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Abstract

Despite the significant advantages of the Controller Area

Network (CAN) there is an extended belief that CAN is not

suitable for critical applications, mainly because of several

dependability limitations. During the CANbids project each

one of these limitations has been addressed and a complete

architecture for CAN-based fault-tolerant systems has been

devised. This architecture allows building highly-reliable

systems. This paper describes the design of such an archi-

tecture and the prototyping of its fundamental parts.

1. Introduction

The Controller Area Network (CAN) [5] protocol is a

fieldbus communication protocol that was first devised for in-

vehicle control applications and that has been widely adopted

in many other areas within the distributed embedded control

systems field. CAN is nowadays a mature technology whose

tremendous success has been mainly caused by its error con-

trol features, low latency, network wide bus access priority

and real-time response. In addition, CAN’s widespread use

has caused the price of its components to drop to some levels

where other protocols cannot compete.

Despite these significant advantages, there is an extended

belief that CAN is not suitable for critical applications,

mainly because of the following dependability limitations

[12]: (1) Limited data consistency; (2) Limited error con-

tainment; (3) Limited support for fault tolerance and (4) Lack

of clock synchronization. Nevertheless, several researchers

state that CAN will be able to support safety-critical ap-

plications if these limitations are overcome with the proper

enhancements [12]. This possibility is very appealing for

many application domains, since CAN components are much

cheaper than those of the natural competitors of CAN in

highly dependable systems, e.g., FlexRay or TTA, and be-

cause the use of CAN permits to take advantage of the know-

how and expertise that engineering teams have gained in us-

ing this technology during the last decades.

For the last three years, the CANbids (CAN-Based In-

frastructure for Dependable Systems) project has purported

to design, implement and validate a CAN-based infrastruc-

ture for supporting the execution of highly-dependable dis-

tributed control applications. CANbids has used as building

blocks (i.e. subsystems) various mechanisms and enhance-

ments intended to overcome each and every one of the afore-

mentioned dependability limitations of CAN.

Specifically, in order to eliminate the potential data incon-

sistencies, a device called CANsistant [18] that is capable of

detecting certain inconsistencies has been designed. Other

possible inconsistencies are eliminated with a new mecha-

nism called Aggregated Error Flag Transmitter (AEFT) [20].

In order to increase the error containment capacity, a star

topology called CANcentrate [3] has been proposed that has

an active hub that disconnects from the rest of the network

the nodes and links that fail in various manners according

to a wide fault model. In order to provide the resulting sys-

tem with suitable support for fault tolerance CANbids in-

cludes two functionalities. The first one allows replicating

the star topology in such a way that the single point of fail-

ure that would imply having a single hub is eliminated. This

is achieved with the replicated star topology called ReCAN-

centrate [3]. The second one supports the active replication

of nodes. This means that several nodes execute the same

functionality in such a way that after each partial computa-

tion they exchange the results obtained so far and each one

votes on the results received from all nodes. The mechanisms

included to support the replication of nodes are an adaptation

of our work presented in [17]. The last limitation of CAN has

been overcome by designing a clock synchronization subsys-

tem that is able to tolerate its own faults [19].

It is important to mention that the replicas that nodes

execute in order to achieve node fault tolerance can be ei-
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Figure 1. NVP execution

ther identical pieces of software or diverse versions of the

same program. The first approach allows tolerating hardware

faults whereas the second one software (design) faults as

well. For diverse versions a suitable classical paradigm exists

that is called N-Version Programming (NVP) paradigm [1].

In NVP, N diverse versions of the same program are de-

veloped by independent teams. Each version is partitioned

into a set of segments. Corresponding segments in different

versions are intended to perform the same function. In ex-

ecution, each time a version finishes a segment, it issues a

vector of results of this segment, called cc-vector (see Fig-

ure 1). Then a decision algorithm is executed on to obtain a

consensus cc-vector which is sent back to all versions to be

used in the continued computation. This mechanism, called

cc-point, provides both synchronization among versions and

masking of faults in a minority of versions. This voting

mechanism can also be used when we have identical repli-

cas instead of diverse versions. That is why we have adopted

NVP for CANbids and we are going to refer always to the

NVP mechanisms and terminology (segment, cc-point, cc-

vector, etc.) no matter whether we are considering identical

or diverse replicas of the application program. We will use

the term a-replica to refer to a generic replica of the applica-

tion program, that can present or not design diversity.

Figure 2 gives a first idea of the general appearance of

CANbids. As can be seen, several nodes are connected by

means of replicated stars and each one of the nodes executes

an a-replica (either an identical copy or a diverse version of

the same application). Each time one of the a-replicas fin-

ishes one of the segments, the corresponding cc-vector is im-

mediately broadcast through the replicated star. Once the cc-

vectors from each a-replica have been broadcast, each node

executes the decision algorithm on them and returns the con-

sensus cc-vector to the local a-replica. This voting is per-

formed in CANbids in such a way that the determinism of

the replicated nodes is enforced, i.e. all non-faulty nodes

obtain the same values for their consensus cc-vectors. In

this architecture the transmission of cc-vectors among nodes

is triggered each time one of the a-replicas finishes a seg-

ment, which corresponds to an event-triggered communica-

tion scheme. This is the basis of the Event Synchronous
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Figure 2. The CANbids circuitry

System (ESYS) approach, proposed in [8] as the most suit-

able way of executing applications which follow the NVP

paradigm, given the diverse execution times which are to

be expected from diverse software versions. As indicated

above, the approach is equally suitable when identical repli-

cas of software are executed. Moreover, the ESYS approach

perfectly fits in with the asynchronous character of many ap-

plications based on CAN.

In Section 2, a brief review of previous work is provided.

Section 3 discusses the fault model we have considered. Sec-

tion 4 describes the basic organization of CANbids. Section

5 describes the different subsystems that constitute the basic

parts of our architecture. Section 6 summarizes the integra-

tion of the different subsystems into CANbids. Section 7

presents the prototype and the video demonstration created

to prove the concept. Finally, Section 8 concludes the paper

with a list of advantages of our approach.

2. Related work

Due to space constraints we are not going to elaborate on

the different alternatives to each one of the specific mecha-

nisms for dependability improvement that are integrated in

the CANbids architecture. However it is important to say

that each one of these mechanisms outperforms its previ-

ously published alternatives. Specifically, CANcentrate in-

cludes the CAN hub that presents by far the most complete

error-containment capabilities among those described in the

literature. On the other hand, no solution that could be com-

pared to ReCANcentrate for star replication in CAN has been

presented so far. Similarly, for the problem of node replica-

tion in the context of CAN there are no published alterna-

tives, to the authors’ best knowledge. The solution developed

within the CANbids project for data inconsistencies covers

much more error scenarios than other proposals. Finally, our

clock synchronization subsystem is the one providing more

independence from the application and more complete fault-

tolerance capabilities. For specific details on the advantages

that each one of CANbids subsystems exhibits in front its

competitors in its specific tasks, the reader is referred to the



corresponding publications [17, 3, 18, 20, 19]

Looking at CANbids as a whole, it is possible to compare

it to the two alternative complete infrastructures also pro-

posed to improve the dependability of CAN-based systems:

FlexCAN [12] and CANELy [21, 22]. A basic aspect to point

out about FlexCAN it that it uses a TDMA scheme to orga-

nize the message exchanges. This does not correspond to

the native event-triggered nature of CAN and thus it reduces

the generality of the solutions that FlexCAN incorporates for

CAN’s dependability limitations. Moreover, the FlexCAN

design does not explicitly address the data consistency issue

and it does not present a replicated star topology, which im-

plies loosing the superior error-containment capacities that

are associated to this kind of topologies.

Regarding CANELy [21, 22], it is important to say than

it should be seen not as the architecture of a complete dis-

tributed embedded system, but as a set of mechanisms based

on CAN COTS components that system designers may con-

sider when designing a fault-tolerant CAN system. In par-

ticular CANELy does not include instructions on how to

achieve tolerance to node faults. Moreover, CANELy keeps

the bus topology, with its inherent impairments related to

error-containment. Furthermore, it considers only a subset

of the inconsistency scenarios addressed by CANbids. Last,

some of the services it proposes, such as its protocol for fault-

tolerant clock synchronization, create a substantial overhead

in terms of message exchanges that can make them unsuit-

able for specific applications.

3. Fault Model

The fault model considered in CANbids is actually a su-

perset of the fault models taken into account for the design

of all its subsystems [17, 3, 18, 20, 19]. For the sake of clar-

ity it is worth to mention that both temporary and permanent

faults are considered for nodes, connections, links and hubs.

These faults can have an internal (e.g. short-circuits) or ex-

ternal (e.g. electromagnetic interference) origin and can be

physical or human-made, although intentional faults are not

explicitly considered. Also software faults can be addressed

for the a-replicas if they present design diversity. Due to

space limitations, the reader is asked to find the details of the

considered faults in the cited papers.

4. Architecture overview

Providing an infrastructure that does not exhibit any of

the referred dependability limitations of CAN requires the

definition of an architecture that integrates the mechanisms

developed to overcome such limitations. This is simplified

by the orthogonal orientation followed in their design.

The general architectural approach is similar to that used

in the design of our node replication scheme [17]. Here we

focus on two particular architectural features, namely the

definition of error containment boundaries and the organi-

zation of fault-tolerance operations.

4.1. Definition of error containment boundaries

In the proposed architecture, the error containment

boundaries are enforced by restricting the failure semantics

of the nodes and by preparing the nodes to deal with the er-

rors that may still occur. Restricting the failure semantics

of a node simplifies the operations that other nodes have to

perform to deal with its potential errors.

We consider different levels of failure semantics for dif-

ferent functions the nodes have to perform. The main func-

tion of a node is the application task it is executing. Since

cyclic votings on the results of this task are going to be car-

ried out, it is all right if it exhibits incorrect computation

failure semantics [2], i.e. be able to fail in the worst case by

providing incorrect results either in the value or in the time

domains. However we decided to prevent it from presenting

more arbitrary failure modes, such as impersonating other

nodes, sending different values to different nodes or babbling

in the channel. The reason for this decision is that in order

to deal with them the voting protocol would have to be much

more complicated.

For all other node functions that send messages through

the network, e.g., error detection functions that send heart-

beats, we consider a crash failure semantics [13] since it

makes no sense to perform a majority voting on the messages

they transmit.

To enforce the above mentioned failure semantics, we di-

vided each node hardware in two parts (see Figure 2), the Ap-

plication Execution Board (AEB) that executes the applica-

tion, and the Redundancy and Communication Management

Board (RCMB) that handles communications and manages

redundancy (e.g. performing the votings), being responsible

for enforcing the failure semantics of nodes through self-

checking and policing of the attached AEB [17].

The self-checking mechanism disconnects the respective

RCMB upon error detection, thus providing a crash fail-

ure semantics. The policing mechanism verifies the mes-

sages sent by the attached AEB, thus preventing the broad-

cast of messages that may constitute either babbling idiot

failures [6], two-faced behaviour or impersonations of other

AEBs [13].

Asuming NVP is used as mechanism of node replication,

each RCMB only allows a single cc-vector per segment to be

sent by its attached AEB, thereby preventing babbling idiot

behaviour. Likewise, the RCMB sends all the cc-vector mes-

sages from its attached AEB in a broadcast mode in order to

eliminate any chance of an AEB sending different messages

to different nodes. Finally, the RCMB actually indicates in

the cc-vector messages which is the identity of the corre-

sponding AEB-version, thereby eliminating the possibility of



a faulty AEB-version impersonating other nodes. This polic-

ing is what gives to the AEBs and the versions they execute

an incorrect computation failure semantics. If node replica-

tion is achieved by means of identical versions of software,

the same can be done with the messages conveying the inter-

mediate results periodically sent for voting.

Moreover, beyond the RCMBs and AEBs local mecha-

nisms, enforcing the desired failure semantics still requires

certain properties of the underlying communication protocol.

Specifically, we need a protocol providing Reliable Broad-

cast [4] as well as the ability to prevent babbling idiot be-

haviour generated by the channel itself, e.g., continuous re-

transmission caused by a permanent fault.

Concerning the specific case of the CAN protocol [5], its

mechanisms to globalise errors supposedly provide Reliable

Broadcast. More precisely, what CAN is claimed to provide

is data consistency, which corresponds to Reliable Broadcast

plus Total Order (TO) [4], i.e., if two correct nodes N1 and

N2 receive two messages m1 and m2, then N1 receives m1

before m2 if and only if N2 receives m1 before m2. Accord-

ing to [4], this means that CAN is supposed to provide Total

Order Broadcast (AB).

Despite not strictly necessary, TO is a very useful property

that helps simplifying the consistent management of node

replication (Section 5.1.1). As plentifully discussed over

the years, CAN fails to provide AB under certain circum-

stances, but its enforcement can be achieved using specific

techniques. Section 5.3 presents the technique used in CAN-

bids.

CAN is also usually assumed to be able to prevent a bab-

bling idiot behaviour generated at the channel level, given its

native error counting and node isolation mechanisms. How-

ever, these are only effective when the primary errors affect

only some nodes, and thus the errors are effectively elimi-

nated by disconnecting the nodes in question from the net-

work. For cases, in which there are direct electrical connec-

tions between multiple nodes without proper error contain-

ment, such as in buses, those mechanisms are not enough [3].

As a consequence, a fault in the components involved in such

electrical connections may generate errors that propagate to

all other nodes and prevent further communication, e.g., a

transceiver that continuously sends a dominant value.

Star topologies with a central hub that disconnects the

faulty ports are the usual solution for this problem. However,

this solution introduces a single point of failure in the system,

the hub, typically eliminated by redundancy. Our approach

replicates the whole star, thereby tolerating link faults as well

(Section 5.2). Moreover, the hub replicas are interconnected

in a way that, in the absence of faults, mirrors every single bit

in all interfaces. This significantly simplifies the redundancy

management, that is performed by each node in the form of

a specifically designed driver.

Beyond the mechanisms presented before for restricting

the nodes failure semantics and contain certain errors, other

errors may still cross the nodes interfaces, e.g., a wrong re-

sult in the value domain produced by an AEB and sent to the

other nodes, or an omission created by the hub upon a node

disconnection. Thus, in order to complete the definition of

the error containment boundaries, we also need to provide

the nodes with mechanisms to properly deal with these er-

rors. This is the responsibility of the RCMB. For each re-

ceived message, the RCMB has to determine if it originates

from the RCMB or from the AEB of the transmitting node.

In the former case, it is assumed correct since RCMBs ex-

hibit crash failure semantics. The latter case is more compli-

cated since both AEBs and the a-replicas executed on them

exhibit incorrect computation failure semantics, i.e., upon

failure they may generate incorrect outputs, both in the value

and in the time domains. In CANbids we handle these fail-

ures with voting, taking into account that the messages may

be incorrect also in the time domain. Finally, RCMBs must

consider the potential omission of any message.

4.2 Organization of the fault-tolerance operations

In this section we focus on the fault tolerance operations

performed at the upper layer of the CANbids architecture,

which deals with the execution of the application software.

Other lower-level fault tolerance operations will be discussed

later, in the sections that describe how the different subsys-

tems have been designed. The main operation performed in

this upper layer to achieve fault tolerance is the voting on the

cc-vectors issued by the a-replicas (identical or diverse ver-

sions) at the end of each segment. This voting is executed at

each RCMB and provides error compensation [7] (i.e. fault

masking).

To improve the global dependability, the RCMBs perform

the following three additional fault-tolerance operations: er-

ror detection of individual nodes; fault passivation [7]; and

recovery of components that have suffered transient faults.

Each RCMB performs error detection of individual nodes

by comparing the consensus cc-vector calculated by the vot-

ing with the cc-vectors sent by each node. Additional error

detection is provided by checking the reception of specific

messages. As the omission of a cc-vector may be diagnosed

as caused by either a faulty a-replica or a faulty RCMB,

RCMBs must send an “I am alive” message at the begin-

ning of the cc-vector exchange. If this message is received,

the fault is assigned to the a-replica, otherwise it is assigned

to the RCMB.

Fault passivation is performed by disconnecting the com-

ponents that are affected by faults. To prevent a quick at-

trition of redundancy, disconnection should not be perma-

nent for components which are affected by transient faults.

Therefore, each RCMB maintains an error counter for itself

and its a-replica which are increased each time a new error



is detected, and decreased when no error is detected. Only

when an error counter reaches a pre-established threshold,

the RCMB considers the corresponding component perma-

nently faulty and disconnects it from the rest of the system.

At any instant, the values of all these counters are considered

to represent the status of the system.

Although not strictly necessary, in CANbids each RCMB

keeps (consistently with the other RCMBs) the value of all

counters (those of all nodes) for two reasons: for being

able to send the values of the necessary error counters to

an RCMB that is in the process of reintegration after having

suffered a transient fault (Section 5.1.1); and for all RCMBs

to have a consistent view of the available redundancy in the

system, which is a very convenient feature in a distributed

architecture.

Concerning recovery after transient faults, for a-replicas

we rely on NVP that already has appropriate mechanisms,

such as the cc-points. NVP even provides a mechanism

that can recover a-replicas exhibiting more severe errors,

e.g. execution of the wrong segment. This is called recovery

point [1] and it is basically a cc-point in which the complete

state of the computation is exchanged and voted. This allows

the recovery of versions whose internal state (i.e. memory)

has been corrupted.

In contrast, faults in RCMBs always manifest themselves

as omissions caused by their self-disconnection from the net-

work upon error detection by the self-checking mechanisms

(Section 5.1). In this case, a recovery mechanism prevents

transient RCMB faults to be converted to permanent omis-

sions (crashes), which would lead to the quick attrition of

redundancy. This recovery mechanism, which we call rein-

tegration, also resynchronizes the affected RCMB with the

non-faulty ones, leading it to a consistent state [15].

5. Subsystem design

The next step in the description of the CANbids architec-

ture is to explain how the different subsystems that have been

mentioned are designed to be able to make their contribution

to the operation of the whole system. Due to space limita-

tions, only the basic ideas of these designs will be presented.

In most cases, suitable references are available for more de-

tailed descriptions.

5.1. Node design

The CANbids architecture is based on the assumption

that nodes exhibit the restricted failure semantics indicated

above. Therefore, the effectiveness of the entire design, and

thus the level of reliability which is finally reached, dramat-

ically depend on the coverage of our failure semantics as-

sumptions, and thus on the RCMB design. Since in order to

disconnect itself from the channel (crash) the RCMB needs

first to detect an error, this assumption coverage [14] strongly

depends, in our architecture, on the error detection coverage

of the RCMBs. The higher the latter is, the higher the former

will be.

In order to reach a high level of reliability we have chosen

duplication with comparison as a technique for error detec-

tion in the RCMBs. This technique is considered very ef-

fective, and we have applied it extensively in a previous de-

sign of the RCMBs [17] that is not fully compatible with the

rest of the CANbids subsystems (e.g. with ReCANcentrate).

Since the application of this technique is a rather straightfor-

ward although time-consuming engineering task, we do not

consider its use as a requirement in order to prove the con-

cept of CANbids. Therefore, the current prototype of CAN-

bids, which we will introduce in Section 7, uses regular non-

duplicated circuits for the implementation of the RCMBs.

5.1.1 RCMB software

The (duplicated) processor of the RCMB must execute soft-

ware for a number of functions. First the driver ReCANdrv

that manages the star replication; second the core-TOTCAN

protocol (based on TOTCAN by Rufino et al. [23]) that

reestablishes the TO property with the assistance of the

CANsistant device placed at the hubs; and third some rou-

tines, called RCM routines, to consistently manage the node

redundancy. These three layers of software can be seen in

Figure 3). We discuss next the third of these layers and the

other two will be described in later sections.

Two issues related to the consistent management of the

redundancy constitute the main focus of the RCM routines:

replica determinism enforcement [13] of all replicated op-

erations and consistent reintegration of RCMBs after tran-

sient faults. Replica determinism enforcement ensures, for

instance, that all non-faulty replicas of the voting proce-

dure executed by the different RCMBs produce the same

consensus cc-vector. Reintegration allows an RCMB that

has been disconnected in order to prevent error propagation

caused by transient faults to again be integrated in the sys-

tem. The purpose of reintegration is to make sure that the

redundancy of the system does not permanently attrite (de-

grade) when RCMBs are being disconnected due to transient

faults. It should be noted that mechanisms for reintegra-

tion of a-replicas and AEBs that have suffered a transient

fault are provided by NVP itself. Indeed given that in the

cc-points described above all versions receive the resulting

consensus cc-vector, not only fault masking is achieved, but

also versions which have issued a wrong cc-vector —e.g. be-

cause of a transient fault in the corresponding computer—

have an opportunity to recover using the consensus cc-vector

values to resume computation. In contrast, the reintegration

of RCMBs affected by transient faults is a new problem that

is solved by our architecture. Essentially, the RCMB that

has disconnected itself after detecting an internal error with



its duplicated and compared structure asks the other RCMBs

for the necessary reintegration information, and the others

respond making sure that the recovered node does not miss

any relevant information even during its reintegration. Since

all RCMBs consistently keep the status information, any of

them can send it to the RCMB in reintegration.

For the detailed description of our approaches to consis-

tency and reintegration it is necessary to refer to [17, 15].

However the most relevant aspect of them is that consistency

among replicas is achieved by ensuring that all of them con-

sider the same information both for calculating the consensus

cc-vector and for calculating the update of the status. Since

all the relevant information is obtained from the CAN chan-

nel, what is necessary is to choose the same set of messages

for those calculations. The specific mechanism for consis-

tently delimiting the set of messages uses the TO property

and that is why it is necessary to reestablish that property

after inconsistencies (see Section 5.3).

5.2. Replicated Star: ReCANcentrate

CANbids uses the replicated star topology called Re-

CANcentrate [3] in order to increase error containment and

to provide tolerance to communication media faults. The

general appearance of this topology can be seen in Figure 2,

which shows two hubs and each one of the nodes connected

to both hubs through dedicated links. Each one of the Re-

CANcentrate hubs is able to individually observe the con-

tribution of each node to the value in the channel and de-

tect which node (or link) is faulty. The hub keeps an error

counter for each one of its ports and disconnects the corre-

sponding port when its counter reaches a threshold. In this

sense, the hub performs the same operations (error detection

and fault passivation) for the physical layer of the network as

the RCMBs performed for a-replicas and other RCMBs.

On the other hand, the replication of hubs and links pro-

vides tolerance to hub and media faults. In order to man-

age this replication, each node executes a driver called Re-

CANdrv (mentioned in Section 5.1.1) that has to hide the

star replication for the upper layers of the RCMB software,

which will see a single logical channel. In order to simplify

the design of this driver, the two hubs are connected to each

other to be able to couple the values of both stars into a sin-

gle value, as it would happen in a regular CAN bus. Thereby,

in the absence of faults, the driver expects to receive exactly

the same values through both links. Each hub takes care of

this coupling by disconnecting its links with the other hub in

case it decides that the latter is faulty.

5.3. Consistent communication enforcement

As indicated in Section 4.1, the RCM routines need that

the communication protocol provides AB (including TO).

However, there are several circumstances in which CAN fails

to provide AB. Specifically, when a CAN controller gets into

the error passive state, it can no longer signal its errors in a

way that forces all the other nodes to see them. Second, there

are some scenarios in which channel errors in the last bits of

the frame can create some inconsistent message exchanges

[23, 16]. And third, some new scenarios have been recently

identified in which channel errors in other bits of the frame

can create the same inconsistencies [20]. It has to be noted

that the actual probability of the error scenarios leading to

inconsistencies in CAN is still an open issue. Nevertheless,

CANbids includes mechanisms to solve all these problems.

If some of them are deemed not so relevant, the correspond-

ing solutions can be removed.

Specifically, all those mechanisms are included in CAN-

bids as an holistic integrated solution we call TOBE-CAN

(Total Order Broadcast Enforcement in CAN). First, the Re-

CANdrv in each RCMBwould simply discard one CAN con-

troller (and use the other) when the controller generates an

error warning interrupt, which indicates that the controller’s

error counters reached a threshold prior to its change to the

error passive state.

Second, all possible last-bits scenarios are detected by a

specifically designed hardware module, called CANsistant

[18]. CANsistant could be connected to the system as a reg-

ular node but it is placed in one of the hubs in order to have

a privileged view of the network. Due to its fundamental

role, CANsistant must be replicated and thus one replica can

be placed in each hub. In order to easily manage this repli-

cation, each CANsistant must be internally duplicated and

compared to have crash failure semantics. However, detect-

ing all possible last-bits scenarios is not enough and in order

to reestablish TO, we have designed a higher-layer protocol

called core-TOTCAN (C-TOTCAN), which is executed by

each RCMB on top of the ReCANdrv. C-TOTCAN is based

on the TOTCAN protocol proposed by Rufino et al. [23],

fromwhich it basically keeps the strategy each recipient node

uses for ordering the frames. In TOTCAN is is assumed that

in the event of an inconsistency, the sender will retransmit the

affected frame. Then, only when a frame is exchanged with-

out possible inconsistency, an ACCEPT message is eagerly

broadcast by all nodes, so that each one of them eventually

receives it and, hence, knows that the last received replica of

the initial frame is the one to be delivered. In TOBE-CAN,

CANsistant is responsible for retransmitting the potentially

inconsistent frames, since the sender is not able to detect

all last-bit scenarios. Moreover, the ACCEPT frame is not

eagerly broadcast by all nodes, but retransmitted by CAN-

sistant, only when this frame suffers from an inconsistency,

what is more efficient. The details of TOBE-CAN and its

integration within CANbids will be the subject of a future

paper.

Finally, in order to resolve the new inconsistency scenar-

ios described in [20] a circuit called Aggregated Error Flag



Figure 3. Layers in the CANbids architecture

Transmitter (AEFT) has been added to each CAN node and

CANsistant replica. The role of the AEFT is to adequately

prolong the duration of the error flags, so as to ensure that

all nodes and CANsistant replicas can globalize the errors

they detect locally, thereby enforcing that the affected frame

is consistently rejected by all [20].”

5.4. Clock synchronization

All CANbids’ fault tolerance mechanisms have been de-

signed to assume almost no synchronization among nodes.

Therefore, a clock synchronization service is not a require-

ment of CANbids. If the application requires it, then OCS-

CAN[19] could be added to the system. The current design

of OCS-CAN is devised for the CAN’s bus topology but it

can be used for a replicated star topology as well.

6. Systemwide integration

In complex fault-tolerant systems, it is fundamental that

the various mechanisms are integrated to each other in such

a way that they do not interfere. CANbids has been devised

with this principle in mind, trying to design each mechanism

as orthogonal as possible from the rest of the system. More

specifically, each mechanism either acts in a different phys-

ical location solving its specific problems or it is integrated

in a multi-layer structure and provides services to upper lay-

ers at the same time that it receives services from the lower

ones. Figure 3 shows the layer structure of CANbids, some-

how summarizing the descriptions that have been provided in

previous sections, and allowing to appreciate how the differ-

ent subsystems interact with each other. Note that rounded

rectangles represent software modules, whereas regular ones

represent hardware modules. In the cases in which the mod-

ule carries out communication tasks, the corresponding OSI

layer is indicated on the right.

7. CANbids implementation

For each of the different mechanisms discussed above, an

individual prototype has been already described [17, 3, 18,

20, 19]. In this section we present the prototype we have

built to integrate the two most important parts of CANbids:

the node replication and ReCANcentrate.

The prototype is comprised of three nodes and two

hubs. Each hub consists of an XSA-3S1000 prototyping

board from XESS [24], which contains a Xilinx Spartan 3

XC3S1000 FPGA. Each board was connected by means of

a flat IDE cable to a custom circuit board that provides an

external oscillator for the FPGA and which in addition func-

tions as the hub’s I/O module. This circuit board provides a

total of six RJ-45 connectors, three of which allow the con-

nection of up to three nodes, two of which are used as inter-

links, and one that can optionally be used as an interface to

a personal computer (PC). The hubs’ logic was implemented

using VHDL.

For each of the nodes we used a dsPICDEM pro-

totyping board from Microchip [11], which contains a

dsPIC30F6014A microcontroller [10], four LEDs, and a se-

rial port. All nodes were connected by means of the serial

port to a single PC. This allowed us to easily initialize the

nodes through the serial port and to retrieve logging informa-

tion that could then be displayed on the PC’s screen. Each

dsPICDEM board was also connected by means of a flat ca-

ble to a dedicated custom circuit board that allows the cor-

responding node to be connected to each of the hubs using

UTP Cat5 Ethernet cable. The integrated voting mechanism

and ReCANcentrate driver, as well as the user application

executing on the nodes, were written in the C programming

language and compiled with the MPLAB C30 compiler from

Microchip [9]. The code was compiled using the maximum

optimization level and function inlining.

The voting mechanism was tested by initializing the

nodes such that they generate disagreeing cc-vectors. The

port isolation mechanisms were tested by physically disrupt-

ing the connections between nodes and hubs. We also tested

both mechanisms simultaneously by having a node gener-

ate disagreeing cc-vectors while at the same time disrupting

some of the connections.

A video demonstration of this prototype can be watched

at http://www.youtube.com/watch?v=7fd9eW4Tr50. Please

note that in the video the operation of the system has been

deliberately and significantly slowed down to allow observ-

ing the proper operation step by step.

8. Conclusions and future work

The complete architecture of CANbids has been pre-

sented. In this infrastructure all the widely accepted depend-

ability problems of CAN are addressed without changing

the event-triggered character of the protocol. Moreover, the

performance of the used solutions surpasses those of their

alternatives. As a result it is possible to execute applica-

tions on CANbids in such a way that permanent faults in



the communication media, the nodes and even the applica-

tion software can be tolerated. Furthermore, the resulting

structure presents a series of additional advantages. First

the voting process does not represent a single point of fail-

ure since it is consistently replicated in each node. Second,

the mechanisms for fault tolerance are concentrated in the

added RCMBs and hubs, being thereby orthogonal to the ap-

plication level. This means that it is possible to change the

application and even the AEBs, and CANbids will still be

able to provide the specified fault tolerance services. Third,

hardwareCommercial Off The Shelf (COTS) components are

used as main processors and as building blocks for the de-

sign of the RCMBs. Fourth, the architecture is scalable in

the sense that it allows increasing the number of replicated

nodes (and a-replicas) in order to tolerate an arbitrary num-

ber of faulty nodes. And fifth, the restriction of the failure

semantics of the nodes makes unnecessary to have a number

of nodes that is bigger than 2t + 1 (where t is the number of

nodes whose failure is to be tolerated), unlike what happens

when nodes can exhibit byzantine failures [15].

Future work will include the quantification of the reliabil-

ity increase achievable with CANbids.
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