequency divider (i.e. slightly

changing the value of N) in a way such that

v̇ca(t
i
sync) := v̇ca(t

i
sync) + γ̂ma(t

i
sync) .

After this drift adjustment, |γab(tisync,a)| ≤ 2γ0 for every pair of clock units a, b.

7.2.2 Clock amortization vs. immediate assignment

The offset adjustment described in 7.2.1 presents an important drawback if applied as it has been

defined. It causes sudden jumps of the virtual clock, which can be either backward or forward, and

72 Chapter 7. Analytical assessment of the precision guaranteed by OCS-CAN

such discontinuities represent a potential threat to any application in which the actions are triggered

by the virtual clock. For instance, a sudden jump backwards may cause a second execution of a task

recently executed.

In order to avoid these undesirable situations, the offset adjustment of OCS-CAN is not imple-

mented as an assignment. Instead, it is progressively applied throughout the synchronization round,

by shortening or lengthening a portion of the ticks in order to, respectively, accelerate or decelerate

the virtual clock. In this manner, jumps do not exist and the value of the virtual clock is still mono-

tonically increasing. This procedure is called clock amortization, and was described in Section 6.3.3.

As discussed in [SC90], clock amortization has no negative effect on the achievable precision, when

properly implemented, and is equivalent to an immediate offset assignment. Due to this equivalence,

in our analysis we assume that the offset adjustment is done by an immediate assignment, and not by

clock amortization, since the former can be more easily modeled.

7.3 Analysis of OCS-CAN in fault-free conditions

In this section we further develop our mathematical modeling of OCS-CAN, and prove that in the

absence of faults, any OCS-CAN system is Π-synchronized.

7.3.1 The broadcast instants vs. the synchronization instants

As already indicated in Section 6.2, the master spreads the value of its virtual clock by periodically

broadcasting the TM. Any instant at which one master attempts to broadcast its TM will be called a

broadcast instant. Since the broadcast of the TM is periodical, the broadcast instants of a master m

constitute a succession of values, which will be denoted as {tim}. If R is the synchronization period

then the succession of synchronization instants is obtained as {tim | vcm(tim) = ∆m + iR, ∀ i ∈ N},
where ∆m ∈ R+ is a constant value that indicates the initial phase of master m.

The instant when the slave clock unit a receives the i-th TM broadcast by the master is called

the synchronization instant of clock unit a. This instant, which coincides with the instant tisync of

Section 6.3.3, is denoted as tisync,a in order to keep a consistent notation.

Since any broadcast is affected by the communication channel delay, the synchronization instant

will happen some time after the broadcast of the TM. For the case of CAN, the network delay

is bounded by two values: the best case response time (bcrtm) and the worst case response time

(wcrtm) [TBW95]. Therefore, any synchronization instant tisync,a satisfies that tim + bcrtm ≤
tisync,a ≤ tim + wcrtm.

7.3 Analysis of OCS-CAN in fault-free conditions 73

In the absence of faults, CAN guarantees that all clock units receive the TM simultaneously. This

implies that in every round i, and for every pair a, b of non-faulty clock units, tisync,a = tisync,b. Note

that this assumption could be hardly applicable to a software-implemented clock synchronization,

because the latency caused by the message processing would be high. Nevertheless, in OCS-CAN,

the message reception is handled by hardware and then the latencies are negligible.

7.3.2 Precision guaranteed in fault-free conditions

As indicated in Section 7.2.2, in our modeling we assume immediate offset and rate assignments,

which cause jumps of the virtual clock. Due to this, the definition of the virtual clock as a linear

function does not hold any longer. Instead, vca(t) can be approximated by a piecewise linear function,

with discontinuity points that coincide with the synchronization instants {tisync,a}. Therefore, within

the linear intervals it is still possible to apply the results of Section 7.1.3 in order to find the precision

guaranteed by OCS-CAN. This is discussed in the next proposition.

Proposition 1. LetA be a set of non-faulty clock units. In the absence of faults, the offset between any

pair a, b ∈ A of clock units is bounded as follows |Φab(t)| ≤ 2ε0+2γ0

(
R

1−ρmax
m

+ wcrtm − bcrtm
)

.

Proof. We know from Section 6.3.3 that the upper bound of the absolute value of the offset between

two clock units gets to a minimum right after any synchronization instant. We also know that the upper

bound progressively increases as time passes by, depending on the absolute value of the consonance,

until the next synchronization instant is reached and the virtual clocks are put together again. Then, to

determine the precision of the system, we only have to obtain the upper bound of the absolute value

of the offset right before the synchronization instants, which is

|Φab(t
i
sync,a)| ≤ 2ε0 + 2γ0(t

i
sync,a − ti−1sync,a).

Since ti−1sync,a ≥ ti−1m + bcrtm and tisync,a ≤ tim + wcrtm, we can write

tisync,a − ti−1sync,a ≤ tim − ti−1m + wcrtm − bcrtm.

We know indeed that vcm(tia)− vcm(ti−1a) = R, and that 1− ρmaxm ≤ v̇cm(ti−1m) ≤ 1 + ρmaxm . Then,

by Lemma 2,
R

1 + ρmaxm

≤ tim − ti−1m ≤ R
1− ρmaxm

.

74 Chapter 7. Analytical assessment of the precision guaranteed by OCS-CAN

And therefore

tisync,a − ti−1sync,a ≤
R

1− ρmaxm

+ wcrtm − bcrtm.

Finally, the statement of the proposition is proved by substituting this result into the first expression.

Proposition 1 proves that, as long as the slaves receive the TM at periodical intervals, their virtual

clocks cannot drift apart too much. Moreover, it shows that the amount of permitted offset strongly

depends on the length of the synchronization period, since R� wcrtm, bcrtm.

7.4 Analysis of OCS-CAN with channel faults

OCS-CAN uses the low-level mechanisms provided by CAN for error detection, error signaling and

error recovery; which were discussed in Section 4.3.2. Due to this, before analyzing the precision

achieved by OCS-CAN in the presence of channel faults, we must discuss the failure semantics of the

CAN channel.

7.4.1 Channel’s failure semantics

Thanks to the error mechanisms of CAN, every frame corrupted by an error (and hence by the sub-

sequent error frame) will be immediately retransmitted, as long as the transmitter remains non-faulty.

OCS-CAN relies on this property in order to recover from errors affecting the transmission of the TM.

However, it is important to remark that in OCS-CAN, whenever a TM is retransmitted, the timestamp

mechanism implemented by the master clock unit overwrites the content of the data field with the

timestamp of the new SOF bit. This means that the offset estimation remains as accurate as indicated

in Section 7.2.1.

The arbitration mechanism implemented by CAN guarantees a bounded response time for every

message broadcast, even in the presence of channel faults. Therefore, any synchronization instant

tisync,a still satisfies the condition tim + bcrtm ≤ tisync,a ≤ tim + wcrtm. Nevertheless, when chan-

nel faults are considered, the worst-case value (wcrtm) increases as a consequence of the potential

retransmissions.

The value of wcrtm can be estimated under different traffic and error conditions, for instance as

discussed in [BBRN02]. Nevertheless, since the discussion of these methods goes beyond the scope

of this document, and furthermore it is not required to understand our analysis, we will just assume

7.4 Analysis of OCS-CAN with channel faults 75

that the value of wcrtm is known for the considered fault model and traffic load, and that it is much

lower than R (the synchronization period).

The potential consistency failures exhibited by CAN were discussed in Section 4.3.3. These prob-

lems were related to the appearance of either inconsistent message duplicates (IMD) or inconsistent

message omissions (IMO). In the following analysis, we will assess the precision achievable by OCS-

CAN, assuming the three possible consistency assumptions separately. For short, we will use the

following notation: Br-C for Consistent broadcast; Br-ID for Broadcast with inconsistent duplicates;

and Br-IO for Broadcast with inconsistent omissions. It is important to remark again that, regardless

of being consistent or not, CAN still guarantees a bounded delay for any broadcast.

7.4.2 Precision with consistent broadcast

As long as the data consistency property is preserved, we know that tisync,a = tisync,b for any pair a, b

of non-faulty clock units. Thus, the only difference with respect to the error-free condition studied

in Section 7.3 is the mentioned increment of wcrtm due to the potential retransmissions of erroneous

frames. But these retransmissions will not have any effect on the accuracy of the offset and conso-

nance estimations, since each retransmission of the TM contains its own timestamp. Therefore, the

assumptions of Proposition 1 still hold, and the system will remain Π-synchronized, although with a

greater Π. Nevertheless, since R� wcrtm also when considering channel faults, the increment of Π

is moderated.

7.4.3 Precision with inconsistent duplicates

In OCS-CAN, an additional mechanism is introduced to ensure that every slave clock unit synchro-

nizes only to the first TM it receives in a round: after synchronizing, every slave waits for R
2 time units

before being available for synchronization again. In the meanwhile, every received TM is ignored.

Since R
2 > wcrtm, this prevents any duplicated TM from causing a second clock synchronization

within the round.

Nevertheless, note that despite this mechanism it is possible for one slave to synchronize with the

first TM whereas another slave synchronizes with the retransmission of that TM. Hence, under this

fault assumption, the synchronization instants of two clock units may be different within the same

round. However, as the next proposition proves, this circumstance does not worsen the achievable

precision.

Proposition 2. Let A be a set of non-faulty clock units that communicate through a CAN channel

76 Chapter 7. Analytical assessment of the precision guaranteed by OCS-CAN

that allows inconsistent duplicates. Then, for any pair a, b ∈ A of clock units, the offset is bounded

as follows

|Φab(t)| ≤ 2ε0 + 2γ0

(
R

1− ρmaxm

+ wcrtm − bcrtm
)
.

Proof. We start our proof by supposing that a, b ∈ A are two slave clock units that synchronize at

tisync,a and at tisync,b = tisync,a + δ, respectively, with δ > 0. Therefore |Φma(t
i+1
sync,a)| ≤ ε0 +

γ0(t
i+1
sync,a − tisync,a) and

|Φmb(t
i+1
sync,b)| ≤ ε0 + γ0(t

i+1
sync,b − t

i
sync,b)

≤ ε0 + γ0(t
i+1
sync,b − t

i
sync,a)− γ0δ.

For both clock units, we know that the upper bound of the absolute value of the offset with respect

to the master gets to its minimum at the synchronization instants, and increases monotonically after

that. Therefore, the upper bound will reach its maximum possible value in both cases when ti+1
sync,a =

ti+1
sync,b = ti+1

m + wcrtm. Then

|Φab(t
i+1
sync,a)| ≤ 2ε0 + 2γ0(t

i+1
m + wcrtm − tisync,a)− γ0δ

≤ 2ε0 + 2γ0(t
i+1
m + wcrtm − tisync,a)

≤ 2ε0 + 2γ0(t
i+1
m − tim + wcrtm − bcrtm).

As we already did in Proposition 1, we can use Lemma 2 to upper bound ti+1
m − tim, and thus the

offset as follows

|Φab(t
i+1
sync,a)| ≤ 2ε0 + 2γ0

(
R

1− ρmaxm

+ wcrtm − bcrtm
)
.

This property proves that, when only inconsistent duplicates can occur, OCS-CAN guarantees the

same precision as if having data consistency.

7.4.4 Precision with inconsistent omissions

An inconsistent omission of the TM prevents at least one slave clock unit from receiving the TM.

Therefore, for certain synchronization round i and clock unit a, the synchronization instant tisync,a

7.4 Analysis of OCS-CAN with channel faults 77

may not be defined. This possibility makes the analysis of the precision more complicated. However,

we will show that the system is still Π-synchronized, although the precision may worsen significantly.

Before starting our analysis, we need to define the concept of consistent synchronization round.

Given a set A of clock units, we say that a synchronization round i is consistent if tisync,a exists for

every non-faulty clock unit a ∈ A. Otherwise, we say it is inconsistent.

In our analysis we assume that the number of consecutive inconsistent rounds is limited. Otherwise,

we should have to consider the possibility that one or more slaves might not receive the TM during an

indefinite number of rounds, what would cause an unbounded increment of the absolute value of the

offset with respect to the master. The parameter that bounds the number of consecutive inconsistent

rounds is called the maximum omission degree and is denoted by Omax ∈ N.

Thanks to the maximum omission degree, it is also possible to find the precision of OCS-CAN in

the presence of inconsistent omissions. This is stated in the next proposition.

Proposition 3. Let A be a set of clock units, and let Omax be the maximum omission degree of A.

Then for every pair of clock units a, b ∈ A the offset is bounded as follows

|Φab(t)| ≤ 2ε0 + 2γ0

(
(1 +Omax)R

1− ρmaxm

+ wcrtm − bcrtm
)
.

Proof. For this proof, we have to consider the worst case situation, which is whenever at least two

slaves have been Omax consecutive rounds without receiving the TM. If a clock unit a receives the

TM at tisync,a but has missed the previous Omax broadcasts of the TM then

|Φma(t
i
sync,a)| ≤ ε0 + γ0(t

i
sync,a − ti−Omax−1

sync,a)

≤ ε0 + γ0(t
i
m − ti−Omax−1

m + wcrtm − bcrtm).

By applying Lemma 2 for bounding tim − ti−Omax−1
m ,

|Φma(t
i
sync,a)| ≤ ε0 + γ0

(
(1 +Omax)R

1− ρmaxm

+ wcrtm − bcrtm
)
.

Since |Φab(t
i
sync,a)| ≤ |Φma(t

i
sync,a)| + |Φmb(t

i
sync,a)|, we can easily derive the boundary stated in

the proposition.

This result proves that inconsistent message omissions have stronger impact on the precision than

inconsistent duplicates have. In fact, if ΠID is the precision guaranteed by an OCS-CAN system

78 Chapter 7. Analytical assessment of the precision guaranteed by OCS-CAN

under the assumption of Br-ID and ΠIO is the precision guaranteed by the same system under the

assumption of Br-IO then, given that R >> wcrtm − bcrtm, it can be said that ΠIO ' ΠID(1 +

Omax).

7.5 Analysis of OCS-CAN with node faults

From a dependability perspective, implementing OCS-CAN with only one master exhibits an impor-

tant drawback: if the master crashes, the TM would never be broadcast again and the precision would

eventually be lost. In order to avoid this single point of failure, OCS-CAN combines two mecha-

nisms. First, the failure semantics of the clock units is restricted to crash failure semantics by means

of internal duplication and comparison. This implies that, assuming that the clock units are as simple

as to be free from design errors, any internal fault of a clock unit will manifest as a crash, making the

clock units fail-silent [Kop97]. Second, OCS-CAN defines a number of backup masters which are

intended to replace the active master whenever it fails.

The purpose of this section is to analyze the effect that master crashes may have on the precision,

assuming that no channel faults may exist.

In the next proposition, we show that upon master failure, and in the absence of channel faults,

OCS-CAN remains Π-synchronized as long as at least one non-faulty master exists.

Proposition 4. Let A be a set of clock units with two or more masters. Let m ∈ A be the highest

priority master and n ∈ A be the lowest priority master. Assuming that the channel is fault-free and

that there is always at least one non-faulty master, the offset between any pair of non-faulty clock

units is bounded by

|Φab(t)| ≤ 2ε0 + 2γ0

(
R + (∆n −∆m) + ε0

1− ρmaxm − γ0

)
+2γ0

(
wcrtn −

bcrtm(1− ρmaxm)

1− ρmaxm − γ0

)
.

Proof. If channel faults may not exist, then tisync,a is defined for every synchronization round i and

for every non-faulty clock unit a. Therefore the offset is bounded by the distance between any two

consecutive synchronization instants, since |Φab(t
i
sync,a)| ≤ 2ε0 + 2γ0(t

i
sync,a − ti−1sync,a). The worst

case scenario would be the one in which all clock units synchronize to master m at ti−1sync,a, master

m crashes afterwards and then master n takes over at tisync,a. Note that this would require any other

7.5 Analysis of OCS-CAN with node faults 79

master with higher priority than n to be faulty as well. Taking this into account, we can rewrite the

boundary as |Φab(t
i
sync,a)| ≤ 2ε0 + 2γ0(t

i
n + wcrtn − ti−1sync,a).

In order to bound tin − ti−1sync,a we proceed in various steps. By Lemma 2 we know that if xl ≤

vcn(tin)− vcn(ti−1sync,a) ≤ xu and vl ≤ v̇cn(ti−1sync,a) ≤ vu then

tin − ti−1sync,a ≤
xu
vl
.

Therefore, our proof is reduced to finding the values of xu and vl.

To find the value of xu we consider that bcrtm ≤ ti−1sync,a − ti−1m ≤ wcrtm, and that 1 − ρmaxm ≤

v̇cm(ti−1m) ≤ 1 + ρmaxm . Hence, by Lemma 1

vcm(ti−1m) + bcrtm(1− ρmaxm)

≤ vcm(ti−1sync,a)

≤ vcm(ti−1m) + wcrtm(1 + ρmaxm).

Moreover, since master n synchronizes to masterm at ti−1sync,a, then−ε0 ≤ vcm(ti−1sync,a)−vcn(ti−1sync,a) ≤

ε0. Therefore

vcm(ti−1m) + bcrtm(1− ρmaxm)− ε0

≤ vcn(ti−1sync,a)

≤ vcm(ti−1m) + wcrtm(1 + ρmaxm) + ε0.

Furthermore, given that vcm(ti−1m) = ∆m + (i− 1)R and that vcn(tin) = ∆n + iR, then

vcn(tin)− vcn(ti−1sync,a)

≤ vcn(tin)− vcm(ti−1m)− bcrtm(1− ρmaxm) + ε0

≤ R + ∆n −∆m − bcrtm(1− ρmaxm) + ε0

≤ xu.

Finding the value of vl is much easier. It has to be considered that at the synchronization instant

ti−1sync,a it holds that −γ0 ≤ v̇cm(ti−1sync,a)− v̇cn(ti−1sync,a) ≤ γ0. Therefore

v̇cn(ti−1sync,a) ≥ 1− ρmmax − γ0 ≥ vl.

80 Chapter 7. Analytical assessment of the precision guaranteed by OCS-CAN

If we substitute the values of xu and vl in the expression above, we obtain the boundary initially

stated.

Note that Proposition 4 proves that a master failure would not have an important impact on the guar-

anteed precision. Since R >> ∆n −∆m, the little delay that the master replacement requires would

not cause an excessive loss of precision. This can be compared with the impact of the inconsistent

message omissions discussed in Section 7.4.4.

7.6 Analysis of OCS-CAN with both channel and node faults

In our previous analysis, we have shown that the fault tolerance mechanisms of OCS-CAN guarantee

a certain precision both in the presence of channel faults and in the presence of node faults. Moreover,

it was shown that an IMO of the TM has potentially more negative impact than other faults considered,

such as IMD or master crash.

In this section, we go further in our analysis and investigate the effect that the combination of

channel and node faults would have on the precision. It will be shown that an inconsistency of the

TM may have greater impact when there are several masters in the system than when there is only

one. Moreover, it will be shown, by means of an example, that the analysis of OCS-CAN becomes

more difficult as the scenarios of inconsistency become more complex.

7.6.1 Revisiting the channel’s failure semantics

Concerning channel faults, in Section 7.4.1 we distinguished three possible failure semantics, which

differed in the consistency assumptions considered. Nevertheless, in the present analysis we are going

to consider only one of such failure semantics: broadcast with inconsistent omissions (Br-IO). The

other two hypotheses can be disregarded for the following reasons.

On the one hand, the assumption of consistent broadcast implies that the data consistency property

of CAN is satisfied. As indicated in Section 7.4.2, this means that the assumptions of the analysis

without channel faults are satisfied, and the bound given by Proposition 4 is still guaranteed. The only

difference is a potential increment in the value ofwcrtn which would be caused by the retransmissions

of erroneous frames.

On the other hand, the possibility of broadcast with inconsistent duplicates is not considered be-

cause, as reported in [RVA+98], any combination of faults that would cause an inconsistent duplicate

would lead to an inconsistent omission if the transmitter crashes before being able to retransmit the

7.6 Analysis of OCS-CAN with both channel and node faults 81

frame. Therefore, both possibilities, Br-ID and Br-IO, happen to be equivalent in the presence of

master faults. Due to this, we only have to study the precision under the less restrictive hypothesis,

which is Br-IO, and the results will be extensible to the other case.

7.6.2 Extending the concept of consistent synchronization round

Before proceeding further with our analysis, we need to define the concept of clock unit’s reference

master. Intuitively, for any synchronization round, the reference master of a clock unit is the master

to which it has synchronized within that round. If a clock unit does not synchronize to any master

(because no TM is received) the reference master does not change.

The reference master of clock unit a in the synchronization round i is denoted by ref(a, i). We

assume that in the first synchronization round, all clock units synchronize to the master of highest

priority, which is denoted by hp(M). Therefore, ref(a, 0) = hp(M) for any a ∈ A. For the following

rounds, ref(a, i) = m when clock unit a receives the TM of master m at tisync,a and synchronizes to

it, and ref(a, i) = ref(a, i− 1) when no TM is received and thus tisync,a is not defined.

The value of ref(a, i) can be used to extend the concept of consistent synchronization round, which

was given in Section 7.4.4, to those cases with more than one master. While using master redundancy,

we say that a synchronization round i is consistent when tisync,a is defined for every non-faulty clock

unit a and, moreover, ref(a, i) = ref(b, i) for every pair a, b of non-faulty clock units. Otherwise

the synchronization round is said to be inconsistent. The maximum omission degree (Omax) is still

defined as the maximum number of consecutive rounds that can be inconsistent.

7.6.3 Analysis of a specific inconsistency scenario

The inconsistent synchronization rounds may represent a severe threat to the precision of OCS-CAN.

This is illustrated next by means of a scenario with only one inconsistent synchronization round

(i.e. Omax = 1). The analysis of this relatively simple scenario also illustrates the complexity of

determining the precision when having master redundancy and inconsistent omissions.

Let us assume an OCS-CAN system such that

1. Round i− 1 is consistent, with ref(a, i− 1) = m;

2. Round i is inconsistent, with ref(a, i) = m and ref(b, i) = n; and

3. Round i+ 1 is consistent again, with ref(a, i+ 1) = m.

82 Chapter 7. Analytical assessment of the precision guaranteed by OCS-CAN

Given that all but one of the synchronization rounds are consistent, we only need to determine the

upper bound of the absolute value of the offset at the end of the inconsistent synchronization round,

more specifically at ti+1
sync,b. Note that in the other rounds, in which consistency is preserved, the upper

bound would be lower.

From the hypothesis on round i − 1, we know that master n synchronizes to master m at ti−1sync,n,

so |Φmn(tisync,b)| ≤ ε0 + γ0(t
i
sync,b − ti−1sync,n). Since clock unit b synchronizes to master n in round

i, then |Φnb(t
i
sync,b)| ≤ εo, and therefore |Φmb(t

i
sync,b)| ≤ 2ε0 + γ0(t

i
sync,b − ti−1sync,n). Moreover,

|γmn(tisync,b)| ≤ γ0 and |γnb(tisync,b)| ≤ γ0, so |γmb(tisync,b)| ≤ 2γ0. Then, we can bound the

absolute value of the offset at ti+1
sync,b as

|Φmb(t
i+1
sync,b)|

≤ |Φmb(t
i
sync,b)|+ |γmb(tisync,b)|(ti+1

sync,b − t
i
sync,b)

≤ 2ε0 + γ0(t
i
sync,b − ti−1sync,n) + 2γ0(t

i+1
sync,b − t

i
sync,b)

≤ 2ε0 + γ0(t
i+1
sync,b − t

i−1
sync,n) + γ0(t

i+1
sync,b − t

i
sync,b).

By using Lemma 1 and Lemma 2, this boundary could be expressed in terms of the clock units

parameters (R, wcrtm, wcrtn, etc.) as it was previously done in Proposition 3 and Proposition 4.

However, even without having developed the result completely, this scenario illustrates that the

effect of an IMO is more negative when using master redundancy than when there is only one master.

With only one master, the offset should be bounded as stated in Proposition 3, for Omax = 1,

|Φmb(t
i+1
sync,b)| ≤ ε0 + γ0(t

i+1
sync,b − t

i−1
sync,n).

A comparison of both expressions reveals that, with master redundancy, the guaranteed precision has

an increment of ε0 + γ0(t
i+1
sync,b − t

i
sync,b), which is not negligible.

This fact must not make us erroneously deduce that using master redundancy in OCS-CAN is neg-

ative. Master redundancy is required in order to avoid having a single point of failure. Therefore this

loss of precision can be seen as the price to be paid for improving the dependability of OCS-CAN.

However, it is important to remark that this case perfectly illustrates how the interaction between dif-

ferent fault tolerance mechanisms may have unexpected effects, which need to be carefully evaluated.

This is a strong motivation for performing analytical assessments as the one presented in this chapter.

Furthermore, the discussed scenario also shows that reasoning about the system behavior becomes

more complex as we consider more potential faults. This growth of the complexity makes sometimes

hard to ensure that, under the fault hypotheses taken into account, the worst-case scenario has been

identified. This difficulty reinforces us in our previous decision of using model checking in order to

formally verify OCS-CAN [RNPH06]. Model checking is a formal verification technique that allows

7.7 Discussion 83

the explicit enumeration and evaluation of all possible inconsistency scenarios, and can therefore

provide absolute guarantees, as it was indicated in Section 3.1.

7.7 Discussion

In this chapter we have presented a mathematical framework that allows the analytical assessment of

OCS-CAN under different fault assumptions. This analysis has been addressed by approximating the

virtual clocks of OCS-CAN as piecewise linear functions with discontinuity points that coincide with

the synchronization instants.

The aim of our analysis was to find the equations that relate the guaranteed precision with the

relevant parameters of the clock synchronization algorithm (such as the synchronization period, the

number of backup masters, etc.) as well as with the considered fault assumptions. This aim has been

successfully fulfilled for both channel and node faults, although we have also discovered that reason-

ing about the system behavior becomes more difficult when different types of faults are combined.

Due to this, we advocate the application of formal verification techniques, such as model check-

ing [CGP01], to identify and study the more complex situations. The model checking of OCS-CAN

will be thoroughly discussed in Chapter 9.

In this sense, our approach for evaluating OCS-CAN is quite different from the approach fol-

lowed in order to evaluate other fault-tolerant clock synchronization algorithms for CAN, such as

[RGR98, HMF+00, LA03] and [APSP07]. These solutions were evaluated only by means of simula-

tion and testing, and thus cannot provide guarantees about the behavior in different fault conditions.

In OCS-CAN, although a prototype of our clock subsystem has been tested as well, we have paid

more attention to the analytical assessment and to the formal verification.

The main strength of our evaluation of OCS-CAN lays on the fact that it allows a quantitative

assessment of the effect that faults may have on the system precision. This allows the system designer

to easily configure the system in a way such its requirements on the precision are fulfilled. Moreover,

our analysis helps to understand in which conditions the desired precision may be lost and, thus, helps

to identify potential risks. This could be a precious help for the design of any dependable application

over CAN.

It is important to remark that in the extensive literature about fault-tolerant clock synchronization

in distributed systems, it is possible to find several analyzes that study the precision of certain algo-

rithms under different fault assumptions; for instance in [ST85, MS85, Sch87] and [FC95], among

many others. Nevertheless, the results of these papers are not applicable to OCS-CAN, since they only

address clock synchronization algorithms that provide fault tolerance by means of massive message

84 Chapter 7. Analytical assessment of the precision guaranteed by OCS-CAN

exchanges and therefore they mainly focus on proving the correctness of their converge functions. But

their results are not extensible to any master/slave scheme, such as OCS-CAN, given that master/slave

schemes use only one message per round and do not apply any converge function. The same can be

said about the formal verification carried out in [PSvH99], which assumes that in every synchroniza-

tion round several synchronization messages are sent and that therefore every processor counts on

several timestamps per round to adjust its clock.

To the author’s best knowledge, this work is the first one to explicitly address the analysis of

fault-tolerant master/slave clock synchronization in the presence of inconsistent message omissions.

We think that the obtained results may have an interest for the analysis of other fault-tolerant mas-

ter/slave clock synchronization systems. It seems that the master/slave scheme may be the preferred

solution for implementing clock synchronization in many low-cost distributed embedded systems.

For instance, the clock synchronization algorithm proposed in the definition of the IEEE1588 stan-

dard [IEE02] for clock synchronization for control systems (also known as PTP-Precise Time Pro-

tocol) relies on master/slave, with master replication. Therefore, it is susceptible of being analyzed

with the mathematical framework discussed in this document.

Chapter 8

Modeling patterns for the realistic

specification of computer clocks

In Chapter 7 we carried out the analysis of the precision achieved by OCS-CAN. During said analysis,

we realized that reasoning about the system’s behavior becomes more complicated when considering

certain combinations of channel and node faults, as it was discussed in Section 7.6. For this reason,

we advocate the application of model checking in order to assess OCS-CAN for the most complex

fault scenarios.

Nevertheless, the model checking of OCS-CAN is not exempt from difficulties. The most important

difficulty, which was introduced in Section 3.4, concerns the limitations for specifying computer

clocks by means of timed automata. Timed automata only allow, at least theoretically, specification

of clocks that evolve at the rate of real time, but for the formal verification of OCS-CAN we need to

specify virtual clocks that, not only evolve at a rate different from real time, but also may change their

values and rates abruptly as a consequence of the synchronization actions. This circumstance forced

us to adopt, and even develop, a number of modeling techniques that allowed us to circumvent these

limitations and made the model checking of OCS-CAN possible. These techniques will be described

in this chapter.

The problem of specifying computer clocks with timed automata is not exclusive of OCS-CAN.

It has much more generality and, therefore, the modeling techniques to be discussed hereafter will

actually have wider applicability. Due to this, in this chapter we will discuss these techniques from a

generic perspective, i.e. as applied to a generic distributed system that uses computer clocks. Later on,

in Chapter 9, we will discuss how these techniques are particularly applied for the case of OCS-CAN.

85

86 Chapter 8. Modeling patterns for the realistic specification of computer clocks

In the following sections, we will use the term modeling pattern to denote each modeling tech-

nique that will be described. This term stresses our focus in this chapter, which is to describe these

techniques in a way that makes them reusable by other system modelers.

8.1 Contributions of this chapter

As already indicated, the problem of modeling computer clocks by means of timed automata is not

exclusive of OCS-CAN. Such a problem can also be found while modeling many systems, but es-

pecially distributed systems that rely on computer clocks for coordinating their operation. Due to

this generality, this problem has been addressed by several authors in different contexts, and a num-

ber of solutions are currently available [DY95, BFK+98, ADMB00, Pur00, ATM05, DL07, JBS07,

WDMR08, ABG+08].

Nevertheless, despite all this previous work, it cannot be said that the specification of computer

clocks with timed automata is a clearly understood issue, at least for the average system modeler.

In our opinion, three circumstances have turned the modeling of computer clocks into a somehow

“obscure” topic.

1. The authors of the existing solutions focus on a particular system and provide a modeling

pattern suitable for that case only. They do not study the problem as a whole and then the

solutions proposed are only partial.

2. The modeling of the temporal aspects of the computer clocks is very often mixed with the

modeling of other aspects of the system. Due to this, some modeling patterns remain hidden

for the non-expert readers.

3. Moreover, given that the authors deal with different systems and that they use different notations

and strategies for modeling, it is difficult to perform a comparison of the techniques. In fact,

some of the modeling techniques are complementary and, as a whole, they embrace a wide

range of systems. But since they are scattered in several publications, a newcomer will have to

read through many publications before knowing what can be done and, more importantly, how.

Furthermore, another difficulty that system modelers traditionally have to face is the lack of math-

ematical background in order to understand the papers dealing with advanced modeling aspects. For

this reason, some papers that provide very valuable information are somehow “unreachable” by many

system modelers. We believe that, although mathematical rigourousness is of upmost importance in

the field of formal verification, it is worth to present the modeling patterns in a more comprehensible

way, which should foster its application.

8.2 Description of our case study 87

Table 8.1: Types of clocks and modeling patterns applied

Type of clock Modeling techniques

Ideal clock “Regular” timed automata

Physical clock Perturbed timed automata

Virtual clock Perturbed timed automata + clock pointers

This chapter tackles all of these difficulties, and presents two significant contributions to the topic

of modeling computer clocks with timed automata:

1. We perform a novel description of the modeling patterns, which is both more comprehensive

and (we believe) more comprehensible than previous descriptions.

2. We introduce a new modeling pattern, the so-called clock pointers, which makes it possible to

specify distributed systems suffering from transiently inconsistent clock synchronization.

In our description we will proceed systematically. First, we will describe a simplified system model,

which will constitute our case study. After that, we will introduce the modeling patterns in incremen-

tal complexity: for every type of computer clock, we will provide its corresponding modeling pattern.

The techniques that constitute the basis of our modeling are summarized in Table 8.1. The concept

of perturbed timed automaton was discussed in Section 3.5, whereas the concept of clock pointer will

be discussed in Section 8.5 and will be further developed in Section 8.6.

For describing each modeling pattern, we will strongly rely on graphs. In our opinion, showing

the graphical evolution of the timed automata clocks (and thus of the models) and comparing them

to the expected temporal behavior of the systems will make the modeling patterns more comprehen-

sible. Nevertheless, formal proofs (in the form of temporal logic properties) will be provided for

demonstrating the correctness of the patterns suggested.

8.2 Description of our case study

In order to make the description of our modeling patterns easier, we will consider a simplified sys-

tem model. We will essentially assume a distributed system built upon the task-based programming

paradigm, since it is a widely accepted paradigm for the design of real-time systems and has enough

generality. Nevertheless, it is important to remark that the modeling patterns that will be discussed

88 Chapter 8. Modeling patterns for the realistic specification of computer clocks

can be used as well for systems based on other programming paradigms, although perhaps with slight

changes.

8.2.1 Simplified system model

In short, a task is a process that is activated upon the occurrence of a certain event, executes some

function (or functions) and then sleeps until the next event occurrence. In this discussion we are

exclusively interested in tasks that are activated by clock events and, due to this, the modeling of

tasks that react to other kinds of events will not be addressed. Restricting ourselves to only clock

events will help the reader to better recognize the problems to be solved when specifying computer

clocks by means of timed automata, as well as to better understand the modeling patterns proposed.

Once this is achieved, and according to our experience with OCS-CAN, integrating other types of

events in the modeling should not be difficult.

Algorithm 1 shows a common way to program a task triggered by a clock event, also known as a

time-triggered task. The algorithm shows a process Task1 which is activated with a fixed period T

and calls the function execute task() in every activation.

Note that in each activation –right before calling execute task()– Task1 obtains the current

value of the local clock with the function get time(), calculates the next activation time for the

task, and keeps it in the variable next. As soon as function execute task() is finished, Taskl

executes the sentence sleep until next, which makes the process enter the sleeping (or wait-

ing) state, thus releasing the CPU, and stay idle until the next activation time. This implementation

requires an underlying mechanism (typically a RTOS) to account for the time elapsed and to wake up

Task1, for example with a signal, once the clock has reached the value in next. Other implementa-

tions are possible, for instance with programmable hardware timers, but RTOS are the most typical

solution.

Algorithm 1 A possible implementation of a periodic task, with period T
process Task1:

loop

next = get time() + T

execute task()

sleep until next

end loop

Therefore, the behavior exhibited (in theory) by Task1 corresponds to the periodical behavior de-

8.2 Description of our case study 89

Figure 8.1: Temporal behavior of a node executing Task1 (with an ideal clock)

picted in Figure 8.1. In this figure, each small vertical arrow indicates an activation instant of Task1

and thus an instant in which the execution of function execute task() begins. These activation

instants are, in principle, separated by exactly T time units, so that the they occur at every time instant

kT, where k ∈ N indicates the number of the round to be initiated.

Note that the specific functionality of the task is irrelevant for our modeling, and therefore the

internal details of function execute task() will not be considered. We just assume that the

execution of this function takes some constant time shorter than T time units. The execution times

are represented in Figure 8.1 with blank rectangles.

In our case study, we will consider a distributed system constituted by a number of nodes that

execute Task1. We will assume that the global goal of the system is to have each node activating its

own Task1 as simultaneously with the other nodes as possible. In principle, if all of the nodes had

access to an ideal clock, they would execute Task1 in perfect synchrony. But this is not really the

case when using computer clocks, because the individual drifts of the clocks inevitably cause lack of

simultaneousness.

8.2.2 Expected temporal behavior of the system for the different types of computer

clocks

It is important to remark that the function get time() in Task1 does not make any assumption

about the properties of the local clock, because, from the programmer’s point of view, the way of

reading the value of a physical clock is the same as for a virtual clock. Although this transparency

is a very positive feature for modularity and code reusability, it may become a potential threat for

the temporal assessment of the system. The global behavior of the system may change significantly

depending on the characteristics of the computer clocks being used and, due to this, it is important to

have models that explicitly include these characteristics.

For instance, in Figure 8.1 it was observed that the most important characteristic of Task1 was its

theoretical periodicity, since execute task() is called exactly every T time units. Nevertheless,

this perfectly periodic behavior is a consequence of assuming and ideal clock, what means that it

90 Chapter 8. Modeling patterns for the realistic specification of computer clocks

Figure 8.2: Temporal behavior of 3 nodes executing Task1 (with physical clocks)

cannot be achieved by means of real computer clocks. Next, we will describe what temporal behavior

can be expected in our case study, according to the type of computer clock used by the system. This

description will allow us to validate the modeling patterns that are discussed later on in this chapter.

Figure 8.2 shows one of the possible behaviors of our case study when the nodes rely on the use

of physical clocks. In Figure 8.2, we represent the operation of three nodes: one of them using an

ideal clock, one of them using a physical clock faster than the ideal clock, and another one using a

physical clock slower than the ideal clock. Note that although the assumption of having a node that

works with an ideal clock cannot be substantiated, it will be useful mainly for comparison purposes.

Again, each small vertical arrow indicates an activation instant of execute task(). Note that

although the three nodes coincide in the first activation of execute task(), they may progres-

sively get more and more separated. The solid black bar at the top represents the length of the interval

in which execute task() may be called. Thus, in other words, it is a graphical representation

of the upper bound of the offset. It can the observed that the length of this bar increases in every

iteration. As it was introduced in Section 7.1.2, the difference between the clock rates (the so-called

consonance) causes a linear increment of the upper bound of the offset, which implies that nodes can

get more and more desynchronized as time goes by. This effect, which is sometimes known as clock

skew, is clearly noticeable in Figure 8.2 thanks to the solid black bar.

Figure 8.3 shows one of the possible behaviors of our case study when the nodes rely on the use

of virtual clocks. In this case, we assume three virtual clocks: one that acts as the global (reference)

clock, another one that is faster than the global clock and another one that is slower than the global

clock. Note that, thanks to the assumed clock synchronization algorithm, the offset among the nodes

is bounded by a certain value: the precision. For this reason, the solid black bar that represents the

upper bound of the offset does not change its length. Then, although the tasks are not simultaneously

activated, the distance between the activation instants of the same round does not increase indefinitely.

This unavoidable variability on the activation instants is often known as the jitter.

In summary, the use of computer clocks will cause either clock skew or clock jitter in the activa-

8.2 Description of our case study 91

Figure 8.3: Temporal behavior of 3 nodes executing Task1 (with virtual clocks)

tion of the tasks. Therefore, system modelers require patterns for modeling these two effects when

required.

8.2.3 Some remarks about modeling with timers

There are two main paradigms for the use of computer clocks in a distributed system: the timer-driven

paradigm and the clock-driven paradigm [Ver94].

In a timer-driven distributed system, each node is supposed to measure time intervals locally by

means of timers defined over its own computer clock. These timers are reset as required, for instance

once a given event is detected. In contrast, in a clock-driven distributed system, the nodes do not use

any timer internally. Instead, the computer clock of each node keeps running indefinitely and, as soon

as a time mark is reached, the node performs the corresponding action and recalculates (or obtains

in an equivalent way) the next time mark to wait for. Therefore, in such a system there is no need

to reset any computer clock. The algorithm of Task1 shown in Section 8.2.1 is a good example of a

clock-driven system.

The timer-driven paradigm can be applied either with physical clocks or with virtual clocks, whereas

the clock-driven paradigm implicitly requires the adoption of a clock synchronization service, so it

can only be applied to systems with virtual clocks.

Clock-driven systems represent a problem for model checking, because in a model made up of

timed automata it is not possible to have clocks increasing indefinitely together with an infinite num-

ber of time marks that are to be compared with the clock values. This would make the state-space

of the system blow up, and would make model checking unfeasible. Due to this, the modeler has to

specify the operation of the system on the basis of rounds, with clocks that are reset in every round.

However, this round-based modeling must guarantee that, although the clocks are not allowed to

increase indefinitely, the evolution of the system model still satisfies the expected temporal behavior.

The round-based modeling of a clock-driven system can be performed with the modeling patterns that

92 Chapter 8. Modeling patterns for the realistic specification of computer clocks

will be described in this chapter, and we will show how to do it. But it is important to understand that

the timers used in the model may not actually exist in the system; they are just a “modeling trick” for

specifying the evolution of the nodes over time.

8.3 A modeling pattern for systems with ideal clocks

For modeling a distributed system using ideal clocks, it is enough to adopt the usual notion of UPPAAL

timer, for instance as it is discussed in [BDL04]. These authors indicate that a timer in UPPAAL can

be defined basically as a process that measures some time duration with respect to a certain UPPAAL

clock, and signals the instant when that duration has elapsed.

The operation of this type of timer is simple: at a given time instant it is reset and counts up until

it reaches a predetermined value. At that moment, the timer is said to have expired and generates a

timeout notification. This type of timer will be called ideal timer hereafter, and it will constitute the

basis for the description of our modeling patterns.

8.3.1 Model templates

According to [BDL04], the operation of an ideal timer can be modeled with only two primitives:

set(T) and expire(), where T is a constant that indicates the duration of the timer. In principle, timers

can be reset at any time instant. The timed automaton that models such a behavior is depicted in

Figure 8.4(a). This timed automaton is defined with two locations, Expired and Waiting, and

one clock x. It uses two channels for synchronization, set and expire, which correspond to the

two primitives for operating the timer. Additionally, it uses a variable T, which may be written by

other processes in order to indicate the duration of the timer.

The automaton starts in location Expired, in which the timer is not set. The transition to location

Waiting may be fired at any instant via the synchronization with set?. Note that in this transition

the value of clock x is reset to zero. After that, and due to the invariant and the guard defined over

clock x, the automaton remains in location Waiting for exactly T time units, provided that the

synchronization channel set is not activated again (since it would reset clock x again). As soon as

clock x reaches the value T, the transition to Expired is fired and it is signalled through channel

expire. Notice that in this transition a variable named n is increased as well. This variable will

be used only for formally verifying the modeling pattern, as it will be discussed later on, but it is not

really required for modeling the system.

In our case study, every node of the system will be specified by means of two timed automata: one

8.3 A modeling pattern for systems with ideal clocks 93

Waiting
x<=TExpired

x==T
expire!

n:= n + 1

set?
x:= 0

set?

x:= 0

(a)

l4l3l2l1

exec_task!

expire?set!

T:= period_value

(b)

Figure 8.4: The two UPPAAL templates used for specifying the system: (a) corresponds to an ideal

timer of period T whereas (b) corresponds to the application (Task1)

for modeling the timer and another one for modeling the application executed by the node. The latter

is called process App and, in our case, it will model the execution of Task1. The timed automaton

of process App is shown in Figure 8.4(b). This automaton has a committed initial location (l1) that

is immediately left. In the transition to the next location (l2), the local variable T is updated to the

value of the parameter period value. Since in our case study we must force all of the nodes

to activate Task1 with the same period, every process App will have to give the same value to its

corresponding T.

Location l2 is a committed location and is therefore left immediately. The transition to l3 ac-

tivates the timer, through the synchronization channel set. The process stays in that location until

the expiration of the ideal timer, which is detected thanks to the synchronization channel expire.

Once the expiration occurs, the process steps into the committed location l4 and then fires the next

transition to location l2 again. The signalling through broadcast channel exec task is included

only for illustration purposes. At this point, it is just an abstraction of a generic function, the function

execute task that was discussed in Section 8.2.1. When adopting this modeling pattern, each

system modeler must specify the functionality of execute task according to the particularities of

its own system.

94 Chapter 8. Modeling patterns for the realistic specification of computer clocks

Listing 8.1: Two nodes using ideal clocks (variable declaration)

/ / System v a r i a b l e s :

c o n s t i n t p e r i o d = 256 ;

c o n s t i n t N= 2 ;

chan s e t [N] , e x p i r e [N] ;

i n t T [N] ;

b r o a d c a s t chan e x e c t a s k ;

/ / O b s e r v e r v a r i a b l e s :

u r g e n t chan a ;

i n t [0 ,N] n= 0 ;

8.3.2 System declaration

Once the UPPAAL templates have been defined, we proceed to explain how the rest of the system is

specified. Listing 8.1 contains the variable declaration, in the UPPAAL syntax, for a system with two

nodes.

The first variable defined, period, is a constant that indicates the period of activation of Task1.

The second variable, N, is also a constant and indicates the number of nodes in the system; in this

case, 2.

The sentence chan set[N],expire[N] declares two arrays of type channel, set and expire,

with each array having N channels, i.e. one per node. The variable T[N] is an array of integers of N

positions, which contains the specific period of each node. Later on, we will show the mapping proce-

dure for assigning the channels and the period of each node. Finally, a broadcast channel exec task

is defined.

The last two variables declared, the urgent channel a and the integer variable n, are not required for

the system itself, but for the formal verification that will be discussed in the next subsection. Their

use and meaning will be clarified later on.

Listing 8.2 shows the declaration of the system, in the UPPAAL syntax again. In this system decla-

ration, we instantiate one process Ideal timer and one process App for each node.

In the instantiation of a process, one must indicate what template is used and which variables are

mapped to the input/output parameters of every template. The template Ideal Timer has three

8.3 A modeling pattern for systems with ideal clocks 95

Listing 8.2: Two nodes using ideal clocks (system declaration)

Timer0 = I d e a l T i m e r (s e t [0] , e x p i r e [0] , T [0]) ;

Timer1 = I d e a l T i m e r (s e t [1] , e x p i r e [1] , T [1]) ;

App0 = App (s e t [0] , e x p i r e [0] , T [0] , p e r i o d) ;

App1 = App (s e t [1] , e x p i r e [1] , T [1] , p e r i o d) ;

/ / L i s t o f p r o c e s s e s t o be composed i n t o a sys tem :

sys tem Timer0 , Timer1 , App0 , App1 , Observer , Dummy;

parameters: the channels set and expire, and the variable T, which are used internally as it was

shown in Figure 8.4(a). The template App has four parameters, which correspond to the channels

set, expire, and to the variables T and period value. They are used internally as shown in

Figure 8.4(b).

Thanks to this mapping of parameters, Timer0 and App0, whose combination constitutes one of

the nodes, are synchronized through the channels set[0] and expire[0]. Conversely, Timer1

and App1, which constitute the other node, are synchronized through the channels set[1] and

expire[1]. Moreover, note that App0 writes the value of T[0] and App1 writes the value of

T[1]. This means that each application configures the duration of its own timer. In our case study,

we assume that each node works with the same period, so that each application will write the same

value (the constant period) in its ideal timer.

The system declaration also includes two more processes, Observer and Dummy. These pro-

cesses have no particular relationship with any system functionality, but they are used for formally

verifying the system properties. This will be discussed in Section 8.3.3.

The temporal behavior that our UPPAAL model enforce is depicted in Figure 8.5. In this graph, the

small vertical arrows indicate the signaling via exec task. This is the moment in which each node

starts its specific function, and thus these are the instants that should be synchronized.

8.3.3 Formal verification of the modeling pattern

In order to assess the properties satisfied by our model, and check whether it adheres to the expected

behavior or not, we will use the verifier provided by UPPAAL. In our case, the property we wish to

check is the synchronization between the ideal timers of the nodes. As depicted in Figure 8.5, they

must be synchronized with no offset.

96 Chapter 8. Modeling patterns for the realistic specification of computer clocks

t

Timer0.x
Timer1.x

T

App0

App1

Figure 8.5: Expected temporal behavior when using ideal timers

A naive approximation to the formal verification of this property would be to evaluate the following

expression:

A[] Timer0 . x == Timer1 . x

which literally means that for all execution paths of the model, the clock x of Timer0 is always equal

to the clock x of Timer1. However, this kind of evaluation is not suitable for the timed automata

formalism, because TA clocks cannot be reset simultaneously (two actions cannot happen at the same

time) and thus there exist certain time intervals of infinitesimal length in which the value of the clocks

differ.

A better way to assess the synchronization between the ideal timers is by means of a process that

acts as an external observer. The timed automaton of this process, which we call Observer, is

shown in Figure 8.6(a). Figure 8.6(b) depicts a trivial timed automaton, called Dummy, that process

Observer needs in order to evolve over time.

Notice that process Observer starts in the location named Initial. The transition to the next

location is enabled as soon as variable n is greater than 0. As discussed in Section 8.3.1, n is increased

at the expiration instant of every ideal timer. Furthermore, the urgent channel a together with process

Dummy ensure that this transition is fired as soon as it is enabled. Therefore, process Observer

leaves location Initial and steps into location Reached as soon as one of the timers of the model

expires. In this transition, a local clock x is reset.

Location Reached is left once the timers have all expired (condition n≥ N). Hence, the time spent

by the Observer in location Reached is an direct measure of the amount of desynchronization

among the timers. Due to this, it is possible to assess the temporal behavior of our case study by

checking these two properties:

8.4 A modeling pattern for systems with physical clocks 97

Reached

Initial

n>=N
a!
x:= 0,
n:= 0

n>0
a!
x:=0

(a)

a?

(b)

Figure 8.6: The two timed automata used for verifying the precision: (a) is the Observer, (b) is a

dummy automaton required for the evolution of the Observer

A[] n o t d e a d l o c k
A[] O b s e r v e r . Reached imply (O b s e r v e r . x == 0)

Satisfaction of the first property ensures that the model keeps evolving over time and is not stuck

in a trivial case such that no transition is fired. Satisfaction of the second property indicates that

Timer0 and Timer1 always expire at the same time instant, and therefore that the modeling pattern

works as intended.

The strategy of having an external observer will be also adopted in order to evaluate the rest of

modeling patterns that are discussed in this chapter.

8.4 A modeling pattern for systems with physical clocks

In Section 8.3 we described the modeling pattern for specifying a distributed system with nodes that

have ideal clocks. Our strategy for evaluating the validity of the modeling pattern, the additional

process Observer, was also introduced. In this section, we will propose a modeling pattern for

specifying distributed system with nodes that have physical clocks. This modeling pattern uses the

concept of perturbed timed automaton discussed in Section 3.5. The same strategy of Section 8.3 will

be applied in order to formally verify the temporal properties achieved by this modeling pattern.

8.4.1 Model templates

The specification of a distributed system with physical clocks will follow the same rationale discussed

for specifying a distributed system with ideal clocks. We will also use two templates for each node,

one for modeling the timer and another one for modeling the application. Figure 8.7(a) shows the

98 Chapter 8. Modeling patterns for the realistic specification of computer clocks

Waiting
x<=Tmax[i]Expired

x>=Tmin[i]
expire[i]!

n:= n + 1

set[i]?
x:= 0

set[i]?

x:= 0

(a)

l4l3l2l1

exec_task[i]!

expire[i]?set[i]!

Tmax[i]:= period + eps[i],
Tmin[i]:= period - eps[i]

(b)

Figure 8.7: The two UPPAAL templates used for specifying the system with physical clocks: (a) is

the timer and corresponds to a perturbed timed automata, whereas (b) models the application (Task1)

template for the timer, which we will call perturbed timer, whereas Figure 8.7(b) shows the template

for the application. Notice that in both templates we introduce and index i to indicate which channel

or variable is used. This variable i is passed on as a parameter of each template; what will simplify

the system definition in the way discussed later on.

The main difference between the perturbed timer depicted in Figure 8.7(a) and the ideal timer

shown in Figure 8.4(a) is that the perturbed timer may leave location Waiting at any instant within

the range [Tmin, Tmax]. These two variables, which can be written by other processes, are therefore

used for modeling the range of possible rates of each physical clock.

The way of obtaining the values of Tmax and Tminwas discussed in Section 3.5, when introducing

the concept of perturbed timed automata. In that discussion we remarked that if the rate of a physical

clock lays within the range [1 − ρi, 1 + ρi] and a timer is set to measure T time units with such a

physical clock, then the timer will expire at some instant between Tmax ' T(1 + ρi) and Tmin '
T(1− ρi).

In our modeling pattern, the process App is intended to write the value of the variables Tmax[i]

and Tmin[i], at the beginning of the system operation. This is shown in the transition from l1 to

l2 in Figure 8.7(b). The value of variable eps[i], which is equal to Tρi, must be obtained a priori

by the system modeler. The rest of process App does not change with respect to what was described

in Section 8.3, except for the aforementioned index i.

8.4 A modeling pattern for systems with physical clocks 99

Listing 8.3: Three nodes with physical clocks (variable declaration)

/ / System v a r i a b l e s :

c o n s t i n t p e r i o d = 300 ;

c o n s t i n t N= 3 ;

i n t eps [N] = {0 , 3 , 3} ;

chan s e t [N] , e x p i r e [N] ;

i n t Tmax [N] , Tmin [N] ;

b r o a d c a s t chan e x e c t a s k [N] ;

/ / O b s e r v e r v a r i a b l e s :

u r g e n t chan a ;

i n t [0 ,N] n= 0 ;

8.4.2 System declaration

Listing 8.3 shows the variable declaration of the case study, assuming three physical clocks (N=3),

and Listing 8.4 shows the system declaration. The idea behind our system definition is again to use

one timer and one application for each node. But the way of instantiating the templates is slightly

simplified with respect to the case with ideal timers.

In Listing 8.3, the declaration of three new variables should be noted. These new variables are

Tmax[N], Tmin[N] and eps[N]. They are defined as global variables because they are read or

written by at least two processes. The value of eps[i] is calculated beforehand and depends on the

maximum drift of the physical clock (ρi). In this example, we assume T = 300 time units, ρ0 = 0 and

ρ1 = ρ2 = 10−2 , so the variable eps[N] is initialized with the values {0, 3, 3}. In this example,

we presuppose a null drift for the physical clock of Timer0 only for illustration purposes. Assuming

that Node 0 uses an ideal clock is not realistic, but it will help to understand the behavior of the other

drifting physical clocks.

The system declaration, shown in Listing 8.4, is not very complex. Note that both templates,

Perturbed timer and App, have only one input parameter. This parameter is an integer that in-

dicates which node the template corresponds to, and then which set of channels it must use. Again, we

make process Timer0 and process App0 communicate via the channels set[0] and expire[0],

process Timer1 and process App1 communicate via the channels set[1] and expire[1], and

100 Chapter 8. Modeling patterns for the realistic specification of computer clocks

Listing 8.4: Three nodes with physical clocks (system declaration)

Timer0 = P e r t u r b e d T i m e r (0) ;

Timer1 = P e r t u r b e d T i m e r (1) ;

Timer1 = P e r t u r b e d T i m e r (2) ;

App0 = App (0) ;

App1 = App (1) ;

App1 = App (2) ;

/ / L i s t o f p r o c e s s e s t o be composed i n t o a sys tem :

sys tem Timer0 , Timer1 , Timer2 , App0 , App1 , App2 , Observer , Dummy;

process Timer2 and process App2 communicate via the channels set[2] and expire[2].

8.4.3 Formal verification of the modeling pattern

Figure 8.8 depicts one possible behavior of the system, according to the discussed modeling pattern.

This graph is divided into two parts. In the upper part, we show the expiration instants of Timer0,

Timer1 and Timer2. Notice that Timer0 does not drift with respect to real time and behaves like

an ideal timer. As already indicated, assuming that Timer0 uses an ideal clock is not realistic, but we

included it in the example for the sake of clarity, since it makes the deviation of the perturbed timers

more visible in the graph. In this example, Timer1 is assumed to be faster than the ideal clock and

Timer2 is assumed to be slower than the ideal clock.

The lower part of Figure 8.8 shows the activation instants of the tasks, which are caused by the

timer expirations. It is noticeable that, due to the lack of clock correction, the activation instants of

App1 and App2 get more and more apart as time goes by. We represent this deviation again with a

horizontal solid black bar, as it was done in Section 8.2.2.

It is important to remark that the execution of the system shown in Figure 8.8 is only one among

an infinite number of possible traces; it is actually the worst case among the infinite possible cases.

According to the definition of perturbed timed automata, the expirations of each timer may happen in

a dense time interval, so there could be an infinite number of possible offsets among the nodes. Due

to this, examination of a particular scenario has little value, and therefore we should rely on formal

verification in order to examine all possible scenarios and evaluate the properties achieved by the

8.4 A modeling pattern for systems with physical clocks 101

t

Timer2.x t

Timer1.x t

Timer0.x

App0 (Ideal)

App1 (Fast)

App2 (Slow)

T(1 + ρ)

T(1− ρ)

T

Figure 8.8: Temporal behavior enforced by the modeling pattern for physical clocks (one among

infinite possible execution traces)

model.

The aim of the formal verification of this modeling pattern is to assess whether there exists an upper

bound of the offset or not. As it was discussed in Section 8.2.2, the conclusion of the formal verifi-

cation must be that the maximum offset between the activation instants is unbounded. For formally

verifying this property, we use the same process Observer that was described in Section 8.3.3, and

we model check the following property:

A[] O b s e r v e r . Reached imply (O b s e r v e r . x <= X)

where X is an integer. This property states that the offset between the nodes is bounded by X and

therefore it should not be satisfied by the model for any X. Having only physical clocks implies lack

of synchronization so that an upper bound for the offset cannot be defined.

102 Chapter 8. Modeling patterns for the realistic specification of computer clocks

The formal verification is actually performed by giving different values to X and then checking the

property. The results are that for any X strictly lower than the period (in our example, X < 300)

the property is not satisfied. Otherwise, i.e. when X ≥ 300, the verifier outputs a verification error

indicating that the property could not be checked. This result is positive, because it indicates that

the modeling pattern generates so much lack of synchronization between the nodes that it causes

malfunction of the whole system. In fact, it makes the round-based modeling not work properly,

since the concept of round makes no sense without clock synchronization. Therefore, despite the

property is not verifiable, the modeling pattern is successful in specifying the system behavior.

The properties of this modeling pattern could be investigated in more depth, but we did not proceed

further because it was not required for model checking OCS-CAN. For the purpose of this thesis, it is

enough to prove that it is possible to specify a system such that physical clocks drift indefinitely.

8.5 A modeling pattern for systems with virtual clocks

In this section, we will propose a modeling pattern for specifying distributed system with nodes that

have virtual clocks. This modeling pattern also relies on the concept of perturbed timed automaton

discussed in Section 3.5 but it incorporates a new technique we have called clock pointers. We will

firstly introduce the concept of clock pointer and then we will discuss the whole modeling pattern.

8.5.1 The concept of clock pointer

The approach we have followed with the modeling patterns discussed so far is to define the tem-

poral aspects of the system separately from the application aspects. For this reason, two different

processes were defined for each node: whereas process Timer modeled the properties of a computer

clock, process App modeled the application executed by each node. Additionally, the two processes

belonging to the same node were communicated by means of the channels set and expire.

Then, an important characteristic of those modeling patterns is that there existed an univocal rela-

tionship between the process Timer and the process App of every node. This relationship is simply

that each application sets the duration of its own timer and, once the timer expires, the application

executes its task. Thus, the temporal behavior of a node is determined by its own timer, and none of

the nodes can affect the behavior of the other nodes.

But such a way of modeling is only suitable for systems with either ideal clocks or physical clocks,

because in such cases, the clocks are truly independent. It is unsuitable, however, for the case of

having virtual clocks, because virtual clocks are synchronized and therefore they are not independent

8.5 A modeling pattern for systems with virtual clocks 103

from each other. Clock synchronization implies the existence of a reference clock, and this reference

clock affects the instants in which the timer of every node is set and expires.

With respect to the model, this dependency means that we have to develop a new modeling tech-

niques, which should allow the system modeler to choose one of the computer clocks and make it the

time reference. The technique must also consider the consequences that choosing a reference clock

will have on the temporal behavior of the virtual clocks. These consequences are two:

1. The reference virtual clock behaves as an ideal timer, since it cannot drift, obviously, with

respect to itself

2. The other virtual clocks behave as perturbed timers, since they may deviate from the reference

virtual clock. The speed at which a virtual clock deviates from the reference clock depends on

the consonance (γ) between the two clocks, as explained in Section 7.1.2.

Furthermore, we need to develop a mechanism for modeling clock correction. In our model, this

is achieved as follows: we force the reset of every timer to happen simultaneously with the reset of

the reference virtual clock. The meaning of this action is that the offset accumulated in a certain

round is corrected for the following round, regardless of its value. In this manner, whenever the

reference node starts a new round, i.e. whenever it resets its timer, every other node resets its own

timer simultaneously. Therefore, all nodes start every round at the same time. However, given that

the virtual clocks drift from the reference virtual clock, the end of each round may be perceived by

each node at a different instant.

The modeling pattern that corresponds to this behavior would be, in principle, to have one ideal

timer that resets a number of perturbed timers, and to allow each perturbed timer to expire according

to its own drift. Figure 8.9 depicts the temporal behavior that would be achieved with this technique,

for one possible case. In this example, the virtual clock of Timer0 is the reference time and does not

drift. Note that Timer0, Timer1 and Timer2 start as soon as Timer0 expires, but later on they

expire at different instants because of their individual drifts: Timer1 is faster; Timer2 is slower.

As it happened with the previous modeling patterns, each task is activated by the expiration of

its corresponding timer. Since the timers are modeled as perturbed timers, this modeling technique

makes the activation instants of the tasks exhibit some jitter, which depends on the consonance. But

the tasks do not drift apart indefinitely, as it happened when having only physical clocks. Thus, the

behavior of Figure 8.9 corresponds to the expected temporal behavior of a distributed system with

virtual clocks, discussed in Section 8.2.2.

Nevertheless, although this modeling pattern seems to be adequate for modeling virtual clocks, it

presents a subtle flaw that prevents its application, at least in the form discussed so far. This subtle

104 Chapter 8. Modeling patterns for the realistic specification of computer clocks

t

Timer2.x t

Timer1.x t

Timer0.x

App0 (Ref.)

App1 (Fast)

App2 (Slow)

T(1 + γ)

T(1− γ)

T

Figure 8.9: Expected behavior of three tasks using virtual clocks (not directly specifiable with timed

automata)

flaw is visible for the case of Timer2, and is related to the fact that Timer2 has to be reset before it

has actually expired, since Timer0 is faster and expires some time before Timer2. In the general

case, this means that using this modeling pattern, as it has been defined, would prevent the expiration

of any slower timer. Consequently, it would prevent the execution of the tasks driven by slower timers

and therefore would fail to realistically model the application jitter.

Fortunately, it is possible to avoid this flaw with just a few changes in the modeling pattern. What

we propose is, instead of defining a reference timer that measures T time units per round, defining

a timer that measures T
2 time units, but twice per round. Every segment with a nominal duration of

T
2 is called a Half Round. On the one hand, the first Half Round is measured and signaled by the

reference timer (Timer0 in the example), so it measures exactly T
2 time units. On the other hand,

the second Half Round is measured by every timer individually, so it is modeled with a perturbed

8.5 A modeling pattern for systems with virtual clocks 105

t

Timer0.x t

Timer1.x t

Timer0.x

App0 (Ref.)

App1 (Fast)

App2 (Slow)

T
2 + Tγ

T
2 − Tγ

T
2

Figure 8.10: Expected behavior of three tasks using virtual clocks (directly specifiable with timed

automata)

timer that expires within the interval (T
2 − Tγ, T

2 + Tγ). Notice that the term Tγ accounts also for

the drift accumulated during the previous Half Round.

Figure 8.10 illustrates how this modeling pattern is able to specify the expected jitter. In this

example, the reference timer is defined over the clock of Timer0. This timer expires at the end of

the first Half Segment, i.e. when the clock x reaches the value T
2 . These instants are highlighted in

the graph with empty circles.

At these instants, the other timers must be reset as well. The mechanism for signaling this event will

be implemented by means of a broadcast channel; it will be discussed later on when describing the

model templates. We will use the term clock pointer in order to refer to said broadcast channel, given

that this channel can be seen as a pointer for accessing a timer that has been defined over a remote

clock (the reference clock in this case). The empty circles appearing for Timer1 and Timer2

106 Chapter 8. Modeling patterns for the realistic specification of computer clocks

Waiting
x<=halfTExpired

x>=halfT
half!

x:= 0

set_half?

x:= 0

Figure 8.11: Half timer

indicate the instants in which node 1 and node 2 detect the expiration of the reference timer (thanks

to the clock pointer) and hence start the second Half Round.

The duration of the second Half Round is measured by each node individually, and it is modeled as

a perturbed timer that will take into account the consonance with respect to the reference clock. The

black circles of Figure 8.10 indicate the expiration instants of the second Half Rounds and therefore

the instants when the task must be executed by each node. It is noticeable that, as a consequence

of their different consonances with respect to the reference, each Timer expires at a different instant.

The example depicted in Figure 8.10 shows the worst case scenario, in which App1 evolves as fast as

possible whereas App2 evolves as slowly as possible. Note that, even in this case, the offset between

the application is always bounded.

In the next subsections, we will describe how to specify this behavior with UPPAAL and how to

formally verify it.

8.5.2 Model templates

For modeling a system with virtual clocks, we will use again two processes per node, one for mod-

eling the application (App) and another one for modeling the timer (Timer). Furthermore, we will

incorporate a new process, called Half timer, which will be intended to measuring and signaling

the end of the first Half Round.

The timed automaton of Half timer is depicted in Figure 8.11. This automaton behaves as an

ideal timer: it is set through channel set half, stays in location Waiting for exactly HalfT

time units, and signals the expiration through the broadcast channel half. Therefore, channel half

constitutes the clock pointer of the other nodes.

Figure 8.12(a) depicts the timed automaton of the perturbed timer used by the nodes for measuring

the second Half Round. Note that it does not present any difference with respect to the perturbed

timer of Figure 8.7, although the values of Tmax[i] and Tmin[i] will be different.

8.5 A modeling pattern for systems with virtual clocks 107

Waiting
x<=Tmax[i]Expired

x>=Tmin[i]
expire[i]!

n:= n + 1

set[i]?
x:= 0

set[i]?

x:= 0

(a)

l6

l5

l4l3l2l1

i != ref

expire[i]?

set[i]!

exec_task[i]!

half?i == ref

set_half!Tmax[i]:= halfT + eps[i],
Tmin[i]:= halfT - eps[i]

(b)

Figure 8.12: The two timed automata used for specifying the system with virtual clocks: (a) corre-

sponds to a perturbed timed automata, and (b) corresponds to the application

The application executed by the nodes is shown in Figure 8.12(b). Notice that the first location (l1)

is committed, so that it is left immediately. In the transition to l2 every application sets the duration

of the second Half Segment, by writing the values of Tmax[i] and Tmin[i]. The value of halfT

equals T
2 , whereas the value of variable eps[i], which is calculated offline, equals Tγi; with γi

being the consonance of node i with respect to the reference clock. In this manner, each App[i]

indicates not only the nominal duration of the second Half Round, but also the maximum deviation

exhibited by its corresponding timer (Timer[i]).

Location l2 is also committed. In the transition to l3, one of the nodes starts the Half timer,

via channel set half. The node that performs this action is the one whose identifier (i) matches

the value of a global integer variable (ref) that contains the identifier of the reference clock. The

value of ref is initialized at the start of the system’s operation.

All of the nodes remain in location l3 until the expiration of the Half timer, which is notified

through the broadcast channel half. Once this happens, they step into the committed location l4

and immediately start their own perturbed timer (via channel set[i]), while transiting to l5. As

soon as Timer[i] expires, and signals it through expire[i], the corresponding App[i] leaves

l5, indicates the execution of the task (via channel exec task[i]), and goes to location l2. After

that, the whole cycle is restarted.

108 Chapter 8. Modeling patterns for the realistic specification of computer clocks

Listing 8.5: Three nodes using virtual clocks (variable declaration)

c o n s t i n t h a l f T =150; / / b e c a u s e T= 300

c o n s t i n t N= 3 ;

c o n s t i n t r e f = 0 ; / / Timer 0 i s t h e r e f e r e n c e c l o c k

chan s e t [N] , e x p i r e [N] ;

chan s e t h a l f ;

b r o a d c a s t chan h a l f ;

u r g e n t chan a ;

b r o a d c a s t chan e x e c t a s k [N] ;

i n t Tmax [N] , Tmin [N] ;

i n t eps [N] = {0 , 3 , 3} ;

i n t [0 ,N] n= 0 ;

8.5.3 System declaration

Listing 8.5 shows the variable declaration required for specifying a system made up of three nodes

using virtual clocks. In this example, the system is assumed to work with a period of T = 300 time

units, so that halfT is defined as a constant equal to 150 time units. The constant ref is initialized

to 0, meaning that Timer 0 must be taken as the clock reference of the system.

The channels set half and half will be used for interacting with the Half Timer. The arrays

of channels set[N] and expire[N] will be used for interacting with the perturbed timers that

measure the second Half Round.

We assume that each virtual clock exhibits a consonance of γi = 10−2 with respect to the reference.

For this reason, both eps[1] and eps[2] are initialized with the value Tγi = 3.

The variable declaration also includes two variables required by the observer that measures the

offset: the urgent channel a and the integer variable n.

The system declaration for the same example is shown in Listing 8.6. In this declaration, we instan-

tiate one process HTimer that corresponds to the template Half Timer of Figure 8.11. Further-

more, we instantiate one process Timer and one process App for each node. Again, the parameter

passed on to each process is an integer that indicates which set of channels is going to be used by the

8.5 A modeling pattern for systems with virtual clocks 109

Listing 8.6: Three nodes using virtual clocks (system declaration)

HTimer = H a l f T i m e r ;

Timer0 = P e r t u r b e d T i m e r (0) ;

Timer1 = P e r t u r b e d T i m e r (1) ;

Timer2 = P e r t u r b e d T i m e r (2) ;

App0 = App (0) ; App1 = App (1) ; App2 = App (2) ;

/ / L i s t one o r more p r o c e s s e s t o be composed i n t o a sys tem :

sys tem HTimer , Timer0 , Timer1 , Timer2 ,

App0 , App1 , App2 , Observer , Dummy ;

process. Therefore, it corresponds to the index i appearing in the timed automata of Figure 8.12.

Note that two more processes, Observer and Dummy, are instantiated. These processes are re-

quired for the formal verification of the modeling pattern, and they correspond to exactly the same

timed automata discussed in Section 8.3, which were used indeed in Section 8.4.

8.5.4 Formal verification of the modeling pattern

Figure 8.13 depicts one possible behavior of the system declared above. In this graph, the upmost

temporal line shows the evolution of the clock of the Half Timer (process HTimer). The other three

temporal lines shows the evolution of the clock of the other timers.

The expiration instants of the Half Timer are highlighted with an empty circle. As explained in

Section 8.5.1, this instant correspond to the end of the first Half Round and the begin of the second

Half Round. Due to this, the other timers also reset their clocks at this instant. The duration of the

second Half Round depends on the consonance with respect to the reference clock. In this example,

Timer0 behaves as an ideal clock and measures exactly T
2 time units, but the others behave as

perturbed automata.

Each expiration of a timer that measures the second Half Round is remarked with a black circle.

Note that each expiration causes the execution of the task by the corresponding process App. Fur-

thermore, note that HTimer is reset upon the expiration of Timer0.

What is important of the behavior shown in Figure 8.13 is to observe that the execution of the

tasks does not happen simultaneously but, nevertheless, the separation among the execution instants

110 Chapter 8. Modeling patterns for the realistic specification of computer clocks

t

Timer2.x t

Timer1.x t

Timer0.x t

HTimer.x

App0 (Ref.)

App1 (Fast)

App2 (Slow)

T
2

T
2 + Tγ

T
2 − Tγ

T
2

Figure 8.13: Three nodes using virtual clocks, behavior specified with a Half Timer (HTimer)

cannot increase indefinitely. Therefore, the application exhibits certain jitter because the nodes are

synchronized with some precision. The way of formally verifying this intuitive property is by means

of the process Observer.

In order to assess the system’s behavior, for this particular example we state the following three

properties:

A[] n o t d e a d l o c k
A[] O b s e r v e r . Reached imply (O b s e r v e r . x <= eps [1] + eps [2])
E<> O b s e r v e r . Reached and (O b s e r v e r . x == eps [1] + eps [2])

The first property checks whether the system keeps evolving over time. The second one checks

whether the offset between the nodes is upper bounded, whereas the third one proves that the upper

bound is reachable. The UPPAAL verifier indicates that these properties are all satisfied. Therefore,

the modeling pattern is successful in specifying the intended behavior.

8.6 A modeling pattern for clock synchronization 111

8.6 A modeling pattern for clock synchronization

So far in this chapter we have discussed the different types of clocks that may be found while modeling

a distributed system, namely ideal clocks, physical clocks and virtual clocks, and we have proposed

a number of patterns for modeling systems with such clocks. Most distributed systems will belong

to one of the classes discussed in the previous sections, since they will be implemented with nodes

that use either (drifting) physical clocks or (synchronized) virtual clocks; and in those cases in which

assuming a perfect clock synchronization among the nodes is acceptable, using the modeling pattern

with ideal clocks will be appropriate. Therefore, the modeling patterns proposed may be adopted for

specifying almost the whole range of distributed applications.

Nevertheless, there is one type of distributed application that cannot be modeled with the patterns

already discussed: the clock synchronization algorithms. In this section we will discuss how the

modeling of these applications can addressed, and we will present a suitable modeling pattern. This

modeling pattern will rely on the use of one clock pointer per node in the system.

The aim of this section is not only to describe said modeling pattern, but also to prove that thanks

to the use of multiple clock pointers: 1) it is possible to specify all the types of systems discussed so

far, and 2) it is possible to specify systems suffering from inconsistent clock synchronization. The

latter will be further discussed in Section 9.2.6, when discussing how this modeling pattern has been

adopted for the formal verification of OCS-CAN.

8.6.1 Model templates with several clock pointers

In this new modeling pattern, each node is specified by means of three processes. The name of these

processes are Half Timer, Timer and App; they are discussed next.

First, we define one process Half Timer per node. We also define two arrays of channels,

set half and half, with the same length as the number of nodes, such that every position of

the array provides a channel for interacting with one specific Half Timer. The timed automaton of

process Half Timer is depicted in Figure 8.14, and shows how these channels are used. It can be

observed that each Half Timer behaves as an ideal timer: it is set through channel set half[i],

measures the nominal duration of the first Half Round (kept in variable halfT), and signals the

expiration through channel half[i].

The process named Timer corresponds to a perturbed timer. The function of this process does not

change with respect to what was discussed in Section 8.5; its function consists in measuring the nom-

inal duration of the second Half Round, yet drifting with respect to the clock taken as its reference,

and notifying it. For this reason, this process is specified exactly as indicated in Figure 8.12(a).

112 Chapter 8. Modeling patterns for the realistic specification of computer clocks

Waiting
x<=halfTExpired

x>=halfT
half[i]!

x:= 0

set_half[i]?

x:= 0

Figure 8.14: Process Half Timer, for multiple clock pointers

l6
l5

l4l3l2l1

expire[i]?

set[i]!

exec_task[i]!

half[ref]?

set_half[i]!Tmax[i]:= halfT + eps[i],
Tmin[i]:= halfT - eps[i]

Figure 8.15: Generic application, for multiple clock pointers

Finally, process App is intended to executing the corresponding task as soon as a task activation

instant is detected. Such activation instants are signaled by its corresponding process Timer[i],

through channel expire[i], at the end of every round.

Note that the existence of one Half Timer per node implies that the model has as many potential

clock pointers as nodes exist in the system, because each channel half[i] can be used by the

other nodes as a clock pointer. Later on, we will show that the temporal behavior of the system is

determined by the way in which these clock pointers are managed by each process App.

Figure 8.15 shows the timed automaton of process App. Although this process looks similar to

the one defined in the modeling pattern for virtual clocks, there is one significant difference. In this

case, every process App sets its own Half Timer in the transition from l2 to l3, with the action

set half[i]!. Apart from that, there is another difference: the variable ref is not longer a global

variable, but it is an input parameter that indicates which reference clock each individual process App

is using (likewise the parameter i, which indicates to which specific node the process is associated).

Therefore, the transition from l3 to l4 may be triggered by a different Half Timer in every node. Or

may not, depending on what behavior the modeler wishes to specify, as discussed in the following

examples.

8.6 A modeling pattern for clock synchronization 113

Listing 8.7: Three nodes using physical clocks (variable declaration); multiple clock pointers

c o n s t i n t h a l f T =150; / / b e c a u s e T= 300

c o n s t i n t N= 3 ;

chan s e t [N] , e x p i r e [N] , s e t h a l f [N] ;

b r o a d c a s t chan h a l f [N] ; / / p o t e n t i a l c l o c k p o i n t e r s

u r g e n t chan a ;

b r o a d c a s t chan e x e c t a s k [N] ;

i n t Tmax [N] , Tmin [N] , eps [N] = {0 , 3 , 3} ;

i n t [0 ,N] n= 0 ;

Example 1: modeling physical clocks

In order to model a system using physical clocks, the system modeler must make every process App

work with its own Half Timer as the time reference. In other words, each node must work with its

own clock pointer, which must be independent of the others’ clock pointers. We will illustrate this

concept with an example.

Listing 8.7 shows the variable declaration of a system having 3 nodes. With respect to the vari-

able declaration discussed in Section 8.5, there are only two differences, both already mentioned:

set half and half are defined as two arrays of channels of length N, and the global variable ref

is not declared.

In this example we assume that Node 0 is provided with an ideal clock and, for this reason, the

value of eps[0] is 0. This assumption helps us to introduce the modeling pattern, since it simplifies

the graphs, but it is not required a priori. The other two nodes are assumed to have physical clocks

that drift with respect to real time, with ρ = 10−2 for each physical clock.

The system declaration is shown in Listing 8.8. Note that, as already indicated, we instantiate

three processes for each node. Again, the first parameter of each process corresponds to the node’s

identifier. Therefore, it sets the relationship among the three processes that are part of the same node.

However, the most important part of this system declaration is the second parameter of process App.

This parameter indicates which Half Timer is going to be followed by the application. Then, this

number sets the relationship between the process and its reference clock.

Since we wish to model a system with physical clocks, and physical clocks are independent from

114 Chapter 8. Modeling patterns for the realistic specification of computer clocks

Listing 8.8: Three nodes using physical clocks (system declaration); multiple clock pointers

HTimer0 = H a l f T i m e r (0) ; HTimer1 = H a l f T i m e r (1) ;

HTimer2 = H a l f T i m e r (2) ;

Timer0 = P e r t u r b e d T i m e r (0) ; Timer1 = P e r t u r b e d T i m e r (1) ;

Timer2 = P e r t u r b e d T i m e r (2) ;

App0 = App (0 , 0) ; App1 = App (1 , 1) ; App2 = App (2 , 2) ;

/ / L i s t one o r more p r o c e s s e s t o be composed i n t o a sys tem :

sys tem HTimer0 , HTimer1 , HTimer2 , Timer0 , Timer1 , Timer2 ,

App0 , App1 , App2 , Observer , Dummy ;

each other by definition, then each process App is forced to follow its own Half Timer. That is the

reason why, for every App, the second input parameter (the reference) coincides with the first input

parameter (the node’s identifier).

The temporal behavior resulting from this modeling pattern is depicted in Figure 8.16. In this graph

we represent the evolution of the clock of each process HTimer together with the evolution of the

clock of each process Timer, as well as the activation of its task by each process App.

The empty circles highlight the expiration instants of the Half Timers, which are signaled through

the corresponding broadcast channel Half[i]. Notice that each process Timer uses the expiration

instant of its peer Half Timer for resetting its own clock (this could be compared to the graph in

Figure 8.13, where all nodes use the same reference Half Timer). After that, each process Timer

measures the second Half Round, but exhibiting a certain drift with respect to real time; except for

Timer0, which is assumed to work with an ideal clock. In this graph, we assume that Node 1 evolves

as fast as possible and Node 2 evolves as slowly as possible.

As a consequence of following different clock pointers (i.e. different Half Timers), the applications

inevitably drift apart, and the execution instants of the tasks get more and more separated. The upper

bound of the offset is represented graphically by means of a solid black bar. The length of this bar

increases in every round.

At first sight, the behavior depicted in Figure 8.16 is equivalent to the behavior shown in Figure 8.8.

Moreover, if we try to model check whether the offset among the physical clocks is bounded or not,

we will obtain the same verification error discussed in Section 8.4.3, indicating that the property could

not be verified. This means that the pattern correctly models the expected behavior of a system using

8.6 A modeling pattern for clock synchronization 115

t

Timer2.x t

HTimer2.x
t

Timer1.x t

HTimer1.x
t

Timer0.x t

HTimer0.x

App0 (Ideal)

App1 (Fast)

App2 (Slow)

T
2

T
2 + Tρ

T
2

T
2 − Tρ

T
2

T
2

Figure 8.16: Three nodes using physical clocks, behavior specified with one Half Timer per node

drifting clocks.

Example 2: modeling virtual clocks

In order to model a system using virtual clocks, the system modeler must force all of the nodes to use

the same clock pointer. The system declaration of Listing 8.9 shows how this can be done. Note that

the only difference with respect to the system declaration of Listing 8.8 is the way of instantiating the

116 Chapter 8. Modeling patterns for the realistic specification of computer clocks

Listing 8.9: Three nodes using physical clocks (system declaration); multiple clock pointers

HTimer0 = H a l f T i m e r (0) ; HTimer1 = H a l f T i m e r (1) ;

HTimer2 = H a l f T i m e r (2) ;

Timer0 = P e r t u r b e d T i m e r (0) ; Timer1 = P e r t u r b e d T i m e r (1) ;

Timer2 = P e r t u r b e d T i m e r (2) ;

App0 = App (0 , 0) ; App1 = App (1 , 0) ; App2 = App (2 , 0) ;

/ / L i s t one o r more p r o c e s s e s t o be composed i n t o a sys tem :

sys tem HTimer0 , HTimer1 , HTimer2 , Timer0 , Timer1 , Timer2 ,

App0 , App1 , App2 , Observer , Dummy ;

processes App. In this example, the second input parameter gets the value 0 for all cases, meaning

that Node 0 must be taken as the reference clock.

It is important to remark that this example uses the same variable declaration of Example 1 (already

shown in Listing 8.7). Although in this case the value of eps[i] depends on the consonance with

respect to the reference virtual clock and not on the drift with respect to real time. So, in fact, we are

assuming γ = 10−2 for Timer1 and Timer2.

The temporal behavior achieved with this modeling pattern is shown in Figure 8.17. As expected,

the behavior is equivalent to the one achieved in Section 8.5, which was depicted in Figure 8.13. The

solid black bar illustrates the fact that the tasks are executed with a certain jitter. Furthermore, the

properties stated in Section 8.5 are also satisfied.

8.6.2 How to extend the modeling pattern for including clock synchronization

It is important to remark that the modeling patterns that have been already discussed for specifying

systems with virtual clocks do not really model clock synchronization. They only model the jitter

of the virtual clocks with respect to the reference clock. But, although the jitter is a consequence

of having clock synchronization, it is not the clock synchronization mechanism itself. All the in-

ternal details regarding clock synchronization are actually hidden, so we can say that the modeling

patterns for virtual clocks discussed so far are just abstractions of the service supplied by the clock

synchronization algorithm.

However, modeling the internal details of the clock synchronization algorithm is required some-

8.6 A modeling pattern for clock synchronization 117

t

Timer2.x t

HTimer2.x
t

Timer1.x t

HTimer1.x
t

Timer0.x t

HTimer0.x

App0 (Ref.)

App1 (Fast)

App2 (Slow)

T
2

T
2

T
2

T
2 + Tγ

T
2 − Tγ

T
2

Figure 8.17: Three nodes using virtual clocks, behavior specified with one Half Timer per node

times. For instance, we need to model the internal details of the clock synchronization algorithm if

we wish to verify whether the internal mechanisms work as intended and guarantee the desired pre-

cision. In those cases, the modeler cannot assume a certain precision a priori (as it is done with the

modeling pattern for virtual clocks) but should, instead, use a modeling pattern that allows changes

of the offset according to the evolution of the system. This is exactly the case of OCS-CAN.

In the formal verification of OCS-CAN, our aim will be to model check how certain faults of

the nodes and of the channel may affect the precision achievable. More specifically, we will be

118 Chapter 8. Modeling patterns for the realistic specification of computer clocks

mainly interested in assessing the effect that the inconsistent synchronization rounds may have on the

offset of the virtual clocks, because, as it was explained in Chapter 7, these failures are particularly

threatening for the precision. Therefore, given that we wish to find out an upper bound for the offset

(the precision), the starting point cannot be a model in which the offset is bounded by default.

The modeling pattern we have developed for OCS-CAN is based upon the idea of having multiple

clock pointers, since this technique allows the co-existence of several reference clocks at the same

time. However, we will extend the modeling pattern discussed before, and will allow the modeler to

dynamically change the offset and the consonance between the virtual clocks when required.

We will illustrate this concept next, by modeling a distributed system consisting of four nodes that

implement a master/slave clock synchronization algorithm.

Description of the case study

In our case study we consider a distributed system made up of four nodes. Every node may become

a master, but we assume that they are hierarchically organized and in fault-free conditions they all

follow the highest-priority node. Node 0 is the one with the highest priority, whereas Node 3 is the

one with the lowest priority. A node may only follow a master that has higher priority than itself,

never a node with lower priority.

The clock synchronization algorithm implemented by the nodes is a periodic process, executed in

rounds of duration T. At the end of every round, each node selects one node as its reference clock

and adjusts its own clock in order to follow said clock. These instants therefore correspond to the

synchronization instants that were defined in Section 7.2.1. These instants are denoted as tisync, where

i indicates the synchronization round.

As it was also explained in Section 7.2.1, every node performs two actions at each synchronization

instant: an offset adjustment and a drift adjustment. As a consequence of these actions, two properties

are verified: (1) |vcm(tisync)− vca(tisync)| ≤ ε0, and (2) |v̇cm(tisync)− v̇ca(tisync)| ≤ γ0; where m is

the chosen master and a is the node synchronizing to the master.

Unless otherwise stated, we will hereafter assume that ε0 is negligible. Therefore, after a synchro-

nization action, and for every node a synchronizing, the absolute value of the offset with respect to the

reference master that will accumulate in the nominal duration of a round (T) is at most |Φma| = Tγ0.

In the modeling templates discussed next, the value Tγ0 will be denoted as e0.

Although ε0 could be included in the model, actually by making e0 = ε0 + Tγ0, it does not have

too much relevance for the assessment of the precision. Especially for hardware-implemented clock

synchronization systems, such as OCS-CAN, because the high accuracy of the timestamp mechanism

8.6 A modeling pattern for clock synchronization 119

and the low latency of the offset adjustment reduce the value of ε0 significantly.

In fault-free conditions, the nodes should all choose the same master (the one with the highest

priority, Node 0) in every round and then always follow the same clock reference. The behavior

enforced in that way should be like the behavior obtained when modeling virtual clocks, for instance

in Figure 8.17. However, in our case study we will introduce the possibility of having inconsistent

synchronization rounds. We will use the definition of consistency that was discussed in Section 7.6.2:

we say that a synchronization round i is consistent if all nodes choose the same master, otherwise

the synchronization round is said to be inconsistent. We will adopt as well the concept of maximum

omission degree (Omax), which in Section 7.6.2 was defined as the maximum number of consecutive

rounds that can be inconsistent.

In order to model potential inconsistencies, at the end of every round we will make each node

indeterministically select one master among the nodes that do not have lower priority; what includes

the node itself as well as the nodes with higher priority. The reasons for choosing one specific master

have no interest for the purpose of this chapter and thus will be disregarded. Even though they

are important in a realistic case and thus will be thoroughly discussed when addressing the model

checking of OCS-CAN in Chapter 9.

The model will include an external process that will count the number of consecutive inconsistent

rounds. Whenever this count reaches the value Omax, the external process will disable the possibility

that the following round be inconsistent again.

Model templates

In our modeling pattern for clock synchronization, each node is specified by means of three processes,

namely Half Timer, Timer and App.

The process Half Timer and Timer are used for measuring the periodic synchronization rounds,

of period T, in a similar way as it was discussed in Section 8.6.1. I.e., the former measures the first

half of the round and the latter measures the second half of the round.

Process Half Timer is modeled with the same timed automaton of Figure 8.14 and behaves like

an ideal timer. In contrast, the timed automaton of process Timer changes slightly. This process,

whose timed automaton is depicted in Figure 8.18, implements a perturbed timer that measures a

nominal duration of halfT time units, but with certain deviation represented by the global variable

eps[i].

The value of the variable eps[i] may change in every synchronization round. This feature of the

model constitutes an important difference with respect to the perturbed timers used in the previous

120 Chapter 8. Modeling patterns for the realistic specification of computer clocks

Waiting
x<= halfT + eps[i]Expired

x>= halfT - eps[i]
expire[i]!

n:= n + 1

set[i]?
x:= 0

set[i]?

x:= 0

Figure 8.18: A Perturbed Timer for modeling clock synchronization

l6
l5

l4l3l2l1

expire[i]?

set[i]!

j: int [0,i]

exec_task[i]!
(eomission)?(ref:= j):(ref:= ref_ini),
(ref == i)? (new_eps[i]:= eps[i]):(new_eps[i]:= eps[ref] + e0[i]),
(omission)? (omission:= true) : (omission:= (ref != ref_ini))

half[ref]?

set_half[i]!ref:= ref_ini

Figure 8.19: An application that models master/slave clock synchronization

modeling patterns: in the former we assumed that the variation interval of the perturbed timers had a

fixed length, whereas now we allow these intervals to change dynamically. The amount of variation

is determined by the synchronization application, which is modeled by process App.

It is important to remark that the clock of the highest priority master (in this case, Node 0) consti-

tutes the reference clock of the whole system, and therefore every perturbed timer Timer is defined

as if this clock provided the value of real time. Then, even though one node may synchronize to a

master that is not Node 0, the offset eps[i] of the corresponding Timer will be still measured with

respect to Node 0.

Figure 8.19 shows the timed automaton of process App. The first important feature of this timed

automaton is that ref is not an input parameter, but a local variable. It has to be a local variable

because it may change during the system’s operation. The initial value of ref is passed on as an

input parameter named ref ini. Notice that ref is initialized to ref ini in the first transition,

from location l1 to l2. In our case study, the value of ref ini will be 0, since it is the identifier of

the highest-priority node.

A second important feature of this timed automaton is that the value of ref may change in the

transition that occurs at the end of each round; in the transition from l6 to l2. This transition takes

advantage of the selection feature provided by UPPAAL, which makes a nondeterministic choice of a

8.6 A modeling pattern for clock synchronization 121

value within the range [0, i] and assigns it to a temporal variable named j, which is visible only in

the update associated to the transition. Note that such a range of possible values corresponds to the

identifiers with equal or higher priority than the node itself.

In order to simplify the comprehension of the actions performed by process App in the transition

from l6 to l2, in Algorithm 2 we show the algorithm specifically implemented. This algorithm

starts with the nondeterministic assignment of a value to j. After that, and provided that omissions

are allowed for the next round, a number of variables are updated, as it will be described next.

Algorithm 2 Algorithm for choosing and assigning the master

j← x ∈ {0, i}

if eomission then

ref← j

else

ref← ref ini

end if

if ref = i then

new eps[i]← eps[i]

else

new eps[i]← eps[ref] + e0[i]

end if

if omission then

omission← TRUE

else

omission← (ref != ref ini)

end if

The possibility of having an inconsistent synchronization round is enabled by a global boolean

variable named eomission. If eomission is TRUE then ref takes the value of j; if not, then

ref takes the value of ref ini. This implies that whenever eomission is FALSE, all of the

nodes will choose ref ini as the reference master and therefore the synchronization round will

become consistent.

After the master has been chosen, the offset with respect to the reference time (kept in variable

122 Chapter 8. Modeling patterns for the realistic specification of computer clocks

new eps[i]) has to be updated accordingly. If the node has synchronized to itself, condition

ref=i, then the new offset does not change. If the node has synchronized to another master, then it

inherits the offset with respect to ref ini of said master, which is kept in the variable eps[ref],

and adds its own offset to the selected master. This additional offset is equal to e0, because, after the

clock adjustment takes place, the consonance with respect to the chosen master is γ0. The value of e0

might be different for each node, and is kept in the global variable e0[i].

Finally, the node updates a global boolean variable called omission for registering whether an

inconsistent synchronization has happened or not. In case that the node has actually synchronized to

a master that is not ref ini, then omission takes the value TRUE. Once this variable is set to

TRUE it cannot be set to FALSE again by any other node. As we will explain next, this has to be

done by an external process, the so-called Observer, at the end of each round.

The timed automaton of process Observer is depicted in Figure 8.20. This process performs two

functions. The first one was already described when introducing the previous modeling techniques,

and is related to the assessment of the precision. Local variable n indicates the number of nodes

that have reached the end of the round. Thus, the invariants defined over this variable guarantee that

process Observer enters location Reached as soon as the first node ends its round and leaves

said location as soon as all of the nodes have reached the end. In this way, the time that process

Observer may remain in location Reached gives the maximum offset between the nodes and thus

the guaranteed precision. An implicit assumption of this mechanism is that the offset between the

nodes never exceeds the length of a Half Round, i.e. T
2 time units.

The second function of process Observer concerns the management of the state of the current

and the next synchronization rounds. Note that whenever all of the nodes have reached the end of

the round, it is guaranteed that each node has chosen its own reference clock for the next round.

Therefore, the transition from Reached to Initial is the right instant for (1) determining whether

the round has been consistent or not, and (2) updating the offset for the next round, eps[i], of every

node. This offset depends on which specific reference the node has chosen.

In order to determine the state of the just-finished round, process Observer checks the value

of the global boolean variable omission. Remember that said variable takes the value TRUE if at

least one of the nodes selected a master different from ref ini. Then, whenever this variable equals

TRUE, the number of consecutive inconsistent rounds (kept in the global integer variable o count)

is increased by one unit. Otherwise, o count is set to 0.

After updating o count, its value is compared to Omax. In case they are equal, the variable

eomission is set to FALSE, thus disabling the possibility of an inconsistency during the next syn-

chronization round. Then, the variable omission is set to FALSE, so that the nodes will again be

able to update the state of the next synchronization round.

8.6 A modeling pattern for clock synchronization 123

Reached

Initial

n>=N
a!
x:= 0,
n:= 0,
(omission)?(o_count := o_count + 1):(o_count := 0),
eomission:= (o_count < maxOD),
omission:= false,
update_eps(eps, new_eps)

n>0
a!
x:=0

Figure 8.20: New process Observer, which also updates the offset of each node after every round

For updating the offset of the nodes, process Observer calls a function specifically designed for

this purpose. The name of this function is update eps() and has two input parameters: a pointer

to the array eps and a pointer to the array new eps. The declaration of this function is discussed

next, together with the rest of the system declaration.

System declaration

Listing 8.10 shows the variable declaration for our case study. This declaration does not differ too

much with respect to other declarations already discussed. The main differences are: the declaration

of constant maxOD, which stands for Omax; the declaration of the arrays e0[N] and new eps[N],

whose utility was discussed together with the model templates; the declaration of the variables

e omission, o count, omission for managing inconsistencies; and the declaration of the func-

tion update eps().

Notice that function update eps() is declared with a C-like notation. It takes two array pointers

as input parameters, namely a and b. Then for each position of b, it makes a[i] = b[i] and sets

the value of b[i] to 0. In other words, this function overwrites the array a with the values of b and

then resets b.

The system declaration of the case study is shown in Listing 8.11. In this declaration, we instantiate

three processes for each one of the four nodes. The first input parameter is the node’s identifier,

parameter i in the model templates. The second input parameter that appears in the instantiation of

process App is the value of ref ini, so that it takes the value 0 (the identifier of the highest priority

node) for each process.

124 Chapter 8. Modeling patterns for the realistic specification of computer clocks

Listing 8.10: Four nodes using virtual clocks (variable declaration)

c o n s t i n t h a l f T =150; / / h a l f T = p e r i o d / 2

c o n s t i n t N= 4 ;

c o n s t i n t maxOD= 3 ;

chan s e t [N] , e x p i r e [N] , s e t h a l f [N] ;

b r o a d c a s t chan h a l f [N] ;

u r g e n t chan a ;

b r o a d c a s t chan e x e c t a s k [N] ;

c o n s t i n t e0 [N] = {0 , 3 , 3 , 3} ;

i n t eps [N] = {0 , 3 , 3 , 3} ; / / i n i t i a l l y s y n c h r o n i z e d t o 0

i n t new eps [N] = {0 , 0 , 0 , 0} ;

i n t [0 ,N] n= 0 ;

boo l e o m i s s i o n = (maxOD > 0) ;

i n t [0 , maxOD] o c o u n t = 0 ;

boo l o m i s s i o n = f a l s e ;

vo id u p d a t e e p s (i n t& a [N] , i n t& b [N]) {

f o r (i : i n t [0 ,N−1]) {

a [i] = b [i] ;

b [i] = 0 ;

}

}

8.6 A modeling pattern for clock synchronization 125

Listing 8.11: Four nodes using virtual clocks (system declaration)

HTimer0 = H a l f T i m e r (0) ; HTimer1 = H a l f T i m e r (1) ;

HTimer2 = H a l f T i m e r (2) ; HTimer3 = H a l f T i m e r (3) ;

Timer0 = P e r t u r b e d T i m e r (0) ; Timer1 = P e r t u r b e d T i m e r (1) ;

Timer2 = P e r t u r b e d T i m e r (2) ; Timer3 = P e r t u r b e d T i m e r (3) ;

App0 = App (0 , 0) ; App1 = App (1 , 0) ;

App2 = App (2 , 0) ; App3 = App (3 , 0) ;

/ / L i s t one o r more p r o c e s s e s t o be composed i n t o a sys tem .

sys tem HTimer0 , HTimer1 , HTimer2 , HTimer3 ,

Timer0 , Timer1 , Timer2 , Timer3 ,

App0 , App1 , App2 , App3 , Observer , Dummy ;

Study of the temporal behavior specified

Once the model templates and the system declaration have been discussed, we can study which kind

of temporal behaviors this modeling pattern can specify. For that purpose, we will consider some

representative examples.

First of all, we will study the trivial case in which we define both variables e0 and maxOD as

equal to 0. This configuration implies that the virtual clocks do not drift from each other and that

inconsistent rounds are not possible. Therefore, it corresponds to a system using ideal clocks and

should exhibit the same temporal behavior.

It is possible to determine that the modeling pattern enforces the desired temporal behavior. The

UPPAAL verifier indicates that the following two properties are satisfied:

A[] n o t d e a d l o c k
A[] O b s e r v e r . Reached imply (O b s e r v e r . x == 0)

As indicated in Section 8.3, the fulfillment of these properties proves that the system behaves as if

using only ideal clocks.

The second case we are going to study is the case in which the virtual clocks may drift from

each other (we define e0 greater than 0) but inconsistencies are not allowed (we make maxOD= 0).

This case corresponds to a system using virtual clocks as discussed in Section 8.5, and also in the

126 Chapter 8. Modeling patterns for the realistic specification of computer clocks

Example 2 of Section 8.6.1.

Again, we rely on the UPPAAL verifier for determinining what temporal behavior is enforced with

this modeling pattern. We obtain that the following three properties are satisfied:

A[] n o t d e a d l o c k
A[] O b s e r v e r . Reached imply (O b s e r v e r . x <= 2∗ e0 [1])
E<> O b s e r v e r . Reached and (O b s e r v e r . x == 2∗ e0 [1])

This means that the jitter of the application, characteristic of a system with consistently synchro-

nized virtual clocks, is adequately modeled. Note that in this example we assume, without losing

generality, that all e0[i] are equal; except for e0[0], which takes the value 0 because the refer-

ence clock cannot drift with respect to itself.

Nevertheless, the potential of this new modeling pattern can only be observed if we check more

complex scenarios. For instance, consider the example appearing in Figure 8.21. In this graph we

show the temporal behavior of a system made up of four nodes, in which Node 1 and Node 2 take

Node 0 as the clock reference and follow it, whereas Node 3 runs free and drifts away from Node 0

(and hence from the other nodes as well).

As a consequence of the lack of synchronization of Node 3, the upper bound of the offset increases.

This is highlighted in the graph by means of an additional horizontal black bar, which indicates the

deviation between process App3 and the other processes App. The length of this additional black

bar increases as time goes by, because Node 3 is not able to synchronize to Node 0. Although it is

not shown in the graph, as soon as Node 3 synchronizes to Node 0, it corrects its deviation and gets

together with the other nodes.

Note that the scenario of Figure 8.21 requires the inconsistent synchronization of Node 3 during

three rounds. Therefore it can be specified with the presented modeling pattern by making maxOD= 3.

However, it is important to remark that the depicted scenario is only one possible case of inconsistency

when maxOD= 3. More complex scenarios can exist, for instance if Node 2 also runs free, to give just

an example.

A very positive aspect of our modeling pattern is that it guarantees that all possible scenarios are

generated and model checked. Moreover, for finding out the upper bound of the offset, we do not

need to know the analytical expression that relates the values of the virtual clocks. Instead, we make

the UPPAAL verifier model check the following properties, but giving different values to X.

A[] n o t d e a d l o c k
A[] O b s e r v e r . Reached imply (O b s e r v e r . x <= X)
E<> O b s e r v e r . Reached and (O b s e r v e r . x == X)

The results obtained are shown in Table 8.2. These results prove that there is a strong relationship

8.6 A modeling pattern for clock synchronization 127

t

Timer3.x t

HTimer3.x
t

Timer2.x t

HTimer2.x
t

Timer1.x t

HTimer1.x
t

Timer0.x t

HTimer0.x

App0 (Ref.)

App1 (Fast)

App2 (Slow)

App3 (Free)

T
2

T
2

T
2

T
2 + Tγ

T
2 − Tγ

T
2

T
2

T
2 + Tγ

Figure 8.21: Four nodes with virtual clocks, example of an inconsistent clock synchronization

128 Chapter 8. Modeling patterns for the realistic specification of computer clocks

Table 8.2: Results obtained for different values of maxOD

maxOD Upper bound (X) [time units]

0 6

1 18

2 30

3 42

between the value of maxOD and the upper bound of the offset. This is certainly the expected behavior

for the system, as it was already discussed in Section 7.6. Thus, the results show that the modeling

pattern realistically models the expected temporal behavior of this kind of systems.

Notice that the obtained values are all multiple of 6. This is due to the fact that the consonance

between nodes is always bounded by a discrete value of the form γ0k, with k ∈ N, and therefore the

upper bounds of the offset between nodes can only take values of the form (2γ0T)k = (2e0)k = 6k.

8.7 Discussion

At the beginning of this chapter, we highlighted the relevance of having suitable modeling patterns

for specifying distributed systems with computer clocks. Where suitable means having a model that

allows us to realistically specify the temporal behavior enforced by the type of computer clocks the

system works with. Another important characteristic of a suitable modeling pattern is that it makes

the assumptions on the computer clocks explicit within the model.

In this chapter we have presented a complete study of the different types of computer clocks that can

be encountered when modeling a distributed system, and we have discussed what kind of temporal

behavior they enforce. For that discussion, we have defined a simplified case study, constituted by a

number of nodes executing a periodical time-triggered task.

For each type of computer clock we have presented and discussed its corresponding modeling

pattern. Some of these modeling patterns already existed in the literature, whereas some others were

specifically developed for this thesis. The discussed patterns are all summarized next.

Modeling patterns already existent in the literature:

• Ideal timers, for modeling systems with ideal clocks. The temporal behavior of the nodes is

perfectly synchronous; they execute the periodical task at exactly the same instants.

8.7 Discussion 129

• Perturbed timers, for modeling systems with physical clocks. The temporal behavior enforced

is unbounded clock skew, which means that the execution instants of the nodes keep drifting

away as time passes by.

Modeling patterns developed in this thesis:

• Perturbed timers and a clock pointer, for modeling systems with virtual clocks. The temporal

behavior enforced is clock jitter, which means that the execution instants of the nodes are differ-

ent, but the offset is still bounded by a certain amount that depends on the clock synchronization

algorithm.

• Perturbed timers and multiple clock pointers. The main characteristic of this modeling pattern

is that it allows the offset and the consonance of the virtual clocks to change dynamically, as

a consequence of the actions performed by the nodes during the system operation. Due to

this, this pattern allows specification of all the previous types of clocks: ideal clocks, physical

clocks and virtual clocks. However, it is especially useful for modeling clock synchronization

algorithms.

We also remarked the importance of describing the modeling patterns in a manner that facilitates

comprehension and fosters its applicability. For fulfilling this aim, we have extensively used graphs

that show the evolution of the TA clocks of each model. In our experience, reasoning about the

perception of time by the nodes of a distributed system is not straightforward and probably constitutes

the most challenging aspect of the TA theory. We believe that these graphical representations are

the best way to introduce the modeling patterns, particularly to readers not familiar with the TA

formalism.

Our aim was to provide these modeling patterns in a way such that they can be immediately applied

by other system modelers. However, it is clear that each system modeler must still find out if any

change is required before adopting a certain modeling pattern for her particular system. For instance,

in Section 9.2.6 we will describe how the modeling pattern for clock synchronization (perturbed

timers and multiple clock pointers) has been adapted and used for the formal verification of OCS-

CAN.

Chapter 9

Model checking of the precision

guaranteed by OCS-CAN

This chapter describes the formal verification of OCS-CAN by means of model checking. As in-

dicated in Chapter 3, model checking is a technique that, given a model of a system and a set of

properties, automatically checks whether the properties hold for that model or not. One of the main

strengths of model checking is that it automatically generates and evaluates all the possible states of

the system’s model. Therefore, it is very useful for evaluating fault-tolerant systems over complex

scenarios, as it frees the user from having to find out all the possible scenarios explicitly. This feature

will be exploited in the model checking of OCS-CAN.

Due to its complexity, the formal verification of OCS-CAN will be described gradually. This

description will be divided into three parts.

Section 9.1 corresponds to the first part, in which we will address a number of preliminary details

about the modeling of our system. In this section we will clarify the aim of the formal verification of

OCS-CAN, and we will discuss the main abstractions performed in the modeling.

Section 9.2 corresponds to the second part, in which the UPPAAL model of OCS-CAN will be

presented and thoroughly described. We will present the network of processes that constitutes the

model of OCS-CAN and will discuss each process in detail. We will specifically discuss the most

complex aspects of our model of OCS-CAN, which mainly concern the modeling of the virtual clocks

and of the clock synchronization operations with the techniques introduced in Section 8.6.

The third and last part of the description will be addressed in Section 9.3. In this section we will

131

132 Chapter 9. Model checking of the precision guaranteed by OCS-CAN

address the formal verification of the discussed model. We will discuss the verification process as

well as the results that have been obtained.

9.1 Preliminary remarks about the modeling of OCS-CAN

Figure 9.1 depicts the elements involved in the model checking procedure, as it was discussed in

Section 3.2. The model checker, in this case UPPAAL, takes both the model and the properties as

inputs and provides an output that may be yes or no, depending on whether the properties are satisfied

or not. Moreover, whenever the output is no, the model checker supplies the user with a trace that

shows in which conditions the property is violated.

Both the model and the properties are provided by the user, and they must be specified in the

formalisms required by the model checker. For the case of UPPAAL, the model must be specified as a

network of timed automata (introduced in Section 3.6.1), whereas the properties must be specified as

formulas of temporal logic (discussed in Section 3.6.4).

Before describing our modeling in more detail, it is useful to briefly introduce what the “model”

and the “properties” represent in the context of the formal verification of OCS-CAN. We will also

discuss the main abstractions of our model.

9.1.1 System model

OCS-CAN has been conceived as a subsystem that can be attached to any CAN-based distributed

system for immediately providing a high-precision clock synchronization service. The algorithm for

clock synchronization of OCS-CAN is based on a master/slave scheme, but includes some mecha-

nisms for managing master redundancy that eliminate the single point of failure that a single master

would represent.

For the purpose of formal verification, OCS-CAN will be considered isolated from the rest of the

system to which it may be attached, as it was already done in the analysis carried out in Chapter 7.

This is possible because the behavior of an OCS-CAN subsystem is not changed by the distributed

system to which OCS-CAN is attached. This property is called orthogonality and was discussed in

Section 6.2.4.

In fact, the orthogonal design of the CU makes the network be the only element shared by OCS-

CAN and the rest of the distributed system. Due to this, the only side effect that the rest of the system

may have on the operation of OCS-CAN is a potential increment of the Time Message response time,

which would be caused by the background traffic. But this potential increment is already considered

9.1 Preliminary remarks about the modeling of OCS-CAN 133

Model

Properties

UPPAAL

model

checker

Yes/No

Figure 9.1: Scheme of the model checking procedure

CU CU CUvc1(t) vc2(t) vc3(t)

CAN channel

Figure 9.2: An OCS-CAN subsystem made up of three Clock Units

in the formulas for the calculation of the wcrt of each TM, and hence it can be easily incorporated

into the model, as it will be shown in Section 9.2.4.

For illustration purposes, Figure 9.2 shows the architecture of an OCS-CAN subsystem made up

of three Clock Units, when considered independently. Note that the subsystem can be divided into

two parts: the Clock Units (CU) and the CAN channel. Each CU internally keeps a virtual clock for

measuring time, labelled vci(t), which constitutes the output of the CU to its corresponding node (not

represented in the figure).

The internal structure of the CU was described in Section 6.3.1. For the reader’s convenience,

we have reproduced the block diagram of the CU in Figure 9.3. The blocks that constitute the CU

are, namely, the Virtual Clock Module, the Synchronization Module, the Timestamp Manager and

the Enhanced CAN Controller. In the following, we will denote them with their abbreviated names,

which are respectively: VC module, SynM, TSM and EnCAN.

In order for the formal verification to be complete, the formal model of OCS-CAN must include

both elements (the CU and the CAN channel) with their possible behaviors. However, in Section 9.1.3

we will show that certain properties of these elements will not be needed and thus may be abstracted

away.

9.1.2 Properties to be verified

The aim of our formal verification is to assess the precision that OCS-CAN guarantees under the

different fault assumptions considered in the fault model. The notion of precision was defined in

134 Chapter 9. Model checking of the precision guaranteed by OCS-CAN

Figure 9.3: Block diagram of the clock unit, with the interface between blocks

Section 7.1.2 (Definition 6) as follows: a set of clock units A is synchronized with precision Π if

|vca(t) − vcb(t)| ≤ Π, for any pair of non-faulty clock units a, b ∈ A and any time instant t. Note

that this property can be expressed as a safety property of the form: A2 ((vca−vcb) ≤ Π)∧ ((vca−
vcb) ≥ −Π)).

However, according to this definition of precision, there exists an infinite number of values that may

satisfy this property, because if a system is Π-synchronized then it will be also Π′-synchronized for

any Π′ > Π. Therefore, the aim of our formal verification can be redefined as finding the minimum

value that satisfies said property. Moreover, due to the limitations of model checking to deal with

non-integer numbers, we will hereafter consider that Π is a natural number.

In order to determine this minimum value for the precision, in the model checking of OCS-CAN

we will follow a procedure that is divided in the following three steps.

1. The general parameters of OCS-CAN will be set in the model. These parameters are: the length

of the synchronization period (R), the number of masters, the value of the release delay (∆m),

etc.

2. The fault assumptions of the model will be set. These assumptions are: the maximum number

of crashed masters, the omission degree (Omax), etc.

3. The precision property will be verified iteratively. The iteration starts by checking the precision

property for Π=1. If the property is not satisfied then the value of Π is increased by 1, and the

9.1 Preliminary remarks about the modeling of OCS-CAN 135

precision property is checked again. Once the precision property is satisfied, the current value

of Π constitutes the minimum value of the precision for the given configuration parameters and

fault assumptions, and hence we finish the iterative process.

In Section 9.3, after the modeling of OCS-CAN has been thoroughly described, we will provide

further details about the specific way to implement this iterative procedure in UPPAAL.

The precision of OCS-CAN must be assessed for different system parameters and fault assump-

tions. Then, whenever one or more of the system parameters change, the user has to restart the

procedure from step 1.

9.1.3 Main abstractions of the model

The first task to be addressed during the formal modeling of any system is to decide which aspects

of the system are relevant for the formal verification and must be included in the model, and which

aspects are irrelevant and can be abstracted away. The relevance or irrelevance should be decided in

regard to the properties to be verified.

Furthermore, even for those aspects that are relevant, the modeler must consider with what level

of detail they have to be modeled. Very often it is enough to just model the properties that a certain

component exhibits, instead of explicitly modeling the low-level details of the particular mechanisms

that substantiate said properties. Assuming some properties as granted reduces the complexity of the

formal model and the size of the state space to be checked.

In order to determine the required level of modeling detail for a certain property, it turns out to be

very useful to state what aspects of the system are not the goals of the formal verification. This helps

the modeler to find out the relevance (or more exactly, the irrelevance) of including certain details in

the model.

Concerning the formal verification of OCS-CAN, we can highlight three aspects that will not be

addressed:

1. We will not formally verify the CAN protocol itself. The CAN protocol is an international

standard since 1993 [ISO93]. Its properties have been studied for a couple of decades and are

very well known.

2. We will not formally verify the implementation of the equations for clock amortization. Model

checking is not a suitable technique for formal verification of so-called data-intensive applica-

tions, i.e. applications that perform a lot of arithmetical operations [Kat98]. When modeled

as finite state automata, arithmetical operations usually create huge state spaces because they

136 Chapter 9. Model checking of the precision guaranteed by OCS-CAN

force the modeler to include long variables in the model, such as integers, long integers or floats,

which can take values in a very wide range. Data-intensive applications are better assessed by

means of theorem proving or numerical calculus.

3. We will not formally verify the internal fault tolerance mechanisms of the CU, which are in-

tended to restrict the failure semantics of the CU to crash failure semantics. The design of these

mechanisms has not been addressed in this work and hence there is no particular mechanism

to be formally verified. Therefore, we will assume that each CU exhibits this property without

considering further details.

As a consequence of these points, in the modeling of OCS-CAN we will make the following ab-

stractions:

• The CAN network will be modeled as a “black box” that provides a broadcast service fulfilling

the main properties of CAN. The way to model such a black box by means of timed automata

will be thoroughly discussed in Section 9.2.4.

• Instead of the equations for clock amortization, our model will assume immediate clock assign-

ment. Thus, we adopt the same strategy applied in Section 7.2.1.

• The modeling of the CU will include a state called failure, which will be used for modeling the

crash of the CU. Any CU will be able to indeterministically enter this state .

9.2 Description of the UPPAAL model of OCS-CAN

This section introduces the basic scheme of the model, as a network of UPPAAL processes, and

describes the most simple features of these processes.

9.2.1 Basic scheme of the UPPAAL model

The scheme of the formal model of OCS-CAN is depicted in Figure 9.4. Every rounded rectangle in

the scheme represents an UPPAAL process. An arrow indicates some kind of communication between

two processes, usually by means of an UPPAAL channel or a global variable.

The model of OCS-CAN includes two processes for modeling each CU, SynM and VC module,

and one process for modeling the CAN communication, Channel. The latter corresponds to the

“black box” mentioned in Section 9.1.3 for modeling the CAN network. There are also two other

9.2 Description of the UPPAAL model of OCS-CAN 137

VC module VC module ... VC module

Observer

SynM SynM ... SynM

Round

Ctrl

Channel

Figure 9.4: General scheme of the formal model of OCS-CAN

processes, Observer and Round Ctrl, both remarked with a dashed line in Figure 9.4, whose

function will be clarified later on in this section.

Note that no specific process is defined for modeling the behavior of the blocks TSM and EnCAN.

This is a consequence of the abstractions discussed in Section 9.1.3. Modeling the functionality of

EnCAN is not required since it mainly deals with the low-level details of the CAN protocol. For

this reason, EnCAN is abstracted away as part of process Channel. The timestamp functionality of

TSM is abstracted away as part of process SynM.

The rest of this section is devoted to describing the processes that constitute the core of the model:

VC module, SynM and Channel.

9.2.2 The process VC module

The function of VC module is to model the temporal evolution of the virtual clock. This is achieved

by means of two variables: one that represents the value of the virtual clock and another one that

represents the speed (or rate) of the virtual clock. We adopt the notation of Chapter 7, so that these

variables are called, respectively, vca and v̇ca hereafter.

The normal behavior of vca is to increase monotonically over time, at the pace indicated by v̇ca.

Nevertheless, vca can also change its value abruptly at a certain synchronization instant, as a conse-

quence of the offset adjustment that was discussed in Section 7.2.1. The value of v̇ca may also change

at a synchronization instant, as a consequence of a drift adjustment, but remains constant between

138 Chapter 9. Model checking of the precision guaranteed by OCS-CAN

said synchronization instants.

The modeling of this apparently simple behavior constitutes by far the most challenging aspect of

the OCS-CAN model. The main difficulty is related to the fact that all the clocks in a network of

timed automata increase, by definition, at the same pace. Therefore, a virtual clock of OCS-CAN

cannot be directly modeled as one of such clocks; more complex modeling techniques are required.

This circumstance forced us to develop and apply some complex modeling patterns, not only to

specify virtual clocks with different rates, but also to specify virtual clocks whose rates may change

according to the rate of another virtual clock (the master). These modeling patterns were thoroughly

discussed in Chapter 8.

For the modeling of VC module we will use a variation of the modeling pattern proposed in

Section 8.6.2 for clock synchronization. However, a full description of the complex aspects of VC

module is not really required for understanding the basic features of the model, which we are ad-

dressing in this section. Therefore, and for the sake of clarity, this description will be postponed until

the last part of the description, in Section 9.2.6.

9.2.3 The process SynM

Process SynM models the behavior of the Synchronization Module of the CU, which is based on the

algorithms described in Section 6.3.4. The algorithm executed by this module may change, depending

on whether SynM plays the role of a master or of a slave. The algorithm for a master clock unit is

reproduced in Figure 9.5, whereas the algorithm for a slave clock unit is reproduced in Figure 9.6.

These two algorithms exhibit a slight difference with respect to the algorithms discussed in Sec-

tion 6.3.4. In the automata of Figure 9.5 and Figure 9.6, the synchronization action has been abstracted

away and has been substituted by an immediate clock assignment. This substitution can be observed

in the transitions of the master from Queue to Idle 2 and from Idle 1 to Idle 2, when the

event TM.Ind(n) ∧ n ∈ hp(m) is detected, what indicates that a higher-priority TM has been re-

ceived. It can be observed in the slave as well, in the transition from state Idle 1 to state Idle 2

specifically.

In essence, we have replaced the synchronization action by the effect that the action would have

on the virtual clock. This is a valid abstraction because, as indicated in Section 9.1.3, we are not

interested in model checking the clock adjustment operations themselves.

It is also important to remark that this way of modeling the clock adjustment implicitly assumes

that the value and the rate of the master’s virtual clock are available to any CU. This represents an

abstraction of the timestamp mechanism implemented between TSM and EnCAN. As it was explained

9.2 Description of the UPPAAL model of OCS-CAN 139

Idle 1 Queue Idle 2
vcm(t) = kR + ∆m

TM.Req(m)

TM.Ind(n) ∧ n 6∈ hp(m) TM.Ind(n) ∧ n 6∈ hp(m)

TM.Conf(m)

TM.Ind(n) ∨ TM.Conf(m)

TM.Ind(n) ∧ n ∈ hp(m)

TM.Abort(m),

vcm(t) = vcn(t),

v̇cm(t) = v̇cn(t),

tsync = vcm(t)

TM.Ind(n) ∧ n ∈ hp(m)

vcm(t) = vcn(t),

v̇cm(t) = v̇cn(t),

tsync = vcm(t)
vcm(t) = tsync + R

2

k = k + 1

Figure 9.5: Algorithm executed by the SynM of master m, with the Sync(n,m) operation abstracted

away

Idle1 Idle2
TM.Ind(n)

vcs(t) = vcn(t),

v̇cs(t) = v̇cn(t),

tsync = vcs(t)

TM.Ind(n)

vcs(t) = tsync + R
2

Figure 9.6: Algorithm executed by the SynM of slave s, with the Sync(n, s) operation abstracted

away

in Section 6.3.2, the value of the master’s virtual clock is piggybacked into the data field of the TM

by the master, and thanks to this (and after reception of the TM) it is available to the other CU. But

the inclusion of the timestamp mechanism is not required in the modeling of OCS-CAN, and we

assume instead that the value (vcn) and the rate (v̇cn) kept by the VC module of master n are global

variables that can be read by any other process.

140 Chapter 9. Model checking of the precision guaranteed by OCS-CAN

The way of modeling the error caused by the timestamp, and the effect it may have on the ad-

justment of a virtual clock belongs to the modeling of VC module, and therefore will be further

discussed in Section 9.2.6.

Concerning the interaction between process SynM and process Channel, our model includes

the four primitives presented in Section 6.3.1, namely TM.Req(m), TM.Conf(m), TM.Ind(n) and

TM.Abort(m). The modeling of these primitives with timed automata will be thoroughly discussed

in Section 9.2.4, while describing process Channel.

As a final remark, note that the description of SynM given so far is incomplete, since we have

not indicated how these algorithms are modeled with timed automata. The timed automaton of pro-

cess SynM will be partially introduced in Section 9.2.4, along with the timed automaton of process

Channel. Nevertheless, the final (and complete) timed automaton of SynM will be presented in

Section 9.2.6.

9.2.4 The process Channel

The function of process Channel is to model the communication services provided by the CAN

network. This model must satisfy the properties of CAN discussed in Section 4.3, such as arbitration

and bounded response time. But, more importantly, and given that our aim is to assess the precision

guaranteed by OCS-CAN in the presence of faults, this process should include all the possible failure

semantics of the CAN network.

The error-control mechanisms of CAN guarantee, in the presence of most channel faults, the con-

sistent broadcast of any message transmitted. However, in some specific fault scenarios, the service

provided by a CAN network may fail and cause either Inconsistent Message Duplicates (IMD) or

Inconsistent Message Omissions (IMO). In Section 7.4.1 we already indicated that the possible fail-

ure semantics of a CAN network are: Consistent Broadcast (or Br-C), Broadcast with inconsistent

message duplicates (or Br-ID) and Broadcast with inconsistent message omissions (or Br-IO).

In principle, these failure semantics should be all included in the modeling of OCS-CAN. Never-

theless, in the analysis carried out in Section 7.4.3, it was proved that, from the perspective of the

guaranteed precision, having Br-ID is equivalent to having Br-C. Due to this, and in order to reduce

the complexity of the model, the possibility of Br-ID will not be included in our modeling. This

constitutes an important abstraction, but it can be safely done as it has no impact on the property to

be verified.

In summary, process Channel will model a broadcast service fulfilling these properties:

• Inconsistent broadcast of messages. It is possible that a subset of the CU receive a certain

9.2 Description of the UPPAAL model of OCS-CAN 141

message whereas the other CU do not receive it (due to an IMO). In consonance with the

nomenclature defined in Section 7.4.4, the maximum number of rounds that may suffer from

an inconsistency will be called the maximum omission degree and will be denoted as Omax.

• Simultaneous reception of messages. Given that IMD have been excluded from the modeling,

we assume that all of the CU that receive a message, receive it simultaneously.

• CAN arbitration. Whenever two CU (two masters, actually, since slaves are not allowed to

send any TM) request the broadcast of a message at the same time, the message with higher

priority is broadcast first.

• Bounded response time. Any message broadcast is received before wcrtm time units or it is

not received at all. The calculation of wcrtm, which is to be performed offline, must include

the delay caused by potential channel errors and retransmissions. The response time of a TM

has also a lower bound, which is denoted as bcrtm.

• Broadcast abortion. Any message broadcast may be aborted by the CU that requested the

broadcast.

In order to specify this semantics, process Channel will use the following elements:

• A local clock x, which is used for implementing the bounded response time of CAN.

• A global variable, msg id, and an urgent channel, tx req for modeling the broadcast re-

quests, including the arbitration.

• A global variable, recv id, and a broadcast channel, tx msg, for modeling the reception of

the TM.

It is important to remark that process Channel interacts with process SynM for modeling the

broadcast and reception of the TM, including the arbitration, and with process Round Ctrl for

modeling message inconsistencies. These interactions will be clarified in the following discussions.

Modeling TM broadcast and arbitration

The automaton that specifies the behavior of process Channel is depicted in Figure 9.7. Note that

this automaton has only two locations. The one named no pending tx corresponds to the state in

which no TM broadcast has been requested, and is thus the initial state; whereas the location named

pending tx corresponds to the state in which at least one TM is waiting for transmission. The

initial values of the global variables msg id and recv id are N and 0, respectively.

142 Chapter 9. Model checking of the precision guaranteed by OCS-CAN

no_pending_tx

pending_tx
x <= WCRT

msg_id < N

x:= 0
tx_req!

tx_msg!
x:= 0,
recv_id:= msg_id,
msg_id:= N

x >= Ctm

Figure 9.7: Automaton of process Channel

tx_req?

Figure 9.8: Dummy automaton for enabling synchronization via the urgent channel tx req

The transition to pending tx is guarded by the condition msg id < N and has a synchro-

nization through the urgent channel tx req. We use a so-called dummy automaton (depicted in

Figure 9.8) in order to make the synchronization via channel tx req always possible. This strategy

guarantees that the transition is taken as soon as the guard condition becomes true, which should

occur only when a master has a TM to broadcast.

The value of msg id (N initially) may be modified by a SynM that wishes to transmit a TM.

Therefore, overwriting the value of msg id is equivalent to requesting a broadcast of the TM. In fact,

it corresponds to the primitive TM.Req(m), where m is the value that msg id will take. However, in

order to guarantee the arbitration property of CAN, a SynM requesting a broadcast will overwrite the

value of msg id only if the identifier of its own TM is lower than the current value of msg id (since

a lower identifier means higher priority). The way to include this in SynM is shown in Figure 9.9.

Note that this figure does not show a complete automaton, but only the “piece” that illustrates the

mechanism for modeling TM.Req(m) and arbitration.

In the automaton of Figure 9.9, my id is a local constant that corresponds to the identifier of

the TM sent by the node, so it is actually the value of m. The expression msg id := my id <?

msg id, which UPPAAL has taken from the C language, is a compact way to write the code appearing

in Algorithm 3.

9.2 Description of the UPPAAL model of OCS-CAN 143

msg_id := my_id <? msg_id

Figure 9.9: Portion of an automaton that models TM.Req(m) and arbitration

Algorithm 3 The simple if-else statement that serves for modeling CAN arbitration
if my id < msg id then

msg id← my id

else

msg id← msg id

end if

Modeling the channel’s bounded response time

Process Channel also models the bounded response time of the CAN network. As previously indi-

cated, the response time of a certain TM should always lay within the interval [bcrtm, wcrtm]. Both

values are calculated offline and included into the model as constants.

The lower bound (bcrtm) is calculated as follows: let Ltm be the length of the TM (measured in

bits) and let C be the bit rate of the channel (measured in bps), then bcrtm = Ltm/C. Since the

length of the TM is fixed, the value of bcrtm is the same for any TM.

It also is possible to calculate the value of wcrtm for the TM issued by each master, for instance

as indicated in [BBRN05, DBBL07]. But in our model we will assume the same wcrtm for every

TM. This is a valid abstraction because the duration of wcrtm is negligible in comparison to the

synchronization period R. And given that the length of R is the factor that more significantly affects

the precision, the error that this abstraction may induce on the assessment of the precision is very

little. Moreover, it is possible to apply a conservative approach: if the value assigned to the upper

bound corresponds to the greatest wcrtm among the TM, this causes pessimism on the assessment of

the precision. Therefore the precision obtained as a result of the formal verification is still an upper

bound and therefore valid.

The way of introducing in our model the upper and lower bounds of the response time can be

observed in the automaton of Figure 9.7. Note that clock x is reset in the transition to pending tx.

This clock is then used for restricting the time that the automaton can stay in location pending tx,

which, due to the guard and the invariant defined over clock x, lays between Ctm and WCRT. The

constant Ctm corresponds to bcrtm, whereas the constant WCRT corresponds to wcrtm.

The transition from pending tx to no pending tx indicates a successful broadcast of the

144 Chapter 9. Model checking of the precision guaranteed by OCS-CAN

TM. This event is notified through the broadcast channel tx msg. In the same transition, process

Channel overwrites the value of the global variable recv id with the value of msg id and resets

the value of msg id to N, which makes the channel available again for other broadcasts.

Modeling TM indication and TM confirm

As already indicated, the broadcast of the TM takes place in the transition from pending tx to

no pending tx, and it is signaled through the channel tx msg. Channel tx msg is a broadcast

channel, so that (according to what was explained in Section 3.6.2) multiple processes may use it

for synchronization. Therefore, this single signaling will be used for modeling the TM.Ind(n) at the

(multiple) receiving SynM and the TM.Conf(m) at the (single) transmitting SynM.

The specific way of modeling these primitives is depicted in Figure 9.10. This automaton is a

simplification of the final automaton of a SynM playing the role of a master, and is incomplete. But,

despite its simplicity, this automaton is very useful for understanding the communication between

each process SynM and process Channel.

Before describing the simplified automaton of Figure 9.10, it is important to remind that right before

a TM broadcast is signaled, the global variable msg id keeps the identifier of the highest-priority TM

among those that are waiting for transmission. So this variable gives the identifier of the TM that is

actually broadcast. Therefore, every process SynM can check this variable in order to know whether

the TM that has been broadcast is its own TM or it is a TM broadcast by another process. Moreover,

if the latter is true then it is also possible to discriminate between a TM sent by a master of higher

priority and a TM sent by a master of lower priority.

The automaton of Figure 9.10 contains three locations, named Idle1, Queue and Idle2. Its

behavior corresponds to the algorithm discussed in Section 9.2.3, even though with a few simplifica-

tions. Note that while being in the initial location Idle1, three events may happen:

1. The reception of a lower priority TM may be signaled via tx msg. This transition is the

one guarded by the condition msg id > my id. Note that it does not cause a change of

location because, according to the algorithm discussed in Section 9.2.3, each lower priority

TM is basically ignored.

2. The reception of a higher priority TM may be signaled via tx msg. This transition is the

one guarded by the condition msg id < my id. In a complete automaton of SynM, this

transition should cause a synchronization of the virtual clock. In our simplistic model, it makes

the automaton change to location Idle2.

9.2 Description of the UPPAAL model of OCS-CAN 145

Aux1

Idle2

QueueIdle1

recv_id:= 0

msg_id > my_id
tx_msg?

msg_id > my_id
tx_msg?

vc[my_id] == k*R + R/2

k++

msg_id < my_id
tx_msg?

msg_id == my_id
tx_msg?

msg_id < my_id
tx_msg?

vc[my_id] == k*R + Delta

msg_id := my_id <? msg_id

Figure 9.10: Simplified automaton of a master SynM (version I)

3. The virtual clock may reach the so-called broadcast instant of SynM. In such a case, a broad-

cast of a TM with identifier my id will be requested in the form previously explained; i.e.

by overwriting the value of msg id, if possible. Note that in the transition from Idle1 to

Queue, the update corresponds exactly to the one depicted in Figure 9.9, which modeled the

TM Request.

While being in location Queue, three events are possible:

1. An indication of a TM of lower priority.

2. An indication of a TM of higher priority.

3. A confirmation that the broadcast previously requested has been successful. This corresponds

to the TM.Conf(m) primitive, and it is modeled in a similar way to TM.Ind(n); by means of

a transition that synchronizes via channel tx msg, but guarded by the condition msg id ==

my id.

Note that the transition caused by TM.Conf(m) leads to a committed location, named Aux1, which

is therefore immediately left. In the subsequent transition, to location Idle2, the global variable

recv id is reset to 0. This action guarantees that variable recv id takes the value 0 as soon as

it is not required anymore, and helps to reduce the state space. The utility of variable recv id is

specifically related to the modeling of the clock adjustment operations and has not been explained

yet, but it will be clarified in Section 9.2.6.

146 Chapter 9. Model checking of the precision guaranteed by OCS-CAN

It is very important to remark that the transitions that model the reception of a lower priority TM

(i.e. the events with number 1 in the lists above) have been shown in Figure 9.10 for completeness, but

they will be abstracted away from our model hereafter. Such transitions return to the same location

and do not modify any clock or variable, which means that they do not cause any change of state of

the process. Therefore, they can be safely eliminated without modifying the state space to be checked.

Modeling TM abort

Due to the particular mechanism we have used for modeling both the requests of TM broadcasts and

the arbitration, there is no need to include any mechanism to model abortion of the TM. In our model,

any TM broadcast is aborted in practice, as soon as any other process SynM overwrites the value of

msg id with an identifier of higher priority (i.e., of lower value). For this reason, what we need to

include is the opposite mechanism: a mechanism to re-request a TM broadcast whenever the abortion

of a TM has not taken place.

In Section 6.3.4 we explained that a TM may not be aborted while it is being transmitted, and that

due to this, the TM.Abort(m) primitive may be unsuccessful sometimes. This possibility is included

in our model by means of the modeling technique shown in Figure 9.11. Note that in this new version

of process SynM, three new locations appear in the right path from Queue to Idle2. This path

corresponds to the reception of a higher priority TM after a broadcast of the TM has been requested.

Location Abort is a committed location and is immediately left, but it gives us the possibility of

specifying the two possible outputs of the TM.Abort(m) primitive: successful abortion of the TM and

unsuccessful abortion of the TM. The successful abortion is represented by the unguarded transition

to location Idle2. This transition does not need any specific action, since the previously requested

broadcast is aborted by default.

The unsuccessful abortion of the TM is represented by the unguarded transition from Abort to

Not aborted. Notice that in this transition, SynM requests a new broadcast of the TM. Location

Not aborted is left once there is either an indication of the reception of a higher priority TM

(guard msg id < my id) or a TM confirm (guard msg id == my id). Location Aux2 is just an

auxiliary committed location for resetting the value of recv id to 0.

Modeling omissions of the TM

For modeling omissions of the TM, we must allow each SynM to act as if the TM indication had not

been issued by process Channel. For including this possibility, we will define an extra transition in

SynM that also synchronizes via the broadcast channel tx msg and is enabled at the same time as the

9.2 Description of the UPPAAL model of OCS-CAN 147

Aux2

Aux1

Not_aborted

Abort

Idle2

QueueIdle1

recv_id:= 0

recv_id:= 0

msg_id == my_id
tx_msg?

msg_id < my_id
tx_msg?

msg_id:= my_id <? msg_id

vc[my_id] == k*R + R/2

k++

msg_id < my_id
tx_msg?

msg_id == my_id
tx_msg?

msg_id < my_id
tx_msg?

vc[my_id] == k*R + Delta

msg_id := my_id <? msg_id

Figure 9.11: Simplified automaton of a master SynM (version II)

transition corresponding to the TM indication. We call this transition an omission transition because

whenever it is taken, it prevents process SynM from processing a TM indication.

Nevertheless, an important assumption of our model is that the number of consecutive inconsis-

tent rounds is bounded by the maximum omission degree (Omax). Therefore, the omission tran-

sition should be enabled/disabled according to this value. We define a boolean global variable,

called eomission, for this purpose. The value of this boolean variable indicates whether the cur-

rent synchronization round may suffer from inconsistencies (TRUE) or not (FALSE). Due to this,

eomission must be set to FALSE after Omax consecutive inconsistent rounds in order to force a

consistent synchronization round, and it must be set to TRUE otherwise.

The automaton of Figure 9.12 corresponds to a new version of a master SynM, which illustrates

the use of our technique for modeling TM omissions. This automaton incorporates one omission

transition in location Idle1 and another one in location Queue. These transitions are both guarded

by the condition eomission and (msg id < my id), what means that they are enabled only

during potentially inconsistent synchronization rounds and for higher priority TM.

Each one of the omission transitions leads to a committed location (omission0 and omission1,

respectively) that is immediately left. Furthermore, in the transition leading from omission1 to

Queue, a transmission request of the TM is also performed. This action allows us to specify that an

omission of the TM will actually prevent SynM from aborting the broadcast previously requested.

In Figure 9.12, it must be noticed that whenever one of the omission transitions is taken, a boolean

148 Chapter 9. Model checking of the precision guaranteed by OCS-CAN

Aux2

Aux1

Not_aborted

Abort

Omission1Omission0

Idle2

QueueIdle1

recv_id:= 0

recv_id:= 0

msg_id == my_id
tx_msg?

msg_id < my_id
tx_msg?

msg_id:= my_id <? msg_id

vc[my_id] == k*R + R/2

k++

msg_id := my_id <? msg_ideomission and
(msg_id < my_id)
tx_msg?
reg_omission:= true

eomission and
(msg_id < my_id)
tx_msg?
reg_omission:= true

msg_id < my_id
tx_msg?msg_id == my_id

tx_msg?

msg_id < my_id
tx_msg?

vc[my_id] == k*R + Delta

msg_id := my_id <? msg_id

Figure 9.12: Simplified automaton of a master SynM (version III)

global variable called reg omission is set to TRUE. This variable is used by another process

(process Round Ctrl) for counting the number of consecutive inconsistent synchronization rounds

and setting the value of eomission accordingly.

The control of the number of consecutive inconsistent rounds is performed by process Round

Ctrl. As already indicated, the main function of this process is to enable/disable the possibility of

TM omissions by means of the global variable eomission.

The timed automaton of process Round Ctrl is shown in Figure 9.13. Notice that this automa-

ton has only one location and one transition. This transition is fired as soon as the guard condition

num clk == N is satisfied, because channel all end round is also an urgent UPPAAL channel.

The guard condition indicates that each one of the N clock units has finished its synchronization

round. Thus, this guarantees that variable eomission is only reevaluated at the end of each syn-

chronization round.

The evaluation of variable eomission is performed within the update associated to the transition,

as it can be seen in Figure 9.13. The procedure corresponds to Algorithm 4, and it is divided into three

steps.

In the first step, the current number of consecutive inconsistent rounds (kept in the global integer

9.2 Description of the UPPAAL model of OCS-CAN 149

Init

num_clk == N
all_end_round!
num_clk:= 0,
(reg_omission)?
 (om_count++):(om_count:= 0),
eomission:= (om_count < OD),
reg_omission:= false

Figure 9.13: Automaton of process Round Ctrl (version I)

variable om count) is updated depending on the value of the global variable reg omission. If the

value of reg omission is TRUE, it means that in the last synchronization round there was at least

one omission of the TM, and therefore the value of om count is increased in one unit. In contrast,

if the value is FALSE then variable om count is set to 0, meaning that the count of consecutive

inconsistent synchronization rounds is restarted.

In the second step of the procedure, the value of om count is compared to Omax, which in the

automaton is represented with the constant OD. If om count has not reached Omax then the next

synchronization round may be inconsistent, so that variable eomission is set to TRUE. But once

om count has reachedOmax, inconsistencies must not be allowed for the next synchronization round

and hence eomission is set to FALSE.

In the third and last step of the procedure, the variable reg omission is set to FALSE again.

This allows each process SynM to report any omission of the TM that may happen in the next syn-

chronization round.

Algorithm 4 Algorithm for managing inconsistencies, as executed by process Round Ctrl
if reg omission = TRUE then

om count← om count + 1

else

om count← 0

end if

eomission← (om count < OD)

reg omission← FALSE

It is important to highlight that, as long as eomission is TRUE, the reception or omission of a TM

is decided by every process SynM independently from the actions carried out by the other SynM. This

150 Chapter 9. Model checking of the precision guaranteed by OCS-CAN

implies that any combination of message inconsistencies can occur in our model: from the consistent

reception of the TM to the consistent omission of the TM, any other combination is possible. For

instance, all of the complex scenarios that where analyzed in Section 7.6 are automatically generated

by the model checker.

The automatic generation and evaluation of all possible scenarios is one of the most powerful

features of model checking. It guarantees that the worst case scenario is always considered during the

model checking process and, therefore, the properties verified do hold under any condition considered

within the system model. This can be compared to other techniques, such as testing, in which it is

impossible to create and measure every possible fault scenario. Even with simulation, very often it

is not possible to assess every potential scenario and then the validity of the obtained results must be

characterized with some coverage. For this reason, it is sometimes said that model checkers are the

ultimate simulation tool, as they provide 100% coverage [Kat98].

9.2.5 Modeling internal faults of the CU

As indicated in Section 7.1.1, OCS-CAN is made up of a set of CU interconnected through a CAN

channel. The CU is constituted by four blocks: VC module, SynM, TSM and EnCAN. In principle,

the fault model of OCS-CAN accepts that any of these four blocks may fail, but it assumes that there

is some kind of internal fault tolerance mechanism that guarantees that any internal fault manifests

as a stop of the whole CU. Whenever a system fulfills this property, it is said to exhibit crash failure

semantics.

A common way to substantiate the crash failure semantics is by means of internal duplication and

comparison, but the adoption of any specific technique is out of the scope of this work and has not

been addressed yet. Moreover, knowing which particular internal fault tolerance mechanism has been

adopted is not required for the formal verification of OCS-CAN. As discussed in Section 9.1.3, there

is no need to model the internal details of certain mechanisms, but only the properties they enforce.

In this section we will discuss how to incorporate the possibility of internal faults of the CU in the

modeling of OCS-CAN. We will show that this feature can be incorporated without introducing too

much complexity, thanks to the following reasoning:

i. The initial assumption is that any internal fault of a CU manifests as a stop (or crash) of the

CU.

ii. Among the actions performed by a CU, the only one that is visible by the rest of the CU is the

broadcast of a TM. Then, the crash of a CU can be perceived by the rest of the system only as

an omission to send the TM.

9.2 Description of the UPPAAL model of OCS-CAN 151

Aux2

Aux1

Crashed

Not_aborted

Aux3

Abort

Omission1Omission0

Idle2

QueueIdle1

recv_id:= 0

recv_id:= 0

crash

tx_msg?

!crash and
(n_alive > 1)
crash:= true,
n_alive-- msg_id == my_id

tx_msg?

msg_id < my_id
tx_msg?

msg_id:= my_id <? msg_id

!crash

vc[my_id] == k*R + R/2

k++

msg_id := my_id <? msg_ideomission and
(msg_id < my_id)
tx_msg?
reg_omission:= true

eomission and
(msg_id < my_id)
tx_msg?
reg_omission:= true

msg_id < my_id
tx_msg?msg_id == my_id

tx_msg?

msg_id < my_id
tx_msg?

vc[my_id] == k*R + Delta

msg_id := my_id <? msg_id

Figure 9.14: Simplified automaton of a master SynM (version IV)

iii. Only masters may send a TM. Therefore, from the perspective of the other CU in the system,

there is no difference between the behavior of a non-faulty slave and the behavior of a faulty

slave. Due to this, and given that the precision is defined only for non-faulty clock units, the

crash of a slave will not have any effect on the guaranteed precision. Then, there is no need to

include the possibility of crash in our model of the slaves.

iv. The broadcast of the TM is triggered by SynM. Therefore, allowing SynM to enter a perma-

nent state in which the TM is not broadcast anymore would be enough for modeling a master

suffering a crash failure.

Another important fault assumption of OCS-CAN is that there is always at least one non-faulty

master clock unit in the system. For this reason, the model should keep a count of the number of

non-faulty masters in the system and disable the crash possibility when all but one masters are faulty.

Figure 9.14 shows a new version of a master SynM, which includes the modeling of crash failures.

Notice that in this automaton we have placed a committed location, called Aux3, at the end of the

synchronization round, between locations Idle1 and Idle2. This new location introduces the

possibility of having a crash in the next synchronization round, as explained next.

152 Chapter 9. Model checking of the precision guaranteed by OCS-CAN

On the one hand, the transition from Aux3 to Idle1 corresponds to the behavior of a non-faulty

master. This transition is guarded by the condition !crash, where crash is a local boolean variable

that is initially set to FALSE and is set to TRUE as soon as the faulty state is entered.

On the other hand, the transitions from location Aux3 to Crashed correspond to the behavior of a

faulty master. The upper transition, guarded by the condition !crash and (n alive > 1), can

be taken only once and indicates that a crash has happened. The consequence of this transition is that

the local variable crash is set to TRUE and that the global integer variable n alive is decreased

in one unit. Variable n alive is initially set to N (the total number of masters in the system), and

indicates the number of non-faulty masters. When its value reaches 1, no more crashes are allowed.

Note that once the value of crash is set to TRUE, location Idle1 cannot be reached anymore,

because the transition leading to Crashed is the only one enabled from Aux3. This guarantees that

a faulty master may not broadcast its TM again.

Although the transition from Crashed to Idle3 seems useless at this point of the description

of process SynM, it is required for properly modeling the virtual clocks. As it was discussed in

Section 8.2.3, having a TA clock whose value increases indefinitely is a potential risk for model

checking because it may increase the state space indefinitely as well. Thus, in order to reduce the

state space, each virtual clock must be restarted in every synchronization round. The function of the

mentioned transition is to allow this restarting.

9.2.6 The final model

In this section, we will present and describe the final UPPAAL model of OCS-CAN. This final model

integrates what has been described throughout Section 9.2 with the modeling pattern for clock syn-

chronization discussed in Section 8.6. After that, we will also discuss the specific procedure we

have followed for model checking the achievable precision, and we will present some of the results

obtained under different fault assumptions.

In Section 9.2, we discussed the basic aspects of our model of OCS-CAN. In the following subsec-

tions we will discuss the most advanced aspects of the model, mainly those that concern the modeling

of the virtual clocks. We will indeed describe the final version of the processes VC module and

SynM, which could not be fully described in Section 9.2.

Final model of process VC module

It is important to remark that the functionality of VC module changes slightly if the process is

related to a master node or to a slave node. Due to this, we will define two different types of processes

9.2 Description of the UPPAAL model of OCS-CAN 153

VC module, with slight variations between them. They are both explained next.

Figure 9.15 depicts the timed automaton of VC module for a master. This automaton has four

locations. Three of them, namely Sync first half, Wait delta and Sync second half

correspond to the three relevant phases of every synchronization round, from the master’s perspective.

The last location, with no name, is used only for coordinating the different processes VC module

so that they step into location Sync first half simultaneously.

This automaton uses a global variable, R1 that equals R
2 . This value corresponds to half the length

of the synchronization period, and allows us to use the concept of Half timer discussed in Section 8.5,

although with some changes. The automaton also uses a global variable Delta[clock id] that

keeps the value of the master’s release delay (∆m).

Note that while being in location Sync first half, process VC module behaves as a per-

turbed automaton that measures a duration of R1 over clock vc[clock id], with a variation that

depends on the consonance of vc[clock id] with respect to the reference. This variation is kept

in variable eps[clock id], which means that the transition occurs at a certain instant that lays

within the range [R1-eps[clock id], R1+eps[clock id]].

As soon as the transition to Wait delta is fired, a local clock named aux clk is restarted and

a global variable named n sync is increased in one unit. As it will be explained in Section 9.3,

variable n sync is used by the process Observer for assessing the precision. The auxiliary clock

aux clk will be used for detecting two events: the release instant of the master as well as the end of

the second segment of the synchronization round.

The release instant occurs when aux clock reaches the value Delta[clock id]. This event

forces the process to leave location Wait delta and enter location Sync second half. It

also causes a synchronization through the urgent channel rls tm[clock id] with the corre-

sponding master SynM . After that, the automaton stays in location Sync second half until

aux clock reaches the value R1. Thus, while being in this location, the process works as an ideal

timer. In the transition to the next location, the global variable num clock is increased in one

unit, whereas aux clock is restarted. It also causes a synchronization through the urgent channel

end sync[clock id] with the corresponding master SynM.

The temporal behavior of a master VC module is represented in Figure 9.16. This graph shows

over a timeline all the events signaled by VC module as well as the global variables updated, which

are used for interacting with the other processes of the model. The indexes have been eliminated for

the sake of clarity, but remember that they provide a univocal correspondence between the processes

VC module and SynM belonging to the same node.

Note that the synchronization round can be divided into three phases, which are labeled with

154 Chapter 9. Model checking of the precision guaranteed by OCS-CAN

Sync_first_half
vc[clock_id] <= R1 + eps[clock_id]

Sync_second_half
aux_clk <= R1

Wait_delta
aux_clk <= D[clock_id]

vc[clock_id] >= R1 - eps[clock_id]
aux_clk:= 0,
n_sync++

aux_clk >= R1
end_sync[clock_id]!
aux_clk:= 0,
num_clk++

aux_clk >= D[clock_id]
rls_tm[clock_id]!

all_end_round?

Figure 9.15: Final timed automaton of VC module (master)

t

R

rls tm! end sync!

n sync++

num clk++

∆

R
2 [±γR] R

2

R

rls tm! end sync!

n sync++

num clk++

∆

R
2 [±γR] R

2

R

1 2 3

Figure 9.16: Temporal behavior of a master VC module

an encircled number. Although two synchronization rounds are actually depicted in the figure,

only the phases of the first one are numbered. Phase 1 corresponds to the time spent in loca-

tion Sync first half and in the location with no name, phase 2 corresponds to the spent in

Wait delta and, finally, phase 3 corresponds to the time spent in Sync second half.

The synchronization round starts in the transition from phase 1 to phase 2. In this transition, as

already explained, the global variable n sync is increased. This variable is monitored by the process

Observer for measuring the precision, because the potential offset that the different processes VC

module exhibit in the detection of this instant is a good approximation how much they may drift

away. Note that phase 1 is measured by means of a perturbed timer and then its length may vary. In

the graph we show the nominal duration of this phase.

9.2 Description of the UPPAAL model of OCS-CAN 155

Sync_first_half
vc[clock_id] <= R1 + eps[clock_id]

Sync_second_half
aux_clk <= R1

vc[clock_id] >= R1 - eps[clock_id]
aux_clk:= 0,
n_sync++

aux_clk >= R1
end_sync[clock_id]!
aux_clk:= 0,
num_clk++

all_end_round?

Figure 9.17: Final timed automaton of VC module (slave)

The transition to phase 3 happens ∆ time units after the beginning of the round, and indicates that

it is the time for the master to release its TM. The corresponding process SynM is notified of this

event via the channel rls tm. The release instants are theoretically periodical, and they occur with

a nominal period of R time units, but since the length of phase 1 may vary, these instants may be

advanced or delayed up to a certain amount: the offset with respect to the reference clock.

The end of phase 3 is not the end of the synchronization round, but the end of the time interval in

which clock synchronization is possible. Masters are allowed to broadcast the TM only during one

half of the synchronization round, and must remain idle during the other half. Using the notation of

Figure 9.15, phase 1 corresponds to the idle half round, whereas phases 2 and 3 correspond to the

active half round.

Note that the end of phase 3 is also notified to SynM via channel end sync. At this instant,

the global variable num clock is increased. This variable is monitored by process Round Ctrl

because there are some actions that must be performed once every node has reached the end of the

active half round. These actions will be explained in Section 9.2.6.

The timed automaton of VC module for a slave, which is depicted in Figure 9.17, is a simplified

version of the master’s automaton. Notice that the slave does not have the location Wait delta

nor the synchronization through channel rls tm[clock id]. The rest of the automaton remains

unmodified.

The temporal behavior resulting from this automaton is depicted in Figure 9.18. Note that, for the

case of the slaves, phase 2 disappears. This is due to the fact that the process SynM of a slave does

not have to broadcast the TM and therefore the signaling of the release instant is not required.

The similarities between the modeling pattern used for modeling the VC module of OCS-CAN

156 Chapter 9. Model checking of the precision guaranteed by OCS-CAN

t

end sync!

n sync++

num clk++

R
2 [±γR] R

2

R

end sync!

n sync++

num clk++

R
2 [±γR] R

2

R

1 3

Figure 9.18: Temporal behavior of a slave VC module

and the modeling pattern discussed in Section 8.6 are very noticeable in Figure 9.18. For VC module,

we also model the periodical execution of a task, and use two timers: one that behaves as a perturbed

timer and another one that behaves as an ideal timer. Moreover, the offset exhibited by the perturbed

timer will depend on the actions executed by the application, which in this case corresponds to process

SynM.

Final model of process SynM

Once the whole modeling of VC module has been explained, it is possible to discuss the final model

of process SynM. Remind that SynM can perform as a master or as a slave, and that the modeling

of each kind of functionality is different. In Figure 9.19, we show the timed automaton of a process

SynM master. Most of the features of this process were already described in Section 9.2; what is new

in the automaton of Figure 9.19 concerns the modeling of the virtual clocks and thus the interaction

with process VC module.

The first difference appears in the transition from Idle1 to Queue. Note that this transition is

now synchronized via the broadcast channel rls tm[my id]. As indicated in Section 9.2.6, this

channel is signaled by the corresponding VC module.

The second difference is related to the the clock adjustment operation, which is caused by the

reception of a high priority TM. Therefore, this change is visible both in the transition from Idle1

to Idle2 and in the transition from Queue to Abort. In such transitions, the clock adjustment

operation is modeled with the algorithm shown in Algorithm 5.

However, before describing the actions performed in Algorithm 5, we need to clarify two important

concepts used by SynM. This concepts are: the reference clock and the time reference. On the one

hand, the reference clock is the identifier of the node to which a particular node is synchronized. It is

9.2 Description of the UPPAAL model of OCS-CAN 157

Aux2

Aux1

Crashed

Not_aborted

Aux3

Abort

Omission1Omission0

Idle2

QueueIdle1

recv_id:= 0

recv_id:= 0,
(time_ref == N)?
(time_ref:= my_id):
(time_ref:= time_ref)

crash

tx_msg?

!crash and
(n_alive > 1)
crash:= true,
n_alive-- msg_id == my_id

tx_msg?

msg_id < my_id
tx_msg?

msg_id:= my_id <? msg_id

!crash

end_sync[ref_clock]?

ref_clock:= my_id,
vc[my_id]:=0

msg_id := my_id <? msg_ideomission and
(msg_id < my_id)
tx_msg?
reg_omission:= true

eomission and
(msg_id < my_id)
tx_msg?
reg_omission:= true

msg_id < my_id
tx_msg?
ref_clock:= recv_id,
(time_ref == N)?
(new_eps[my_id]:= e0):
(new_eps[my_id]:= e0
+ eps[ref_clock]
+ eps[time_ref])

msg_id == my_id
tx_msg?
(time_ref == N)?
(new_eps[my_id]:= 0):
(new_eps[my_id]:= 0
+ eps[ref_clock]
+ eps[time_ref])

msg_id < my_id
tx_msg?
ref_clock:= recv_id,
(time_ref == N)?
(new_eps[my_id]:= e0):
(new_eps[my_id]:= e0
+ eps[ref_clock]
+ eps[time_ref])

rls_tm[my_id]?

msg_id := my_id <? msg_id

Figure 9.19: Final timed automaton of SynM (master)

Algorithm 5 Actions for modeling clock adjustment after receiving a high priority TM
ref clock← recv id

if time ref = N then

new eps[my id]← e0

else

new eps[my id]← e0 + eps[ref clock] + eps[time ref]

end if

158 Chapter 9. Model checking of the precision guaranteed by OCS-CAN

Init

num_clk == N
all_end_round!
num_clk:= 0,
(reg_omission)?
 (om_count++):(om_count:= 0),
eomission:= (om_count < OD),
reg_omission:= false,
time_ref:= N

Figure 9.20: Final timed automaton of process Round Ctrl

modeled as a local variable, named ref clock, and then may take a different value in each process

SynM; it is equivalent to the reference clock used in the modeling patterns of Section 8.6.

On the other hand, the time reference is the identifier of the current active master of the system.

The active master may change in every synchronization round, for instance as a result of a crash of the

former active master, but it is consistently perceived by all processes SynM in the model. To ensure

that consistency, it is specified as a global variable named time ref.

By definition, the active master is the first master that successfully broadcasts its TM in a given

round. Each node, either transmitter or receiver, can determine if a given TM is the first one trans-

mitted/received in a round thanks to process Round Ctrl. This process, whose final version is

shown in Figure 9.20, sets the global variable time ref to its initial value (N) at the end of each

synchronization round. Therefore, if a TM is transmitted/received and time ref is equal to N then

the identifier of the message indicates the active master of the round just beginning.

Thus, Algorithm 5, which is activated by the reception of a higher priority TM, starts by converting

the transmitter of the just received TM into the reference clock of the node for the next round. After

that, the master checks whether the transmitter of the TM is going to be the active master for the next

round or not (condition time ref = N). If it is not, it calculates the new offset (kept in variable

new eps[my id]) but taking into account the offset with respect to the current active master.

It is important to remark that the value of eps[time ref] is greater than 0 only if the active

master has changed from the previous synchronization round. Therefore, as long as the active master

does not change, this modeling pattern is equivalent to the one discussed in Section 8.6. Or, in

other words, the modeling pattern finally adopted for OCS-CAN is actually an extension of the one

discussed in Section 8.6, since it allows the abrupt change of the global time reference whereas the

one of Section 8.6 assumed that Node 0 was always the active master.

The third difference is related to the successful transmission of the TM, happening in the transitions

9.2 Description of the UPPAAL model of OCS-CAN 159

Idle1

Idle2

Omission0

Aux3

my_id > msg_id
tx_msg?
ref_clock:= recv_id,
(time_ref == N)?
(new_eps[my_id]:= e0):
(new_eps[my_id]:= e0
+ eps[ref_clock]
+ eps[time_ref])

end_sync[ref_clock]?
ref_clock:= my_id,
vc[my_id]:=0

eomission and
(my_id > msg_id)
tx_msg?
reg_omission:= true

end_sync[ref_clock]?
ref_clock:= my_id,
new_eps[my_id]:= eps[ref_clock]
 + eps[time_ref],
vc[my_id]:=0

Figure 9.21: Final automaton of SynM (slave)

from Queue to Aux1. In this transition, SynM executes the actions shown in Algorithm 6 for calcu-

lating the new offset. Moreover, in the following transition (from Aux1 to Idle2), process SynM

checks again if it is the active master and updates variable time ref accordingly.

Algorithm 6 Actions for modeling clock adjustment after successfully broadcasting a TM
if time ref = N then

new eps[my id]← 0

else

new eps[my id]← eps[ref clock] + eps[time ref]

end if

The last difference concerns the detection of the end of the synchronization period, performed

in the transition from Idle2 to Aux3. In the final model of OCS-CAN, this event is signaled in

principle by each VC module through its corresponding broadcast channel end sync[my id].

However, each SynM is synchronizing via the channel end sync of its reference clock (kept in

variable ref clock). This is a direct application of the idea of multiple clock pointers defined in

Section 8.6.

Figure 9.21 shows the timed automaton of a process SynM acting as a slave. This process is a

simplification of the one defined for the master SynM. Given that the slaves do not broadcast any TM,

the locations related to such broadcast (Queue, Abort, etc.) have been eliminated.

160 Chapter 9. Model checking of the precision guaranteed by OCS-CAN

Apart from that, an additional transition (from Idle1 to Aux3) has been included in the automa-

ton. This transition is synchronized with channel end sync[ref clock] either, and serves the

purpose of preventing the slave from getting stuck in location Idle1 if no TM is received.

9.3 Verification procedure and results

This section constitutes the third and last part of the description of the model checking of OCS-CAN,

in which we address the formal verification of the precision property. This property, as mentioned in

Section 9.1.2, states that for any pair of non-faulty virtual clocks, the absolute value of their difference

is never greater than a given value Π (the precision).

In Chapter 8 we provided a mechanism for measuring the offset between the computer clocks of

a distributed system. This mechanism relied on an additional process, the so-called Observer, that

measured the delay exhibited by the nodes (with respect to each other) when executing a periodical

task. For the formal verification of OCS-CAN we will use the same mechanism; we will define an

external process, called Observer as well, which will supervise the processes VC module in order

to measure the separation exhibited by them when notifying a specific periodical instant: the start of

the synchronization round.

After describing process Observer, we will discuss the scenarios that have been considered for

formal verification. After that, the results that have been obtained for these scenarios will be dis-

cussed.

9.3.1 The process Observer

The process that we use for model checking the precision property in OCS-CAN is a variation of the

process Observer discussed in Section 8.6.2. The timed automaton of the Observer of OCS-

CAN is depicted in Figure 9.22. The main difference is that we have eliminated from the automaton

the management of the inconsistent synchronization rounds, as they are already managed by process

Round Ctrl.

The automaton has two locations: Initial and Reached. Location Initial is left as soon

as one of the nodes reaches the beginning of the synchronization round. This happens whenever a

process VC module leaves location Sync first half. As discussed in Section 9.2.6, in this

transition the value of the global variable n sync is increased. Due to this, process Observer

defines a guard over variable n sync for detecting this event. Furthermore, and in order to imple-

ment the aforementioned “as-soon-as” semantics, process Observer uses an urgent channel a for

9.3 Verification procedure and results 161

Reached

Initial

n_sync >= N
a!
x:= 0,
n_sync:= 0,
update_eps(eps, new_eps)

n_sync > 0
a!
x:= 0

Figure 9.22: Final timed automaton of process Observer

synchronizing with a dummy automaton. This is equivalent to what was explained in Section 8.3.3.

Location Reached is left once all processes VC module have left location Sync first half,

i.e. when n sync= N. Thus, the maximum time that process Observer may stay in location

Reached, as measured by the local clock x, corresponds to the maximum offset between the virtual

clocks.

For determining the maximum value reachable by clock x, we ask the UPPAAL verifier to model

check the following three properties.

A[] n o t d e a d l o c k
A[] O b s e r v e r . Reached imply (O b s e r v e r . x <= X)
E<> O b s e r v e r . Reached and (O b s e r v e r . x == X)

As indicated in Section 9.1.2, these properties have to be model checked iteratively for different

values of X. However, given that the offset increases in steps of size e0, there are many intermediate

values that can be neglected.

The maximum value of X that satisfies the three properties constitutes the upper bound of the offset

and thus the precision of the system, for the considered parameters and fault assumptions.

9.3.2 Considered scenarios for formal verification

The formal model of OCS-CAN allows modification of the following parameters:

• Number of masters. This is configured with the global integer variable N.

• Resynchronization period (R). More specifically, it is configured with the global integer vari-

able R1, which takes the value R
2 .

• Release time of each master. This is set in the global array of integers Delta[i].

162 Chapter 9. Model checking of the precision guaranteed by OCS-CAN

• Residual error after clock correction (γ0). This parameter gives a measure of the stability of

the local oscillator that a specific virtual clock uses, and it also takes into account the error

accumulated in the arithmetical operations of the clock adjustment procedure. This parameter

is implicitly configured in the definition of the constant e0, since e0= γ0R. In general, we

assume the same value of γ0 for each virtual clock, but the model allows these values to differ,

if required.

• Network load. The variable WCRT in Chan ctrl is used for specifying the worst-case re-

sponse time of the TM. As already indicated, this parameter includes not only the delay caused

by higher priority traffic on the bus, but also the delay caused by channel errors that lead to

frame retransmissions.

• Master faults. The initial value of the global variable n alive can be used for setting the

maximum number of masters that may crash. For instance, if n alive is initialized to 1, no

master crash is allowed, whereas if n alive is initialized to N then all but one masters may

fail. No assumption is made on the order in which the masters crash.

• Data consistency. Inconsistent message omissions can be enabled/disabled in our model. More-

over, when they are enabled, it is possible to bound the maximum number of consecutive syn-

chronization rounds that can suffer from inconsistencies. This is set with the constant OD.

No assumption is made on the spatial distribution of the inconsistent omissions so that every

possible combination of message inconsistency is checked.

Thanks to our parameterizable model of OCS-CAN, it is possible to generate and model check

scenarios that correspond to the following situations:

1. Fault-free scenario

2. Only channel faults scenario, assuming data consistency and without assuming data consis-

tency

3. Only master faults scenario

4. Master faults and channel faults scenario, assuming data consistency and without assuming

data consistency

9.3.3 Results obtained and discussion

The first way of checking the correctness of a UPPAAL model is to use the simulator provided by

the tool. However, it is also useful to model check certain properties that should hold during the

9.3 Verification procedure and results 163

verification. This provides further guarantees that the model of the system is correctly built.

In our case, we model checked the following properties

(1) The maximum omission degree is never exceeded.

A[] o c o u n t <= OD

(2) The maximum number of allowed master crashes is never exceeded.

A[] n a l i v e >= 1

(3) There is always at least one non-faulty master in the system (for N= 4 masters).

A[] n o t (Mas te r0 . c r a s h and Mas te r1 . c r a s h and
Mas te r2 . c r a s h and Mas te r3 . c r a s h)

Concerning the precision guaranteed by the clock synchronization service, Table 9.1 shows the

precision that was verified in different scenarios. These results were obtained with the following

parameters: N= 4 masters, R= 1s, γ0 = 10−6 for each node, ∆0= 0, ∆1= 1 ms, ∆2= 2 ms,

∆3= 2 ms. Regarding the network load, it was assumed that no other messages where sent on the

bus, so WCRT= 1.04 ms was used in those scenarios without channel faults whereas WCRT= 6 ms

was used in those scenarios with channel faults. However, the results will show that the network load

is not very relevant for the clock precision, as expected.

The first cell in Table 9.1 shows the precision guaranteed in the fault-free scenario. This precision

equals to 2 µs. The first row of Table 9.1 corresponds to the scenarios in which only master’s faults

were assumed. Note that the number of faulty master does not affect significantly the precision

guaranteed. Unfortunately, the limited temporal granularity of our model makes it impossible for

us to measure the difference between having one or more faulty masters. Nevertheless, in some

simplified verifications we have reported that this difference is in the order of 10 ns.

The first column of Table 9.1 corresponds to the scenarios in which only channel’s faults were

assumed. OD= 0 indicates that channel faults can occur, but that they may not cause any inconsistent

omission; what is a common assumption in other clock synchronization protocols for CAN. The rest

of cells in Table 9.1 correspond to the scenarios where a combination of node’s and channel’s faults

is assumed. In particular, the right bottom cell corresponds to the most severe fault scenario.

Table 9.2 shows some of the results obtained when the resynchronization period is reduced to 0.5 s.

These results prove the intuition that the negative effect of the inconsistencies may be reduced by

synchronizing more frequently.

The results obtained show that certain failures have greater impact on the precision. Particularly, it

is seen that inconsistent message omissions affect more negatively than master crashes.

164 Chapter 9. Model checking of the precision guaranteed by OCS-CAN

Table 9.1: Fault assumptions and precision guaranteed (in µs) with R = 1 sec

Channel faults # Faulty masters

0 1 2 3

No faults 2 2 2 2

OD = 0 2 2 2 2

OD = 1 6 6 6 6

OD = 2 10 12 12 12

OD = 3 14 16 16 16

Table 9.2: Fault assumptions and precision guaranteed (in µs) with R = 0.5 sec

Channel faults # Faulty masters

0 1 2 3

OD = 0 1 1 1 1

OD = 1 3 3 3 3

Chapter 10

Conclusions and future work

This chapter summarizes the work presented in this dissertation and reviews the main contributions.

It also presents the publications that have resulted from the presented work and provides some insight

for further research.

10.1 Thesis validation and contributions

The motivation of our research was to demonstrate the thesis that: “it is possible to design a clock

synchronization service that fulfills the requirements for implementing dependable applications over

CAN. The suitability of the clock synchronization service will be measured in terms of three attributes:

high precision, fault tolerance and cost effectiveness”. The work carried out for validating this thesis

can be grouped in three main contributions:

1. Study of the state of the art concerning clock synchronization for dependable CAN.

2. Design and prototyping of OCS-CAN.

3. Formal assessment of OCS-CAN.

However, this dissertation also generated a fourth and unexpected contribution: the thorough study

on the techniques for specifying distributed systems with computer clocks by means of timed au-

tomata. Although said study was not among our original goals, it has turned into an important con-

tribution of our research, mainly because the modeling of computer clocks with timed automata is a

problem with much more generality than just the formal verification of OCS-CAN.

165

166 Chapter 10. Conclusions and future work

These four contributions will be discussed in the next subsections.

10.1.1 Study of the state of the art concerning clock synchronization for dependable

CAN

This study was performed in Chapter 5. This chapter started with a review of the solutions that have

been proposed in the literature for solving the main limitations of CAN with respect to dependability.

But we paid special attention to the relationship between said techniques and the provision of a clock

synchronization service.

We observed that most of the techniques suggested for improving dependability in CAN —and

more specifically, those aimed at reducing network jitter, improving error containment and supporting

fault tolerance— assume the existence of a reliable clock service of high precision. Based on this

observation, we claim that 1) clock synchronization plays a fundamental role in making the CAN

fieldbus a suitable technology for dependable systems, and that 2) a clock synchronization service

can be considered suitable for dependability only if it is fault-tolerant and achieves a precision in the

order of a few µs, at a reasonable cost.

After determining the requirements of the clock synchronization service, in Chapter 5 we also stud-

ied the solutions currently available for implementing clock synchronization over CAN. We showed

that none of these solutions exhibit the desired properties, particularly in what concerns fault toler-

ance. Although many authors have faced the problem of achieving high precision with satisfactory

results, the provision of fault tolerance has not been properly addressed. In particular, we reported

that the formal verification of these solutions has not been performed, and they have been evaluated

only by means of simulation and testing.

Furthermore, we also reported that most of the solutions for clock synchronization cannot be con-

sidered independent with respect to the rest of the system. For instance, they may make strong

assumptions about the communication pattern (some only work for event-triggered systems, whereas

some others only work for time-triggered systems) or the hardware requirements (such as assuming

the use of a certain CAN controller).

In our opinion, both the lack of independence and the lack of formal verification constitute severe

impairments for adopting any of the available clock synchronization solutions as a component of a

dependable system. As a conclusion, we claim that there is still room for a novel solution for clock

synchronization over CAN, which should be independent of the system and must be formally assessed

in order to ensure that the desired properties are guaranteed.

10.1 Thesis validation and contributions 167

10.1.2 Design and prototyping of OCS-CAN

In Chapter 6 we proposed the architecture of OCS-CAN, a novel solution for clock synchronization

over CAN. This solution pursues the achievement of four attributes that are important from the point

of view of dependability: high precision, low overhead, fault tolerance and cost efficiency.

The architecture of OCS-CAN is made up of a set of independent hardware devices, the clock units,

which are attached to the nodes. The great advantage of this approach is that the clock synchronization

service is implemented as an orthogonal subsystem, which does not require the replacement of any

existent component. Furthermore, OCS-CAN is compatible with any application since it makes no

assumption about the system to which it is attached. Orthogonality not only helps to reduce the overall

cost of the solution, but it is also very positive from a dependability perspective. The provision of

clock synchronization by means of an orthogonal subsystem implies that the results of the formal

assessment hold regardless of the system to which OCS-CAN is attached.

OCS-CAN is implemented in hardware because that reduces the system latencies, particularly dur-

ing the transmission and reception of messages, and then improves the precision of the clock syn-

chronization algorithm. The modified CAN controller that each clock unit incorporates adopts the

idea given by Turski [Tur94] of signaling the SOF bit of each received frame. Additionally, and in-

spired by TTCAN Level 2 [FMD+00], we define a hardware-implemented low level mechanism for

timestamping the messages sent and received by each clock unit.

OCS-CAN indirectly lowers its own cost by reducing the communication and computation over-

heads. In our proposal this is achieved by implementing an asymmetric (i.e. master/slave) scheme of

synchronization. Moreover, thanks to the hardware mechanism for timestamping, clock synchroniza-

tion can be achieved in the best case with only one message per round.

In order to provide tolerance to faults of the master, some of the clock units are configured to work

as backup masters that may replace the active master if it fails. The algorithm for managing master

redundancy takes advantage of two properties of CAN, the arbitration and the bounded response time,

for reducing the communication overhead.

The fault-tolerant algorithm of OCS-CAN assumes that the clock units exhibit crash failure seman-

tics. It is possible to ensure this property by means of internal duplication and comparison. However,

the specific way to implement said duplication and comparison scheme has not been addressed in this

dissertation.

The development of the first prototype of OCS-CAN was indeed discussed in Chapter 6. The aim

of our prototype was to prove that OCS-CAN can be implemented with low-cost hardware, such

as a medium range FPGA. The precision measured in the tests was impaired by the fact of using

physical clocks of low frequency, but the results were acceptable. Moreover, as it was discussed in

168 Chapter 10. Conclusions and future work

our previous study, we know that the achievement of high precision is not the main difficulty of this

research; many authors have reported good enough results in fault-free conditions. For this reason, we

preferred to focus on the evaluation of the fault tolerance techniques, which has not been addressed

in the literature and is therefore a more innovative contribution.

10.1.3 Formal assessment of OCS-CAN

In this dissertation we have assessed in two different ways the precision guaranteed by OCS-CAN in

the presence of faults. Whereas in Chapter 7 the assessment is performed analytically, in Chapter 9 it

is performed by means of model checking with UPPAAL.

The analysis of Chapter 7 has been addressed by approximating the virtual clocks of OCS-CAN as

piecewise linear functions with points of discontinuity that coincide with the synchronization instants.

The aim of our analysis was to find the equations that relate the guaranteed precision with the relevant

parameters of the clock synchronization algorithm, such as the synchronization period, the number of

backup masters, etc., as well as with the considered fault assumptions.

This aim has been successfully fulfilled, at least for the most likely fault scenarios. However, the

presented analysis shows an inherent difficulty: it forces us to figure out the worst case scenario

by reasoning about the system behavior. Although finding such a scenario can be straightforward

in many situations, it can be unfeasibel under some fault conditions, for instance when a complex

combination of channel and node faults may occur. Due to this, we complemented our analysis with

the formal verification of OCS-CAN by means of model checking.

Model checking is a technique that automatically generates and examines all possible traces of a

system’s model. Therefore, model checking frees the system modeler from finding the worst case

scenario. Given that model checking evaluates all possible scenarios, it is sure that the worst case

is going to be found and evaluated. Nevertheless, it requires the user to build a correct model of the

system, in which all the relevant behaviors are specified.

For the case of OCS-CAN, this implies building a proper model of the CAN network as well as a

proper model of the clock units. These models must also include the potential faults of the system’s

components, since our aim is mainly to evaluate the fault tolerance mechanisms.

Among the available tools for model checking, we have used the UPPAAL model checker, which

is a tool based on the theory of timed automata, and incorporates a quantitative notion of time in

the form of clock variables. Although the use of timed automata represented a challenge for the

modeling of drifting virtual clocks and clock synchronization actions, it was possible to overcome the

limitations of this formalism and specify the computer clocks appropriately. For that, we developed a

new modeling pattern for timed automata, which we have called clock pointers.

10.1 Thesis validation and contributions 169

The results of the model checking of OCS-CAN show that the algorithm for managing master

redundancy ensures a certain precision in faulty conditions. It also shows the graceful degradation

of the precision in the presence of faults, given that the precision among the virtual clocks worsens

gradually as the fault scenarios become more severe.

It is worth noting that our approach for evaluating OCS-CAN is quite different from the approach

followed in order to evaluate other fault-tolerant clock synchronization algorithms for CAN, such

as [RGR98, HMF+00, LA03] and [APSP07]. These solutions were evaluated only by means of

simulation and testing.

In contrast, the main strength of our evaluation of OCS-CAN lays on the fact that it allows a

quantitative assessment of the effect that faults may have on the system precision. This allows the

system designer to easily configure the system in a way such that the requirements on the precision

are fulfilled. Moreover, our analysis helps to understand in which conditions the desired precision

may be lost and, thus, helps to identify potential risks.

In the literature about fault-tolerant clock synchronization in distributed systems, it is possible to

find several analyses that study the precision of certain algorithms under different fault assumptions;

for instance in [ST85, MS85, Sch87] and [FC95], among many others. Nevertheless, the results of

these papers are not applicable to OCS-CAN, since they only address clock synchronization algo-

rithms that provide fault tolerance by means of massive message exchanges. They focus on proving

the correctness of their converge functions, but their results are not extensible to the master/slave

schemes since these schemes use only one message per round and do not apply any converge func-

tion. The same can be said about the formal verification carried out in [PSvH99], which assumes that

in every synchronization round several synchronization messages are sent and that, therefore, every

processor counts on several timestamps per round to adjust its clock.

The results obtained in our assessment show that certain failures have greater impact on the pre-

cision. Particularly, we observed that inconsistent message omissions affect more negatively than

master crashes. It is curious that even though master crashes are usually addressed by current solu-

tions for clock synchronization, very little attention is paid to the fact that message inconsistencies

may occur [FMD+00]. It may be argued that message inconsistencies are very unlikely in CAN

networks, but certain authors claim that the probability is such that it should be taken into account

when designing fault-tolerant systems for dependable applications [RVA+98, PMJ00]. Moreover, it

has been reported that the probability of message inconsistencies in TTCAN increases dramatically

when compared to the so-called natural CAN [RNP03a].

To the author’s best knowledge, this dissertation is the first one to explicitly address the analysis of

fault-tolerant master/slave clock synchronization in the presence of inconsistent message omissions.

We believe that the techniques we adopted for the analysis of OCS-CAN may be interesting for

170 Chapter 10. Conclusions and future work

the analysis of other fault-tolerant master/slave clock synchronization systems. It seems that the

master/slave scheme may be one of the preferred solutions for implementing clock synchronization

in many low-cost distributed embedded systems. For instance, the fault-tolerant algorithm proposed

in the definition of the IEEE1588 standard [IEE02] for clock synchronization for control systems

(also known as PTP-Precise Time Protocol) relies on master/slave. Therefore, it is susceptible of

being analyzed with the mathematical framework developed in our research.

10.1.4 Modeling patterns for distributed systems with computer clocks

As discussed in Chapter 8, the model checking of OCS-CAN forced us to address one of the most im-

portant limitations of the theory of timed automata. Timed automata only allow, at least theoretically,

specification of clocks that evolve at the rate of real time, but for the formal verification of OCS-CAN

we had to specify computer clocks that, not only evolve at a rate that differs from real time, but also

may change their values and rates abruptly as a consequence of the synchronization actions. In order

to overcome this limitation, we first investigated the applicability of some modeling techniques al-

ready available in the literature on timed automata, such as the perturbed timed automata. But finally

we had to develop a novel modeling technique, which we have called clock pointers. This technique

particularly allowed us to specify distributed systems in which the nodes may follow different time

references during transient time intervals.

Given that the problem of specifying computer clocks with timed automata is not exclusive of OCS-

CAN, but it can be found when modeling many kinds of distributed systems, we devoted Chapter 8 to

describing these modeling techniques in an exhaustive and systematic way. The aim of this description

was to define a series of modeling patterns that can be adopted by other researchers, and to explain

and justify for what kind of systems they are useful. For describing each modeling pattern, we made

use of graphs that showed the evolution of the timed automata clocks (and thus of the models) in

a very intelligible way. Additionally, formal proofs in the form of temporal logic properties were

provided for demonstrating the correctness of the patterns suggested.

In our opinion, our comprehensive description of these modeling patterns is a significant contribu-

tion of this research. First, because it sheds some light on an important topic —the realistic specifi-

cation of the temporal behavior of the nodes of a distributed system— which has to a certain extent

remained obscure, at least for the average user of model checking. Second, because it introduces a

new modeling pattern, the clock pointers, which extends a bit further the applicability of the timed

automata formalism.

10.2 Publication of results 171

10.2 Publication of results

This section gathers the different publications we have authored and that are related to this disser-

tation. Some of these publications resulted directly from the work herein presented, whereas some

others have a more indirect relationship.

10.2.1 Preliminary publications

These publications are the result of some research we undertook in parallel to the work described in

this dissertation. They were fundamental for understanding the role that clock synchronization plays

for the achievement of dependability in CAN, as well as for understanding the relevance of providing

suitable fault tolerance mechanisms.

Peer-reviewed papers published in international scientific journals:

• I. Broster, A. Burns, and G. Rodrı́guez-Navas. Timing analysis of real-time communication

under electromagnetic interference. Real-Time Systems, 30(1-2):55–81, 2005.

• J. Ferreira, L. Almeida, J.A. Fonseca, P. Pedreiras, E. Martins, G. Rodriguez-Navas, J. Rigo,

and J. Proenza. Combining operational flexibility and dependability in FTT-CAN. Industrial

Informatics, IEEE Transactions on, 2(2):95–102, 2006.

Peer-reviewed papers published in international conferences:

• I. Broster, A. Burns, and G. Rodrı́guez-Navas. Probabilistic analysis of CAN with faults. Pro-

ceedings of the 23rd Real-time Systems Symposium, 2002.

• G. Rodriguez-Navas and J. Proenza. Analyzing Atomic Broadcast in TTCAN Networks. In

Proc. of the 5th IFAC International Conference on Fieldbus Systems and their Applications

(FET’03), 2003.

• G. Rodriguez-Navas, M. Barranco, and J. Proenza. Harmonizing Dependability and Real Time

in CAN Networks. In 2nd Euromicro International Workshop in Real-Time LANS in the Internet

Age, pages 47–50, 2003.

• G. Rodrı́guez-Navas, M. Barranco, J. Proenza, and I. Broster. COTS-based hardware support

to timeliness in CAN networks. In Proceedings of the 9th IEEE International Conference

on Emerging Technologies and Factory Automation (ETFA2003), Lisbon, Portugal, Sept 2003.

IEEE.

172 Chapter 10. Conclusions and future work

10.2.2 Publications of results presented in this dissertation

The following publications spread the main results and contributions presented in this dissertation.

Peer-reviewed papers published in international scientific journals:

• G. Rodriguez-Navas, S. Roca, and J. Proenza. Orthogonal, Fault-Tolerant and High-Precision

Clock Synchronization for the Controller Area Network. IEEE Transactions on Industrial

Informatics, 4(2):92–101, May 2008.

Peer-reviewed papers published in international conferences:

• G. Rodriguez-Navas and J. Proenza. An orthogonal and fault-tolerant subsystem for high-

precision clock synchronization in CAN networks. In Proceedings of the 10th WSEAS Interna-

tional Conference on Signal Processing, Robotics and Automation (ISPRA), Chiclana, Cádiz

(Spain), 2002.

• G. Rodrı́guez-Navas, J. Bosch, and J. Proenza. Hardware Design of a High-precision and

Fault-tolerant Clock Subsystem for CAN Networks. Proceedings of the 5th IFAC International

Conference on Fieldbus Systems and their Applications (FeT 2003), Aveiro, Portugal, 2003.

• G. Rodrı́guez-Navas and J. Proenza. Clock Synchronization in CAN Distributed Embedded

Systems. Proc. of the 3rd. International Workshop on Real-Time Networks, Catania, Italy,

2004.

• G. Rodrı́guez-Navas, J. Proenza, and H. Hansson. Using UPPAAL to Model and Verify a

Clock Synchronization Protocol for the Controller Area Network. Proc. of the 10th IEEE

International Conference on Emerging Technologies and Factory Automation, Catania, Italy,

2005.

• G. Rodriguez-Navas, J. Proenza, and H. Hansson. An UPPAAL Model for Formal Verification

of Master/Slave Clock Synchronization over the Controller Area Network. In Proc. of the 6th

IEEE International Workshop on Factory Communication Systems, Torino, Italy, 2006.

• G. Rodriguez-Navas, J. Proenza, and H. Hansson. Modeling and verification of master/slave

clock synchronization using hybrid automata and model-checking. In Proceedings of the 9th

International Conference on Formal Engineering Methods (ICFEM 2007), LNCS 4789, pages

307–326, 2007.

• G. Rodriguez-Navas, J. Proenza, and H. Hansson. Analytical assessment of the precision degra-

dation caused by faults in a fault-tolerant master/slave clock synchronization service for CAN.

10.3 Future work 173

In Proceedings of the 23th IEEE International Symposium on Reliable Distributed Embedded

systems (SRDS’08), Napoli (Italy), 2008.

Book chapters:

• J. Pimentel, J. Proenza, L. Almeida, G. Rodriguez-Navas, M. Barranco, and J. Ferreira. De-

pendable Automotive CAN Networks (chapter in Automotive Embedded Systems Handbook).

CRC Press, 2009.

• G. Rodriguez-Navas, J. Proenza, Hans Hansson, and Paul Pettersson. Using Timed Automata

for Modeling the Clocks of Distributed Embedded Systems (chapter in Behavioral Modeling

for Embedded Systems and Technologies: Applications for Design and Implementation). IGI

Global, 2010.

Technical reports:

• G. Rodrı́guez-Navas and J. Proenza. On the design of a clock service for CAN networks.

Technical Report A-1-2003, Universitat de les Illes Balears, 2003.

• G. Rodrı́guez-Navas, J. Proenza, and H. Hansson. An UPPAAL Model for Formal Verifica-

tion of Clock Synchronization over CAN. Technical Report A-2-2005, Universitat de les Illes

Balears, 2005.

10.3 Future work

This section discusses some ideas for future work, which might extend the work presented in this

dissertation. More specifically, we can point out two clear directions for further research. The first

direction consists in extending and complementing the design and evaluation of OCS-CAN, whereas

the second direction consists in applying the techniques that have been developed for OCS-CAN, but

for the implementation and evaluation of other kinds of distributed systems. Both possible directions

are briefly discussed next.

10.3.1 Possible extensions of the work on OCS-CAN

With regard to the architecture of OCS-CAN, there is one aspect that has not been covered in this

dissertation: the design of the mechanism for restricting the failure semantics of the clock units to

174 Chapter 10. Conclusions and future work

crash failure semantics. As indicated in Chapter 6, this assumption can be substantiated by means of

an internal mechanism for duplication and comparison, for instance as it is described in [PPMJ99].

Other options would involve the adoption of external elements, such as bus guardians [FAF+06] or a

central hub with error-detection capabilities [BPRNA06], but the suitability of such techniques must

still be evaluated.

Concerning the model checking of OCS-CAN, we are investigating the way to generalize the results

obtained with UPPAAL to an arbitrary number of masters. Apparently, the Omission Degree is the

limiting factor with regard to the precision, because inconsistent message omissions are the main

cause of precision degradation. Due to this, we hypothesize that, as long as a minimum number of

masters are present, the precision achievable neither improves or worsens by defining more masters.

Another interesting way to extend our work on OCS-CAN is by quantifying its reliability. The

formal assessment presented in this dissertation allows us to quantify the precision degradation caused

by faults, and then to identify the most dangerous scenarios. A reliability analysis could complement

this study by providing the probabilities of those scenarios. The combination of these two techniques

then would yield a probability distribution of the precision, which would be very useful in order to

integrate OCS-CAN as a component of some dependable CAN-based systems.

For quantifying the reliability analysis of OCS-CAN, we are considering the application of the

formalism known as Stochastic Activity Network (SAN), which is a extension to Stochastic Petri

Nets [CFJ+91]. Our research group has had some successful experiences with this formalism, as it

has been recently used for evaluating two novel star topologies over CAN [Bar10], and we expect to

proceed similarly with OCS-CAN. Another appealing approach for reliability evaluation would be to

investigate the possibility of using probabilistic model checking as a means to perform both formal

verification and reliability analysis simultaneously.

10.3.2 Potential applications of the developed techniques

The most direct application of the work presented in this dissertation is obviously the integration of

OCS-CAN with other solutions for improving the dependability properties of CAN. In this sense,

we are currently participating in a project called CAN-based Infrastructure for Dependable Systems

(CANbids) that aims precisely at proposing a complete architecture for supporting dependable ap-

plication over CAN. One of the first goals of this project is to investigate the possible integration of

OCS-CAN with two other proposals for improving the dependability of CAN: FTT-CAN [APF02]

and CANcentrate [BPRNA06]. These three solutions have a common characteristic, they all rely on

a central element with a privileged view of the system (the OCS-CAN master, the FTT-CAN master

and the CANcentrate hub) and define redundancy for tolerating faults of said central element. We

10.3 Future work 175

plan to investigate the possibility of integrating all these functionalities into a single node.

With respect to the formal assessment of OCS-CAN, it is worth recalling that some of the tech-

niques developed in this dissertation have broader applicability than just the evaluation of OCS-CAN.

Particularly, we would like to highlight three aspects of the presented work that in our opinion merit

further investigation:

• The analytical framework presented in Chapter 7 could be applied for the evaluation of other

master/slave clock synchronization algorithms, especially if they may suffer from message in-

consistencies.

• The techniques described in Chapter 9 for modeling the CAN network with UPPAAL, which

included the modeling of message broadcast, arbitration, message abortion, message inconsis-

tencies, etc., could be applied by other researchers for model checking their own CAN-based

systems.

• As already indicated in Chapter 8, the patterns we have discussed for modeling computers

clocks could be applied for modeling many types of distributed systems. But they could also be

applicable for the formal verification of other kinds of hybrid systems, such as control systems

working with physical systems that exhibits some uncertainty.

Bibliography

[ABG+08] S. Akshay, Benedikt Bollig, Paul Gastin, Madhavan Mukund, and K. Narayan Kumar.

Distributed timed automata with independently evolving clocks. In CONCUR ’08: Pro-

ceedings of the 19th international conference on Concurrency Theory, pages 82–97,

Berlin, Heidelberg, 2008. Springer-Verlag.

[ACD93] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. Information

and Computation, 104(1):2 – 34, 1993.

[ADMB00] Eugene Asarin, Thao Dang, Oded Maler, and Olivier Bournez. Approximate reacha-

bility analysis of piecewise-linear dynamical systems. In HSCC ’00: Proceedings of

the Third International Workshop on Hybrid Systems: Computation and Control, pages

20–31, London, UK, 2000. Springer-Verlag.

[Alt] Altera Corp. website.

[AP97] E. Anceaume and I. Puaut. A taxonomy of clock synchronization algorithms. Technical

Report IRISA-PI - 97-1103, IRISA, 1997.

[APF02] L. Almeida, P. Pedreiras, and J. A. Fonseca. The FTT-CAN Protocol: Why and How.

IEEE Transactions on Industrial Electronics, 49(6), 2002.

[APSP07] D. Ayavoo, M. J. Pont, M. Short, and S. Parker. Two novel shared-clock scheduling

algorithms for use with ‘Controller Area Network’ and related protocols. Microproces-

sors and Microsystems, 31(5):326–334, 2007.

[ATM05] R. Alur, S. La Torre, and P. Madhusudan. Perturbed Timed Automata. In M. Morari

and L. Thiele, editors, 8th International Workshop, Hybrid Systems: Computation and

Control, HSCC 2005, number 3414 in LNCS, pages 70–85. Springer–Verlag, March

2005.

177

178 BIBLIOGRAPHY

[Bar10] M. Barranco. Improving Error Containment and Reliability of Communication Subsys-

tems Based on Controller Area Network CAN by Means of Adequte Star Topologies.

PhD thesis, Universitat de les Illes Balears, 2010.

[BB01] I. Broster and A. Burns. Timely use of the CAN protocol in critical hard real-time sys-

tems with faults. Proceedings of the 13th Euromicro Conference on Real-time Systems,

Delft, The Netherlands, 2001.

[BB03] I. Broster and A. Burns. An analysable bus-guardian for event-triggered communica-

tion. Proc. of the 24th Real-Time Systems Symposium, Cancun, Mexico, 2003.

[BBRN02] I. Broster, A. Burns, and G. Rodrı́guez-Navas. Probabilistic analysis of CAN with faults.

Proceedings of the 23rd Real-time Systems Symposium, 2002.

[BBRN05] I. Broster, A. Burns, and G. Rodrı́guez-Navas. Timing analysis of real-time communi-

cation under electromagnetic interference. Real-Time Systems, 30(1-2):55–81, 2005.

[BDH+06] Gerd Behrmann, Alexandre David, John Håkansson, Martijn Hendriks, Kim G. Larsen,

Paul Pettersson, and Wang Yi. Uppaal 4.0. In Proceedings of the 3rd International

Conference on Quantitative Evaluation of Systems, 2006.

[BDL04] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on UPPAAL. In

Marco Bernardo and Flavio Corradini, editors, Formal Methods for the Design of Real-

Time Systems: 4th International School on Formal Methods for the Design of Computer,

Communication, and Software Systems, SFM-RT 2004, number 3185 in LNCS, pages

200–236. Springer–Verlag, September 2004.

[BFK+98] H. Bowman, G. Faconti, J-P. Katoen, D. Latella, and M. Massink. Automatic verifi-

cation of a lip-synchronisation algorithm using UPPAAL - extended version. In Third

Internatinoal Workshop on Formal Methods for Industrial Crtical Systems, FMICS’98,

1998.

[BK08] C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press, 2008.

[BPRNA06] M. Barranco, J. Proenza, G. Rodriguez-Navas, and L. Almeida. An active star topol-

ogy for improving fault confinement in CAN networks. Industrial Informatics, IEEE

Transactions on, 2(2):78–85, 2006.

[CE82] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons

using branching time temporal logic. Logics of Programs, LNCS vol.131, 1982.

BIBLIOGRAPHY 179

[CES09] Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis. Model checking: algorith-

mic verification and debugging. Commun. ACM, 52(11):74–84, 2009.

[CFJ+91] Joseph A. Couvillion, Roberto Freire, Ron Johnson, W. Douglas Obal, M. Akber

Qureshi, Manish Rai, William H. Sanders, and Janet E. Tvedt. Performability mod-

eling with ultrasan. IEEE Software, 8(5):69–80, 1991.

[CGP01] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The MIT

Press, Cambridge, Massachusetts, 2001.

[CiA] Website of the CAN in Automation (CiA) group.

[DBBL07] Robert I. Davis, Alan Burns, Reinder J. Bril, and Johan J. Lukkien. Controller area net-

work (can) schedulability analysis: Refuted, revisited and revised. Real-Time Systems,

35(3):239–272, 2007.

[DL07] Cătălin Dima and Ruggero Lanotte. Distributed time-asynchronous automata. In IC-

TAC’07: Proceedings of the 4th international conference on Theoretical aspects of com-

puting, pages 185–200, Berlin, Heidelberg, 2007. Springer-Verlag.

[DY95] C. Daws and S. Yovine. Two examples of verification of multirate timed automata with

KRONOS. In Proceedings of the 16th IEEE Real-Time Systems Symposium (RTSS’95),

Pisa, Italy, pages 66–75, 1995.

[Ets01] K. Etschberger. Controller Area Network. IXXAT Press, Weingarten, 2001.

[FAF+06] J. Ferreira, L. Almeida, J.A. Fonseca, P. Pedreiras, E. Martins, G. Rodriguez-Navas,

J. Rigo, and J. Proenza. Combining operational flexibility and dependability in FTT-

CAN. Industrial Informatics, IEEE Transactions on, 2(2):95–102, 2006.

[FAM+03] J. Ferreira, L. Almeida, Ernesto Martins, P. Pedreiras, and J. Fonseca. Components

to Enforce Fail-Silent Behavior in Dynamic Master-Slave Systems. Proceedings of

the 5th IFAC Int. Symposium on Intelligent Components and Instruments for Control

Applications, 2003.

[FC95] Christof Fetzer and Flaviu Cristian. An optimal internal clock synchronization algo-

rithm. In Compass ’95: 10th Annual Conference on Computer Assurance, pages 187–

196, Gaithersburg, Maryland, 1995. National Institute of Standards and Technology.

[Fer08] Sebastià Roca Ferrer. Implementació i test d’un sistema de sincronització de rellotge

sobre CAN. Projecte Final de Carrera, Eng. Tècnica Industrial, especialitat Electrònica

Industrial, UIB, 2008.

180 BIBLIOGRAPHY

[FMD+00] T. Führer, B. Müller, W. Dieterle, F. Hartwich, R. Hugel, M. Walther, and Robert Bosch

GmbH. Time Triggered Communication on CAN. Proceedings of the 7th Int. CAN

Conference, Amsterdam, The Netherlands, 2000.

[GS94] M. Gergeleit and H. Streich. Implementing a Distributed High-resolution Real-Time

Clock using the CAN-bus. Proceedings of the 1st International CAN Conference,

Mainz, Germany, 1994.

[HKPV98] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable about hybrid

automata? Journal of Computer and System Sciences, 57(1):94–124, 1998.

[HMF+00] F. Hartwich, B. Müller, T. Führer, R. Hugel, and Robert Bosch GmbH. CAN network

with Time Triggered Communication. Proceedings of the 7th International CAN Con-

ference, Amsterdam, The Netherlands, 2000.

[IEE02] IEEE-1588. Standard for a Precision Clock Synchronization Protocol for Networked

Measurement and Control Systems. IEEE Instrumentation and Measurement Society,

2002.

[ISO93] ISO. ISO11898. Road vehicles - Interchange of digital information - Controller area

network (CAN) for high-speed communication, 1993.

[JBS07] Susmit Jha, Bryan A. Brady, and Sanjit A. Seshia. Symbolic reachability analysis of

lazy linear hybrid automata. In FORMATS’07: Proceedings of the 5th international

conference on Formal modeling and analysis of timed systems, pages 241–256, Berlin,

Heidelberg, 2007. Springer-Verlag.

[Kat98] J.-P. Katoen. Concepts, algorithms, and tools for model checking. Lecture Notes of the

course Mechanised Validation of Parallel Systems, 1998.

[Kop97] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Applica-

tions. Kluwer Academic Press, 1997.

[LA03] D. Lee and G. Allan. Fault-tolerant Clock synchronisation with Microsecond-precision

for CAN Networked Systems. Proceedings of the 9th International CAN Conference,

Munich, Germany, 2003.

[LH06] G. Leen and D. Heffernan. Modeling and verification of a time-triggered networking

protocol. ICNICONSMCL, 0:178, 2006.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a Nutshell. Int. Journal on

Software Tools for Technology Transfer, 1(1–2):134–152, October 1997.

BIBLIOGRAPHY 181

[Mah01] N. P. Mahalik. Fieldbus Technology. Springer, 2001.

[Mil89] R. Milner. Communication and concurrency. Prentice-Hall, Inc., Upper Saddle River,

NJ, USA, 1989.

[MS85] Stephen R. Mahaney and Fred B. Schneider. Inexact agreement: accuracy, precision,

and graceful degradation. In PODC ’85: Proceedings of the fourth annual ACM sym-

posium on Principles of distributed computing, pages 237–249, 1985.

[NNH05] T. Nolte, M. Nolin, and H. A. Hansson. Real-time server-based communication with

CAN. Industrial Informatics, IEEE Transactions on, 1(3):192–201, 2005.

[PMJ00] J. Proenza and J. Miro-Julia. MajorCAN: A modification to the Controller Area Net-

work to achieve Atomic Broadcast. IEEE Int. Workshop on Group Communication and

Computations. Taipei, Taiwan, 2000.

[PPA+09] J. Pimentel, J. Proenza, L. Almeida, G. Rodriguez-Navas, M. Barranco, and J. Fer-

reira. Dependable Automotive CAN Networks (chapter in Automotive Embedded Sys-

tems Handbook). CRC Press, 2009.

[PPMJ99] J. Proenza, J. Pons, and J. Miro-Julia. A low-cost fail-safe circuit for fault-tolerant

control systems. In Proc. of the IEEE International Conference on Electronics, Circuits

and Systems (ICECS), 1999.

[Pro07] J. Proenza. RCMBnet: A Distributed Hardware and Firmware Support for Software

Fault Tolerance. PhD thesis, Universitat de les Illes Balears, 2007.

[PSvH99] H. Pfeifer, D. Schwier, and F. v. Henke. Formal verification for time triggered clock

synchronization. Proceedings of the 7th IFIP International Conference on Dependable

Computing for Critical Applications, San Jose, CA, 1999.

[Pur00] A. Puri. Dynamical properties of timed automata. Discrete Event Dynamic Systems,

10(1-2):87–113, 2000.

[PV03] L.M. Pinho and F. Vasques. Reliable Real-Time Communication in CAN Networks.

IEEE Transactions on Computers, 52(12):1594–1607, 2003.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent

systems in CESAR. In Proceedings of the 5th Colloquium on International Symposium

on Programming, pages 337–351, London, UK, 1982. Springer-Verlag.

182 BIBLIOGRAPHY

[RGR98] L. Rodrigues, M. Guimaraes, and J. Rufino. Fault-tolerant Clock Synchronization in

CAN. Proceedings of the 19th IEEE Real-Time Systems Symposium, Madrid, Spain,

1998.

[RNBP03a] G. Rodriguez-Navas, M. Barranco, and J. Proenza. Harmonizing Dependability and

Real Time in CAN Networks. In 2nd Euromicro International Workshop in Real-Time

LANS in the Internet Age, pages 47–50, 2003.

[RNBP03b] G. Rodrı́guez-Navas, J. Bosch, and J. Proenza. Hardware Design of a High-precision

and Fault-tolerant Clock Subsystem for CAN Networks. Proceedings of the 5th IFAC In-

ternational Conference on Fieldbus Systems and their Applications (FeT 2003), Aveiro,

Portugal, 2003.

[RNBPB03] G. Rodrı́guez-Navas, M. Barranco, J. Proenza, and I. Broster. COTS-based hardware

support to timeliness in CAN networks. In Proceedings of the 9th IEEE International

Conference on Emerging Technologies and Factory Automation (ETFA2003), Lisbon,

Portugal, Sept 2003. IEEE.

[RNP02] G. Rodriguez-Navas and J. Proenza. An orthogonal and fault-tolerant subsystem for

high-precision clock synchronization in CAN networks. In Proceedings of the 10th

WSEAS International Conference on Signal Processing, Robotics and Automation (IS-

PRA), Chiclana, Cádiz (Spain), 2002.

[RNP03a] G. Rodriguez-Navas and J. Proenza. Analyzing Atomic Broadcast in TTCAN Net-

works. In Proc. of the 5th IFAC International Conference on Fieldbus Systems and their

Applications (FET’03), 2003.

[RNP03b] G. Rodrı́guez-Navas and J. Proenza. On the design of a clock service for CAN networks.

Technical Report A-1-2003, Universitat de les Illes Balears, 2003.

[RNP04] G. Rodrı́guez-Navas and J. Proenza. Clock Synchronization in CAN Distributed Em-

bedded Systems. Proc. of the 3rd. International Workshop on Real-Time Networks,

Catania, Italy, 2004.

[RNPH05a] G. Rodrı́guez-Navas, J. Proenza, and H. Hansson. An UPPAAL Model for Formal Ver-

ification of Clock Synchronization over CAN. Technical Report A-2-2005, Universitat

de les Illes Balears, 2005.

[RNPH05b] G. Rodrı́guez-Navas, J. Proenza, and H. Hansson. Using UPPAAL to Model and Verify

a Clock Synchronization Protocol for the Controller Area Network. Proc. of the 10th

BIBLIOGRAPHY 183

IEEE International Conference on Emerging Technologies and Factory Automation,

Catania, Italy, 2005.

[RNPH06] G. Rodriguez-Navas, J. Proenza, and H. Hansson. An UPPAAL Model for Formal

Verification of Master/Slave Clock Synchronization over the Controller Area Network.

In Proc. of the 6th IEEE International Workshop on Factory Communication Systems,

Torino, Italy, 2006.

[RNPH07] G. Rodriguez-Navas, J. Proenza, and H. Hansson. Modeling and verification of mas-

ter/slave clock synchronization using hybrid automata and model-checking. In Pro-

ceedings of the 9th International Conference on Formal Engineering Methods (ICFEM

2007), LNCS 4789, pages 307–326, 2007.

[RNPH08] G. Rodriguez-Navas, J. Proenza, and H. Hansson. Analytical assessment of the preci-

sion degradation caused by faults in a fault-tolerant master/slave clock synchronization

service for CAN. In Proceedings of the 23th IEEE International Symposium on Reliable

Distributed Embedded systems (SRDS’08), Napoli (Italy), 2008.

[RNPHP10] G. Rodriguez-Navas, J. Proenza, Hans Hansson, and Paul Pettersson. Using Timed

Automata for Modeling the Clocks of Distributed Embedded Systems (chapter in Be-

havioral Modeling for Embedded Systems and Technologies: Applications for Design

and Implementation). IGI Global, 2010.

[RNRP08] G. Rodriguez-Navas, S. Roca, and J. Proenza. Orthogonal, Fault-Tolerant and High-

Precision Clock Synchronization for the Controller Area Network. IEEE Transactions

on Industrial Informatics, 4(2):92–101, May 2008.

[RVA+98] J. Rufino, P. Verı́ssimo, G. Arroz, C. Almeida, and L. Rodrigues. Fault-tolerant broad-

casts in CAN. Digest of papers, The 28th IEEE International Symposium on Fault-

Tolerant Computing, Munich, Germany, 1998.

[RVA99] J. Rufino, P. Verı́ssimo, and G. Arroz. A Columbus’ egg idea for CAN media redun-

dancy. Digest of Papers, The 29th International Symposium on Fault-Tolerant Comput-

ing Systems, 1999.

[SC90] Frank Schmuck and Flaviu Cristian. Continuous clock amortization need not affect the

precision of a clock synchronization algorithm. In PODC ’90: Proceedings of the ninth

annual ACM symposium on Principles of distributed computing, pages 133–143, New

York, NY, USA, 1990. ACM Press.

184 BIBLIOGRAPHY

[Sch87] Fred B. Schneider. Understanding protocols for Byzantine clock synchronization. Tech-

nical Report TR 87–859, Dept. of Computer Science, Upson Hall, Ithaca, NY 14853,

1987.

[SP07] M. Short and M.J. Pont. Fault-Tolerant Time-Triggered Communication Using CAN.

Industrial Informatics, IEEE Transactions on, 3(2):131–142, 2007.

[ST85] T. K. Srikanth and Sam Toueg. Optimal clock synchronization. In Symposium on

Principles of Distributed Computing, pages 71–86, 1985.

[TBW95] K. Tindell, A. Burns, and A. J. Wellings. Calculating Controller Area Network (CAN)

Message Response Time. Control Engineering Practice, 3(8):1163–1169, 1995.

[Tör95] M. Törngren. A perspective to the Design of Distributed Real-time Control Applications

based on CAN. Proceedings of 2nd International CAN Conference, London-Heathrow,

United Kingdom, 1995.

[Tur94] K. Turski. A global time system for CAN. Proceedings of the 1st International CAN

Conference, Mainz, Germany, 1994.

[Ver94] Paulo Verı́ssimo. Ordering and timeliness requirements of dependable real-time pro-

grams. Real-Time Systems, 7(2):105–128, 1994.

[VR01] P. Verı́ssimo and L. Rodrigues. Distributed Systems for System Architects. Springer,

2001.

[WDMR08] Martin Wulf, Laurent Doyen, Nicolas Markey, and Jean-François Raskin. Robust safety

of timed automata. Form. Methods Syst. Des., 33(1-3):45–84, 2008.

	List of Figures
	List of Tables
	List of Uppaal Listings
	Introduction
	Research context
	Problem statement
	Our approach
	The thesis
	Main contributions
	Organization of the document

	Background on clock synchronization
	Establishing the basic terminology about computer clocks
	Ideal clocks
	Physical clocks
	Virtual clocks

	Aims and phases of clock synchronization
	A simple taxonomy of clock synchronization algorithms
	Software vs. hardware timestamp
	Symmetric vs. asymmetric schemes

	Introduction to model checking and timed automata
	Main techniques for system evaluation
	The concept of model checking
	The theory of timed automata
	Clocks and clock constraints
	Formal definition of timed automaton
	Dynamics of a timed automaton

	The challenge of modeling computer clocks with timed automata
	Some remarks about our nomenclature
	Temporal evolution of a set of TA clocks
	Temporal evolution of a set of computer clocks

	The concept of perturbed timed automaton
	The Uppaal model checker
	Networks of timed automata
	Modeling with Uppaal
	The simulator
	The verifier

	The Controller Area Network from a dependability perspective
	Physical aspects of CAN
	CAN interface
	Basic mechanisms of CAN
	CAN arbitration for medium access control
	Error detection and error recovery in CAN
	The inconsistency scenarios of CAN

	Reported dependability limitations of CAN

	Clock synchronization for dependable CAN: state of the art
	On the relevance of clock synchronization for dependable CAN
	Techniques for reducing network jitter
	Techniques for improving error containment
	Mechanisms for supporting fault tolerance

	Requirements for the clock synchronization service
	Available solutions and open issues

	The Orthogonal Clock Subsystem for CAN
	Preliminary remarks about our proposal
	Properties of the orthogonal clock subsystem
	High precision
	Low overhead
	Fault tolerance
	Cost issues

	Description of the architecture
	Internal structure of the clock unit
	Timestamp mechanism
	Clock adjustment
	Algorithm for managing master redundancy

	Prototype and testing of OCS-CAN

	Analytical assessment of the precision guaranteed by OCS-CAN
	Basic definitions and notation
	Characterization of the virtual clock
	Offset, consonance and precision
	Two basic results on virtual clocks

	The clock synchronization algorithm of OCS-CAN
	Modeling clock adjustment
	Clock amortization vs. immediate assignment

	Analysis of OCS-CAN in fault-free conditions
	The broadcast instants vs. the synchronization instants
	Precision guaranteed in fault-free conditions

	Analysis of OCS-CAN with channel faults
	Channel's failure semantics
	Precision with consistent broadcast
	Precision with inconsistent duplicates
	Precision with inconsistent omissions

	Analysis of OCS-CAN with node faults
	Analysis of OCS-CAN with both channel and node faults
	Revisiting the channel's failure semantics
	Extending the concept of consistent synchronization round
	Analysis of a specific inconsistency scenario

	Discussion

	Modeling patterns for the realistic specification of computer clocks
	Contributions of this chapter
	Description of our case study
	Simplified system model
	Expected temporal behavior of the system for the different types of computer clocks
	Some remarks about modeling with timers

	A modeling pattern for systems with ideal clocks
	Model templates
	System declaration
	Formal verification of the modeling pattern

	A modeling pattern for systems with physical clocks
	Model templates
	System declaration
	Formal verification of the modeling pattern

	A modeling pattern for systems with virtual clocks
	The concept of clock pointer
	Model templates
	System declaration
	Formal verification of the modeling pattern

	A modeling pattern for clock synchronization
	Model templates with several clock pointers
	Example 1: modeling physical clocks
	Example 2: modeling virtual clocks

	How to extend the modeling pattern for including clock synchronization
	Description of the case study
	Model templates
	System declaration
	Study of the temporal behavior specified

	Discussion

	Model checking of the precision guaranteed by OCS-CAN
	Preliminary remarks about the modeling of OCS-CAN
	System model
	Properties to be verified
	Main abstractions of the model

	Description of the Uppaal model of OCS-CAN
	Basic scheme of the Uppaal model
	The process VC module
	The process SynM
	The process Channel
	Modeling TM broadcast and arbitration
	Modeling the channel's bounded response time
	Modeling TM indication and TM confirm
	Modeling TM abort
	Modeling omissions of the TM

	Modeling internal faults of the CU
	The final model
	Final model of process VC module
	Final model of process SynM

	Verification procedure and results
	The process Observer
	Considered scenarios for formal verification
	Results obtained and discussion

	Conclusions and future work
	Thesis validation and contributions
	Study of the state of the art concerning clock synchronization for dependable CAN
	Design and prototyping of OCS-CAN
	Formal assessment of OCS-CAN
	Modeling patterns for distributed systems with computer clocks

	Publication of results
	Preliminary publications
	Publications of results presented in this dissertation

	Future work
	Possible extensions of the work on OCS-CAN
	Potential applications of the developed techniques

	Bibliography

