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Abstract— There has been an increasing interest in using star
topologies in field bus communications, e.g. in TTP/C, FlexRay
or CAN, due to increased fault resilience and potential error-
containment advantages. In this context, an innovative CAN-
compliant star topology has been developed, CANcentrate, whose
hub includes enhanced fault-treatment mechanisms. However,
despite this interest towards stars, it is still necessary to quantify
their real dependability benefits. For this purpose and for the
particular case of CAN, this paper presents models for the
dependability features of CAN and CANcentrate using Stochas-
tic Activity Networks (SANs). It quantitatively compares their
reliability and error-containment capabilities under permanent
hardware faults. Models rely on assumptions that ensure that
results are not biased toward CANcentrate, which in some
cases is too detrimental for it. Thus, despite not reflecting
the full CANcentrate potential, results quantitatively confirm
the improvement of error-containment it achieves over CAN.
Additionally, the way in which the nodes’ ability to contain their
own errors affects the relevance of using a star topology has
been quantified. Although this paper refers to the case of CAN,
conclusions regarding the justification of using a star depending
on this ability can be extrapolated to other field-bus technologies.

Index Terms— Reliability modeling, Stochastic Activity Net-
works, fault tolerance, error containment, system analysis and
design, communication system reliability, communication system
fault diagnosis, field buses, CAN protocol, star, topology, hub.

I. INTRODUCTION

Bus topologies have been extensively used in distributed
control systems due to their electrical robustness and low
cost. However, the suitability of this topology for depend-
able control systems has been controversial due to some
limitations [1]. A number of them arise from the fact that
a bus topology includes limited error-containment mecha-
nisms [2] [3]. In fact, a bus topology presents multiple points
where a single fault in any of them can prevent more than one
node from communicating to any other node of the system,
possibly causing a general failure. These are called points of
severe failure [4], which include the commonly referred single
points of failure.
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Solutions based on redundant or reconfigurable transmission
media, as well as on bus guardians have been proposed to
cope with this problem. Nevertheless, due to the characteristics
that are inherent to the bus topology, these techniques do not
prevent the existence of multiple points of severe failure [4].

Therefore, the interest in using star topologies has been
growing, given their better error containment capabilities
and their resilience to proximity and common-mode fail-
ures [5] [6] [7] [8] [9] [10]. For example, the LAN domain has
long ago moved to star topologies with Ethernet, a technology
that is now extensively used in the industrial automation and
large embedded systems domains. Particularly concerning in-
vehicle systems, we can find other examples of transition to
star topologies such as with newer technologies like TTP/C [2]
and FlexRay [11].

Different star topologies have also been proposed for
improving the dependability of Controller Area Network
(CAN) [12], e.g. [13] [14] [5]. These can have a significant
impact since CAN is one of the most widely used field-
bus networks in distributed embedded control systems. Even
more significant if it is considered that there is a growing
interest on using CAN for new systems that require a higher
performance and dependability, as it is reflected in the plenty
of work that has been done to improve some of CAN’s
features, e.g. [15] [16] [17] [18] [19] [20] [21], to integrate
it with other communication technologies, e.g. [22], as well
as to develop tools for fast verification of CAN network
prototypes, e.g. [23].

Among the star topologies that have been developed for
CAN, there is a recent proposal for a simplex star topology,
called CANcentrate, which incorporates an active hub that pre-
vents errors from propagating across the star. CANcentrate’s
current design and implementation [4] only deal with hardware
faults that manifest as syntactically incorrect logical values
in the communication channel. However, its hub could be
provided with a bus guardian to deal with faults that manifest
at a semantic level, e.g. babbling-idiot. As far as is known,
CANcentrate is the simplex star topology that provides the
highest degree of fault-treatment for CAN networks.

Despite this growing trend towards the use of star topolo-
gies, it is not so clear whether stars achieve a higher de-
gree of dependability than buses. In fact, stars can provide
better error-containment but they also include more hardware
components, thereby increasing the probability that faults and
errors occur. Furthermore, the enhancement of dependability
that can be achieved when using a star instead of a bus
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has never been appropriately quantified. On the one hand,
previous quantitative analyses that rely on mathematical or
statistical models [24] [25] [26] [27] abstract away many
important details: the capacity of the hub for containing errors;
differences between the failure rates of the nodes of a star and
a bus; different component failure modes; the error-detection
coverage the hub provides for different failure modes, etc. On
the other hand, fault injection experiments carried out in some
technologies, e.g. in TTP/C [3], quantitatively demonstrate that
a star is better suited to prevent error propagation than a bus.
However, no study has been conducted so far to assess whether
this actually implies a dependability improvement.

The lack of an appropriate comparison poses doubts about
the practicality of using stars for highly dependable embedded
systems. Thus, the main aim of the framework here discussed
is to mathematically assess the dependability improvement that
stars can achieve in the context of field-bus communications in
general, taking into account technological aspects of electronic
and mechanical components, which have not been considered
in the literature yet.

Particularly, this paper quantifies the improvement of de-
pendability achieved when using CANcentrate instead of CAN
as a general field-bus network. The dependability features of
a typical CAN bus and a CANcentrate network have been
modeled using StochasticActivity Networks (SANs). Then, the
reliability, i.e. the probability that no node is permanently pre-
vented from communicating, as well as the probability of not
suffering a k-severe failure (PNS) of CAN and CANcentrate
were compared. A k-severe failure occurs when the communi-
cation is restricted to few than N − k nodes. Particularly, the
PNS was assessed when k = 1 only. By comparing their PNS
when k = 1, the potential benefits of CANcentrate for systems
that can tolerate (or accept) that at most one node cannot
communicate, have been studied. Note that the concept of k-
severe failure is equivalent to the one of k-terminal reliability,
which is a well-known metric widely used in dependability
evaluations of network topologies.

The present framework’s second objective is to quantify
how some design and implementation aspects, e.g. the type
of cabling, affect the dependability of bus and star topologies.
The models proposed in this paper are parametrizable, thereby
allowing sensitivity analyses of some of these aspects to be
carried out. On the one hand, this can guide engineers in the
process of developing an adequate bus or star-based network
with a view to achieving a specific level of dependability. On
the other hand, this allows the use of this paper’s proposed
models to evaluate whether a given star or bus communication
network is more suited for the dependability requirements of
a specific distributed embedded application.

Notice that since star topologies were mainly proposed to
address the issue of permanent hardware faults, this paper
focuses on this kind of faults. Although there is an increas-
ing interest on providing mechanisms to deal with transient
faults, an evaluation taking them into account is necessarily
application dependant. Therefore, transient faults are beyond
the scope of this paper and will be addressed in future work.

This paper’s intention is not to provide a definitive as-
sessment in the presence of permanent faults. Firstly, it is

hardly possible to find exact values for fundamental depend-
ability parameters such as, for example, the failure rate of
the components and the coverage of some error-containment
mechanisms. Moreover, there are many ways of implementing
a CAN bus and a CANcentrate star, each yielding different
dependability results. In order to avoid biased results towards
CANcentrate, choices for any of these aspects were always
taken in favor of CAN. In some cases, this may have been
too detrimental for CANcentrate. Secondly, this paper assumes
that semantically incorrect frames issued by babbling-idiot
nodes are not contained. However this type of failure could
be treated by simply including a bus guardian within the hub,
whereas in the CAN bus it would be necessary to include
extra hardware in each node. Thus, the potential benefits that
CANcentrate could yield when dealing with these failures
are not reflected in the results. Furthermore, the failure rates
of nodes do not take into account software failures, thereby
favoring the CAN bus in the comparison, since the hub cannot
exhibit them. Thirdly, other CANcentrate advantages that are
inherent to its star topology are not included in the model,
e.g. minimization of the impact of spatial proximity faults,
avoidance of common-mode failures between a possible hub
guardian and the nodes it would supervise. Therefore, the re-
sults presented here are just an indication of how CANcentrate
improves the dependability of distributed control systems; but
they do not reflect the full potential of CANcentrate.

As a reference for the comparison, typical values of in-
vehicle communications for x-by-wire systems [28] were cho-
sen for different parameters, e.g. for failure rates, despite the
fact that this paper targets general field-bus communications.

The following section describes CANcentrate fundamentals.
Section III introduces the modelling strategy, explaining the
assumptions the proposed models rely on. Next, Sections IV
and V, describe how the dependability of CAN and CANcen-
trate was modeled, focusing on the most representative aspects
of the models. Then, Section VI shows the dependability
results obtained when solving the models. Finally, Section VII
concludes the paper and points out future work.

II. CANCENTRATE BASICS

An important feature of CAN is the wired-AND function
of every node contribution when accessing the bus, thereby
providing a dominant/recessive transmission. This property
guarantees that whenever a node transmits a dominant bit
value, i.e. a logical ’0’, this value is received by all the
nodes in the network. In contrast, a recessive bit value, i.e.
a logical ’1’, is only received as long as every node issues
a recessive bit. Moreover, CAN communication relies on a
complex bit synchronization mechanism that guarantees that
nodes have a quasi-simultaneous view of every single bit on
the medium. This bit synchronization allows defining a number
of additional mechanisms [12] that significantly improve the
dependability properties and real-time response of CAN [4]

However, as explained before, CAN relies on a bus topology
and presents multiple points of severe failure. This paper’s
CANcentrate star topology is devoted to preventing severe
communication failures. The fault model herein studied [4]



takes into account that a node can exhibit a stuck-at-recessive,
a stuck-at-dominant and a bit-flipping failure; and that, in
addition to these failures, a medium can also suffer from a
physical disruption.

In order to improve the dependability of CAN, several
approaches have been proposed, e.g. [13] [14] [17] [18] [20]
[21] [5]. Special attention should be paid on the most recent of
those proposals: ESCAPE CAN [5]. It includes a switch that
emulates the arbitration and the acknowledgement mechanisms
of CAN [12], in order to address babbling-idiot and mas-
querading faults. In this sense, it represents a complementary
contribution to that of CANcentrate. However, ESCAPE CAN
raises some concerns: the feasibility of its implementation has
not been already demonstrated, it reduces the compatibility
with existing CAN-based applications, and the complexity of
its switch should be quite high when compared with a hub. The
benefits of CANcentrate over the other solutions mentioned
above are thoroughly described in [4].

In CANcentrate, each node is connected to the hub by a
dedicated link that contains an uplink and a downlink. For
each bit, the hub receives each node contribution through the
corresponding uplink, couples all non-faulty contributions with
a logical AND function and broadcasts the resultant coupled
signal through the downlinks.

The use of an uplink and a downlink for each node allows
separating the contribution of each node from the coupled
signal, so that the hub can monitor each node contribution
separately and detect faulty transmissions. This feature allows
the hub to diagnose the location of faults with more precision
than the typical error counters of CAN [12]. Permanently
faulty contributions are disabled, thereby not propagated to
the coupled signal, thus being confined to the port of origin.

Since CANcentrate is fully compliant with CAN, it keeps all
CAN dependability features, it can be built using CAN COTS
components and it is possible to use it with any CAN-based
protocol (e.g. FTT-CAN [16]).

III. MODELLING RATIONALE

The models were built using the Stochastic Activity Network
(SAN) formalism, a stochastic extension to Petri Nets [29].
Petri Nets have long ago been used to model and analyze
communication protocols, real-time, highly-dependable and
automated manufacturing systems, e.g. [30] [31].

The SAN formalism was used to built the models herein
presented following a strategy similar to those proposed in [32]
and [33]. A SAN includes tokens, places, activities, input
gates and output gates. The number of tokens located in each
place, i.e. the marking of the places, determines the state
of the modeled system. Activities are used to change the
marking of places, thereby modelling the system transitions
through different states. An input gate defines an enabling
rule for an activity, whereas an output gate specifies actions to
be performed after its related activity fires. Additionally, the
SANs formalism provides two primitives to build a model as
a hierarchical composition of submodels: the Join primitive,
which allows interconnecting different submodels, and the Rep
primitive, which can be used to replicate a given submodel

in order to model different instances of the same submodel.
Once specified, a whole SANs model can be automatically
transformed into a Markov Chain that is analytically solved.
In particular, the Moebius software was used [29] to build and
analytically solve all the models.

Moreover, some dependability features, e.g. the failure rates
and the proportions of the different failure modes, are param-
eterized, which allows sensitivity analyses to be carried out.
This parametrization allows these models to be easily adapted
to assess the error-containment improvement achieved when
using a star in technologies other than CAN.

A. Implementation assumptions

Firstly, it is necessary to establish what features of the
different CAN physical layer standards are included in the
implementation of the CAN bus and CANcentrate. This is be-
cause different CAN physical layer standards exhibit different
degrees of fault tolerance and electrical robustness and, hence,
a fair comparison between a CAN bus and a CANcentrate star
must consider that both use the same physical layer standard.
The ISO 11898-2 High-speed CAN standard [34], which is
the most widespread one, was chosen. This standard specifies
a two-wire differential bus line terminated at both ends with
impedances of 120 Ohm. High-speed CAN does not mandate
the tolerance of faults affecting any of the two wires or any
of the bus line terminations. Thus, it is assumed that a fault
affecting any of the wires will not be tolerated. Conversely,
the results experience has yielded in the use of 82C250 CAN
transceiver [35] have been used to assume in this paper that
the loss of up to one line termination can be tolerated.

Secondly, it is necessary to address the length and layout
of both the bus and the star, how nodes are attached to the
medium, and the quantity of wires included in each cable.
A total length of 70m for the CAN bus is assumed, as well
as a length of 35m for each link of the star [4]. Note that
such layout reduces the dependability results of CANcentrate,
since it includes more cable than what is actually needed for
interconnecting an ensemble of nodes in which the two farthest
ones are separated 70m.

In order to attach the nodes to the medium in CAN, a
daisy chain configuration was chosen so that each pair of
adjacent nodes is connected to each other using a CAN cable
with a straight connector at both its ends. This is the most
reliable option for the CAN bus since it includes no stubs
and minimizes the number of connectors. For CANcentrate,
each link (including an uplink and a downlink) connecting a
node to the hub could also have one straight connector at each
end. However, these links would need extra wires and straight
connectors with more pins than for CAN. Using different
types of connectors and cables for CAN and CANcentrate
could pose some uncertainties concerning the fairness of the
comparison. Hence, each uplink is implemented separately
from its downlink, so that each one of them uses a CAN cable
and a pair of connectors equal to those used for CAN. A CAN
cable is assumed to include four wires, so that it carries the
communication signals CAN H and CAN L, plus the power
GND (or V-) and V+. Note that each link of the star includes



an extra V+/GND pair that is unnecessary in practice, thereby
biasing the results in favor of the CAN bus.

As for the terminations, the proposed approach is the
typical one, in which special connectors that already have the
terminations inside are attached at both ends of the bus or of
each uplink/downlink.

Thirdly, it is necessary to take into account the way in which
the hub is built and which of its features are to be modeled.
For the former point, a CANcentrate prototype hub [4] , which
consist of a core that implements fault-treatment capabilities
and includes an interface, was selected. The core is imple-
mented in a dedicated IC whereas the interface is basically
composed of a set of COTS transceivers. For the latter point,
all hub functionalities were considered except CANcentrate’s
reintegration policy [4] because only permanent faults are
taken into account here.

B. Constituent parts

To model the dependability of CAN and CANcentrate it is
necessary to decide which are their constituent parts, choosing
a level of abstraction that keeps the complexity of the models
within reasonable limits.

The components of the CAN bus and CANcentrate were
gathered into different assemblies or network entities. The
first entity is the Node, which includes an oscillator; a micro-
processor; one CAN controller; a 32Kb SRAM and a 32Kb
EEPROM; one or two transceivers, depending on whether
the node is a CAN or a CANcentrate node respectively; the
corresponding integrated circuit (IC) sockets, and a printed
circuit board (PCB), in which the amount of connections
depends on the number of components attached to it. The
second one is the Link, which comprises a CAN cable and
a pair of straight connectors. The third one is the Termination,
which is basically a resistor. Finally, in CANcentrate the hub
is divided in two types of entities: the Hub core which is
composed of a dedicated IC, the hub’s PCB, an oscillator, and
a socket; and the hub interface, composed by one Hub Input
and one Hub Output per hub port. Each one of these two
entities includes a CAN transceiver, a portion of the hub’s
PCB and a socket.

C. Fault assumptions

The models proposed are based on a set of assumptions
regarding the statistical properties of faults, failure rates,
failure modes and coverages. All faults are assumed to be
permanent. Each component may independently fail, following
an exponential Time-To-Failure distribution (F(t)) with a Mean
Time to Failure (MTTF) equal to 1/λ; where λ is the failure
rate expressed in number of failures per hour. F(t) was also
assumed to be Non-Defective [32], which implies that the
probability with which the component fails at or before time
t, F(t) = Prob(X ≤ t), is 0 when t = 0, 1− exp(−λ · t) when
0 < t < ∞, and 1 when t = ∞.

The possible failure modes are based on the fault model
CANcentrate is able to deal with (see Section II). Thus,
in principle, an entity can only exhibit a stuck-at-recessive,
a stuck-at-dominant, a bit-flipping and, in the case of a

Link, also a physical disruption. In CANcentrate an uplink
that suffers from a disruption delivers a permanent stuck-at-
recessive stream to the hub while a disrupted downlink only
delivers a stuck-at-recessive value to its node. In contrast, a
physical disruption in the bus line can lead to network partition
or can just provoke the loss of a termination

Apart from these failures, two new failure modes have been
included in the fault model proposed in this paper. First, the
resistor that constitutes a Termination can also fail leading the
medium to lose the termination itself, but without generating
a stuck-at or a bit-flipping stream. Second, it is assumed that
any fault happening in the Hub core causes the failure of all
the communication system. This is a pessimistic assumption
for CANcentrate since the Hub core could suffer from a more
benign fault, e.g. it could stop performing fault confinement
or it could unfairly isolate a correct port.

Note that in a real system components can actually fail in
other manners. This fact can be formalized by means of the
concept of failure mode assumption coverage [36], defined
as the probability that a component failure mode assumption
proves to be true in practice. In order to take this coverage
into account, it has been considered that each entity can also
exhibit a new type of failure, herein called out-of-fault-model
failure, which gathers all failure modes that are beyond the
error-containment capabilities of CANcentrate. For example,
a short circuit of the GND wire to the V+ wire that causes a
fire that propagates along all the cabling installation.

Finally, in addition to the assumption coverage, it is neces-
sary to recall that although the hub of CANcentrate is devised
to deal with a specific fault model, the design and/or the
implementation of its error-containment mechanisms cannot
be perfect. Therefore, in practice, it is possible that the hub
cannot isolate a fault that manifests in a way included in the
fault model of CANcentrate. In order to take into account these
kinds of situations, the concept of error-containment coverage
was introduced in the model of CANcentrate. This concept is
defined here as the probability that when a failure included in
the fault model occurs the hub can detect and isolate it.

Specifically, stuck-at-recessive failures are always isolated,
since even if the hub cannot detect them, they have no negative
impact in the communication among the nodes. The error-
containment coverage of the rest of failure modes depends on
the difficulty off their detection. The mechanism used by the
hub to detect stuck-at-dominant failures is trivial: a counter
that monitors the number of consecutive dominant bits and
a specific threshold [4]. Hence it can be said that stuck-at-
dominant failures are detected and isolated with a perfect
coverage. This is a realistic assumption because if such a
failure occurs and the Hub core is not faulty, then the related
counter will eventually reach its threshold. In contrast, a bit-
flipping failure can lead to a huge amount of scenarios and,
thus, it is not reasonable to assure a perfect error-containment
coverage for it. This paper’s model of CANcentrate allows
specifying the coverage with which bit-flipping failures are
covered as a parameter. In particular, a 90% bit-flipping error-
containment coverage is herein assumed, which is not an
optimistic assumption for CANcentrate since the various faults
so far injected in the presently described CANcentrate proto-



types [37] were at all times correctly detected and isolated by
the hub.

D. Failure rates and failure mode proportions

Most of the decisions described above concerning imple-
mentation assumptions, constituent components and failure
assumptions are reflected in the form of specific values for
failure rates and failure mode proportions. This allows for
both the use of the models proposed in this paper to evaluate
different CAN and CANcentrte networks, and the adaptation
of said models to technologies other than CAN without great
changes in the structure of the models themselves.

A software of prediction of failure rates (called Relex [38]
was used to obtain the failure rates of the components,
taking into account the MIL-HDBK-217F-2 model [39] and
the Tellcordia Method I Case I calculation method [38].
The MIL-HDBK-217F-2 is the most widely accepted model
for the calculation of failure rates, whereas the Tellcordia
methodology is widely used by commercial organizations. In
particular, the Method I Case I is used when not all specific
data regarding components is available, as was the case in this
paper. Among all the operating environments provided by the
MIL-HDBK-217F-2, the Ground Mobile (GM) was chosen, as
it is better suited for an in-vehicle system. On the other hand,
Method I Case I assumes 40 degrees Celsius as the operating
temperature, and 50 percent rated stress. The failure rate of
a given entity is obtained by adding the failure rates of its
components. For all components non-optimistic technological
characteristics were assumed e.g. commercial quality level. In
order to calculate the failure rate of the Hub core for a given
number of ports it is necessary to specify its number of logic
gates. To this purpose real values obtained from synthesizing
said Hub core in an FPGA [4] were used.

Regarding the different failure modes’ proportions, it is
reasonable to assume that all entities exhibit 5% of out-of-
fault-model failures. This is because the probability with which
a fault in a component causes an unexpected situation, e.g.
a fire, is low. On the other hand, all entities, except the
Node, are supposed to manifest the rest of failure modes
equiprobably. In the case of a Node it is still necessary to
take into account that part of its errors will be contained by
the fault-treatment mechanisms of its CAN controller [12]. The
CAN controller can detect channel errors and stop transmitting
when diagnosing a permanent fault, thereby converting faults
within its node to a stuck-at-recessive stream, i.e. fail-silent
behavior. However, it cannot be assumed that a node is 100%
fail-silent because that is a practical impossibility. Thus a
90% fail-silent (stuck-at-recessive) proportion was chosen.
This value is reasonable and maybe slightly overestimated
since, for example, a CAN controller cannot prevent its node
from being stuck-at-dominant when the oscillator stops [8]; it
can do nothing to contain stuck-at-dominant or bit-flipping
streams generated by its transceiver; nor is it even clear
whether or not a CAN controller can isolate its own faults,
specially those that affect the circuits that implement its fault-
treatment mechanisms. In any case, due to the relevance of
this parameter, an analysis of how the results are affected by

Fig. 1. CANcentrate model

varying this proportion has been carried out. Concerning the
rest of failure modes, the fact that a Node may be equiprobably
stuck-at-dominant and bit-flipping has been considered.

IV. CANCENTRATE MODEL

The models herein presented were built using SANs that
have been analytically solved. In a preliminary study [40]
CAN and CANcentrate were extensively modeled using the
Join and Rep primitives. Nevertheless, when more details were
included in the models, the use of the Rep primitive led the
state space transformation of the SANs into Markov Chains
to become extremely inefficient in terms of computation time.
Similar problems have been reported when using Petri Nets to
model complex and large systems [41]. In order to overcome
this drawback CAN and CANcentrate were modeled following
a new approach that does not use the Rep primitive.

Figure 1 depicts the model of CANcentrate, which consists
of three classes of submodels called entity, entity group, and
evaluator submodels. The only entity submodel is hubCore,
which models whether or not the entity Hub core is faulty.

There is an entity group submodel for each group of entities
of a given type, e.g. Nodes, that have the same location within
its corresponding branch. branch is defined as the ensemble
that is composed of a Node; its corresponding downlink
and uplink, in which each is a Link entity; two pairs of
Terminations, each pair corresponding to an uplink/downlink;
a Hub input; and a Hub output entity.

When an entity fails, the corresponding entity group sub-
model decides whether or not the failure leads a previously
fault-free branch to be faulty, as well as the specific mode in
which the failure manifests at the corresponding hub port. No-
tice that the location of an entity within its branch determines
the way in which the failure manifests at the corresponding
hub port. For example, a stuck-at-dominant failure in an uplink
manifests as a stuck-at-dominant at the hub port, whereas if
it happens in a downlink, it manifests as a stuck-at-recessive.
This is because a non-faulty CAN node that receives only
dominant bits through the downlink, will enter into the bus-
off state [12] in which case it stops communicating.

On the other hand, there are two evaluator submodels.
The first one, called branchesFailureEval, evaluates whether
or not a failure happening in a branch can be confined
by the hub. The other, called CANcentrateFailureEval, takes
into account failures occurred at branches and at the Hub
core to determine when a generalized failure has occurred.



Fig. 2. StarNodes submodel

Additionally, this submodel indicates to the rest of submodels
that such a failure occurs, so that all of them can stop evolving
in order to reduce the state space. It is important to note
that CANcentrateFailureEval allows specifying the number of
Nodes that must be prevented from communicating before a
generalized failure can be considered to have occurred. In this
way, it is possible to study the reliability as well as different
degrees of severe failure.

Finally, notice that the join primitive is used to interconnect
different submodels by specifying the places they share. Due to
space limitations, it is not possible to describe all submodels
and their interconnections. Nevertheless, below follow more
detailed explanations of the most representative submodels.

A. StarNodes submodel

The starNodes submodel, which is depicted in Figure 2,
is a representative example of an entity group. The marking
of place okStarNodes denotes the number of Nodes that are
not faulty; whereas a token in any of the places stuckBranch,
flipBranch, and outFauModeBranch indicates to the branches-
FailureEval submodel that a Node has failed leading a branch
to suffer from the corresponding type of failure. On the other
hand, place numFaultyBranches is shared with all the entity
group submodels and its marking denotes the number of
branches that are faulty.

More specifically, the activity starNodeFailure models the
time that elapses until any non-faulty Node fails. Since the
Time-To-Failure distribution of each Node is exponentially
distributed and each Node can independently fail, the time
elapsed until a surviving Node fails is also exponentially
distributed, with a failure rate λstarNodes = λstarNode ·

okStarNodes → Mark(). λstarNode is the failure rate of a
Node, and okStarNodes → Mark() is the marking of place
okStarNodes, i.e. the number of surviving Nodes at a given
instant of time.

When the activity starNodeFailure fires, a token is erased
from okStarNodes and one of the three cases, represented by
circles at the right edge of the activity, is chosen. The first
case represents a Node that exhibits a failure mode included in
the fault model and that, additionally, provokes the failure of a
branch that was not faulty. This case is selected with probabil-
ity (1−nodeOutFauMod)·(nBranches−numFaultyBranches →
Mark())/okStarNodes → Mark(); where nodeOutFauMod is
the proportion in which a Node fails exhibiting an out-of-
fault-model failure mode; nBranches is the total number of
branches; and numFaultyBranches → Mark() is the number of
branches that have failed so far. When this case is chosen, the

marking of place numFaultyBranches is increased in one token
in order to track the number of faulty branches. Additionally, a
token is placed in newFaultyBranch, thereby enabling activity
failureMode. This activity instantaneously fires, transferring
the token to one of the two places: stuckBranch and flipBranch,
which respectively represent that the fault manifests as a
stuck-at and as a bit-flipping failure at the hub port. The
probability of choosing the first case is calculated by adding
up the proportions with which a Node exhibits stuck-at-
recessive (fail-silent) and stuck-at-dominant failures; whereas
the probability of the second one is the proportion of Node
bit-flipping failures.

The second case of the activity starNodeFailure also models
a situation in which the failure mode is included in the fault
model. But this case corresponds to a situation in which
the Node that fails is located in a branch that was already
isolated. Since the reintegration policy of CANcentrate is
not considered, the Node failure does not further impact the
communications. Thus, no more actions are performed within
the model when this case is chosen.

Regarding the third case, it models a Node that fails in
a way not included in the fault model and that leads to
a generalized failure. Thus, it is selected with probability
nodeOutFauMod. When this occurs, a token is placed in
outFauModeBranch, thereby indicating that a branch suffers
from such a kind of failure. Notice that in this case it is not
necessary to evaluate whether or not the Node is placed in
a branch that was previously non-faulty. This is because, an
out-of-fault-model failure will lead the whole communication
subsystem to fail in spite of the presence of the hub.

Finally, it is worth noting that the place generalizedFailure
is shared among all submodels. As will be explained later,
submodel CANcentrateFailureEval places a token at this place
to indicate that a generalized failure occurred, so that all
submodels can stop to reduce the state space. As can be seen
in Figure 2, place generalizedFailure is connected to the input
gate corresponding to the activity starNodeFailure, in order to
stop the starNodes submodel by disabling this activity when
a generalized failure occurs.

B. BranchesFailureEval submodel
Submodel branchesFailureEval shares with all entity group

submodels the places: stuckBranch, flipBranch and outFau-
ModeBranch (Figure 2). When a token is set in any of
these places, branchesFailureEval decides whether or not the
corresponding failure is successfully confined by the hub, and
sets a token in one of three possible places: faultyCovered-
Branches, faultyNonCoveredBranch and outFauModFailure,
removing the original token. Specifically, the marking of place
faultyCoveredBranches indicates the number of branches that
are faulty but successfully isolated by the hub. Conversely, a
token in place faultyNonCoveredBranch means that a branch
has failed and that the hub was unable to isolate it. Finally,
a token in outFauModFailure indicates that a branch presents
an out-of-fault-model failure.

Since the error-containment coverage of stuck-at failures is
100%, a token in stuckBranch is always transferred to faulty-
CoveredBranches. In contrast, the error-containment coverage



Fig. 3. CANcentrateFailureEval submodel

of a bit-flipping failure is not perfect. Submodel branches-
FailureEval models this fact by transferring any token set
in flipBranch to either faultyCoveredBranches or faultyNon-
CoveredBranch. As explained in Section III-C, 90% is not
an optimistic assumption for this coverage. However, the
probability of choosing one or the other place is parameterized,
thereby allowing a sensitivity analysis with respect to it.

C. CANcentrateFailureEval submodel

CANcentrateFailureEval submodel, which is depicted in
Figure 3, is devoted to deciding when the network fails as
a whole, and informs all submodels about such situation
by placing a token in place generalizedFailure. On the one
hand, it becomes aware of failures happening at branches
by means of places faultyCoveredBranches, faultyNonCov-
eredBranch and outFauModFailure which are shared with the
branchesFailureEval submodel. On the other hand, it shares
place hubCoreFailure with submodel hubCore to be able to
detect when the Hub core is faulty.

Each one of these places is connected to generalizedFailure
by means of an input gate and an instantaneous activity [29].
Each input gate enables the activity it is connected to, de-
pending on the marking of its incoming place. In particular,
whenever a token is received in any of the places faultyNon-
CoveredBranch, outFauModFailure or hubCoreFailure, the
corresponding gate triggers its activity, so that a token is placed
at generalizedFailure. This is because a fault that cannot be
isolated propagates preventing all Nodes from communicating.

In contrast, the number of the tokens located in faultyCov-
eredBranches that are accepted before enabling the activity
this place is connected to is parameterized. In this way, it is
possible to vary the number of Nodes that must be unable to
communicate before the communication system is considered
to be faulty. In particular, if one token is enough to enable
this activity, then the probability of not having a token in
generalizedFailure is the reliability of the communication
subsystem. Conversely, if more than k tokens are necessary
to enable the activity, then the probability of not having a
token in generalizedFailure constitutes the probability of not
suffering a k-severe failure.

V. CANBUS MODEL

The CAN bus has been modeled following the same ap-
proach as for CANcentrate. As shown in Figure 4, the CAN
bus is modeled by joining different entity group submodels
with an evaluator submodel, called CANbusFailureEval.

Fig. 4. CANbus model

Analogously to the CANcentrate model, an entity group rep-
resents all entities of a given type that have the same location.
Again, the consequences that an entity failure provokes on the
service delivered by the communication subsystem depends
on where the entity is located within the bus. For instance, a
disruption in the Link that connects a Node placed at an end
of the bus with the next Node in the bus line will not cause
a severe failure. This is because that failure will only prevent
the Node located at the end of the bus from communicating.
In contrast, a disruption in a Link that interconnects any pair
of Nodes not located at the ends of the bus will cause that
fewer than N −1 Nodes can communicate among themselves,
thereby provoking a k-severe failure with k = 1.

More specifically, the two Nodes meant are each located
at one of the ends of the bus line, as End nodes, and were
modeled with the endNodes submodel. Likewise, in reference
to the two Links located at the ends of the bus line, as End
links, which were modeled with the endLinks submodel. The
rest of the Nodes and the Links, i.e. the Internal nodes and the
Internal links, are respectively modeled with the internalNodes
and internalLinks submodels. Finally, the two Terminations are
modeled with the terminations submodel.

As concerns the consequences that the failure of an entity
can provoke in the service delivered by the communication
subsystem, a difference between a node exclusion and a
blocking failure has been established. The former refers to
a situation in which the failure leads only one Node to be
prevented from communicating; whereas the second occurs
when the errors generated by the faulty entity prevent all Nodes
from communicating.

On the other hand, the evaluator submodel CANbusFail-
ureEval takes into account all faults occurred, decides when
a generalized failure takes place, and notifies this to the rest
of submodels, so that all of them can stop. Recall that the
CANcentrate model allows the specification that k of N Nodes
can be prevented from communicating before diagnosing a
generalized failure, where 0 ≤ k < N − 1. In contrast, the
CANbus model only allows k in the range 0 ≤ k < 2 to be
specified.

The next section explains the most illustrative submodels
that constitute the CANbus model.

A. EndNodes submodel

The endNodes submodel models the two End nodes that are
placed at both ends of the bus line. An End node that suffers
from an out-of-fault-model failure causes a generalized failure
of communication. However, conversely to what happens with



Fig. 5. EndNodes submodel

Internal nodes, if the failure suffered by an End node is
included in the fault model, it is possible that this failure
does not cause any impairment because the End node could
already be isolated. In particular, an End node is already
isolated when the End link that connects it to the rest of
the bus has suffered a previous disruption For this reason,
besides the place okEndNodes, whose marking indicates the
number of surviving End nodes, the submodel includes the
place okEndLinks, which denotes the number of non-faulty
End links (see Figure 5).

On the other hand, places excludedNodes and blockingFault
are shared with the other submodels. The marking of the
former specifies the number of Nodes that have been excluded
from the communication so far; whereas a token in the second
one means that an entity has failed provoking a blocking
failure.

Activity endNodeFailure models the time that elapses until
any of the surviving End nodes fails. Thus, this time is
exponentially distributed, with a failure rate λendNodes =
λendNode · okEndNodes → Mark(). Where λendNode is the
failure rate of an End node; and okEndNodes → Mark() is the
number of surviving End nodes at a given instant of time.

When this activity is triggered, three cases are possible. The
first and the second cases, respectively located at the top and
at the middle of the activity, refer to situations in which the
End node exhibits a failure mode included in the fault model;
whereas the third case models that an End node fails exhibiting
an out-of-fault-model failure. The difference between the two
first cases is that while the first one corresponds to a case in
which the End node that fails was able to communicate before
failing, the other one coincides with a situation in which the
End node had already been excluded from the communication
because its End link was disrupted.

The probability of the third case is always the propor-
tion with which a Node exhibits an out-of-fault-model fail-
ure, i.e. nodeOutFauMod. In contrast, the probability of se-
lecting one of the two first cases depends on both the number
of surviving End nodes and surviving End links at a given
instant of time. If no End node and no End link were
previously faulty, the probability of excluding a new End node
is (1−nodeOutFauMod). But, if one End link was faulty, then
this probability is (1 − nodeOutFauMod) · 0.5, since there is
only a 0.5 probability that the End node does not correspond
to that faulty End link. Conversely, if one of the End nodes
was faulty, then the probability of excluding a new End node
is also (1 − nodeOutFauMod), independently of whether or
not an End link has also failed. This is because if there is a
faulty End link, it must correspond to the already faulty End

Fig. 6. CANbusFailureEval submodel

node. Otherwise it would imply that the already faulty End
node and the already faulty End link are located at a different
bus end, which would have provoked a generalized failure (a
severe failure), thereby stopping all the submodels.

B. CANbusFailureEval submodel

The structure of submodel CANbusFailureEval is shown in
Figure 6. In order to know what faults have happened, it shares
places blockingFault, excludedNodes and terminationLosses
with other submodels.

CANbusFailureEval receives a token in place blockingFault
whenever an Internal link fails or when an End link exhibits
a failure other than a physical disruption. When an Internal
node exhibits a stuck-at-dominant or a bit-flipping failure a
token is also received in blockingFault. In what concerns the
failure of an End node, it only leads a token to be received
at this place if it suffers an out-of-fault-model, or if it suffers
a stuck-at-dominant or a bit-flipping and had not previously
been excluded due to the disruption of its corresponding End
link.

On the other hand, the marking of place excludedNodes is
increased when an End link corresponding to a non-faulty End
node suffers a physical disruption; as well as when an Internal
node or an End node that is not already isolated suffers a
stuck-at-recessive failure.

Finally, the marking of terminationLosses denotes the num-
ber of Terminations that are lost. Recall from Section III-A
that a Termination is placed within the connector that attaches
an End link with an End node. Thus, a given Termination can
be lost not only when it fails, but also when its corresponding
End link suffers a physical disruption. Thus, the marking of
terminationLosses is increased when an End link fails and its
corresponding Termination was non-faulty and viceversa.

A token in blockingFault is instantaneously transferred to
generalizedFailure. In contrast, since up to one Termination
loss is tolerated, two tokens are needed in place termination-
Losses to provoke a generalized failure. Finally, it is possible
to specify whether one token or two tokens are needed in
excludedNodes to provoke such a failure. In the first case, the
probability of not having a token in generalizedFailure is the
reliability of the CAN bus, whereas in the second case it is
the probability of not suffering a k-severe failure with k = 1.

VI. QUANTITATIVE ASSESSMENT

In order to assess the advantages and disadvantages of using
CANcentrate instead of a CAN bus, a comparison was carried
out on the reliability and the probability of not suffering a k-
severe failure (PNS), when k = 1. Particularly, the focus is on



Parameter Value
Hub bit-flipping error-containment coverage 90%

Node fail silent proportion 90%

CAN bus internal node failure rate 4.11569 · 10
−6

CAN bus end node failure rate 4.11426 · 10
−6

CANcentrate node failure rate 4.26449 · 10
−6

CAN wire failure rate (per Km) 1.00000 · 10
−7

Connector failure rate 2.07774 · 10
−8

Termination failure rate 7.38299 · 10
−8

Hub core failure rate (in the case of 4 ports) 1.04499 · 10
−6

Hub Input/Output failure rate (per port) 1.50232 · 10
−7

TABLE I
SOME DEPENDABILITY PARAMETERS

the mission time achieved by CAN and CANcentrate, which
is defined as the expected length of operation of one mission
for a system [28].

Despite targeting general field-bus communications, typical
values of reliability of x-by-wire systems were taken as a
means of reference. Specifically, a comparison was made of
the mission times during which CAN and CANcentrate present
a reliability or a PNS ≥ 0.99999, which is the value of reliabil-
ity required by the less demanding x-by-wire systems, e.g. for
throttle-by-wire, during a mission of 10 hours [28].

The comparison is carried out considering from 4 up to 20
nodes, which are typical node numbers for CAN networks in
body and powertrain electronics applications in vehicles [42].

Finally, remember that, as stated in Section III, all depend-
ability parameters were determined, and options taken, with
specific care not to favor CANcentrate, which indicates that
the results herein presented are likely to be lower bounds to
the dependability achievable with CANcentrate.

A. Reliability vs number of nodes

The main dependability parameters used for comparing the
reliability of both CAN and CANcentrate are shown in Table I.
This table also shows the computed values of those parameters
following the techniques, assumptions and options explained
in the previous sections.

As depicted in Figure 7, the CAN bus is more reliable than
CANcentrate for any number of nodes. This is an expected
result given the extra hardware of CANcentrate with respect
to CAN. The difference of reliability grows as the time or the
number of nodes increases.

If the mission times during which the reliability is ≥

0.99999 are studied, CAN and CANcentrate provided with
4 nodes, respectively achieve 0.6 and 0.48 hours of mission
time. This implies that CANcentrate reduces the mission time
to around 20%. If 20 nodes are considered, then CAN and
CANcentrate respectively achieve 0.12 and 0.1 hours of mis-
sion time. In this case CANcentrate reduces the mission time
to around 16.6%. Note that although a higher number of nodes
implies a bigger difference between CAN and CANcentrate
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Fig. 7. Reliability vs number of nodes

in terms of reliability, the drop of mission time provoked by
CANcentrate decreases as the number of nodes grows. This is
because the reliability of both infrastructures decreases faster
as the number of nodes increases.

B. Error-containment vs number of nodes

Here error-containment is assessed in systems that are robust
to the loss of communication with at most 1 out of N
nodes, i.e. systems that can operate as long as a k-severe
failure, where k = 1, does not occur. As mentioned before,
PNS is used as metric of error containment. In particular, the
mission times during which CAN and CANcentrate present a
PNS ≥ 0.99999 are analyzed.

Figure 8 depicts the PNS of CAN and CANcentrate for
different numbers of nodes. Results are, to some extent, the
opposite of those obtained in terms of reliability: CANcentrate
is better than CAN for any number of nodes, and the difference
between their PNS grows as the time or the number of nodes
increases. This was also expected, given the enhanced fault-
treatment mechanisms of CANcentrate.

Conversely to what happens with reliability, a higher num-
ber of nodes does not only imply a bigger difference in terms
of PNS, but also a bigger difference in the achievable mission
times. If the mission times during which the PNS is ≥ 0.99999
are analyzed, CAN and CANcentrate provided with 4 nodes,
respectively achieve 3.8 and 4.4 hours of mission time. This
implies that, for 4 nodes, CANcentrate increases this time to
around 16%. But if 20 nodes are considered, then CAN and
CANcentrate respectively reach 0.78 and 1.28 hours; which
means that CANcentrate improves the mission time by 64%.
The benefit that CANcentrate yields in terms of mission time
increases as the number of nodes grows because the CAN bus
is much more sensitive to this number than CANcentrate, e.g. a
CANcentrate network provided with 12 nodes achieves a
higher mission time than a CAN bus that includes 8. This
means that CANcentrate supports an increase in the number
of nodes that can be included in the network while ensuring
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PNS ≥ 0.99999 during a given mission time (approx. 50% in
the previous example).

C. Error-containment vs fail-silent node proportion

As said before, these results are based on a set of assump-
tions that may have been too detrimental for CANcentrate.
One of such assumptions is the proportion with which a node
fails in a fail-silent manner, i.e. the proportion with which
it fails delivering a stuck-at-recessive stream. As explained
in Section III-D, although a proportion of 90% is herein
considered reasonable, this value is maybe slightly overes-
timated, and thus biased in favor of the CAN bus. In fact,
the real value for this parameter is unknown and, thus, a
fair comparison between CAN and CANcentrate requires a
sensitivity analysis with respect to it. Moreover, this analysis
is also interesting to estimate the relevance of using star
topologies in communication protocols in general, depending
on the ability of nodes to contain their own errors.

To carry out this sensitivity analysis the percentage of stuck-
at-recessive failures was varied. The proportion of out-of-fault-
model failures is kept 5%, whereas stuck-at-dominant and bit-
flipping failures are assumed equiprobable again, so that the
sum of their proportions is equal to 95% minus the percentage
of stuck-at-recessive failures.

Figure 9 depicts the PNS of the CAN bus and CANcentrate
provided with 4 nodes. Note, again, that this is the number
of nodes most unfavorable to CANcentrate as the advantages
of CANcentrate are reinforced when the number of nodes is
increased. The figure shows that when the proportion of node
silent faults is 100%, the CAN bus is better than CANcentrate.
This is obvious since with such a proportion the fault-treatment
mechanisms of the hub become irrelevant. However, it can be
seen that a drop of the proportion of silent faults dramatically
affects the CAN bus, but not CANcentrate. This is due to the
fact that the hub of CANcentrate is able to confine faults that,
otherwise, would lead to a severe failure. More specifically,
it is enough that the proportion of silent faults of nodes in a
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CAN bus drops to 87% to turn the bus into a worse option
than a CANcentrate network in which the proportion is 0%.

On the other hand, notice that the PNS presented by a
CAN bus where node failures are 92% fail-silent is lower
than the PNS yielded by CANcentrate when this proportion
is 83%. The CAN bus only becomes definitively better than
CANcentrate when the proportion of fail-silent failures is
≥ 93%.

VII. CONCLUSIONS

In this paper a quantitative comparison has been carried out
on the dependability benefits of using a star topology instead
of a bus in CAN networks. In particular SANs were used to
compare the reliability and the PNS when k = 1 in CAN
and CANcentrate, and permanent faults occur. As far as it has
been possible to determine, this is the first formal (quantitative)
comparison between a star and a bus that takes into account
the capacity of the hub and nodes to contain errors, different
failure modes of the components, and implementation aspects.

Moreover, the models presented here are parameterizable so
that they can throw light on how some design and implemen-
tation choices affect network dependability. This has a signif-
icant practical interest, since these models can help engineers
in designing and implementing a bus or star-based network
that fulfills a specific level of dependability, e.g. models can
help them choose adequate electronic components depending
on their complexity. Furthermore, the models can be used to
elucidate when a star is preferable to a bus, based on the
dependability requirements of a specific distributed embedded
application. Specifically, these models allow carrying out
sensitivity analyses with respect to the number of nodes, the
proportion of fail-silent node failures, the failure rate and the
failure mode of components, and the hub error-containment
coverage for each one of these failure modes.

In this paper, from 4 to 20 nodes were considered, this being
the typical node number in CAN-based body and powertrain
electronics applications in vehicles. Results show that when
reliability is the issue, the maximum decrease of mission time



that CANcentrate can cause is around 20%. However, when
PNS is the main concern, the improvement in mission time
yielded by CANcentrate ranges from 16% to 64%. Moreover,
the PNS of the CAN bus is much more sensitive to the number
of nodes than the PNS of CANcentrate, allowing the latter to
include more nodes while presenting a PNS above a specific
threshold during a given mission time. This indicates that the
use of a star is more and more justifiable as the number of
nodes grows, even though including a node in a star requires
more hardware than including a node in a bus does.

Results demonstrate that CANcentrate is more suited
than CAN for systems that accept or tolerate up to 1
communication-failed node, thereby quantitatively corrobo-
rating the advantage that star topologies intuitively yield in
terms of error-containment. Moreover, results are likely to
be lower bounds to the dependability of CANcentrate, given
the special concern taken to ensure it was not favored in the
analysis and the fact that several other advantages, such as the
minimization of the impact of spatial proximity faults, were
not even modeled, as explained in Section I. Therefore, it can
thus be inferred that even in the case that our analyses should
yield a result whereby the PNS of CAN is equal to the one of
CANcentrate, the actual fact is that CANcentrate is superior.

An analysis of the sensitivity of the PNS with respect
to the proportion with which the nodes exhibit fail-silent
failures was carried out, using for that purpose the developed
parametrizable models of CAN and CANcentrate. As far as
it can be ascertained, this is the first time that the ability of
nodes to contain their own errors has been studied in terms of
how it affects the relevance of using a star topology. Results
show that this ability dramatically affects the PNS presented
by the CAN bus, but not that of CANcentrate. However, they
also show that when the nodes of a bus have a similar failure
rate than the nodes of a star (which is the case presented in
this work), then the use of a star topology is only justified if
the probability that nodes are fail-silent is ≤ 92%.

Although these results refer to the case of CAN, and other
technologies, such as TTP/C or FlexRay, deal with different
failure modes, conclusions regarding the justification of using
a star topology depending on the fail-silent node proportion
can be extrapolated to these technologies. On the one hand,
other technologies use similar components with similar failure
rates. On the other hand, failure modes can be abstracted so
that what really matters is the proportion of failures that can
be covered by the hub and the nodes.

Future work will perform additional sensitivity analyses
with respect to dependability parameters such as the error-
containment coverage of the hub; the failure rate of compo-
nents whose amount is bigger in CANcentrate; and the value
of k for different degrees of k-severe failure. Future work is
also planned to include other technologies and topologies.

Finally, as explained in Section I, a quantitative assessment
including transient faults has been postponed to a later work.
Notice that transient faults, by definition, cannot prevent
nodes from communicating indefinitely but cause temporary
unavailability of the communication system thereby negatively
affecting its performance, e.g. deadline violations, increased
average response times, packet losses. The particular impact on

dependability is, necessarily, application dependent and thus,
it is beyond the scope of this paper. For example, deadline
violations can lead to a generalized failure in hard real-time
systems; but this strongly depends on the specific set of
messages and the scheduling [43]. Besides, response times can
also affect the dependability of some types of control system,
e.g. of life-critical ones [44]. But similarly to what happens
with deadline violations, the way in which performance affects
dependability depends on the application.

It is nevertheless possible to assess the performance that can
be achieved with a bus and a star topology thus leading to an
indirect comparison of the dependability they can yield in the
presence of transient faults. Therefore, a study will be carried
out in the short term in order to quantitatively compare the
performability of the CAN bus and CANcentrate under these
faults.
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