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Abstract: A visual odometer can estimate robot motion by tracking a set of invariant keypoints
over a sequence of camera frames, at a computational cost that is roughly linear in the number
of extracted keypoints. The leading literature suggests to extract all keypoints with a response
value—e.g., a Laplacian or Hessian determinant—above a given threshold. We find that the
number of image keypoints that pass a given threshold is highly variable between images, which
is impractical for real time systems where motion needs to be estimated in constant time.
Here we propose to extract a constant number of keypoints that have the highest response for
their respective frame. To find the optimal number of extracted keypoints, we define a range
of thresholds on odometer performance, and study how the number of image pairs for which a
visual odometer passes the thresholds depends on the number of extracted keypoints. We find
that the shapes of the resulting graphs are relatively invariant to the chosen threshold values
and that for all threshold values the region where good odometer performance is balanced with
computational efficiency is relatively small. We conclude that if odometer performance has to be
weighed against computational cost, there is relatively little room for trade, and that a robust
optimum can quickly and easily be found.
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1. INTRODUCTION

A visual odometer estimates motion from a sequence
of images, for example from a camera that is mounted
on a mobile robot. If the camera views a scene that is
sufficiently planar, camera motion can be estimated by
detecting and describing well localized keypoints—also
called salient points or interest points—in one image,
matching them against the keypoints of a second image,
and computing the homography that projects keypoints
from the first image coordinate frame to the second image
coordinate frame. Such a homography can be decomposed
into rotation of the camera around its axes, translation of
the camera along the x and the y axis of the camera plane,
and translation along the z axis up to a scale parameter
that corresponds to the distance between the camera
and the plane in the scene from which the keypoints
were taken. If this distance can be estimated (e.g., using
sonar or the spread of laser pointers) the full three-di-
mensional motion of camera and robot can be computed.
See Caballero et al. (2009) for an overview of recent
methodology.

In principle a full homography can be computed from
only four keypoints, provided that they are not co-linear.
However, with only four keypoints it is impossible to verify
that all of them were correctly matched, and any noise
and imprecision in the localization of keypoints will be

1 This research was supported by the European Commission’s Sev-
enth Framework Programme FP7/2007-2013 under grant agreement
248497 (TRIDENT Project)

left uncorrected. If more than four keypoints are available,
least square methods for calculating the homography can
reduce the effect of noise and imprecision (Ma et al., 2004).
For a discussion on the covariance of projective homo-
graphies (Negahdaripour et al., 2005). With redundant
pairs of keypoints, pairs that are statistical outliers can
be discarded as likely mismatches, which further improves
the reliability of the estimate. In practice we find that a
homography that is computed from less than six pairs of
keypoints cannot be trusted, and that even a homography
that is computed from seven seemingly consistently placed
pairs of keypoints occasionally turns out to be corrupted
by false positives from the matching process. This raises
the practical question of how many keypoints should be
extracted in order to guarantee a reliable motion estimate.

Keypoints can be defined from a number of image features
like corners, straight lines, or blobs, i.e., regions that are
brighter or darker than their surroundings. While corners
and lines are dominant in human made environments,
blobs are dominant in natural environments. Here we
consider the specific case where the camera of an au-
tonomous submarine is trained on the sea floor, and where
the dominant image features are patches of vegetation,
rocks, shells, or worm holes, all of which are best described
as blobs. Blob detectors typically define a blob by four
principal parameters: its x and y coordinates in the image,
the diameter or scale of the region that maximizes the
contrast between image points inside the region and image
points immediately outside of the region, and the differ-
ence in contrast between the blob and its surrounding,



which defines the blob response. Blob detectors and their
implementations differ in the shape of regions that can
be a blob, the radius of the region outside the blob that
is taken into consideration, and their dependence on the
contrast gradient along the edge of the blob.

In order to match blobs under rotation and change of
scale, they need to be scale and rotation invariant. While
the theory of scale and rotation invariant keypoints was
developed during the 1980s (Witkin, 1983; Babaud et al.,
1986; Lindeberg, 1990), the evolution of practical solutions
for real time visual odometry took another two decades.
We consider the SURF algorithm (Bay et al., 2008) and its
various derivatives to be the first practical solutions. SURF
uses integral images to generate the scale space and the
Hessian determinant to identify a blob in an image, which
makes it both significantly faster and more accurate than
previous solutions like SIFT (Lowe, 2004), which is based
on Gaussian integration and the less precisely localized
Laplacian.

Implementations of visual odometers that track keypoints
can be divided into a detection phase that identifies an
often large set of keypoints with a maximal response in
the local neighbourhood, a selection phase where the set
of keypoints is reduced to the desired size and quality, a
description phase where the selected keypoints are pro-
vided with a meaningful binary descriptor, a matching
phase where descriptors of keypoints in different images
are compared, and lastly the computation of the homog-
raphy, which typically includes some method to separate
the false positives of the matching phase from true pos-
itives. The algorithmic complexity of the detection and
selection phases are generally of order O(pk) where p is
the number of image pixels and k the number of considered
scales, i.e., the number of considered blob sizes. For most
applications p and k can be considered constant. The
algorithmic complexity of the description phase is O(n),
with n the number of selected keypoints. The worst case
algorithmic complexity of the matching phase and of the
computation of the homography is O(n2), though we find
that this can be improved upon easily by a variety of search
heuristics. Speaking in more practical terms we find that
at 100 keypoints per image and working at the relatively
low resolution of 288 by 384 pixels, roughly 40% of the
computation time of an unmodified open source SURF
implementation goes into keypoint detection and selec-
tion, 40% into keypoint description, and about 20% into
matching and calculation of the homography. For SIFT
we measure a 10-fold increase in detection and descrip-
tion cost, skewing the previously described distribution of
computational resources to 49%, 49% and 2%.

If keypoints are selected by a response threshold, as many
authors of feature detection algorithms propose, the num-
ber of keypoints varies greatly between images, and with
that the overall computation time. For example, in our ex-
periments a threshold parameter of 500 (a value taken from
OpenCV example code) in the OpenCV implementation of
SURF results in an average of 190 keypoints that pass the
threshold per image, out of an average of 570 extrema per
image. Individual images however have anywhere between
1 and 600 keypoints that pass the threshold, see Figures 1.
Accordingly, the computational cost differs by orders of
magnitude between images.
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Fig. 1. Cumulative density function of the number of
keypoints per image that pass a specific threshold
response value. The x axis shows the number n
of keypoints, the y axis the cumulative probability
P (≤ n) that an image has n or less keypoints that pass
a specific threshold response. The statistic is based on
1,000 image pairs.

For real time systems it is preferable to select a fixed
number n of keypoints per image. Keypoints can be
sorted by response, and only the n keypoints with the
highest response are selected. In this way the average and
minimum response value of the extracted keypoints can
vary greatly between images. The natural question that
arises from such an approach is whether n can be freely
set to satisfy constraints on the computational resources
and the quality of the motion estimates, or whether n has
narrow bounds, i.e., a lower bound below which no useful
odometry is possible, immediately followed by an upper
bound above which no further improvement to the motion
estimate can be measured.

The remainder of this article describes our empirical
approach to answer this question. Section 2 contains
the experimental setup for the image acquisition and
the organization of image pairs to be studied. Section 3
explains the statistical analysis of the error of the motion
estimate as a function of n. Section 4 concludes.

2. EXPERIMENTAL SETUP

We base our analysis on two image sequences of more than
1,000 images each that were collected by a downward look-
ing camera aboard the Girona500 autonomous submarine
during two controlled test dives in the laboratory pool of
the VICOROB research group in Girona. Image resolution
is 384 by 288 pixels, and images are recorded at 3 frames
per second. Lighting conditions were good and the water
was clean, such that motion blur and light scatter are
negligible. The floor of the pool was covered by a life-size
high resolution color poster that shows a coral reef off the
coast of Florida. The poster was spread out flat. All image
features are co-planar. These are perfect conditions for
the estimation of homographies. Any error in the motion
estimates must be almost entirely attributed to the visual
odometer and its configuration.

By matching the collected images against the digital
version of the poster, a reasonable ground truth can
be established. That is, the homography between each



Fig. 2. Matching keypoints between consecutive images

image and the poster is computed from a large number
of matching keypoints—typically 60 or more—that are
distributed over the entire image, while individual pairs
of images have smaller numbers of matching keypoints
that are distributed only over the overlapping part of the
images.

The back-projection error is the average Euclidean dis-
tance between the projection of a keypoint from the first
image onto the second image, and the actual location of
the matching keypoint in that second image. By evaluating
the back-projection error on pairs of matching points that
were not involved in the computation of the homography—
i.e., by using cross-validation—we find that the back-
projection error of the concatenation of a homography
from an image to the poster and from the poster to another
image is 0.5 pixels, with little deviation. That is, with the
methods applied here 0.5 pixels is the minimal imprecision
in the localization of a keypoint between images. Figure 2
shows a pair of images with matching features. The robot
path over the poster is shown in Figure 3.

The robot moved at a constant altitude of one meter above
the floor of the pool. Each of the two dive paths consists
of ten stretches of either two or four meters length with

Fig. 3. Robot path over the poster, as estimated from
the homographies. The bright line shows the camera
movement, the saturated the robot center.

nine right angle turns in between, five of them to the right
and four to the left. During the straight runs, the robot
occasionally slowed down, rotated to adjust its path, and
continued. Roll and pitch of the robot were negligible.
Though we have calculated full homographies, we cannot
report any observation on roll and pitch that exceeds the
observed measurement error. In fact, the corresponding
lower row matrix entries of the homographies are so close
to zero that the homographies can be considered to be
affine. In the remainder of this article yaw will be the only
rotation considered in the analysis. All rotation values are
measured in radians.

We use two independent open source implementations of
SURF, one by C. Evans (Evans, 2009), and one included
in the OpenCV image processing library that is being
developed and distributed by Willow Garage. We used
both implementations without modification. For reference
we also report results on SIFT, again as included in the
OpenCV library by Willow Garage. In all three cases
feature descriptors are vectors of 64 float values that
describe the region around the keypoint.

For the purpose of feature matching we have to distinguish
between similarity and identity. The Euclidean distance
between descriptors of features of the same type—i.e.,
worm holes on a background of sand or patches of sea grass
on rock—is typically smaller than what can be expected
for random features, and larger than for descriptors of the
same feature in different images. The typical distance for
similar and identical features is not universal but depends
on the actual type of feature and the image quality. For
example, the median Euclidean distance between descrip-
tors of the same worm hole feature in different images
might be 0.2 and the median distance to other worm
hole features might be 0.3, whereas the median Euclidean
distance between the same sea grass feature in different
images might be 0.3 and the median distance to other
sea grass features might be 0.5. A global threshold on the
Euclidean distance will not be able to distinguish between
a identical sea grass features and worm hole features that
are merely similar.

To overcome this difficulty, we calculate the Euclidean
distance of every keypoint a ∈ A in one image to every
keypoint b ∈ B in another image and record the keypoint
b′ with the smallest distance to a and the keypoint b′′ with
the second smallest distance to a. A match between a and



b′ is only confirmed if the distance between a and b′ is
less than two third of the distance between a and b′′. This
effectively creates a threshold that dynamically adjusts to
the image and descriptor quality and works well as long
as the number of keypoints that are matched against each
other for a pair of images is not too small, e.g., not smaller
than 10.

For the computation of the homography we use RANSAC
(Random Sample Consensus, Fischler and Bolles, 1981) in
combination with least squares. RANSAC is used with a
threshold value of two, i.e., matching pairs are considered
to be outliers if the back-projection error of the homog-
raphy exceeds two pixels. We will use the term “inliers”
to indicate matching keypoint pairs that were considered
inliers by RANSAC.

We considered pairs of images that are consecutive (dis-
tance one) and that are of distance {2, 3, . . . , 29, 30} in
the two image sequences. This makes for over 60,000 image
pairs. Average motion between images is ten pixels, mostly
along the vertical axis, such that two consecutive images
overlap by 96%, and images at distance ten still overlap
by two third of their area. Images at distance thirty only
overlap if the robot slowed down or turned. For each image
pair we selected the same number n of keypoints based on
highest response, i.e., based on the Hessian determinant in
the case of SURF, and the Laplacian in the case of SIFT.
For each value of n we compare all 60,000 image pairs. We
use values of n ∈ {10, 20, . . . , 490, 500} keypoints, i.e., n
grows in increments of ten.

If less than four pairs of keypoints can be matched between
images, no homography can be calculated and no motion
estimate can be given. We also ignore homographies where
RANSAC could find only four or five inlier pairs as too
unreliable without further refinement. Statistical results
for such low numbers of inliers depend largely on the
further application of filter heuristics, which exceeds the
scope of this article. For example, such estimates must be
rejected if the corresponding keypoints form an almost co-
linear set or if the descriptors of the matching pairs are
dissimilar enough to allow for false positives, a case which
poses no problem in larger sets of matching pairs.

3. ANALYSIS

To quantify the quality of a motion estimate we distinguish
between the error in spatial translation, error in rotation
about the z axis (yaw), and error in the scale. We define the
translation error ex,y of an image pair to be the Euclidean

distance
√

(x− x′)2 + (y − y′)2 between the translation
vector (x, y) of the motion estimate that is based on
the homography between images, and the translation
vector (x′, y′) as estimated by way of the poster. We
define the rotation error eyaw of an image pair to be the
absolute difference between yaw as measured from the
homographies between images, and yaw as measured by
way of the poster. From a homography the robot motion
along the z axis of the camera can be computed only
up to scale, which corresponds to the distance between
camera and scene. Since the precision in the estimation
of this distance does not concern us here, and since scale
varies only slightly, always being close to one, we will only
consider an error in the estimation of its value. We define

the scaling error escale of an image pair to be the absolute
difference between the relative scale as measured from the
homography between two images and the relative scale as
measured by way of the poster.

As the number n of keypoints that are extracted from an
image and matched against another image increases, the
number of correctly matched pairs of keypoints generally
increases as well, and the errors of the corresponding
motion estimates decrease. For some image pairs however
the number of matching keypoint pairs is either too low to
compute a homography, or the number of inliers selected
by RANSAC is too low for the estimate to be reliable.
We have observed cases where the mean translation error
decreases when less keypoints are extracted, while the
number of image pairs for which no reliable motion es-
timate can be calculated increases. If we wish to quantify
the quality of the motion estimate that can be expected
for a given number of extracted keypoints, both the error
of the estimate and the number of images for which motion
cannot be reliably estimated need to be taken into account.

To quantify the quality of a motion estimate as a function
of extracted keypoints per image we count the number
of image pairs that pass certain quality thresholds. The
lowest quality threshold, threshold I, counts the number
of image pairs with at least six inliers as selected by
RANSAC. Three more thresholds count the number of
image pairs with translation, rotation and scaling errors
that are all lower than some given error levels. To choose
suitable values for these error levels consider Figure 4,
which shows the Euclidean translation error ex,y, the ab-
solute rotation error eyaw and the absolute scaling error
escale as a function of the number of pairs of matching key-
points from which motion was estimated. The number n
of extracted keypoints was hundred for all images. For this
statistic we considered image pairs that were consecutive
(distance one) and that were of distance {2, 3, . . . , 29, 30}
in the two image sequences, for a total of over 60,000 image
pairs.

Figure 4 shows that for all three types of error and for the
three considered detectors the graphs can be divided into
three regimes. Under the first regime the errors decrease
rapidly until the sets of matching keypoints reach size
20. Under the second regime further but less dramatic
decrease can be observed until the sets of matching key-
points reach size 40. From then on, in the last regime,
there is little to no further decrease. Absolute error values
are nearly identical for the two implementations of SURF,
and quite similar even for SIFT. Note that the two SURF
implementations have larger maximum match sizes than
SIFT only because they have a larger likelihood of false
positives in the matching process. The average number of
true positives obtained by SURF is actually smaller.

We consider the errors at matching sets of size 12 to
define threshold II, the errors at matching sets of size
20 to define threshold III and the errors at matching
sets of size 40 to define threshold IV. Each of the thee
thresholds consists of three error levels ex,y, eyaw, and
escale, where each error level is the highest error observed
for any of the three detectors for the respective number
of matching sets, which is always the error of the SIFT
detector. The definitions of the three thresholds are given
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Fig. 4. Magnitude of different error types as a function
of keypoint pairs on which the motion estimate was
based. The x axis shows the number of matched pairs.
The y axis shows the average error.

in Table 1. Note how error levels approximately double
between threshold IV and III, and again between threshold
III and II.

Figure 5 reports the percentage of motion estimates that
pass every threshold as a function of the number of
keypoints that are extracted per image. Percentage values
for selected numbers of keypoints per image are given in
Table 2. Except for the obvious fact that for each threshold
the graphs converge on different values, the graphs for
different detectors and for different thresholds are very
similar one to the other. For all implementations the
percentage of image pairs that pass all thresholds increases
dramatically until about n = 50 keypoints are extracted
per image. There is a period of transition until about

Table 1. Definition of quality thresholds for
motion estimates.

threshold I at least 6 inliers

threshold II ex,y ≤ 1.82 eyaw ≤ 0.0080 escale ≤ 0.0211

threshold III ex,y ≤ 0.75 eyaw ≤ 0.0041 escale ≤ 0.0079

threshold IV ex,y ≤ 0.33 eyaw ≤ 0.0023 escale ≤ 0.0029

Table 2. Percentage of motion estimates that
pass a threshold for selected numbers of ex-

tracted keypoints per image.

number of extracted keypoints

detector 20 30 50 100 200 300 500

threshold I (at least 6 inliers)
SURF C. Evans 9.0 18.7 31.0 44.7 54.6 59.0 62.3
SURF W. G. 13.6 24.2 35.8 47.9 57.0 61.1 64.8
SIFT W. G. 6.7 17.4 33.8 52.4 64.9 70.3 75.4

threshold II
SURF C. Evans 14.1 21.3 30.1 39.7 46.5 49.3 51.4
SURF W. G. 19.0 26.2 34.0 42.2 48.3 50.9 53.2
SIFT W. G. 8.6 16.2 28.2 41.8 50.7 54.1 57.4

threshold III
SURF C. Evans 8.4 13.8 20.8 28.1 32.4 34.4 35.7
SURF W. G. 12.1 17.9 24.1 29.9 33.5 35.1 36.5
SIFT W. G. 5.0 9.8 18.7 28.8 34.8 36.7 38.3

threshold IV
SURF C. Evans 3.0 5.3 9.1 12.7 15.4 16.3 16.9
SURF W. G. 5.2 8.2 11.3 14.4 16.2 16.9 17.5
SIFT W. G. 1.7 3.7 8.3 13.6 16.5 17.4 18.0

n = 200 during which the increase continuous on a clearly
measurable scale for all thresholds. Increasing n further
shows little results, in particular for the stricter thresholds
III and IV.

4. CONCLUSION

We first addressed the methodological problem of how to
measure odometer performance when no reliable motion
estimate can be given for a large number of image pairs.
We concluded that the quality of motion estimates for a
given number of extracted keypoints per image can best
be quantified by the percentage of image pairs that pass
given quality thresholds. The exact values of the quality
thresholds determine to which value the percentage of
image pairs will converge when more and more image
keypoints are selected, but they do not affect the general
shape of the graph. This is of practical use because it allows
the practitioner to produce a cost-benefit analysis for the
number of selected keypoints that is relatively invariant to
quality thresholds.

With regard to our main research question, whether the
number of extracted keypoints can be set freely to satisfy
quality and resource constraints, the answer is negative.
There is some room to trade performance against resource
consumption, but the range of values for which this is
possible is narrow and well defined. In this experiment,
lowering the number of keypoints below 50 leads to a rapid
deterioration in performance, while raising it above 200
promises very little improvement.
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Fig. 5. Percentage of motion estimates that pass a given quality threshold as a function of extracted keypoints per image.
The x axis shows the number of keypoints extracted for each image in a pair. The y axis shows the percentage of
image pairs that pass the threshold.

Our overall experience from the experiments described
here is that it is impractical to fine-tune the exact number
of extracted keypoints to the actual constraints of speed
and accuracy, average keypoint quality, or average amount
of overlap between images. A setting of 100 keypoints per
image quickly emerged as the practical optimum.
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