
Injection of Aggregated Error Flags as a Means to Guarantee Consistent Error
Detection in CAN

Guillermo Rodriguez-Navas, Christian Winter and Julián Proenza
Dept. de Matemàtiques i Informàtica, Universitat de les Illes Balears, SPAIN

Contact: guillermo.rodriguez-navas@uib.es, julian.proenza@uib.es

Abstract

Although the specification of CAN states that this pro-
tocol provides data consistency, it is well know that said
property does not hold for certain specific error scenar-
ios affecting the last bits of a CAN frame, and a number
of solutions have been already suggested. Morever, for a
long time it has been thought that the errors affecting the
initial or intermediate bits of a CAN frame cannot cause
any inconsistency. In this paper we show that this assump-
tion is false, and that such kinds of message inconsisten-
cies are also possible for certain combinations of multiple
channel errors. After describing these unreported scenar-
ios of inconsistency, we present a mechanism that guaran-
tees the consistent detection of said scenarios and elimin-
inates the possibility of suffering this kind of inconsisten-
cies. This mechanism is therefore useful for the design of
highly-dependable applications over CAN.

1 Introduction

The Controller Area Network (CAN) [1] is a field-
bus communication protocol that was first devised for in-
vehicle control applications, but it has been adopted in a
much wider range of distributed embedded systems. CAN
is nowadays a mature technology that has experienced a
tremendous success mainly because of its error control fea-
tures, low latency, network wide bus access priority and
real-time response. These properties, together with the low
cost of the CAN components, has turned CAN into a de-
facto standard for non-critical control applications.

With respect to critical applications, CAN is tradition-
ally considered an unsuitable technology due to a number
of dependability-related limitations [2]: (1) Limited data
consistency; (2) Limited error containment; (3) Limited
support for fault tolerance, and (4) Lack of clock synchro-
nization. Nevertheless, several researchers state that CAN
will be able to support safety-critical applications if these
limitations are overcome with the proper enhancements [2].

We are currently executing a project called CAN-
bids (CAN-Based Infrastructure for Dependable Systems)
that purports to design, implement and validate a CAN-
based infrastructure for supporting the execution of highly-

dependable distributed control applications. CANbids will
use as building blocks various mechanisms and enhance-
ments intended to overcome the aforementioned CAN de-
pendability limitations. Many proposals related to CAN-
bids are already available in the literature [3].

This paper reviews the first of the dependability limi-
tations of CAN, which is the lack of data consistency, de-
scribes a new (unreported) potential cause of inconsistenciy
in CAN and proposes an adequate solution. This work is
therefore complementary to the proposal discussed in [4].

2 Background

In this section we introduce the work carried out by sev-
eral researchers in order to cope with the inconsistency sce-
narios of CAN.

2.1 Fault model
The fault tolerance mechanisms of CAN are intended

to tolerate transient channel faults, i.e. faults suffered by
the transmission medium and the transceivers. Such faults
manifest as changes of the bit values transmitted, and may
in fact affect one or more bits.

It is important to remark that channel errors usually have
local nature, what means that some of the nodes may be af-
fected by an error while others may not. This constitutes a
severe impairment to data consistency, because the detec-
tion of errors can only be performed locally and is hence
intrinsically inconsistent. However, the approach followed
in CAN for guaranteing the consistent detection of chan-
nel errors is to make each node detecting a (probably local)
error inject more errors in the network, such that all nodes
will eventually detect at least one error and reject the frame.
This technique is called CAN error signaling.

2.2 Error signaling and data consistency in CAN
The error signaling mechanism of CAN varies depend-

ing on the operational mode of the CAN controller. These
operational modes are three, namely, error active state,
error passive state and bus-off state. A CAN controller
changes from one state to the other according to the fault-
treatment strategy implemented by CAN, which is as fol-
lows. Every CAN controller has two counters of channel
errors, one for errors during transmissions and another one

c©2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. doi:10.1109/ETFA.2011.6059172



for errors during reception. These counters are increased
according to certain policies, whenever a channel error is
detected. If one of these counters reaches a certain thresh-
old, the node is considered potentially dangerous (yet not
faulty) for the communication and enters the error passive
state. If more errors are detected and the counters keep
increasing and reach a higher threshold then the CAN con-
troller is considered faulty and enters the bus-off state, in
which the node does not take part in the communication
anymore [1].

The error signaling mechanisms associated to the error
active state and error passive state are different from each
other. However, it is known that the error signaling per-
formed by nodes being in the error passive state does not
guarantee data consistency [5] and, for this reason, the er-
ror passive state is generally not allowed in applications
that require said property. Due to this, and without losing
generality, in this work we will assume that all CAN nodes
stay in the error active state.

In the error active state, each node detecting an error will
signal this situation to the rest of nodes by sending what is
called an error flag. This flag starts the bit after the error
that was detected. An error flag consists of six consecu-
tive dominant bits. This flag violates CAN protocol rules,
e.g. it destroys the bit fields requiring fixed form produc-
ing a form error. As a consequence all other nodes detect
an error condition too and start transmitting an error flag as
well. After transmitting an error flag, each node sends re-
cessive bits and monitors the bus until it detects a recessive
bit. Afterwards, it starts transmitting seven more recessive
bits. The eight recessive bit chain resulting on the bus is
called error delimiter. This error delimiter together with
the superposition of error flags contributed from different
nodes constitute what is called an error frame. After the
error frame transmission, the frame that was being sent is
automatically retransmitted.

In the presence of a single channel error, this mechanism
guarantees the consistent rejection of any erroneous frame.
However, as explained in the next subsection, several sce-
narios have been reported in which the combination of two
or more errors may lead to an inconsistent rejection of a
frame.

2.3 Reported causes of inconsistency and solutions
Rufino et al. identified [5] some specific scenarios in

which some nodes receive a frame that some others never
do. This situation is called an inconsistent message omis-
sion (IMO). The same authors proposed a set of protocols
to be executed on top of CAN to solve the problem [5]. All
these protocols require the transmission of at least an ad-
ditional frame for each frame that would have been trans-
mitted in the network, even if this frame was consistently
transmitted, and therefore cause a significant communica-
tion overhead.

Afterwards, Livani et al. [6] presented their SHAdow
REtransmitter (SHARE): a mechanism to be included in
the network as a regular node and that is able to detect the

bit pattern described by Rufino et al., and retransmit the po-
tentially inconsistently received frame. This approach had
the significant advantage of only requiring the transmission
of extra frames in case an inconsistency was possible.

In a later analysis, new scenarios of inconsistent com-
munication were identified in which both CAN, the pro-
posed higher-layer protocols and SHARE fail [7]. Those
scenarios are characterized by the presence of multiple bits
affected by errors in the channel.

An alternate way of dealing with these scenarios was
proposed in [4]. This proposal suggests the use of a mech-
anism called CANsistant (CAN Assistant for Consistency),
which is inspired by SHARE and works similarly, but is
able to identify the scenarios of [7] as well.

It is important to remark that all the reported causes of
inconsistency have something in common: they may only
occur as a consequence of errors at the end of a frame trans-
mission. The bottom problem is that in CAN the error glob-
alization must be performed before any of the nodes has
accepted the erroneous frame. Therefore, the errors hap-
pening within the last bits of a frame (particularly, within
the EOF field) have a very short time for being globalized:
the length of just a few bits. Thus, if the subsequent bits
are also affected by errors that mask the error signaling
for certain nodes, then the frame will be accepted by these
nodes while being rejected by the others. In such cases,
the only way to recover from the inconsistency, and hence
avoid an IMO, is by message retransmission. The protocols
of Rufino et al. perform the retransmissions preventively,
whereas SHARE and CANsistant are more selective and
only retransmit a frame when it is required, i.e. whenever
one of the potentially dangerous error scenarios is detected.

3 New causes of inconsistency

Applying the reasoning discussed in Section 2, for a
long time it has been thought that the errors affecting the
initial or intermediate bits of a CAN frame cannot cause
any inconsistency. In other words, it has been thought
that any error signaling that starts before the EOF will al-
ways provoke errors that are consistently detected by all
the (non-faulty) CAN nodes. Nevertheless, we have identi-
fied some scenarios with multiple bits affected by errors in
which this is not fulfilled. In order to find out these scenar-
ios we used a simulation tool called CANfidant [8], which
simulates the behavior of several CAN controllers and al-
lows injection of both global and local errors in the chan-
nels of these controllers. With the help of this tool, it is
possible to observe the response of the CAN controllers
under complex combinations of communication errors.

For illustration, Figure 1 depicts one of the incon-
sistency scenarios detected. In this scenario, the first
node (Node 0) is the transmitter (frame with Id= 0,
Data=162Dec); the second node (Node 1) detects a local
channel error within a bit of its CRC (a stuff error, more
precisely) and immediately injects an error flag. But Node
0 and Node 2 both suffer from another channel error that



Figure 1: An inconsistency scenario with 2 channel errors

prevents the detection of the error flag and they accept the
frame anyways.

Although it is not possible to discuss here all the scenar-
ios identified with the help of CANfidant, two conditions
have been found out as potential causes. On the one hand,
the first error is seen by a receiver. Because if it is seen
by the transmitter then it will send error flags instead of the
correct bits and therefore there will be no complete frame to
be inconsistently received. On the other hand, the first error
detected (the actual erroneous bit could have happened be-
fore) must be a stuff error or a format error (e.g. the ACK
delimiter). If it was detected only by checking the CRC,
then the affected node would send an error flag in the first
bit of EOF and thus all nodes would detect the problem
before the last bit of EOF even in the presence of up to 5
additional errors in the first 5 errors of the error flag.

Also, we noticed that fewer errors are required for hav-
ing an inconsistency if the value of the CRC ends with a
long sequence of dominant bits that could, in the presence
of some other channel error(s), mask the error flag as shown
in Figure 1. As a final remark, it is important to say that our
study has been systematic, but not exhaustive (since ex-
haustivity would require some kind of formal verification)
and therefore some new scenarios of inconsistency might
still appear. For this reason, it is important to propose a
solution that addresses the source of the problem and thus
may effectively deal with scenarios not yet identified.

4 Our solution

4.1 Rationale
The source of the new inconsistency scenarios is that the

error flag defined by the CAN protocol is too short in the
presence of multiple errors. The solution we propose is to
make the error flags longer and hence increase the chances
of causing errors that are noticed by all the nodes. How-
ever, there is an important issue to be taken into account:
these longer error flags should not cause significant incre-
ments of the error counters of the nodes or, otherwise, the

C A N
c o n t r o l l e r

T x
R x

C A N
t r a n s c e i v e r

T x
R x

C A N _ H
C A N _ LA E F T

B U S
l i n e s

Figure 2: Location of the AEFT

A  s e e s t h e f i r s t e r r o r  i n  t h e c i r c l e d b i t ( a  l o c a l  e r r o r  o n l y a f f e c t i n g n o d e A )

e r r o r  f l a gT x
R x

r
d d d d d dd

rr
rr

rrr r r
d d r r d

e r r o r  f l a g
d d d d d d r r

r r r e r r o r  f l a g
d d d d d d

d e t e c t s t h e e r r o r  f l a g s e n t b y  n o d e A  t h r o u g h T x ,  w a i t s f o r r e c e s s i v e a n d s e n d s i t s a g g .  e r r o r  f l a g

a g g . e r r o r f l a gT x
R x

r
d d d d d dd

rr
rr

rrr r r rrr r r r r r a g g . e r r o r f l a g
d d r r d d d d d d d r r d d d d d d

B  s e e s t h e f i r s t e r r o r  i n  t h e c i r c l e d b i t ( c a u s e d b y  t h e f i r s t e r r o r  f l a g b y  n o d e A )

e r r o r  f l a gT x
R x

r
d d d d d dd

rr
r r

r r r r r e r r o r  f l a g r r r e r r o r  f l a g
d d r r d d d d d d d r r d d d d d d

d e t e c t s t h e e r r o r  f l a g s e n t b y  n o d e B  t h r o u g h T x ,  w a i t s f o r r e c e s s i v e a n d s e n d s i t s a g g .  e r r o r  f l a g

T x
R x

r
d d d d d dd

rr
rr

a g g . e r r o r f l a grrr r r rrr r r r r r a g g . e r r o r f l a g
d d r r d d d d d d d r r d d d d d d

d e t e c t s t h e e r r o r  f l a g s e n t b y  n o d e C  t h r o u g h T x ,  w a i t s f o r r e c e s s i v e a n d s e n d s i t s a g g .  e r r o r  f l a g

T x
R x

r
d d d d d dd

rr
rr

rrr r r rrr r r r r r a g g . e r r o r f l a g
d d r r d d d d d d d r r d d d d d d

r r r r rr

C  m i s s e s t h e f i r s t e .  f l a g &  s e e s t h e f i r s t e r r o r  i n  t h e c i r c l e d b i t ( c a u s e d b y  t h e f i r s t a g g .  e r r o r  f l a g )

T x
R x

r
d d d d d dd

rr
r r

r r r r r e r r o r  f l a g r r r e r r o r  f l a g
d d r r d d d d d d d r r d d d d d d

r r r rrr

N o d e  A  ( r e c e i v e r )

N o d e  B  ( r e c e i v e r )

N o d e  C  ( r e c e i v e r )

C ' s  A E F T

B ' s  A E F T

A ' s  A E F T

Figure 3: Example of signaling with aggregated error flags

error signaling might unfearly lead some nodes to the bus-
off state. In order to avoid this problem, instead of having
a single longer error flag, what we propose for error sig-
naling is using a number (m) of consecutive error flags,
but making sure that there are some recessive bits between
them. For designating this new error signaling mechanism
we have coined the term aggregated error flag (AEF).

In order to make this mechanism compatible with any
kind of CAN controller, we propose to attach a specifically
designed hardware device to each CAN node, and to make
this device inject the AEF when required. This device is
called AEF Transmitter (AEFT) and its location in a CAN
node is shown in Figure 2.

Figure 3 shows an example of the use of aggregated er-
ror flags for signaling. The figure shows the Tx and Rx
signals of three CAN controllers and the contribution of
their corresponding AEFTs. In this case, the consistency
is guaranteed despite the existence of three channel errors
(marked with circles).

4.2 Architecture
The internal structure of the AEFT is depicted in Fig-

ure 4. It is constituted by five modules. The module bit
rate prescaler (BRP) is basically a frequency divider that
provides a clock ticking at the bit rate. The module syn-
chronizer implements the bit synchronization defined by
the CAN standard [1] and provides the sampling point of



Figure 4: Block diagram of the AEFT

each bit, since this is required by the other modules. The
module AEFControl is the control unit of the AEFT and
is the one who decides when to inject an AEF. This mod-
ule uses the module EFdetector for detecting any error flag
sent by the corresponding CAN controller and the module
EFT (Error Flag Transmitter) for injecting each error flag
that is required for conforming the AEF.

The error-flag detection is enabled by EFTControl with
the signal startTD. Whenever EFdetector sees that the CAN
controller is starting an error flag, it is notified with the
signal threat to AEFControl. Then, AEFControl disables
the detection of EF and uses the signal startEFT to instruct
EFT to inject the first error flag of the AEF. The signal send,
issued by EFT, indicates that the complete error flag has
been transmitted and the following one can be started.

The number of error flags actually injected in every AEF
(m) is configurable, because it depends on the fault con-
ditions assumed; typically a more aggresive environment
would require a higher m. For controlling this, AEFCon-
trol counts the number of activations of send, and once the
value m is reached no more EF is injected.

5 Conclusion and future work

In this work we studied the different cases in which a
frame can be inconsistently received by the nodes of a CAN
network. We reviewed the already reported scenarios of in-
consistency due to channel errors in the EOF and identified
new scenarios of inconsistency, caused by multiple channel
errors in the intermediate bits of the frame.

In order to eliminate this new source of inconsisten-
cies, we suggest a mechanism based on aggregations of

error flags, which guarantees the consistency of any frame
broadcast. This proposal is fully compatible with the so-
lutions that address the other inconsistency problems, such
as CANsistant [4]. Additionally, we have proposed the ar-
chitecture of a device, the so-called Aggregated Error Flag
Transmitter (AEFT), for implementing this specific signal-
ing. Such a device can be developed with a PLD and can
be easily incorporated onto any CAN node. At present, we
are setting up a CAN infrastructure that incorporates CAN-
sistant as well as nodes with AEFT; our aim is to show the
usefulness of our solution as an efficient and effective way
to prevent inconsistent message omissions.

Acknowledgment

This work was supported by the Spanish Science and
Innovation Ministry with grant DPI2008-02195, FEDER
funding.

References

[1] ISO, International Standard 11898 – Road Vehicles –
Interchange of Digital Information – Controller Area
Network (CAN) for High-Speed Communication, 1993.

[2] J. Pimentel, J. Proenza, L. Almeida, G. Rodrı́guez-
Navas, M. Barranco, and J. Ferreira, “Dependable au-
tomotive CAN networks,” in Automotive Embedded
Systems Handbook, N. Navet and F. Simonot-Lion,
Eds. CRC Press.

[3] SRV, CANbids project website.
(http://srv.uib.es/project/12).

[4] J. Proenza and E. Sigg, “A first design for CANsis-
tant: A mechanism to prevent inconsistent omissions in
CAN in the presence of multiple errors,” in Emerging
Technologies Factory Automation, 2009. ETFA 2009.
IEEE Conference on, sept. 2009, pp. 1 –4.

[5] J. Rufino, P. Verı́ssimo, G. Arroz, C. Almeida, and
L. Rodrigues, “Fault-tolerant broadcast in CAN,” in
Proceedings of the IEEE 28th Int. Symp. Fault-Tolerant
Computing. FTCS-28. Munich (Germany), June 1998.

[6] M. Livani, “SHARE: A transparent approach to fault-
tolerant broadcast in CAN,” in Proceedings of the 6th
International CAN Conference, 1999.

[7] J. Proenza and J. Miro-Julia, “MajorCAN: A modifica-
tion to the Controller Area Network protocol to achieve
Atomic Broadcast,” in IEEE Int. Workshop on Group
Communications and Computations. IWGCC. Taipei,
Taiwan, 2000.

[8] G. Rodriguez-Navas, J. Jimenez, and J. Proenza, “An
architecture for physical injection of complex fault sce-
narios in CAN networks,” in Emerging Technologies
and Factory Automation, 2003. Proceedings. ETFA
’03. IEEE Conference, vol. 2, sept. 2003, pp. 125 –
128 vol.2.


