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Abstract

An autonomous robot needs to perform some tasks in order to be independent.
Some of these tasks require that the agent is able to locate itself in its environment. This
process is known in mobile robotics as localization and it can be achieved by different
ways according to the characteristics of the scenario where the robot is working.

One of this ways is that the robot use a world representation called map. There
exists several methods to represent the agent environment. A widely used option is
topological maps, where the world is modeled as an abstract graph with nodes which
represent locations, and links between them that indicate possible actions to take be-
tween two concrete nodes.

The process of construction of these maps is called mapping. A number of sensors
can be used to this end in order to obtain information from the environment. When a
camera is the selected option, visual information needs to be described and managed.
In this case, the quality of the mapping and localization processes depends on how
images are described.

Within this context, this work introduces, on the one hand, an appearance-based
method to create topological maps from a sequence of images; it also defines several
measures that permit assessing the performance of different visual descriptors for map-
ping and localization tasks. On the other hand, this work also comprises a comparison
of different view descriptors, involving real cases and different types of scenarios, and
using the aforementioned measures as the figures of merit.

As will be seen, the developed framework and the measures exposed in this report
can be easily extended and used to test more image descriptors in different environ-
ments. This work also shows a first mapping and localization approach in underwater
scenarios, not much explored yet.
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1. Introduction

An autonomous vehicle is a robot which is able to operate without receiving remote
orders. This kind of vehicles has a lot of applications, especially in scenarios under
unsafe conditions, potentially dangerous for humans. However, due to this autonomy,
these robots need to handle information from their environment to plan and perform
different tasks. An example of these tasks is localization.

The localization process is an important problem in mobile robotics. It can be
defined as the ability of a robot to locate itself within its environment to achieve tasks.
To this end, some applications use external infrastructures like the Global Positioning
System (GPS). However, those systems are not available in many places such as indoor,
underground and underwater environments, and localization must be solved internally
by the robot, using its own sensor information. In these cases, the agent builds its own
representation of the world using the available sensors and establishes a mechanism to
infer its position in it. The study of this process is called robot mapping.

The accuracy of these maps depends on the information needs of the application.
There exists three different paradigms for mobile robot mapping:

• Metric maps: This kind of maps represents the world as accurate as possible.
They maintain a lot of information about environment details, such as distances,
measures, sizes, etc. and they are referenced according to a global coordinate
system. The main drawbacks of this approach are the storage needs and the pro-
cessing time, which makes its use in some real time applications more difficult.

• Topological maps: This approach tries to generate an abstract representation of
the world, usually as a graph with nodes and links between them. Nodes rep-
resent environment locations with similar features and links are relationships or
possible actions to take between the different locations. These maps are sim-
ple and compact, and require much less space to be stored than metric maps.
However, they are not useful for tasks with accuracy needs, for example obstacle
avoidance.

• Hybrid maps: This last paradigm tries to maximize the advantages and minimize
the problems of each kind of map alone and combine them in a different mapping
technique.

Ultrasonic and laser sensors have been used for years to construct these maps. Nev-
ertheless, recently there has been a significant increase in the number of visual solutions
because of the low cost of cameras and the richness of the sensor data provided. Using
cameras permits us to obtain a visual representation of the robot’s world. To achieve
this goal, it is necessary to describe the acquired images and be able to compare these
descriptors. Consequently, the quality of the map and the posterior self-localization
will directly rely on the method used for visually describing the different environment
locations.

Many image detectors and descriptors have been proposed along the years. This
work focuses on comparing the performance of some of them to create topological
maps and localize images in it. For each one, a graph is created in memory from a
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sequence of images according to the differences between consecutive frames. Then,
we determine, given a previously unseen image, what is the node it most likely comes
from. We also compare these images with a manually generated ground truth graph.
This allows us to assess the localization process in a common map for all descriptors,
since each image descriptor generates its own representation of the environment and
the number of nodes may vary. For every test, we obtain error rates and execution
times.

Map building and localization has been widely studied for indoor environments.
This is because these scenarios present common regularities and it is easier to extract
information from them. However, underwater scenes are most difficult due to the lack
of defined structures. Another goal of this work is, thus, to validate the suitability of
these descriptors in these unexplored scenarios.

The outline of this report is as follows. Section 2 reviews previous works related
to topological mapping, localization and image retrieval systems. Section 3 explains
the image feature detectors and descriptors used in this work. Section 4 introduces an
abstract model of topological maps and shows how these maps are built. Section 5
presents the experiments and metrics developed to test the efficiency of each descriptor
for mapping and localization. Section 6 shows experimental results for outdoor, indoor
and underwater environments. Finally, Section 7 concludes the report.

2. Related Work

A large number of solutions for topological map building and image retrieval can
be found in the scientific literature. These are areas of active research. The goal of this
section is not to make an exhaustive review of the proposed solutions, but to focus on
the last 15 years. For an extensive coverage, see [5].

Although most works are based on either topological maps or metric maps, some
authors have tried to make hybrid solutions, combining both paradigms in one. Thrun
[32] uses an artificial neural network to construct a grid-based model of the environ-
ment. On top of the grid representation, topological maps are generated by splitting
the metric map into coherent regions. In this work, topological maps are employed for
efficient planning while metric maps are used for scene recognition. Sonar sensors are
employed as the main source of information.

Winters and Santos-Victor [36] utilize an omnidirectional camera to create a topo-
logical map from the environment during a training phase. Nodes are sets of im-
ages with common features and links are sequences of consecutive views between
two nodes. The large image set obtained is compressed using Principal Component
Analysis, resulting in a low dimensional eigenspace from which the robot can deter-
mine its global topological position using an appearance-based method. Based on this
work, Gaspar et al [13] map an indoor environment and emulate insect vision-based
navigation capabilities. Similarly, Swets and Weng [30] use also Principal Component
Analysis and Multivariate Linear Discriminant Analysis to generate Most Expressive
Features (MEF) and Most Discriminant Features (MDF), respectively. They experi-
ment with these features for face recognition.

Both global and local image descriptors have been employed along the years for
object and scene recognition. The former typically consider the entire image to per-
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Figure 1: Rhino.

form the description. The latter are based on local changes between adjacent pixels or
regions.

Global representations proposed in the past include responses to banks of filters
[34], multi-dimensional receptive field histograms [23] and various forms of color his-
tograms [35]. Local image descriptors comprise different forms of salient image points
or image regions: rotationally invariant features [17, 24, 25, 37], Fourier transforms of
salient image regions [27], etc.

Some authors have experimented with different descriptor types. For instance,
Kosecka et al [15] proposed a navigation strategy using gradient orientation histograms
as image descriptor. In an exploration phase, a topological map is built by comparing
successive frame descriptors. For each node, a set of representative views are computed
using Learning Vector Quantization. During the navigation, the current frame’s his-
togram is extracted and compared with each node representatives using the Euclidean
distance to determine the most similar location. Kosecka and Yang [14] have also
demonstrated the suitability of scale-invariant features for localization tasks. They em-
ploy SIFT [17] for this purpose and improve the localization phase using a Hidden
Markov Model.

Zivkovic et al [38] presented an algorithm for automatically generating hierarchi-
cal maps from images. A low-level map is built using SIFT features. Then they cluster
nodes to construct a high-level representation. Later, [7] showed a navigation system
based on a topological map which used the epipolar geometry to obtain a robust head-
ing estimation.

Museum guidance is one of most tested map-building applications. These robots
need to be autonomous in their tasks, such as recognizing people, guiding them through
the museum and avoiding obstacles. Because of the growing interest in this type of ve-
hicles, we are going to mention the main contributions in the following. RHINO [8]
was a robot deployed in the Deutsches Museum Bonn, where it guided a hundred of vis-
itors for six days (see Figure 1). Later, the same team constructed an improved version
of this robot called MINERVA [33]. This prototype was equipped with two cameras
and a laser sensor to build a complete map of the environment for the navigation pro-
cess. More recently, Shen and Hu [26] presented ATLAS, a museum guiding robot that
combines topological map building and appearance-based matching algorithms for lo-
calization. ATLAS also incorporates a human face detection algorithm used to actively
approach to new visitors.

Liu et al [16] described a new color based descriptor called FACT. They used it to
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(a) (b) (c)

Figure 2: (a) Original image; (b), (c) Gradient images in x and y directions, respectively.

create a topological map and navigate through it. This descriptor is based on the fact
that, in indoor environments, the important vertical edges (windows, columns, etc.)
naturally divide the indoor environment into several meaningful cuts. Consequently,
for each cut, the average color value in the U-V space is computed. This U-V aver-
age value and the width of the region form the region descriptor. A scene descriptor
is formed concatenating each region descriptor in a vector. Scene matching between
new scenes and existing nodes was performed computing the 2D euclidean distance
between color descriptors and recursively comparing the widths of the regions accord-
ing to an empirically determined inequality. Every node was characterized with more
than one image.

Recent works [10–12] are heading to the Bag of Words or Bag of Visual Words
representation. Bag of Words is a concept extracted from text retrieval that was first
applied to image search by Sivic and Zisserman [28]. This description quantizes a set
of image descriptors against a vocabulary of prototypical descriptors. The vocabulary is
learned by clustering descriptors from a set of training data. This quantization process
allows a high-dimensional descriptor (for instance SIFT) to be replaced as a single
integer. Images can now be represented as a short list of integers specifying which
visual words occurred in the image and how often they occurred.

Bacca et al [2] have proposed recently an innovative feature management approach
for topological map-building and localization, which is based on a human memory
model and implements concepts such as Short-Term Memory (STM) and Long-Term
memory (LTM). Using Feature Stability Histograms (FSH), their method can deal with
temporary occlusions and changes in illumination caused by dynamic environments.

To conclude this section, we highlight that: (1) although there exist works that try to
compare different image descriptors for various purposes and propose criteria to assess
the properties and performance of different features [3, 6, 19, 20], (2) none of them
show results for underwater scenarios.

3. Image Description

In this section, the image descriptors that are used in this work are described. The
main idea is to explain their essentials and the configuration used in our experiments.

3.1. Gradient Orientation Histograms
This is the only global image descriptor considered in this work. Among others, it

was applied by Kosecka et al [15] for navigation tasks. Our implementation and use in
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Figure 3: Overview of the DoG scheme, used by SIFT for the key point detection.

our tests is based on that paper. These orientation histograms are computed from the
gradient images Gx and Gy, which represent the gray value variations in the x and y
directions, respectively.

The edge image is also computed using the Canny detector. To calculate the his-
togram, we consider only pixels belonging to an edge whose magnitude is in the top
4%. For these egdes, orientation is quantized and accumulated into a 36 bin vector. As
a result, we have the gradient orientation histogram, which is normalized for compari-
son purposes.

In order to obtain better discrimination capability of this representation, we com-
pute the histogram for five sub-images: four quadrants and the central region. The final
image descriptor is formed concatenating the five sub-histograms into one. The case of
a single histogram for the whole image has also been considered.

We did not employ any external code to use this global descriptor. It has been fully
implemented by ourselves, using C++ language and the OpenCV1 library.

3.2. SIFT

The Scale-Invariant Feature Transform (SIFT) is an algorithm developed by Lowe
[17] to detect and describe distinctive key points in images which was originally created
for object recognition. These key points are invariant to image rotation and scale and
robust across affine distortion, noise and changes in illumination.

To obtain these key points, a scale space is generated convolving the original image
with Gaussian kernels at different scales. A set of Difference of Gaussians (DoG)
images is obtained subtracting the successive blurred images. Key locations are defined
as maxima and minima of the Difference of Gaussians that occur at multiple scales (see
Figure 3). Specifically, a DoG image is given by:

D (x, y, σ) = L (x, y, kiσ) − L
(
x, y, k jσ

)
, (1)

where L (x, y, kσ) is the convolution of the original image with a Gaussian kernel at
scale kσ:

1http://opencv.willowgarage.com
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Figure 4: Left to right: the Gaussian second order partial derivatives in y-direction and xy-direction, and
SURF approximations using box filters. The gray regions are equal to zero.

L (x, y, kσ) = G (x, y, kσ) ∗ I (x, y) . (2)

Scale-space extrema detection produces too many candidates, some of which are
unstable. Therefore, the next step is to perform a filtering process using the quadratic
Taylor expansion of the DoG scale-space function and the eigenvalues of the second-
order Hessian matrix, resulting into a reduced set of key locations. This key point
detection is combined with a 128 dimensional descriptor, calculated on the basis of
gradient orientation histograms of 4×4 subregions around the interest point.

Once the key points have been detected and described, it is important to define an
efficient method to match these features in different views. Comparing one by one
is not a real solution, due to its inefficiency. Therefore, Lowe used a modification of
the k-d tree algorithm called Best-bin-first (BBF) search method that can identify the
nearest neighbors with high probability using only a limited amount of computation.
The nearest neighbors are defined as the points with minimum Euclidean distance from
the given descriptor vector.

In our case, we have tested the original SIFT algorithm. Each image is represented
by a set of SIFT descriptors and BBF over a k-d tree is used for feature search. SIFT
features and k-d tree implementations employed in this work come from Rob Hess2.

3.3. SURF

Speeded Up Robust Features is an image detector and descriptor presented by Bay
et al [4]. It is partly inspired by the SIFT algorithm but outperforms previous solutions
in terms of computation time.

The SURF detector is based on the Hessian matrix, due to its good performance.
Given a point x = (x, y) in an image I, the Hessian matrix in x at scale σ is defined as:

H(x, σ) =

[
Lxx(x, σ) Lxy(x, σ)
Lxy(x, σ) Lyy(x, σ)

]
, (3)

where Lxx(x, σ) is the convolution of the Gaussian second order derivative ∂2

∂x2 G(σ)
with the image I at point x, and similarly for the rest of terms. The determinant of this
matrix is used for selecting the location and the scale.

2http://blogs.oregonstate.edu/hess/code/sift/
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Denoting the Hessian components by Dxx, Dyy and Dxy, the blob response at loca-
tion x in the image can be approximated by:

det(Happrox) = DxxDyy + (0.6Dxy)2 . (4)

These responses are stored in a blob map, and local maxima are detected and refined
using the quadratic interpolation.

The Hessian is roughly approximated using a set of box-type filters (see Figure 4).
These approximations can be evaluated very fast, and independently of the image size,
using integral images:

II(x, y) =
∑
x′≤x
y′≤y

i(x′, y′) , (5)

where i(x, y) is the input image. The 9 x 9 box filters in Figure 4 are approximations
for a Gaussian with σ = 1.2 and represent the finest scale.

Descriptors show how the pixel intensities are distributed within the neighborhood
of each feature at different scales. The result is a 64 dimensional vector.

In our experiments, we have used the OpenCV SURF and k-d tree implementa-
tions. We have limited the amount of features for each image. Only a parameterized
number of points with the highest Hessian response have been considered to control
the description time per image.

3.4. FAST

Figure 5: Pixels examined by FAST detector.

Features from Accelerated Segment Test is a corner detector proposed by Rosten
and Drummond [22]. It is based on the SUSAN [29] detector.

FAST compares the intensity in a circle of 16 pixels around the candidate point (see
Figure 5). Initially pixels 1 and 2 are compared with a threshold, then 3 and 4 as well as
the remaining ones at the end. The pixels are classified, according to its intensity, into
dark, similar and brighter groups. An image point is a feature if a minimum of pixels
can be found on the circle of fixed radius around the point such that these pixels are
all brighter or darker than the central point. The feature descriptor consists of a vector
containing the intensities of the 16 pixels surrounding the point.

FAST has been reported as 30 times faster than a DoG detector, such as SIFT.
However, it is not invariant to scale changes and it depends on a predefined threshold.
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Figure 6: Different spatial arrangements for computing BRIEF: G I: (x, y) ≈ U(− S
2 ,

S
2 ); G II: (x, y) ≈

N(0, 1
25 S 2); G III: x ≈ N(0, 1

25 S 2), y ≈ N(x, 1
100 S 2); G IV: (x, y) are randomly sampled from discrete

locations of a coarse polar grid introducing a spatial quantization; G V: ∀i : x = (0, 0)T and y takes all
possible values on a coarse polar grid containing the number of desired tests points; the patch size is S × S
pixels and the origin of its coordinate system is located at the center.

We have employed the original Rosten and Drummond implementation, adapted
to C++ language. As before, the number of features is specified to control the image
description time. The matching process between two images is performed comparing
all the features of the first image with all the features of the second one.

3.5. Star and BRIEF

The remaining cases considered correspond to the combination of different algo-
rithms for detection and description. In this section, we deal with the combination
consisting of Star as the feature detector and BRIEF as the feature descriptor.

Star is a feature detector developed by Willow Garage3 and derived from CenSurE
(Center Surrounded Extrema) [1]. This last one uses center-surrounded bi-level filters
to approximate the Laplacian. The bi-level adjective means that they multiply the im-
age pixel values by either 1 or -1. Examples of filters are shown in Figure 7. The first
one is the most faithful to the Laplacian, but hardest to compute. To reduce execution
time, CenSurE replaces the two circles with squares (Figure 7d), easier to calculate
using integral images. For each pixel in the image, the filter response is calculated for
seven scales. Then, a non-maximal suppression is performed over the scale space and
weak features are discarded. Finally, unstable points on edges are suppressed examin-
ing each feature corner with the Harris measure under a 9x9 window. Meanwhile, Star
approximates the Laplacian with 2 overlapping squares: one upright and one 45-degree
rotated, and performs a sub-scale interpolation.

Binary Robust Independent Elementary Features (BRIEF) is a simple binary de-
scriptor created by Calonder et al [9]. The main goal of BRIEF is to speed up the

3http://www.willowgarage.com/
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matching process. The descriptor is a binary string, where each bit represents a simple
comparison between two points inside a patch in the image. A bit is set to 1 if the first
point has a higher intensity than the second. In the original work, the authors suggest
several point spatial arrangements over a key point centered path (see Figure 6). Ac-
cording to the authors, empirically, better results are obtained with point pairs randomly
drawn from uniform or Gaussian distributions of point coordinates. The Hamming dis-
tance is used for matching, taking the advantage of the XOR and bit-counting CPU
instructions.

As for the implementation, we have used the Star detector included in the OpenCV
library. For BRIEF, we employed the original code from the authors. The matching
process between two images is performed comparing all features of the first image with
all features of the second one. This is a very fast process due to the simplicity of the
BRIEF descriptor (16 bits).

CenSurE Star

Figure 7: Bi-level filters used by CenSurE and Star

3.6. FAST and BRIEF

In this case, FAST is used to detect corners in the image and these ones are de-
scribed using BRIEF. All previous considerations for each case are still valid.

3.7. Star and FAST

The last image description tested in this work is again a combination of two previ-
ous techniques. Star is used as a key point detector and FAST as a descriptor.

4. Environment Model and Map Construction

This section exposes a general model of topological maps and explains the method
used for its construction.

4.1. Environment Model

First of all, it is important to establish what is a topological map for us. In general
terms, it is a graph-like representation of the environment, where nodes often represent
states in the agent’s configuration and links are system actions that take the agent from
one state to another. Despite this common use, there is not an agreement about what
really are or how they are built. Nevertheless, there have been authors who have tried
to establish a general theory of these maps [21].
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In our approach, a node is a group of ordered images with similar features, which
represent a location in the environment. For each node, a subset of these images are
chosen as node representatives for scene recognition. The election of representatives
in the nodes is for computational reasons and to improve the stability of the process.
In the scene recognition phase, it would be very slow to compare the query image
with each frame in the location. Therefore, it is important to select a set of them, and
compare only these ones.

We do not use the above-mentioned concept of link and, thus, for now, our matching
method does not consider these relationships between nodes to improve the localization
process. Finally, for the time being, the map does not contemplate loops. Therefore, if
a node is revisited, it appears as a new node in the graph.

Given I = {I(1), . . . , I(m)} as an input sequence of m images, we define our topo-
logical map as an ordered sequence of nodes:

M = {N1, . . . ,Nl} , (6)

where l is the number of nodes generated by the mapping process. Consecutive nodes
represent locations of the environment the robot has consecutively visited. Particularly,
the i-th node is defined as the following 2-tuple:

Ni = (Ji,Ri) , (7)

where Ji is the sorted sequence of images included in the location and Ri the node
representatives. Formally:

Ji = { ji,1, . . . , ji,ni } ⊆ {1, . . . ,m} , (8)

Ri = {ri,1, . . . , ri,n∗i } ⊆ Ji , n∗i ≤ ni , (9)

where each ji and ri are indexes of the original sequence of images.
To generate the graph, we need to describe an image and be able to compare two of

them. Next sections formalize these concepts.

4.1.1. Image Description
A frame is represented by an image descriptor, which changes according to the

method used in each case. We denote it with the symbol ∆. In the case of the orientation
histograms, the descriptor is defined as follows:

∆h(I(i)) = {hi,1, . . . , hi, j, . . . , hi,g} , (10)

where each hi, j represents the probability by which the angle α( j) = j × 360
g appears in

the image. Observe that, if we are considering five sub-images, the final descriptor is
obtained concatenating the respective five histograms into one.

When the image is described by means of local features, the image descriptor is
defined as:

∆ f (I(i)) = { fi,1, . . . , fi,si } , (11)
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where each fi is a feature descriptor, different for every case. Every feature descriptor is
usually constituted by a sequence of numbers. We assume that there is always available
a distance function to determine the dissimilarity between feature descriptors d f ( fi, f j).

4.1.2. Comparing Images
In order to compare two frames, we need to define a measure that quantifies how

similar or dissimilar two image descriptors are. These measures are called proximity
functions [31] and they are defined as follows:

ρ : ∆ × ∆→ R , (12)

where we generically denote by ∆ the set of image descriptors produced by a given
description method.

This function definition derives in two cases: dissimilarity and similarity functions.
On the one hand, a dissimilarity function associates high values to low-similarity de-
scriptors: the less similar they are, the higher is the value. More precisely, it is defined
as:

dis : ∆ × ∆→ R , (13)

where:

(1) ∃d0 ∈ R : −∞ < d0 ≤ d(x, y) < +∞,∀x, y ∈ ∆

(2) dis(x, x) = d0,∀x ∈ ∆

(3) dis(x, y) = dis(y, x),∀x, y ∈ ∆

On the other hand, a similarity function associates high values to very similar de-
scriptors: the more similar they are, the larger the value. More precisely, these func-
tions are defined as follows:

sim : ∆ × ∆→ R , (14)

where:

(1) ∃s0 ∈ R : −∞ < s(x, y) ≤ s0 < +∞,∀x, y ∈ ∆

(2) sim(x, x) = s0,∀x ∈ ∆

(3) sim(x, y) = sim(y, x),∀x, y ∈ ∆

This kind of measures have been used to compare two images in our model. We
will discuss about the details later in this document.
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Figure 8: Example of representative views in a location: mean image, first and last images, respectively.

4.1.3. The Election of Representatives
Another issue that comes from our model definition is how to elect the representa-

tives of a node. For this purpose, we define the total proximity of an image in a node
as:

P(I(i),Nk) =

nk∑
j=1

ρ(I(i), I( j)) , (15)

where ni is the number of frames of the node Nk. We also define the mean image (Ik)
of the location as the image with the minimum or maximum total proximity, depending
on the measure used. In case of a dissimilarity function, it is defined as follows:

Ik = arg min
I( j) , j∈nk

{ρ(I( j),Nk)} . (16)

When a similarity function is used as measure, the mean image is defined as:

Ik = arg max
I( j) , j∈nk

{ρ(I( j),Nk)} . (17)

The mean image denotes the frame of a location which is closer to the rest than the
other images. We do not define this function as the mean between descriptors because
the corresponding descriptor does need to correspond to a real, physically possible
image.

The accuracy of the localization process will directly rely on how we select these
representative views. In this work, three options have been considered:

• Get only the mean image.

• Get the mean image, the first and the last images in the node, according to the
order of the sequence.

• Get the n images with the best total proximity values.

The second option tries to summarize the variability of images inside a node. The
third one is the extension of the concept of mean image to a subset of node frames, so
that this subset comprises those images closest to the rest of images, in the sense of
total proximity defined before.
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4.1.4. Constructing the Map
Once we have defined our model, we are ready to explain the method that has been

used to build a topological map. Initially, a sequence of images is taken using a camera.
Each frame is described (∆) and compared (ρ) to the previous one. The result of the
proximity function is then evaluated against a threshold, adding the image to the last
location in the graph or creating a new node, as appropriate. This threshold depends on
the descriptor used for the test and vary for every case.

Despite the obvious visual similarity between consecutive images, it is possible
to obtain extreme distances between two of them, due to image noise or during fast
turns of the camera. Therefore, we can have nodes with few frames, irrelevant for the
localization phase. The next step is, thus, to refine the map, deleting the superfluous
nodes comprising a small number of images. An example of this situation is illustrated
in figure 9.

For each of the nodes surviving from the purging stage, their representatives are
calculated as indicated in section 4.1.3.

Terms view and location will be used interchangeably from now on to refer to nodes
of the topological map.

4.1.5. A Brief Note about the Internal Representation of the Maps
The internal representation of a map is the result of taking into account the follow-

ing:

• First of all, each frame is identified by its index within the input sequence.

• Second, due to the nature of the map construction process, which leads to split-
ting the input sequence into different segments, a map turns out to be an ordered
set of locations/segments.

• Third, due to the frame purging stage, some input frames results to be not as-
signed to any location in the map.

As a consequence of all the aforementioned, a map is internally stored as a vector of
locations, and each location is in turn represented as the vector containing the indexes
of the images that have been assigned to the corresponding map node.

This abstract representation is illustrated in Figure 10. First, the number inside the
boxes represent the index of the frame in the input sequence and, second, green boxes
refer to locations in the graph. In the case depicted in the figure, there are two images
not associated with any view.

To finish, notice that using this representation, we know the range of images inside
each location and we are able to determine, given a query image, where it should be
theoretically classified.

4.2. Proximity Functions
In the previous section we have performed a formal description of our model. This

definition includes a set of proximity measures that permits us to compare two image
descriptors. In practice, these measures can be implemented in different ways. The
main goal of this section is to specify the proximity functions used in this work.
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Figure 9: Example of segmentation of an input sequence of images. Below each frame, it is shown the final
location assigned. L1 and L2 are locations, while D indicates that the image has been discarded. In this case,
the discarded images are due to a right turn of the vehicle.
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Figure 10: Internal representation of a map.

A dissimilarity function is usually implemented as a distance between descriptors.
In the case of orientation histograms, χ2 is used as empirical distance between two
distributions:

dis(∆h(I(i)),∆h(I( j))) =
∑

k

(hi,k − h j,k)2

hi,k + h j,k
,∀k ∈ {1, . . . , g} . (18)

In case the image is described by a set of local image feature descriptors, we use
a similarity function. For this purpose, we employ a measure based on the number of
matchings between two image descriptors.

The concept of matching varies according to the descriptor used. In the case of
SIFT and SURF, we define the set of matchings between two images as follows:

M(I(i), I( j)) ={( fi,a, f j,b) | fi,a ∈ ∆ f (I(i)) , f j,b ∈ ∆ f (I( j)) ,
Ld,a = {d f ( fi,a, f j,c) | f j,c ∈ ∆ f (I( j))} ,
Ld,a is an ordered set | Ld,a(1) ≤ Ld,a(2) ≤ Ld,a(3) . . . ,
Ld,a(1) ≤ 0.6 × Ld,a(2) ,
Ld,a(1) < T } ,

(19)

where T is a distance threshold and varies for each kind of feature. The relation be-
tween the nearest feature and the second nearest one is an empirical value used in
some previous works. More detailed justification about this threshold can be found in
[14, 18].

In the case of BRIEF, matchings are defined differently:

M(I(i), I( j)) ={( fi,a, f j,b) | fi,a ∈ ∆ f (I(i)) , f j,b ∈ ∆ f (I( j)) ,
d f ( fi,a, f j,b) = min{d f ( fi,a, f j,c) | f j,c ∈ ∆ f (I( j))} ,
d f ( fi,a, f j,b) = min{d f ( fi,c, f j,b) | f j,c ∈ ∆ f (I(i))} ,
d f ( fi,a, f j,b) < T } .

(20)

Regarding FAST, the matching process do not make use of cross-validation as ex-
pressed in equation 20, nor introduces any additional check such as the ratio between
the shortest and the second shortest distances of equation 19. This is an order to speed
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up the matching as much as possible. Next equation describes formally the procedure
implemented:

M(I(i), I( j)) ={( fi,a, f j,b) | fi,a ∈ ∆ f (I(i)) , f j,b ∈ ∆ f (I( j)) ,
d f ( fi,a, f j,b) = min{d f ( fi,a, fi,c) | fi,c ∈ ∆ f (I( j))} .

(21)

Once we have explained what is a matching for us, we are able to define a similarity
function as follows:

sim(∆ f (I(i)),∆ f (I( j))) =
|M(I(i), I( j))|( si+s j

2

) , (22)

where |X| refers to the cardinal of set X.
This measure is, thus, just the ratio between the number of matchings and the aver-

age number of features found in each frame.

5. Experimental Methodology and Performance Metrics

This section describes the tests that have been carried out in order to assess the
performance of the different feature detectors and descriptors considered, with regard
to the tasks described in the previous sections. To this end, Section 5.1 proposes a
test for checking the similarity between generated and reference maps, where the latter
have been manually generated by a human using common sense. Later, Section 5.2
evaluates how proficient are the detectors/descriptors regarding the recognition of a
view among the full set of frames within a sequence. Finally, Section 5.3 refers to the
execution time behaviour in the different cases.

5.1. Checking the Accuracy of a Topological Map

Algorithm 1 describes the way how a topological map is compared to a reference
map acting as the ground truth. In our case, the ground truth has been generated man-
ually applying common sense over the set of frames in the test sequence. Figure 9 can
be shown as an example of manual partition.

As we previously mentioned, nodes are composed by images that can be visu-
ally assigned to the same view. The remaining frames have not been considered, and
therefore the GT graph presents discontinuities with regard to the input sequence. A
similarity value between the two maps is generated as output.

More precisely, given a reference map GT and a map to assess M, Algorithm 1
determines, for each location in GT , which is the node of M with the largest number
of images in common. This number is accumulated to obtain a goodness measure.
Remember that there may exist images in GT not classified in any node of M because
of the spurious node deletion phase and therefore it does not make sense to find their
correspondences in M. These images are discarded when computing the figure of merit
corresponding to this performance aspect.

We define the successful segmentation rate (S S R) as the percentage of consecutive
images of the reference map that have been put together in the same node of the map
under assessment. It is formulated as follows:
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Algorithm 1 Successful Segmentation Rate (S S R)
Require: Ground truth (GT ) and topological map (M) have been generated.

1: {nv: Number of coincident frames.}
2: { fg: Total number of frames in GT .}
3: {uv: Number of unclassified frames.}
4: nv := 0, fg := 0, uv := 0
5: for every location L in GT do
6: for every location i in M do
7: Cv[i] := 0
8: end for
9: for every image I in L do

10: fg := fg + 1
11: if notClassified(I, M) then
12: uv := uv + 1
13: else
14: i := getLocationIndex(I, M) {See algorithm 2 for further information}
15: Cv[i] := Cv[i] + 1
16: end if
17: end for
18: nv := nv + max (Cv)
19: end for
20: return

(
nv

fg−uv

)
× 100

Algorithm 2 getLocationIndex(I, M)
Require: M is a generated topological map.
Require: The index of image I in the input sequence is known: i.
Require: The image range of each location is obtained using min and max functions.

1: {This function gets the location in map M where an image I has been classified}
2: {lmin: The lowest index of the images classified in a location.}
3: {lmax: The highest index of the images classified in a location.}
4: lmin := 0, lmax := 0
5: for every location L in M do
6: lmin := min(L)
7: lmax := max(L)
8: if i ≥ lmin and i ≤ lmax then
9: return L {The index of the location is returned.}

10: end if
11: end for

19



Figure 11: Successful Segmentation Rate Example.

Figure 12: A correct matching. Query image (leftmost image) and the three images chosen as representatives
of the location (rightmost images)

S S R =

(
nv

fg − uv

)
× 100 , (23)

where nv is the number of coincident views, fg is the total number of frames in the
ground truth and uv the number of discarded views. It is important for us to test that
most views in the same ground truth node are classified in the same location in our
implementation, because this fact ensures that real locations have not been broken and
they keep together in both graphs.

An example of S S R calculation is shown in figure 11. White boxes represent im-
ages inside locations, arrows refer to correspondences between graphs and black boxes
are the unclassified frames. Most images of the first ground truth location have been
classified into the same node in M, therefore we accumulate five images to nv. The
images in the second ground truth location have been assigned to different nodes in
the map under assessment. The location of M with the largest number of frames in
common in this case is the third one, hence we add 3 (max{2, 3}) images to nv. Conse-
quently, the S S R in this situation is:

S =

(
5 + 3

13 − 3

)
× 100 = 80%

5.2. View Recognition Assessment

The next phase in this work is oriented to test the quality of each image descriptor
recognizing scenes. Given an environment model, we now want to classify new images
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as belonging to particular locations and to provide a framework to measure the correct-
ness of this classification. We have developed several tests for these purposes and they
are explained in this section.

Algorithm 3 Recognition Error Rate (RER)
Require: A generated topological map (M) and a sequence of query images (Q)

1: {im: Bad classified images.}
2: {it: Total number of query images.}
3: im := 0, it := 0
4: for every image I in Q do
5: it := it + 1
6: {loct: The theoretical location of the image according to M.}
7: {loca: The location using the visual localization process.}
8: loct := getLocationIndex(I, M) {See algorithm 2 for further information.}
9: loca := locateImage(I, M) {See algorithm 4 for further information.}

10: if loct != loca then
11: im := im + 1
12: end if
13: end for
14: return im×100

it

First of all, query images are a subset of the image sequence, or, in other words,
form the whole input sequence, we reserve some frames to perform the queries during
the experimental assessment, while the rest of frames are used to built the map. In this
way, we know which node the corresponding query image should have been assigned
to, and we can determine whether the view has been correctly recognized (i.e. the
classification has been successful) or not.

Second, remember that the view recognition process starts with the computation of
the descriptor of the query image. Next, this descriptor is compared with the descriptors
of the representative images of each node. Finally, the query image is assigned to the
location that contains the closest frame. If this location matches with the theoretical
node, according to the index of the image in the input sequence, we consider it as a
correct view recognition. Otherwise, we increment the number of bad classified images
in order to obtain a final recognition error rate (RER) as follows:

RER =
im × 100

it
, (24)

where im is the number of bad classified images and it is the total number of query
images. This process is shown in algorithm 3.

Observe that, since each combination of feature detector and descriptor generates
a different set of locations during the construction of the topological map, we can not
compare RER values directly between descriptors and a common representation of
the environment is needed. Due to this reason, this test has been performed against the
generated map and against the ground truth. The former permits us to assess the quality
of the generated map itself in recognition tasks. The latter allows us to compare each
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Algorithm 4 locateImage(I. M)
Require: M is a generated topological map.
Require: The descriptor of an image is computed using the desc function.
Require: The proximity between two descriptors is computed using the prox function.
Require: rep(L) returns the representatives of location L.

1: {Returns the closest location of an image I in the map M}
2: {dmin: The minimum distance between the query and a representative image.}
3: {loc: The index of the location closest to the query image.}
4: {∆(I): Query image descriptor.}
5: dmin := MAXFLOAT, loc := -1
6: ∆(I) := desc(I)
7: for every location L in M do
8: for every representative R in rep(L) do
9: daux := prox(∆(I), desc(R))

10: if daux ≤ dmin or daux ≥ dmin then
11: {It depends on the type of the proximity measure used.}
12: dmin := daux

13: loc := L {The index of the location is stored.}
14: end if
15: end for
16: end for
17: return loc

descriptor with the others, using a common environment representation.
Since in our case there can be unclassified images, in this case, we have imple-

mented two possibilities to compute RER: (1) avoid using the unclassified images as
query images, or (2) consider as a success matching the unclassified image with any of
the locations in which the reference node has been split. This last situation is illustrated
in figure 13. Ellipses represent locations and numbers indicate the range of images as-
signed to nodes L1 and L2. The 20-th image is not included in the image ranges of any
of the 2 nodes. Consequently, if the image is classified in the adjacent nodes L1 or L2,
the matching is considered as correct.

In summary, we have performed these variations of the RER test in order to con-
template all the possibilities:

• Against the ground truth and discarding unclassified images.

• Against the generated topological map and discarding unclassified images.

• Against the ground truth and considering unclassified images.

• Against the generated topological map and considering unclassified images.

5.3. Temporal Behavior Analysis

The last goal of this work is to determine the image descriptors efficiency in terms
of computation time. The requirements on this performance aspect depend on the task
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that we need to achieve. For example, a robot that navigates according to a topological
map and tries to localize itself in it requires a very fast image descriptor due to the
real time needs of the application. However, the topological map construction can be
performed in an off-line phase and it is not critical for the agent.

We have defined the following times to evaluate the performance of each descriptor:

• Description time (td): It is the time required to compute the descriptor from an
image.

• Segmentation time (ts): It is the time needed to construct the topological map
from the sequence of images.

• Query time (tq): It is the time required to compare a query image with all location
representative images and to identify which is the closest one.

For description and query times, mean, maximum and minimum values have been
obtained, in order to characterize more accurately the temporal behavior of the afore-
mentioned tasks.

6. Experimental Results

Once our test framework has been defined, this section shows the experimental
results that we have obtained in different environments. For each scenario, all the tests
have been performed, varying the image description procedure, as well as the way how
the representative images of a node are chosen from one experiment to the next. We
have considered three kinds of environments: outdoor, indoor and underwater. The
corresponding results are described in the following sections.

As was anticipated before, we have selected a subset of the available frames of
an image sequence as query images, which have not been used for building the map.
More precisely, in all tests, the set of queries have consisted of every fifth frame of the
sequence.

In all cases, quantitative results are given as tables withe the following structure:

Figure 13: A correct matching considering adjacent nodes.

23



Figure 14: Examples of outdoor images used.

Descriptor L S R1 R2 R3 R4

Orientation Histograms 16 85.2% 17% 25% 35% 27%
SIFT 21 69.7% 39% 42% 55% 58%
SURF 12 80.9% 41% 52% 58% 54%
FAST 28 74.4% 25% 25% 38% 27%

Star/BRIEF 16 82.7% 54% 63% 57% 68%
FAST/BRIEF 12 85.5% 64% 60% 65% 65%

Star/FAST 19 70.4% 50% 61% 54% 61%

Table 1: Outdoor results where the set of representative images of a node consists of only the mean image.

• The L column is the number of locations of the resulting topological map.

• The S column shows the percentage of the S S R test.

• The R1 column is the RER for the ground truth discarding unclassified images.

• The R2 column is the RER for the topological map discarding unclassified im-
ages.

• The R3 column is the RER for the ground truth considering unclassified images.

• The R4 column is the RER for the topological map considering unclassified im-
ages.

The execution time tables show all the values enumerated in section 5.3 in millisec-
onds.

6.1. Outdoor Environment

The outdoor sequence comprises 1175 images grabbed from a car touring through-
out the city of Leuven, Belgium. Visually, one can distinguish roughly 9 locations,
being this our ground truth for this scenario. The number of frames associated with
individual locations varies between 7 and 90 per location and we consider as a node a
segment comprising at least seven images. All images have been resized to 360 × 288
pixels in order to reduce the computation time. Application parameters for each de-
scriptor have been set to ensure that the number of frames discarded in the construction
of the topological map is lower than 80 images.
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Descriptor L S R1 R2 R3 R4

Orientation Histograms 16 85.2% 8% 16% 26% 17%
SIFT 21 69.7% 43% 18% 52% 24%
SURF 12 80.9% 26% 40% 37% 40%
FAST 28 74.4% 12% 17% 25% 17%

Star/BRIEF 16 82.7% 59% 62% 64% 71%
FAST/BRIEF 12 85.5% 49% 72% 71% 73%

Star/FAST 19 70.4% 40% 58% 47% 58%

Table 2: Outdoor results where the set of representative images of a node consists of the mean image, and
the first and the last images of the node.

Descriptor L S R1 R2 R3 R4

Orientation Histograms 16 85.2% 11% 15% 30% 18%
SIFT 21 69.7% 41% 26% 54% 31%
SURF 12 80.9% 31% 47% 48% 47%
FAST 28 74.4% 17% 20% 33% 21%

Star/BRIEF 16 82.7% 42% 46% 52% 55%
FAST/BRIEF 12 85.5% 46% 43% 51% 53%

Star/FAST 19 70.4% 41% 54% 67% 69%

Table 3: Outdoor results where the set of representative images of a node consists of the five most represen-
tative images of the node.

td ts tq
Mean Min Max Mean Min Max

Orientation Histograms 125 82 199 6 173 170 217
SIFT 646 450 970 91k 110k 3575 127k
SURF 162 113 315 4722 408 306 507
FAST 14 1 43 400 129 18 251

Star/BRIEF 20 7 45 3247 229 73 286
FAST/BRIEF 18 2 39 2572 149 42 192

Star/FAST 25 14 40 1901 175 71 202

Table 4: Computation times for the outdoor in milliseconds.
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Figure 15: Examples of indoor images used.

The results for this environment are shown in tables 1 - 4. The S S R indicates
that all descriptors create very similar maps, except FAST and SIFT, which generate
a lot of locations for the same sequence of images, resulting into a lower S S R value.
The segmentation rate is constant for all tables because the criterion for selecting the
representative images is only relevant to the recognition process, and it does not affect
the map construction. Unlike SIFT, FAST compensates its lower S S R with the fastest
description time (td), followed by the Star detector, although the latter is not only fast
to compute but also invariant to scale changes. As can be observed, SIFT is highly
computationally demanding and turns out to be the least compatible with scenarios
with real-time needs.

Constructing the topological map, orientation histograms have the best perfor-
mance in this case. It is because of the simplicity of the dissimilarity function used
in this case (χ2).

According to the results obtained, edge orientation histograms and FAST show the
best performance for recognition tasks. Orientation histograms have the lowest RER in
most cases. However, FAST is again the fastest image descriptor. SURF is the fastest
third, but it does not exhibit good view recognition performance compared with the
previous ones. BRIEF turns out to be the worst descriptor, giving a very poor values in
recognition and computation times. This last one is a not a good solution according to
our experiments.

Regarding the election of node representatives, best recognition results have been
obtained using the mean image, the first and the last images of each node. This method
covers the possible differences in appearance between the beginning and the end of a
location. BRIEF is the only descriptor that improves with more views as representa-
tives.

Summing up with this scenario, according to our experiments, edge orientation
histograms and FAST seem to yield the best performance in this environment regarding
the construction of the topological map and view recognition. The final election will
depend on the application needs: FAST has the lowest computation time requirements,
while histograms are more accurate recognizing scenes. Star is a very fast detector
too, but it can not be used with BRIEF or FAST as a descriptor, due to the bad results
of these ones. SIFT and SURF turn out to be, according to the tests performed, less
suitable for this kind of scenario.
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Descriptor L S R1 R2 R3 R4

Orientation Histograms 18 80.4% 19% 39% 31% 47%
SIFT 18 83.2% 26% 23% 48% 33%
SURF 16 84.1% 7% 29% 37% 33%
FAST 12 93.1% 19% 23% 30% 28%

Star/BRIEF 12 92.01% 60% 72% 67% 72%
FAST/BRIEF 11 89% 57% 70% 61% 71%

Star/FAST 13 91.9% 42% 64% 49% 64%

Table 5: Indoor results where the set of representative images of a node consists of only the mean image.

Descriptor L S R1 R2 R3 R4

Orientation Histograms 18 80.4% 17% 43% 30% 45%
SIFT 18 83.2% 19% 21% 35% 27%
SURF 16 84.1% 1% 18% 20% 22%
FAST 12 93.1% 14% 31% 20% 33%

Star/BRIEF 12 92.01% 51% 72% 61% 71%
FAST/BRIEF 11 89% 44% 70% 53% 70%

Star/FAST 13 91.9% 35% 60% 38% 59%

Table 6: Indoor results where the set of representative images of a node consists of the mean image, and the
first and the last images of the node.

Descriptor L S R1 R2 R3 R4

Orientation Histograms 18 80.45% 18% 38% 26% 40%
SIFT 18 83.2% 22% 22% 48% 32%
SURF 16 84.1% 7% 18% 28% 23%
FAST 12 93.1% 14% 32% 31% 24%

Star/BRIEF 12 92.01% 51% 65% 57% 65%
FAST/BRIEF 11 89% 51% 71% 55% 70%

Star/FAST 13 91.9% 26% 37% 40% 39%

Table 7: Indoor results where the set of representative images of a node consists of the five most representa-
tive images of the node.

td ts tq
Mean Min Max Mean Min Max

Orientation Histograms 140 87 184 3 163 155 242
SIFT 430 192 697 19026 4073 749 4699
SURF 127 63 232 3069 248 57 314
FAST 4 0 16 203 38 18 109

Star/BRIEF 11 5 18 1420 85 25 147
FAST/BRIEF 5 1 17 237 39 15 105

Star/FAST 22 12 41 991 91 41 117

Table 8: Computation times for the indoor sequence in milliseconds.
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Figure 16: Examples of underwater images used.

6.2. Indoor Environment

The indoor sequence has been recorded during a walk along several corridors of
Anselm Turmeda building at UIB. It comprises 832 images of 360 × 280 pixels. The
sequence has been visually split into 9 locations to create the ground truth graph. Each
location has a number of images between 7 and 80. As before, nodes with less than
7 images were deleted. At the end, the construction of the topological map does not
discard more than 30 images in total.

In this case, the results are shown in tables 5 - 8. As we see, FAST and Star
using BRIEF as descriptor have the best S S R values. It is due to the fact that they
generate less locations, favoring the localization in the same node of each ground truth
image. However, Star/BRIEF should be discarded again because of its bad performance
in recognition tasks. FAST and Star result to be the fastest image detectors in this
scenario.

We can observe a situation similar to the previous one regarding the time to con-
struct a topological map. Orientation Histograms, as global descriptor, is the fastest
followed by FAST. SIFT and SURF turn out to be once again very slow.

The error recognition rate tests show us that the best image descriptor for these
environments is SURF, followed by FAST. Again, if the computation time is a require-
ment, SURF may not be a solution. FAST has less accuracy but it is faster than the
other image descriptors and it could be used instead. SIFT is once more not practical
for real-time applications. BRIEF is not a good options to be used as the image de-
scriptor. As in the previous section, the best results have been obtained when using the
mean, the first and the last views as representatives of each node.

Briefly, our tests show that SURF and FAST are reasonable options to use in indoor
environments for recognizing scenes. SURF is the most faithful descriptor in these
tasks. However, it is very slow and FAST may be a solution sacrificing accuracy. FAST
has also the best S S R creating the topological map and it could be a real possibility.
Star is a very fast detector that could be used with another descriptor different from
BRIEF or FAST. SIFT has a good performance but it can not be used in scenarios with
real-time needs.

6.3. Underwater Environment

The underwater sequence comes from a water tank for testing underwater cable
tracking algorithms. There are 250 images of 320 × 240 pixels that can be divided
visually into 5 locations. Each location has between 7 and 50 images. The topological
map-building process did not discard more than 25 views.
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Descriptor L S R1 R2 R3 R4

Orientation Histograms 5 90.9% 15% 25% 24% 24%
SIFT 8 89.8% 12% 6% 42% 30%
SURF 5 92.1% 0% 9% 6% 8%
FAST 6 91.8% 9% 29% 24% 30%

Star/BRIEF 9 89.1% 81% 77% 74% 78%
FAST/BRIEF 10 72.1% 62% 76% 68% 80%

Star/FAST 12 78.1% 28% 34% 32% 40%

Table 9: Underwater results where the set of representative images of a node consists of only the mean image.

Descriptor L S R1 R2 R3 R4

Orientation Histograms 5 90.9% 0% 20% 6% 20%
SIFT 8 89.8% 0% 3% 8% 18%
SURF 5 92.1% 0% 0% 4% 0%
FAST 6 91.8% 0% 16% 12% 16%

Star/BRIEF 9 89.1% 21% 65% 34% 68%
FAST/BRIEF 10 72.1% 37% 71% 46% 72%

Star/FAST 12 78.1% 9% 36% 22% 34%

Table 10: Underwater results where the set of representative images of a node consists of the mean image,
and the first and the last images of the node.

Descriptor L S R1 R2 R3 R4

Orientation Histograms 5 90.9% 6% 27% 10% 26%
SIFT 8 89.8% 7% 5% 7% 21%
SURF 5 92.1% 0% 9% 6% 8%
FAST 6 91.8% 6% 25% 18% 26%

Star/BRIEF 9 89.1% 41% 67% 51% 84%
FAST/BRIEF 10 72.1% 52% 86% 68% 89%

Star/FAST 12 78.1% 21% 17% 30% 20%

Table 11: Underwater results where the set of representative images of a node consists of the five most
representative images of the node.

td ts tq
Mean Min Max Mean Min Max

Orientation Histograms 93 70 122 1 112 104 119
SIFT 630 531 805 24706 29129 2608 40103
SURF 135 113 180 1003 226 208 290
FAST 24 10 66 82 37 26 71

Star/BRIEF 7 4 20 406 70 28 95
FAST/BRIEF 46 12 194 316 90 45 143

Star/FAST 17 10 30 307 84 39 103

Table 12: Computation times for the underwater sequence in milliseconds
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These environments are characterized by the absence of defined structures, such as
doors, corridors, windows, etc. Due to this reason, it is more difficult to find certain
kind of key points, like corners. In this case, a detector less focused on corners, such
as SURF, is needed, and FAST results to be not the best option.

The results for this scenario are shown in tables 9 - 12. Again, the S S R test gives
us similar values for all the descriptors, except for the FAST/BRIEF case. Specifically,
SURF has the best rate building the topological map. The main drawback of this last
option is the computation time for describing and querying images. However, its ac-
curacy in the recognition phase is good enough to consider it as a real solution. Star
shows shorter times for this sequence, because the FAST algorithm can not determine
corners easily and it needs to execute the complete detection process.

We do not observe differences in constructing the topological map with regard to
previous cases. On the one hand, Orientation Histograms have the best performance
due to the simplicity of the distance calculation. On the other hand, SIFT is the slowest
solution. It is important to remark that this is not a critical task and the use of this
descriptor depends on the application needs.

The best recognition rates have been obtained again selecting the mean image, the
first and the last images as representatives of each node. SIFT and SURF are the options
with better values for these tasks. As we comment previously, the first one is not usable
when there are real-time constraints associated to the task. FAST is the fastest image
descriptor for recognizing scenes. However, it exhibits high values of error rates for
these cases. Orientation histograms show reasonable values for a short computation
time. Again, BRIEF has been shown as a bad solution for scene localization.

In short, in our experiments we have observed that the best option for underwater
scenes is SURF. SIFT has also low recognition rates, but it is very slow processing
and comparing descriptors. Star is a very fast detector that can not be combined with
BRIEF or FAST as descriptors. FAST gets in trouble detecting features in underwater
images and it is not a good solution for this case. Another solution could be orientation
histograms, due to its good ratio between recognition rates and computation times.

6.4. Results Summary

To conclude, in this section we show graphically the previous results in order to
help the reader understand the values obtained. For each environment, we represent
only the best case regarding the method to obtain the representative images. As has
been shown along the previous sections, this happens for the case in which the set of
representative images of a node consists of the mean image, and the first and the last
images of the location.

Figures 17, 18 and 19 illustrate the results for the outdoor environment. As we
saw previously, orientation histograms and FAST are the image descriptors with the
best RER values. Any combination with BRIEF has always the worst performance,
according to our experiments. Regarding the computation times, FAST and Star are
the fastest in description, orientation histograms in segmentation and FAST for queries.
The S S R shows very similar values for all cases.

The results for the indoor scenario are shown in figures 20, 21 and 22. In this
case, the best values for the RER tests correspond to SURF. Again, BRIEF is not a
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good solution as a descriptor. FAST turns out to be the descriptor with the shortest
computational times and S S R values.

Figures 23, 24 and 25 show the results for the underwater sequence. Again, SURF
presents the best performance in all RER tests. However, computation times are very
high, complicating its use in applications with real-time needs. Star is very fast in
description tasks, orientation histograms is the best in segmentation and FAST is the
fastest descriptor for recognizing scenes. The results for the S S R are very similar
again.

Figure 17: SSR results for the outdoor environment.

Figure 18: Computation time results for the outdoor environment in milliseconds.
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Figure 19: SSR results for the outdoor environment.
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Figure 20: SSR results for the indoor environment.

Figure 21: Computation time results for the indoor environment in milliseconds.
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Figure 22: SSR results for the indoor environment.
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Figure 23: SSR results for the underwater environment.

Figure 24: Computation time results for the underwater environment in milliseconds.
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Figure 25: SSR results for the underwater environment.
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7. Conclusions and Future Work

In this report we have performed a comparison between different image descriptors
for creating topological maps and recognizing previously visited locations. Several
measures to evaluate the performance of these descriptors have been proposed and a
set of tests has been executed for different environments, such as indoors, outdoors and
underwater, in order to check the quality of each one in these scenarios.

Our topological model consists in a segmentation of the input sequence, where
every segment is a node of the topological map. Each of these nodes corresponds, thus,
to a subset of the original sequence. A subset of these images are in turn selected as
representatives of the location and they are used to recognize scenes. We have proposed
different methods to choose these representatives. The map is created comparing the
descriptors of consecutive images and adding new nodes if the distance between these
images is larger than a threshold. The resulting graph is refined deleting locations that
have less images than a certain value.

We have defined the successful segmentation rate (S S R) concept, which measures
the similarity between the models we have adopted for representing the robot environ-
ment. When compared with a ground truth map, it can thus be used to check the quality
of our representation of the environment. On the other hand, the recognition error rate
(RER) can be used to evaluate the performance of the descriptors in recognition tasks.

A framework to perform these tests has also been developed and it enables us to
add and check new image descriptors easily.

According to our experiments, FAST has been shown as a good option for many
environments, resulting in very low computation times in most cases. It is the best
option to use outdoors, due to the nature of the images in this scenario, where exist
well-defined corners. The main drawback of FAST is that it is not invariant to scale. In
this regard, there are different options that are not affected by changes in scale, such as
SIFT and SURF. The implementation of SIFT we have made use of leads to very high
computation times, thus it is not suitable for applications with real-time needs. SURF
has been shown as a good solution for indoor and underwater scenarios, reducing the
computation requirements of SIFT.

Regarding Star, it is a very fast key point detector based on CenSurE. It has shown
a good performance in many scenarios, in most cases better than SIFT or SURF. The
combinations detector/descriptor involving Star we have considered in this work have
not resulted in good performance.

Finally, orientation histograms have resulted in a good option for outdoor environ-
ments and it is the fastest descriptor creating the topological maps.

Our future research will focus on experimenting with other descriptors, improving
the performance of some of them, such as Star, that could be a good solution with a
correct combination. New image descriptors will also be explored. Another research
line to be investigated is the concept of Bag of Visual Words, used by some authors
in recent years. It could be useful to incorporate this kind of image description to our
framework and measure its performance in different environments.

The elected strategy to refine the topological map used in this work is also an early
approach. Images in nodes could be added to the closest locations, for instance. We
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will research on several ways to improve the representation of our environments for
scene recognition.

Currently, our approach does not detect previously visited locations and, when it
occurs, a new node is created in the map. It is our intention to explore different solutions
to include these loops into the environment representation.

This research work is the beginning of a more complex system, where these maps
will be used for navigation tasks. We have started with the experimental evaluation of
different image descriptors to represent an environment. We also plan to incorporate
temporal information to the model. Next steps will be oriented to navigation path
planning over the topological map.
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