
Towards the Integration of Flexible-Time-Triggered Communication and
Replicated Star Topologies in CAN

Manuel Barranco, Guillermo Rodriguez-Navas, David Gessner, Julián Proenza
Dpt. Matemàtiques i Informàtica, Universitat de les Illes Balears, Spain

{manuel.barranco, guillermo.rodriguez-navas, david.gessner, julian.proenza}@uib.es

Abstract
There is a growing interest in making the CAN field-

bus more suitable for dependable applications. In the past
years, several dependability limitations of CAN have al-
ready been addressed and a significant number of solu-
tions are available. Nevertheless, the integration of these
solutions into a single communication infrastructure is still
an open issue. In this paper we discuss the integration
of two specific solutions: FTT-CAN and ReCANcentrate.
FTT-CAN is a higher-layer protocol that guarantees flex-
ible real-time scheduling of CAN messages; whereas Re-
CANcentrate is a duplicated star topology for CAN that
includes several enhanced mechanisms for media fault tol-
erance. We show how they are integrated into a single ar-
chitecture that preserves the properties of each solution.

1. Introduction
Highly-dependable distributed embedded systems have

traditionally been developed using static approaches, i.e.
assuming that the environment and operating conditions re-
main mostly constant. However, the little flexibility of these
approaches makes them very inefficient when the system
is used in dynamic environments. For this reason, several
researchers are proposing ways to add more flexibility to
these systems, especially in the communication services
provided by the network. Nevertheless, the introduction
of new flexible communication services requires a careful
evaluation since they may conflict with other services of the
system, particularly with the fault-tolerance mechanisms.

The Flexible Time-Triggered CAN protocol (FTT-
CAN) [4] is a higher-layer protocol intended to introduce
more flexibility in the scheduling of real-time messages
in CAN. In order to be suitable for dependable systems,
FTT-CAN includes some mechanisms for fault tolerance,
such as on-line rescheduling, master replication, and bus
guardians [4]. Besides, the application of FTT-CAN with
replicated CAN buses has also been investigated [5]. How-
ever, replicated buses and bus guardians have important de-
pendability limitations [3] that replicated star topologies do
not have. Thus, in our current project CANbids we are tak-
ing the next step to make FTT-CAN suitable for highly-
dependable systems. In this paper we assess the integration
of FTT-CAN with ReCANcentrate, a replicated star topol-
ogy for CAN that provides advanced media fault-tolerance
capabilities [3].

The paper is organized as follows. Section 2 describes
the architecture and basic features of FTT-CAN and Re-
CANcentrate; Section 3 shows the approach followed to in-
tegrate the communication services and the fault-tolerance

mechanisms of these two technologies; Section 4 describes
new functionalities that, for the integration, should be
added to an existing ReCANcentrate software driver exe-
cuting on the nodes; Section 5 covers a few implementa-
tion aspects of the proposed integration approach. Finally,
Section 6 concludes the paper and indicates future work.

2. FTT-CAN and ReCANcentrate basics

FTT-CAN implements a centralized master/multislave
access to the network. The master divides the communica-
tion into temporal rounds called Elementary Cycles (ECs),
by periodically triggering a special message, called trigger
message (TM), to which the slave nodes synchronize [4].
Each EC combines both event- and time-triggered traffic
based on the schedule information spread by the master
within the TM. Moreover, the master is able to conduct
on-line scheduling updates, thus providing further commu-
nication flexibility.

With respect to its fault-tolerance mechanisms, FTT-
CAN’s on-line re-scheduling capabilities, master replica-
tion, and bus guardians allow tolerating faults that man-
ifest as an unscheduled transmission (UTX), a scheduled
message omission (SMO), or an inconsistent reception of
a management message (IMR). A UTX happens when a
node tries to transmit a message that was not scheduled
by the TM or when the TM itself is untimely transmitted.
An SMO occurs when a node does not transmit/receive a
scheduled message or the TM itself. Finally, an IMR hap-
pens when a message that conveys information related to
the management of the protocol, e.g. scheduling update in-
formation, is not consistently received by all nodes.

Regarding ReCANcentrate, it is a replicated star with
two hubs (Figure 1) interconnected by means of at least
two interlinks [3]. Each hub sends to the other the sig-
nal obtained after coupling the non-faulty contributions of
its own uplinks. Then, each hub couples its own contribu-
tion with the other’s, providing a single broadcast domain.
This is done in a fraction of the bit time [3], so that both
hubs behave like one, thus being transparent to the nodes
while providing error-containment. Specifically, each hub
is able to detect and isolate, at the corresponding port, faults
that compel any node or link/interlink to generate stuck-at-
recessive, stuck-at-dominant, or bit-flipping streams [3].

A ReCANcentrate node is constituted by commercial
off-the-shelf (COTS) components: a microcotroller, two
CAN controllers, and four transceivers (Figure 1). Each
CAN controller is connected to only one hub using one
transceiver for the uplink and another for the downlink.
The single broadcast domain allows each node to easily

c©2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. doi:10.1109/ETFA.2011.6059170



 

HubB HubA 

Link 

Transceiver 

CAN 
controller 

Micro 
controller 

Node 

Interlink 

Sublinks Uplink & 
donwlink 

Figure 1. ReCANcentrate architecture

manage the replicated traffic [2]. Basically, one of the con-
trollers acts as the transmission (tx) controller and the other
one is the non-transmission (non-tx) controller. The node
receives simultaneously (bit by bit) from both controllers,
but transmits through the tx controller only. Furthermore,
the node uses a tx timer and the native fault-treatment
mechanisms of CAN (based on the TEC/REC [1]) to di-
agnose when it cannot communicate through a given star
or a controller crashed. When this happens, the node dis-
cards the affected controller for communicating and uses
the other one only, both for transmissions and receptions.

3. Integration approach
This section analyzes the possible interactions between

the communication services and fault tolerance mecha-
nisms of FTT-CAN and ReCANcentrate. Then, this anal-
ysis is used to discus the approach we are following to in-
tegrate all these mechanisms, while ensuring that they will
still work properly after the integration.

3.1. Functional integration
FTT-CAN is implemented as an extra layer between the

application software and the CAN controller. Therefore,
according to the OSI model it can be seen as a part of
the Application layer, since it provides common commu-
nication services that are used by the applications executed
by the nodes. For these applications FTT-CAN is just a
software driver that provides the required FTT communi-
cation primitives, such as transmission requests and on-line
change scheduling requests, among others. This driver is
called FTTdrv and it is responsible for all the interaction
with the CAN controller. This means that in an FTT-CAN
node, the application software does not access the CAN
controller directly, but only through the FTTdrv driver.

ReCANcentrate has been designed with the idea of hid-
ing its own mechanisms from the application. In this sense,
each node is provided with a media management software
driver called reCANdrv, which works at the Data Link
Layer level to manage the replicated traffic (and treat me-
dia and controller faults) transparently to the application.
ReCANdrv provides a simple interface equivalent to what
we call a virtual CAN controller, so that the application
sees reCANdrv as an API with the basic configuration and
communication primitives of CAN.

As mentioned, to provide their communication ser-
vices, both FTTdrv and reCANdrv need to access the
CAN controller/s. This raises potential conflicts between
both drivers when accessing the same device. Neverthe-

less, there is a significant difference between both drivers
that eliminates this potential problem: whereas FTTdrv
works as a user of the CAN services, reCANdrv works
as a provider of them. This means that FTTdrv can be
put on top of reCANdrv and use the services this driver
supplies. The only requirement for this architecture is that
the interface provided by reCANdrv (the so-called vir-
tual CAN controller) must actually provide all the services
that FTTdrv requires. The advantage of maintaining each
driver at its original OSI layer is that it allows to reuse the
FTT-CAN drivers already implemented at the University
of Aveiro, e.g. [6], and the ReCANcentrate driver we de-
veloped [2].

When comparing the CAN communication services as-
sumed by FTTdrv and the ones provided by reCANdrv,
we noticed three aspects of reCANdrv that should be im-
proved. First, reCANdrv must provide a primitive to abort
messages, given that in FTT-CAN it is mandatory to abort
the transmission of a message once the end of the corre-
sponding temporal window is finished. Second, reCANdrv
should include interruptions to notify of transmissions, re-
ceptions and aborts. This feature is mandatory to reduce the
latencies. Third, reCANdrv could provide several transmis-
sion buffers to reduce the priority inversion problem. Due
to the significant amount of design and implementation de-
tails related to the changes to be perform on reCANdrv to
add these CAN services, we dedicate Sections 4 and 5 to
discuss them.

Finally, note that to integrate the services of both drivers
does not require any particular change on the hardware
architecture of the system. On the one hand, FTT-CAN
makes no assumption about the underlaying hardware. On
the other hand, none of the hardware pieces of ReCANcen-
trate depends on any particular aspect of the applications
(or protocols) executed by the nodes. The latter is particu-
larly clear in the case of the hub, which is exclusively con-
cerned with information at the bit and frame-field levels.

3.2. Fault-tolerance integration
In order to integrate the fault-tolerance mechanisms of

ReCANcentrate and FTT-CAN, first it is necessary to iden-
tify the levels at which these mechanisms operate. As con-
cerns ReCANcentrate, its mechanisms are implemented at
the physical level of the network as well as at the Data Link
Layer. For instance, the hub passivates faults acting at the
physical layer, i.e. by disconnecting hub ports, whereas re-
CANdrv acts at the Data Link Layer level, e.g. it discards
a controller for communicating if faulty.

Regarding FTT-CAN, its fault-tolerance mechanisms
also work at different levels. On the one hand, scheduled
message omission (SMO) and inconsistent management
message reception (IMR) faults are treated by FTTdrv at
the level of the FTT-protocol itself (application level). For
example, when an SMO of a message that is not the TM
occurs, the FTTdrv of the master re-schedules that mes-
sage. Another example is the distributed algorithm exe-
cuted by FTTdrv at each node to force consistent updates
of the scheduling information.

2



On the other hand, unscheduled transmission (UTX)
faults are treated by the FTT bus guardians. Each node
has it own guardian, which is a hardware device that dis-
ables the contribution of the CAN controller to the bus dur-
ing the appropriate phases of the EC, thereby preventing
the node from transmitting unscheduled messages [4]. A
bus guardian thus operates at two different levels. It uses
the scheduling information contained in the TM, which be-
longs to the application level, whereas it passivates the out-
put of the CAN controller by hardware, which corresponds
to the physical network level.

The fault-tolerance mechanisms of ReCANcentrate can
be seamlessly integrated with those of FTT-CAN that
specifically address SMO and IMR faults. This is because
the mechanisms of ReCANcentrate operate at a different
level than these ones of FTT-CAN, so that they do not in-
teract which each other.

Similarly, the FTT-CAN mechanisms that deal with
UTX faults, i.e. those carried out by the bus guardian,
can also be easily integrated. Concerning fault diagnosis,
the guardian acts at the application level, so that it does
not interfere with the ReCANcentrate mechanisms. As re-
gards fault passivation, note that although the guardian and
the hub act at the physical level, they perform their ac-
tions at a different location, i.e. the hub at its ports and
the guardian at the output of the CAN controller. There-
fore, bus guardians and ReCANcentrate are fully compati-
ble with each other. A possibility of integration could be to
attach one guardian to each one of the two CAN controllers
of each node. This is easy to deploy, since the guardian only
needs to have access to the transmision and reception signal
of the CAN controller, which are available in a ReCAN-
centrate node. However, a most efficient solution would be
to enhance the hub fault-diagnosis mechanisms in order to
make it able to address UTX faults.

4. New functionalities for reCANdrv

4.1. Abort transmission primitive
The current API of reCANdrv already provides primi-

tives to request a frame transmission, to read from the re-
CANdrv’s reception buffers, and to configure several CAN
communication parameters, such as the bit-rate. However,
it does not include a primitive to abort a frame, which is
required by FTTdrv to cancel transmissions that cannot be
completed within a given EC phase.

In principle, such a primitive has to instruct the tx con-
troller to halt the frame located at the hardware tx buffer
corresponding to the to-be-aborted frame. However, no
CAN controller is able to abort a frame that is being trans-
mitted; instead, the abort will only take place after the on-
going transmission ends. This is the reason why CAN con-
trollers typically include an interrupt or status bit to indi-
cate the completion of an abort.

Thus, it is not enough to enhance reCANdrv with an
abort transmission primitive, but we will also need to pro-
vide reCANdrv with the capability of forwarding notifica-
tions of completed aborts from the tx controller to its API.

4.2. Support for interrupts
The second new functionality required for reCANdrv

has to do with the capacity of notifying of different events
or situations. The current version of reCANdrv simply pro-
vides status information that can be polled through its API.
Thus, it is necessary to allow reCANdrv to deliver noti-
fications through interrupts as well. First, interrupts will
eliminate the polling overhead otherwise introduced by
FTTdrv to become aware of different events. Second, in-
terrupts open the possibility of implementing a task-based
version of FTTdrv or of any other application relying on
ReCANdrv. In particular, we will provide reCANdrv with
the capacity of generating interrupts for at least notify-
ing about successful transmissions, receptions, and frame
aborts, which are the CAN communication events that
FTTdrv must be aware of.

To provide this support, first we will add a reCANdrv
primitive that allows to specify the Interrupt Service Rou-
tine (ISR) to be called when a given event of interest oc-
curs. Optionally, this primitive could allow to indicate the
priority of the ISR itself. This will enable FTTdrv to set
up, during a configuration phase, the ISRs of the FTT layer
that should handle each event of interest.

As a second step, we have to provide reCANdrv with
the capacity to generate interrupts. The current implemen-
tation of this driver already includes a mechanism to trigger
the execution of some of its own internal procedures as if
they were ISRs. We can now extend this mechanism to also
launch the execution of external ISRs, such as those speci-
fied by the FTTdrv. Specifically, the mechanism consists in
triggering, by software, interrupts of the hardware/software
platform that are otherwise unused.

In particular, the current version of reCANdrv [2]
uses some unused hardware interrupt sources of the
dsPICTMmicrocontroller it relies on. To launch a given ISR,
reCANdrv simply sets the appropriate bit of the interrupt
register corresponding to the ISR’s hardware interrupt. This
strategy can be adapted to other platforms as well.

4.3. Multiple transmission buffers
So far reCANdrv includes just one transmission (tx)

buffer, implemented in software, whose content is trans-
ferred to one of the hardware tx buffers of the tx con-
troller for its transmission. However, some FTTdrv ver-
sions, e.g. [6], use multiple tx buffers present in some CAN
controllers to reduce the priority inversion problem during
the EC. Thus, although optional, it would be desirable to
extend reCANdrv to include as many software tx buffers
as hardware tx buffers are present in the kind of CAN con-
troller used for communicating.

Apart from allocating space for these buffers within re-
CANdrv, it is necessary to adopt a strategy that allows man-
aging these new buffers easily. For that purpose we propose
to map each one to both CAN controllers. Specifically, we
will establish a one-to-one correspondence between each
software tx buffer and one hardware tx buffer at each one
of the CAN controllers.

3



This mapping has two advantages. First, when the trans-
mission of a frame is requested from reCANdrv, we can
avoid the overhead of deciding in which hardware tx buffer
of the tx controller to allocate the frame. Second, after in-
structing the frame transmission through the tx controller,
reCANdrv can preventively also write a copy of the frame
in the corresponding hardware tx buffer of the non-tx con-
troller. This reduces the time required to instruct the trans-
mission through the non-tx controller when the tx con-
troller fails and the non-tx controller takes over.

5. Other implementation aspects

The overhead introduced by reCANdrv is an issue
deserving attention. As explained in [2], for reCAN-
drv to properly operate, it must handle CAN-related
events, e.g. transmission time outs, fast enough. More-
over, the amount of time reCANdrv needs to manage those
events is not deterministic, as it depends on the order with
which they happen. This would increase the jitter with
which FTTdrv will transmit/receive frames, which is par-
ticularly harmful to some FTT frames, such as the TM, as
it represents the temporal mark all nodes synchronize to.

Section 4 included some comments on how to reduce the
overhead of the new reCANdrv functionalities (and thus of
the jitter, indirectly). However, further implementation as-
pects are also important for achieving this objecive. The
first one regards the way in which FTTdrv and reCANdrv
exchange with each other both, the frames to be transmit-
ted and the frames that are received. In order to minimize
the volume of data exchanged between both layers, we will
preallocate a memory pool shared by both drivers, so that
they can exchange information by means of appropriate
memory pointers. The second implementation issue aims
at reducing the function-call overhead that results from in-
voking the primitives of reCANdrv from FTTdrv, e.g. the
primitives for requesting a frame transmission or a frame
abort. It consist in compiling the reCANdrv primitives as
inline functions when they are called from reCANdrv.

6. Conclusions and future work

In the context of highly-dependable control systems,
significant efforts are being made to provide field-bus com-
munication protocols that combine advanced real-time fea-
tures with strong fault-tolerance capabilities. Moreover, the
flexibility of real-time and fault-tolerance mechanisms is
also gaining in importance in adaptive systems.

The FTT paradigm is one of the most promising solu-
tions to provide flexible real-time communication. In the
context of CAN, some solutions have been proposed to en-
hance the fault-tolerance capabilities of the so-called FTT-
CAN protocol. However, while all these solutions rely on
the use of bus-guardians and replicated buses, other com-
peting field-bus technologies, such as Ethernet, are evolv-
ing towards the use of stars given the stronger potential de-
pendability benefits of this topology. Thus, in this paper
we investigate the integration of FTT-CAN with ReCAN-

centrate, a CAN-compliant replicated star topology we de-
veloped to provide media fault-tolerance.

We show that a seamless integration of both tech-
nologies is possible, while using already available hard-
ware/software pieces of existing prototypes. For that we
analyzed the interactions between the set of communica-
tion services and fault-tolerance mechanisms of both tech-
nologies and, then, discovered that these sets are orthogo-
nal to each other, so that they can still work properly after
the integration. In particular, we showed that it is possi-
ble to keep the separation in layers of the communication
services provided by the existing software drivers imple-
mented for FTT-CAN and ReCANcentrate, so that the only
requirement prior to the integration of both drivers would
be to add certain communication services to the API of the
ReCANcentrate driver. Moreover, we also explained how
these functional additions can be carried out, thereby fur-
ther clarifying the feasibility of the integration.

In future work we will also investigate other possi-
ble approaches to integrate FTT-CAN and ReCANcentrate
that may yield real-time and fault-tolerance advantages not
present in either of them. In particular, the hubs can be pro-
vided with mechanisms based on the scheduling informa-
tion of the FTT layer in order to increase the fault-treatment
capabilities of the hub itself. In this way the hubs could
not only improve the efficiency with which certain faults
are treated in FTT-CAN, but also address faults that are
beyond the current capabilities of both technologies, e.g.
masquerading faults.

Acknowledgements
This work was supported by the Spanish Science and

Innovation Ministry with grant DPI2008-02195, FEDER
funding, and the Portuguese Fundacã̧o para Ciência e a
Tecnologia with grant SFRH/BPD/70317/2010.

References

[1] ISO11898-1. Controller Area Network (CAN) - part 1: Data
link layer and physical signalling., 2003.

[2] M. Barranco, D. Gessner, J. Proenza, and L. Almeida. First
prototype and experimental assessment of media manage-
ment in ReCANcentrate. In 15th IEEE Conf. on Emerging
Technologies and Factory Automation, Sep. 2010.

[3] M. Barranco, J. Proenza, and L. Almeida. Boosting the ro-
bustness of Controller Area Networks: CANcentrate and Re-
CANcentrate. Computer, 42:66–73, May 2009.

[4] J. Ferreira, L. Almeida, A. Fonseca, P. Pedreiras, E. Martins,
G. Rodriguez-Navas, J. Rigo, and J. Proenza. Combining
operational flexibility and dependability in FTT-CAN. IEEE
Transactions on Industrial Informatics, 2(2):95–102, 2006.

[5] V. Silva, J. Fonseca, and J. Ferreira. Adapting the FTT-CAN
master for multiple-bus operation. In Proc. of the 5th IEEE
International Conf. on Industrial Informatics, pages 305 –
310. Industrial Electronics Society, June 2007.

[6] V. Silva, R. Marau, L. Almeida, J. Ferreira, M. Calha, P. Pe-
dreiras, and J. Fonseca. Implementing a distributed sensing
and actuation system: The cambada robots case study. In
Proceedings of the 10th IEEE Conference on Emerging Tech-
nologies and Factory Automation, 2005.

4


