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Design and verification of a media redundancy
management driver for a CAN star topology

David Gessner, Manuel Barranco, and Julián Proenza, Member, IEEE

Abstract—Some of the severe dependability limitations of
Controller Area Network (CAN) can be overcome by replacing
its bus topology with a star topology. Thus, a replicated star
topology with advanced error-containment and fault-tolerance
mechanisms for CAN, called ReCANcentrate, has been pro-
posed. Its two hubs are coupled with each other and create
a single logical broadcast domain. This allows each node to
easily manage the replicated star by means of a software
driver, called reCANdrv, that abstracts away the details of this
replication. The goal of reCANdrv is to manage the star’s media
redundancy transparently for a CAN application, allowing it to
exchange information through the star while tolerating faults.
This paper describes the design of reCANdrv, the specification as
properties of reCANdrv’s correct redundancy management, and
the verification of these properties by means of model checking.

Index Terms—fault tolerance, media redundancy management,
replicated star topology, formal verification, model checking,
UPPAAL, field buses, Controller Area Network

I. INTRODUCTION

THE use of Controller Area Network (CAN) [1] has
steadily increased since its release. This trend is expected

to continue at least for the next 15 years [2] and, as was
predicted by some authors, e.g. [3], CAN is still the most
widely-used in-vehicle network. Further, due to the cost-
sensitivity of the automotive industry, the low-cost CAN is
an appealing candidate even when advanced real-time and
dependability features are required [4]. Several solutions have
been developed to improve these features in CAN [4], and
some of them are being combined in the CANbids project.
Moreover, integrated field bus architectures are expected to
provide interoperability among CAN and other protocols [5].

The interest in CAN is clearly seen not only in the amount
of academic work being done to leverage the above-mentioned
features, e.g. [6]–[19]; but also in the industry, where CAN
plays an important role in dependability-related systems.

For highly-reliable applications, two particular approaches
that use star topologies [20] were proposed for CAN to
overcome the dependability limitations imposed by its bus
topology [21]. The first, CANcentrate [21], attacks CAN’s
limited error containment with a simplex star topology by
allowing the star’s central element—the hub—to isolate faulty
hub ports. The second, ReCANcentrate [21], provides fault
tolerance through media redundancy with a replicated star with
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Fig. 1. ReCANcentrate architecture.

two CAN hubs. In this way, it eliminates the several single
points of failure of CAN and the sole single point of failure
the hub represents in CANcentrate. The actual effectiveness
of these stars to increase the reliability when compared with
CAN has recently been quantitatively corroborated [22]–[24].

Fig. 1 shows ReCANcentrate’s basic architecture. It includes
two hubs with nodes connected to them through dedicated
links comprised each of an uplink and a downlink. The nodes
have a single microcontroller and two CAN controllers, each
connected to one of the node’s links by a pair of CAN
transceivers. The hubs are interconnected by interlinks, which
contain two independent sublinks, one for each direction. Each
hub has mechanisms to contain errors coming from nodes,
links, interlinks, or the other hub. Moreover, ReCANcentrate
as a whole has mechanisms to tolerate faults at one of the
hubs, at links/interlinks, and at the nodes’ CAN controllers.

The hubs couple the signals from their uplinks in an internal
AND-gate, whose result is exchanged through the interlinks.
Each hub then couples the incoming interlink traffic with the
aforementioned AND-gate in a second AND-gate. The result is
signaled by each hub on its downlinks. All this is performed
within a fraction of the bit time, thereby preserving CAN’s
in-bit response and implementing CAN’s wired-AND while
providing a network-wide single broadcast domain. In other
words, in the absence of faults all CAN controllers sample the
same bit-value for each bit received from the hubs. This allows
a media redundancy management approach for the nodes that
is, as opposed to other approaches, e.g. [9], compatible with
traditional event-triggered CAN applications.

The nodes’ media redundancy management is implemented
by the reCANdrv software driver. Its goal is to provide a
correct redundancy management, i.e., to transparently and
properly manage the available media redundancy under faults.
This means that each node’s application must be able to
access the channel if it has a correct connection to a correct
hub. In particular, reCANdrv has to provide mechanisms to
tolerate permanent faults affecting one of the hubs, or the link,
transceivers, or CAN controller that connects the node to one
of the hubs. Transient channel faults are not handled by the
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driver, but through the CAN error handling mechanisms of
the CAN controllers [25]. Additionally, reCANdrv tolerates,
to some extent, inconsistent message omission (IMO) scenar-
ios [26], [27] caused by transient or permanent faults.

The viability of a preliminary version of reCANdrv, which
does not include all the features of the current design, has
already been experimentally assessed by means of a pro-
totype [28]. Nevertheless, since ReCANcentrate is intended
for applications that require high reliability, it is of utmost
importance to also ensure that the driver has been designed
correctly. For this, it is appropriate to use formal methods,
which in the context of industrial systems have recently
gathered increased interest [29]–[34].

This paper introduces the design of reCANdrv; formalizes
as properties the correct redundancy management it provides;
describes a model of reCANdrv that was implemented as a
series of timed automata; and formally verifies, by means of
model checking, that the model satisfies the properties.

II. FAULT MODEL

A node has two controllers that can diagnose their own
failure. A single such self-diagnosing CAN controller can be
built from two individual off-the-shelf CAN controllers and an
electronic circuit that acts as a comparator of the individual
controllers’ outputs. The individual CAN controllers may
suffer byzantine failures. The probability of both individual
controllers generating the same erroneous output is assumed
to be negligible. Thus, the comparator can detect when one
of the individual controllers fails by noticing a discrepancy
between their outputs. When such a discrepancy is detected,
the comparator first generates an alert interrupt, which signals
to the microcontroller that the self-diagnosing controller failed,
and then triggers additional circuitry that ensures that the
self-diagnosing controller no longer generates traffic on the
channel nor any interrupts to the microcontroller. Thus, in
the fault model the self-diagnosing controllers are assumed
to fail silently once they alerted of their failure. However,
the microcontroller may still attempt to access buffers and
registers of a failed controller. In that case arbitrary values may
be read. Note that in the remainder of this paper no further
references are made to the individual controllers and the term
“controller” refers to a self-diagnosing controller.

Everything beyond the nodes’ CAN controllers (on the
transceivers’ side) is part of the channel, which may fail in
arbitrary ways as long as no faults occur that partition the
nodes into subsets that cannot communicate with each other.
That is, a single broadcast domain is assumed at all times.
This is realistic because ReCANcentrate achieves its single
broadcast domain through its redundant interlinks.

It is also assumed that the nodes’ microcontrollers and the
implemented software routines are not affected by faults, e.g.,
that they are not affected by memory corruptions.

III. MEDIA MANAGEMENT

For reCANdrv one of the CAN controllers of each node
is the transmission (tx) controller. Its role is to transmit and
receive frames. The other is the non-transmission (non-tx)

controller and it exclusively receives frames—which may have
been transmitted by its own node or by some other node.

When a frame is exchanged through the network, i.e., when
a communication event occurs, each node expects its two
controllers to quasi-simultaneously notify of that event with an
interrupt. Thus, when no faults occur, the node manages trans-
missions and receptions as follows. If the node successfully
transmits a frame, the tx and the non-tx controller generate
an interrupt to notify of the transmission and reception of
this frame respectively; thus, the node only needs to accept
the transmission and release the reception buffer of the non-
tx controller. If the node receives a frame sent from another
node, it is notified of this by its two CAN controllers and
simply consumes the frame received at one of the controllers
and releases the reception buffers of both controllers.

When errors occur, the driver determines that it was not able
to communicate through a link when the link’s controller does
not notify of a communication event while the other does, i.e.,
when an omission discrepancy occurs. To tolerate the fault, the
driver accepts as valid the transmission or reception notified
by one of the controllers. The notification is considered correct
and the omission wrong because CAN converts channel errors
into omissions and spurious notifications are, thanks to the
controllers being self-diagnosing, negligible.

If the controller that omits is the non-tx controller, the driver
does not discard it because the node can still correctly receive
and transmit through the tx controller.

If the tx controller omits, the driver diagnoses it as faulty by
initiating a transmission (tx) timer, which is enabled when the
application requests the transmission of a message from the
driver. It is disabled once the driver tells the application that the
requested message has been transmitted. If the timer expires
before the tx controller notifies of a successful transmission,
the driver discards it, uses the other controller as the tx
controller, resets the tx timer, and instructs a retransmission
through the new tx controller. This ensures that if the old tx
controller was not able to transmit, a transmission is performed
through the other controller. Note that the tx timer must be
set appropriately: it must only expire after a permanent fault
prevents the tx controller from communicating.

Specifically, the timer’s value must be greater than the
driver’s worst-case transmission response time d with an
error model that includes transient faults only. Note that d
excludes any queuing delay at the application, as d is the
time between when a transmission is requested from the driver
by the application until the application is notified of the
successful transmission by the driver. Thus, a way to ensure
that the timer’s value is correct for a given message is to
make it greater than the message worst-case response time,
R, which does include the queuing delay at the application.
The analysis proposed in [35] can be used to calculate R if
the application queues the messages in FIFO order. This is
so because reCANdrv uses the controllers’ hardware buffers
following a FIFO policy. R would be the worst-case response
time of the FIFO-queued message according to [35] plus
some overhead. This overhead would be comprised of the
time the driver takes to notify the application of a successful
transmission and the overhead of recovering from transient
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Fig. 2. Basic reCANdrv architecture.

errors. The former can be measured and for the latter an error
model similar to the one in [36] can be used.

A controller is also discarded when it generates an error
warning interrupt, which indicates that the controller’s error
counters [25] reached a threshold. This prevents the controllers
from entering the error-passive state [25], in which they could
inconsistently exchange frames, leading to IMOs.

Finally, if the non-tx controller omitted a notification while
the tx controller notified a transmission, and the number
of consecutive omission discrepancies has not reached a
threshold, the driver instructs a retransmission through the tx
controller as a best-effort attempt to prevent IMOs. However,
if the threshold is reached, no further retransmissions are
performed since in that case a permanent fault is more likely.

IV. THE ARCHITECTURE OF RECANDRV

Fig. 2 shows reCANdrv’s architecture. At the top is the
application, at the bottom the two controllers and the tx timer.
The driver is a software layer in-between that allows the
application to use the two controllers as if there was only
one. Below are the driver’s transmission (tx) and reception
(rx) buffers. When the application requests the transmission
of a message, a copy is stored in the driver’s tx buffer and in
the transmission buffer of the tx controller. The driver uses its
copy for management operations, e.g., if the driver diagnoses
the tx controller as faulty before that controller successfully
transmits, it uses the copy to transfer the message to the
other controller. Regarding the rx buffer, it allocates the last
received message. By comparing the received message with
the message, if any, in the tx buffer, the driver can check
if it received a message from another node or one that it
itself transmitted. When the driver is notified of a reception,
it immediately copies the received message from one of the
controllers to the driver’s rx buffer. This ensures that a copy
of the received message is saved as soon as possible, which
can prevent some message losses if a controller fails.

The driver has several cooperating media management rou-
tines. These are shown in Fig. 2 and are the transmission (tx)
routine, the reception (rx) routine, and the quarantine (qua)
routine. They are invoked by the media management ISRs
(not shown), which are ISRs that call with the appropriate
parameters the corresponding media management routine. The
media management ISRs are the ew0 and ew1 ISR, which are
invoked after an error warning and call the qua routine; the
rx0 and rx1 ISR, which are invoked after a reception and call
the rx routine; and the tx0 and tx1 ISR, which are invoked
after a transmission and call the tx routine.

TABLE I
INTERRUPTS, ISRS, AND FUNCTIONS OF RECANDRV.

Interrupt ISR Func. called Int. generated

HW INT FAIL0 alert0 — —
HW INT FAIL1 alert1 — —
HW INT EW0 tracker0 tracker SW INT EW0
HW INT EW1 tracker1 tracker SW INT EW1
HW INT TX0 tracker0 tracker SW INT TX0
HW INT TX1 tracker1 tracker SW INT TX1
HW INT TIMEOUT timeout qua —
HW INT RX0 tracker0 tracker SW INT RX0
HW INT RX1 tracker1 tracker SW INT RX1
SW INT EW0 ew0 qua —
SW INT EW1 ew1 qua —
SW INT TX0 tx0 tx —
SW INT TX1 tx1 tx —
SW INT RX0 rx0 rx —
SW INT RX1 rx1 rx —

The media management routines are invoked after error
warnings, transmissions, and receptions by means of soft-
ware interrupts generated by the CAN event tracker function
(Fig. 2). This function is called by the tracker ISRs: tracker0
and tracker1. The tracker0 ISR is invoked when the first
controller generates a transmission, reception, or error warning
interrupt; whereas the tracker1 ISR is invoked when the second
controller generates the equivalent interrupts.

The CAN event tracker also sets a tracking variable to keep
track of what interrupts occurred. These variables are used by
the media management routines to cooperate with each other.

The driver also needs to handle the expiration of the tx
timer. For this it provides a timeout ISR, which is invoked
when the tx timer expires and which also calls the qua routine.
Moreover, there are two alert ISRs to handle the alert interrupt
from the first and second controller, respectively. These ISRs
are the only ones that can interrupt other ISRs. They mark the
corresponding controller as no longer trustworthy by setting
variables that are checked by the rx routine before a message
is passed on to the application. This ensures that no corrupted
messages are delivered to the application.

Tab. I lists the interrupts handled by reCANdrv, the invoked
ISRs, and the functions called by the ISRs. For the tracker
ISRs, the generated software interrupt is also indicated. The
handled interrupts are ordered by descending priority.

V. PROPERTIES OF CORRECT REDUNDANCY MANAGEMENT

A correct controller is one that is not affected by faults and
is in the error active state [25], i.e., in a state in which it
can fully participate in the communication. A correct link is
one that is connected to a non-faulty hub, is not affected by
permanent faults, and whose transient faults have a frequency
low enough to not trigger error warning at its controller.

The goal of reCANdrv is to provide correct redundancy
management, i.e., to correctly manage the redundancy of
ReCANcentrate. As indicated previously, for this reCANdrv
must allow the application to transmit and receive through the
channel as long as there is one correct controller with a correct
link. This goal can be specified as a series of properties, which
are listed at the end of this section. However, first a series of
terms, notations, and assumptions need to be introduced.
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A message is a unit of information that a node’s application
deals with. A frame is a unit of information exchanged on the
channel. It is assumed that each message can be encapsulated
in a single frame. Nevertheless, in the case of retransmissions
multiple frames may contain the same message. Moreover,
frames can also not encapsulate messages because a frame may
also serve control functions on the communication channel.
Examples are error, overload, and remote frames [25].

The application and the driver deal with messages, not
with frames; whereas the channel only carries frames, but
not messages directly. The boundary between messages and
frames are the CAN controllers. They encapsulate into frames
messages whose transmission has been requested, and extract
messages from frames received from the channel.

All messages and frames are assumed to be identified
uniquely by sequence numbers. The numbers for messages are
called msns, and the ones for frames fsns. Both are monoton-
ically increasing natural numbers. Each time the application
requests the transmission of a new message, that message gets
assigned a new msn. Similarly, each time a controller signals
a new frame on the channel, that frame gets a new fsn.

The following notation is used. Fi(Mj) is a frame with fsn
i encapsulating a message Mj with msn j. The term mtx-
request is used for a message transmission request performed
by the application; whereas ftx-request is used for a frame
transmission request from a CAN controller performed by the
driver. When a frame Fi(Mj) is signaled completely without
being corrupted, then it is transmitted. A frame is received by
a controller when it is completely stored in that controller’s
reception buffer. When the message Mj encapsulated in a
received frame Fi(Mj) is stored in a buffer accessible by the
application and the application is notified of this, the message
Mj is passed on. When the driver notifies the application
that a message has been transmitted, the driver notifies a tx-
success. A self-reception occurs when the non-tx controller
receives a frame transmitted by the tx controller. Finally, a
retransmission of a frame Fi(Mj) is a new transmission of
a frame Fi+1(Mj) that encapsulates the same message Mj .
Note that the retransmission does not need to be performed
by the same controller that did the initial transmission.

The properties of correct redundancy management are based
on the following assumptions: (i) the channel provides a
single broadcast domain; (ii) there is no unicast or multicast
addressing of messages, but only broadcast addressing to the
applications; (iii) the application does not mtx-request a new
message until it was notified by the driver of a tx-success of
the previous mtx-request; (iv) as soon as a controller is no
longer correct, it generates an alert interrupt and immediately
stops generating interrupts and traffic on the channel; (v) at
least one CAN controller remains correct and has a correct
link at all times; (vi) the CAN controllers are BasicCAN
[37], i.e., they only have a single transmission buffer; (vii) the
driver’s implementation handles a communication event before
the subsequent communication event occurs (this is realistic
as measured in [28] with the reCANdrv prototype).

Having introduced these terms, notations, and assumptions,
reCANdrv’s correct redundancy management can be formal-
ized as the following properties. (P1) Pass on integrity:

any message Mj passed on to the application was received
in a frame Fi(Mj) by at least one controller; (P2) Double
reception implies single pass on: each message Mj orig-
inated in a remote node and received in a frame Fi(Mj)
by both controllers is passed on to the application exactly
once; (P3) Pass on validity: each message Mj originated in
a remote node and received in a frame Fi(Mj) by at least
one correct controller is passed on to the application, unless
a single controller received Fi(Mj) and that controller alerted
of its failure; (P4) No duplicate pass on: each message Mj

originated in a remote node and received in a frame Fi(Mj)
by at least one controller is passed on to the application at
most once; (P5) No pass on of self-received messages: no
message Mj is passed on to the application when it was
self-received in a frame Fi(Mj); (P6) Ordered pass on: if
messages Mj and Mk are passed on to the application, then
Mj is passed on before Mk only if Mj was received by
any one correct controller before Mk was received by any
one correct controller; (P7) Guaranteed transmission: if the
application mtx-requests a message Mj , one of the controllers
transmits a frame Fi(Mj); (P8) Bounded retransmissions:
the controllers perform a bounded number of retransmissions
of frames Fi(Mj) encapsulating a message Mj ; (P9) FIFO
transmission: if the application mtx-requests Mj and Mk,
then Mj is transmitted before Mk only if the application mtx-
requested Mj before Mk; (P10) Bounded time to satisfy an
mtx-request: if the application mtx-requests a message Mj ,
the driver notifies the application within a finite amount of
time of a tx-success.

VI. A MODEL OF RECANDRV

This section introduces the model used to verify the above
properties. The model was implemented using the UPPAAL
model checker [38], which has been used previously to verify
CAN applications and CAN-based systems, e.g., [39]–[43].
Unfortunately, these previous works are not a good starting
point for the modelling presented here. This is so because
each one of them focuses on different features of CAN and
their levels of abstraction are inadequate to model reCANdrv.

Using UPPAAL a model is implemented using a network
of timed automata. However, to meet this journal’s space
limitations, the model is described in a more abstract way.
The technical details of the implemented UPPAAL model are
available in [44] and the model itself at [45].

A. Model components

The model is basically comprised of the communication
channel and a single node. The single node has two CAN
controllers, an application executing on it, a tx timer, and the
reCANdrv driver. Only a single node is considered because the
properties that formalize the correct redundancy management
of reCANdrv are local properties of a node. All the other
nodes are represented abstractly by the channel. Fig. 3 shows
the model’s components, which will be described shortly.

Messages are modeled as non-zero positive integers, which
correspond to the msns of the messages. Frames are modeled
as tuples, called f-tuples, of two non-zero positive integers.
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One integer represents the encapsulated message and its value
is the msn of that message. The other represents the frame and
its value corresponds to the frame’s fsn. To more easily verify
the model, the integers used for the msns take values from a
subset Sm of consecutive non-zero positive integers. Similarly,
the fsns take values from another non-overlapping subset Sf

of consecutive non-zero positive integers, i.e., Sm ∩ Sf = ∅.
The modeled CAN controllers and the channel generate f-

tuples to model frames transmitted by the node and received
by the node, respectively. The fsns assigned to the f-tuples
generated by the node’s controllers take values of the non-
empty integer set Sf1, whereas the fsns of f-tuples generated
by the channel take values of the non-empty integer set Sf2,
such that Sf = Sf1 ∪ Sf2 and Sf1 ∩ Sf2 = ∅.

For f-tuples generated by one of the controllers, the msn
is the one of the message encapsulated in a frame that is
modeled as being transmitted. For example, if a controller
transmitting the frame Fi(Mj) is modeled, the f-tuple is (i, j).
On the other hand, the msns used in the f-tuples created by the
channel can have arbitrary values since the specific messages
that are passed on to the application are irrelevant to verify
the properties. However, for convenience, the msns used in the
f-tuples generated by the channel do not overlap with the ones
used in the f-tuples generated by the node’s controllers.

As indicated previously, Fig. 3 shows the main components
of the model. The bottom shows the modeled communication
channel. The channel can generate new f-tuples and contains a
single-slot f-tuple buffer (cha.ftuple) to store the f-tuple that
models the currently being signaled frame and a multi-slot f-
tuple buffer (cha.rx_fbuf) that stores all the f-tuples that have
been transmitted. Everything above is part of the node.

The node is comprised of the following. A model of the
node’s application (app in the figure), which can generate new
msns and contains a multi-slot f-tuple buffer (app.rx_fbuf).
A modelled hardware timer that corresponds to the tx timer.
A model of the reCANdrv driver, which contains models of
the driver’s software components, i.e., the media management
ISRs, the tracker ISRs, the alert ISRs, and the routine called
during an mtx-request (mtxreq routine). Moreover, the model
of the driver has a single-slot msn buffer (d.tx_msn) that
models the driver’s tx buffer and a single-slot f-tuple buffer

(d.rx_ftuple) that models the driver’s rx buffer. The CAN
controllers are modeled by two entities (ctrl0 and ctrl1),
each of which contains a single-slot msn buffer (c0.tx_msn
and c1.tx_msn) modeling a hardware transmission buffer,
and a multi-slot f-tuple buffer (c0.rx_fbuf and c1.rx_fbuf)
modeling a hardware reception buffer. By default ctrl0 is
marked as the tx and ctrl1 as the non-tx controller. The reason
for some buffers being multi-slot is to track what f-tuples had
been inserted into them over time.

Section V claims that the boundary between messages and
frames is at the CAN controllers. Nevertheless, the model
stores in app.rx_fbuf f-tuples, which correspond to frames,
instead of msns, which correspond to messages. In other
words, the msns received by one of the modeled controllers are
left encapsulated in their f-tuples when they are passed on to
the modeled application. This allows the model to relate each
msn passed on to the application with the f-tuple in which it
was received. Keeping track of this relationship is necessary in
order to verify some of the properties introduced in Section V.

Finally, the thick white arrows between the msn buffers
show the flow of msns representing messages; the thick black
arrows between the f-tuple buffers show the flow of f-tuples;
the dotted arrows incoming to the node’s ISRs represent
hardware interrupts generated by the timer and the controllers,
or software interrupts generated by the tracker ISRs; and the
dashed arrows represent notifications and requests between the
different entities of the model.

The channel’s model is implemented by a single timed au-
tomaton; whereas the node’s model is implemented by several,
one for each component of the modeled node. Note that the
automata corresponding to the software components are imple-
mented such that deriving the actual code implementation for
a prototype of reCANdrv is fairly simple. Each such automata
a basically invokes a driver function fa in pseudo C that does
not directly interact with the controllers and the timer, but
by means of additional functions fa1

, fa2
, . . . , fan

[44]. These
abstract away the details of the models of these hardware com-
ponents. Thus, a code implementation of the driver basically
requires to rewrite these additional functions to adapt them to
the details of the actual hardware controllers and timers.

B. Model behavior

Initially the channel is free. This means that the channel’s
cha.f_tuple buffer initially contains an empty f-tuple rep-
resenting an idle channel. The signaling of a frame on the
channel is modeled as the corresponding f-tuple being stored
in the cha.f_tuple buffer. Once the signaling is finished,
the channel overrides the cha.f_tuple buffer with an f-tuple
modeling the intermission between frames [25]. Shortly after
that the channel becomes free again, that is, the channel
overwrites the intermission f-tuple with the empty f-tuple.

An mtx-request by the app is modeled by the app generating
a new msn and invoking the mtxreq routine with that msn as a
parameter. The mtxreq routine copies the msn to the d.tx_msn

buffer. It then models the issuing of an ftx-request to the tx
controller as follows. It copies the msn from the d.tx_msn

buffer to the tx controller’s tx_msn buffer and sets a boolean
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variable to indicate to the tx controller that a transmission is
pending. Meanwhile, the app waits until it receives a signal
that the mtx-request was completed successfully.

The subsequent transmission is modeled when the channel
is free, which it indicates by overwriting the cha.f_tuple

buffer with an empty f-tuple, as described above. When this
occurs, and assuming that the channel does not initiate the
signaling first by copying its own f-tuple to cha.f_tuple, the
transmission is modeled as follows. The tx controller creates
an f-tuple from the msn located in its tx_msn buffer and from
the next fsn of the integer subset Sf1 shared with the other
controller model. It then writes into the cha.f_tuple buffer
the created f-tuple and signals to the channel and the other
controller that it is transmitting a message. This causes the
channel to store a copy of the f-tuple in the cha.rx_fbuf buffer
and both controllers to wait until the channel notifies that the
signaling of the message is finished. This waiting models the
controllers being busy receiving or transmitting the frame. This
means that the frames are modeled as never being aborted by
errors. Aborted frames are not modeled because the fact that
a frame is aborted does not trigger the driver’s execution.

An f-tuple reception begins when the channel generates an
f-tuple, copies it to the cha.f_tuple buffer, and then indicates
that it is signaling a frame. Upon this the modeled controllers
wait until the channel notifies that the signaling finished.

The channel’s notification that the signaling of a frame
finished can be of two types: a communication event, in which
case the controller accepts the frame, or a communication
error, which leads the controller to reject the frame. Given
a frame, the model signals a communication event to both
controllers or, alternatively, a communication event to one of
them and a communication error to the other one. This latter
case is used to model omission discrepancies between the
controllers of the modeled node, which is important to test
the driver’s best-effort attempt to reduce the number of IMOs.
The model does not signal a communication error to both
controllers since that represents the case where both controllers
reject a frame, which does not invoke the driver.

The controllers that received a communication event no-
tification from the channel each model the generation of
an interrupt, which is then handled by the modeled tracker
ISRs and media management ISRs such that they model the
behavior described in Section III.

Specifically, if the communication event notification occurs
while a reception is modeled, the f-tuple is copied from
cha.f_tuple to the rx_fbuf of each controller notified of the
communication event. The result of the subsequent invocation
of the modeled ISRs is that the received f-tuple ends up in
d.rx_ftuple and that a message pass on is modeled by having
the modeled media management ISRs copy the f-tuple from
d.rx_ftuple to app.rx_fbuf. If the notification occurs while
a transmission is modeled, what happens next depends on
the type of notification. If a communication event is signaled
to each modeled controller, this represents a successful self-
reception. In this case the modeled media management ISRs
set the boolean variable d.tx_success to true. This represents
the completion of a successful transmission and allows the
modeled app to generate a new msn and to mtx-request it.

If a communication error is signaled to one of the modeled
controllers, a retransmission may need to be modeled. This
is done by having the modeled tx controller create a new
f-tuple using as the f-tuple’s fsn the next integer of subset
Sf1 and using as the f-tuple’s msn the one stored in the
controller’s tx_msn buffer. The created f-tuple is then written
into cha.f_tuple and the transmitting controller signals to the
channel and the other controller that it is transmitting.

Finally, the rest of circumstances that can invoke the driver
are the occurrence of an alert, a tx time out, and an error
warning. They are modelled to occur when they provoke the
maximum interference with the ISRs that manage a commu-
nication event, i.e. immediately after the signaling of a frame
finishes. In particular, since an error warning does happen
due to a controller detecting a channel error, the signaling
of the corresponding error frame is also modelled, unless the
controller is no longer able to transmit.

VII. MODEL VERIFICATION

The properties of Section V need to be expressed using
UPPAAL’s query language to be verified with the model.

A. The UPPAAL query language

UPPAAL’s query language [38] allows to define properties
to be tested by the UPPAAL model checker. During a verifica-
tion, UPPAAL automatically generates all the execution paths
of the model that are required in order to verify each property.

The following types of properties are relevant for this paper.
(i) E � p: tests if there exists an execution path in which the
condition p (a boolean expression over locations, variables,
and clocks [38] of the model’s timed automata) eventually (in
some state of the path) holds. (ii) E2 p: tests if there exists an
execution path in which p holds for all the states in the path;
(iii) A2 p: tests if for every execution path, p holds for all the
states in the path; (iv) A� p: tests if for every execution path,
p holds for at least one of the states in the path; (v) q ; p:
tests if every execution path that starts from a state satisfying
q reaches later on a state in which p holds.

UPPAAL also provides a universal quantifier, expressed as
∀(v : t[f, l]) b. It returns true if for all values v of type t in the
range [f, l], both inclusive, the boolean expression b is true.

Finally, the notation a.l, where a is one of the automata
of the UPPAAL model used during the verification and l is a
location of that automaton, indicates an expression that is true
when the automaton a is in the location l.

B. Query helper functions and helper automata

The queries use the following functions. (i) fsns in range(b,
f, l): returns true if all f-tuples of buffer b have an fsn in
the integer range [f, l], both inclusive; (ii) msns in range(b,
f, l): returns true if all f-tuples of buffer b have an msn in the
integer range [f, l], both inclusive; (iii) fsns in range2(b, f1,
l1, f2, l2): returns true if each f-tuple of buffer b has an fsn
in the integer range [f1, l1], both inclusive, or in the integer
range [f2, l2], both inclusive; (iv) msns in range2(b, f1, l1, f2,
l2): returns true if each f-tuple of buffer b has an msn in the
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integer range [f1, l1], both inclusive, or in the integer range
[f2, l2]; (v) has fsn(b, f): returns true if there is an f-tuple with
fsn f in the f-tuple buffer b; (vi) has msn fbuf(b, m): returns
true if there is an f-tuple with msn m in the f-tuple buffer b;
(vii) count fsn(b, f): returns the number of f-tuples with fsn f
stored in the f-tuple buffer b; (viii) is sorted by fsn fbuf(b):
returns true if the f-tuples of f-tuple buffer b are sorted by
increasing fsns; (ix) is sorted by msn fbuf(b): returns true if
the f-tuples of f-tuple buffer b are sorted by increasing msns.

The queries also use an observer automaton obs that has
a single edge from its initial location to a location finished.
That automaton transitions to finished once the model has
finished modeling the transmission and reception of all frames,
and the execution of the driver. Each modeled controller has an
abstract data type (ADT) that encapsulates the buffers of the
given controller. There are two such ADTs, which are stored
in the ctrls array and are accessed by the constants CTRL_0

and CTRL_1. Finally, the boolean array d.is_trusted indicates
for each controller whether it has alerted of its failure or not.

C. Queries

To verify the properties of Section V some preliminary
queries were used to check that the elements of the different
buffers of the model can only have values within a specific
range. As an example, for the cha.rxbuf buffer and the
ctrls[CTRL_1].rx_fbuf buffer the queries are the following:

A2 fsns in range ( cha . rx fbu f , FIRST TX FSN , LAST TX FSN)

A2 msns in range ( cha . rx fbu f , FIRST TX MSN, LAST TX MSN)

A2 fsns in range2 ( c t r l s [ CTRL 1 ] . r x fbu f ,
FIRST RX FSN, LAST RX FSN, FIRST TX FSN , LAST TX FSN)

A2 msns in range2 ( c t r l s [ CTRL 1 ] . r x fbu f ,
FIRST RX MSN, LAST RX MSN, FIRST TX MSN, LAST TX MSN)

Respectively, FIRST_TX_FSN and LAST_TX_FSN are the fsn
of the first and last f-tuple generated by the controllers;
FIRST_TX_MSN and LAST_TX_MSN are the first and last msn
generated by app; FIRST_RX_FSN and LAST_RX_FSN are the
fsn of the first and last f-tuple generated by the channel;
and FIRST_RX_MSN and LAST_RX_MSN are the msn of the first
and last f-tuple generated by the channel. The values of
these constants are such that, for each pair, the range of
integers in-between does not overlap with any other pair of
these constants. Moreover, they are such that the number of
messages (msns) to be mtx-requested by the app and the
number of frames (f-tuples) to be transmitted by the channel
are both 3. This is so since with a value of 1 the model checker
will evolve to the set I1 of all possible states reachable after an
mtx-request and a reception. Thus, I1 is the set of all possible
states from which a new mtx-request or reception could occur.
With a value of 3 the model checker will verify the queries for
two mtx-requests and two receptions from all states in I1, i.e.,
from all possible initial states. Note that two additional mtx-
requests and receptions are required to verify the properties
related to the relative order between msns and fsns.

The range-checking queries for the remaining buffers are
analogous to the above. Since all range-checking queries are

satisfied, the remaining queries only need to consider the
verified range of values for the different buffers. These queries
are, grouped by property, the following:

P1: The following query checks that for all reachable states,
having an fsn generated by the channel in the app’s reception
f-tuple buffer implies that the f-tuple is in either one of the
controllers’ reception buffers. Since in the model an f-tuple
is only inserted in a controller’s reception buffer when a
reception is modeled, the query proves property P1.

A2 ∀ (F : i n t [ FIRST RX FSN, LAST RX FSN ] )
has fsn ( app . rx fbu f , F ) imply
( has fsn ( c t r l s [ CTRL 0 ] . r x fbu f , F ) or
has fsn ( c t r l s [ CTRL 1 ] . r x fbu f , F ) )

P2: As described above, an f-tuple is only inserted in a
controller’s reception buffer when a reception is modeled.
Moreover, once the automaton obs reaches the finished

location, no more pass-ons occur. Thus, the following query
proves property P2.

A2 ∀ (F : i n t [ FIRST RX FSN, LAST RX FSN ] )
obs . f i n i s h e d and has fsn ( c t r l s [ CTRL 0 ] . r x fbu f , F ) and
has fsn ( c t r l s [ CTRL 1 ] . r x fbu f , F ) imply
count fsn ( app . rx fbu f , F ) == 1

P3: Property P3 has the form P unless Q. This is equiv-
alent to ¬Q → P , where ‘¬’ indicates negation and ‘→’
material implication. This form is the one used by the query
that proves the property:

A2 ∀ (F : i n t [ FIRST RX FSN, LAST RX FSN ] )
obs . f i n i s h e d and
not ( ( has fsn ( c t r l s [ CTRL 0 ] . r x fbu f , F ) and

not d . i s t r u s t e d [ CTRL 0 ] and
not has fsn ( c t r l s [ CTRL 1 ] . r x fbu f , F ) ) or

( has fsn ( c t r l s [ CTRL 1 ] . r x fbu f , F ) and
not d . i s t r u s t e d [ CTRL 1 ] and
not has fsn ( c t r l s [ CTRL 0 ] . r x fbu f , F ) ) )

imply has fsn ( app . rx fbu f , F )

P4: Since by hypothesis one controller is always correct
and has a correct link, all f-tuples generated by the channel are
received by at least one controller. This makes the verification
of this property straightforward:

A2 ∀ (F : i n t [ FIRST RX FSN, LAST RX FSN ] )
count fsn ( app . rx fbu f , F ) ≤ 1

P5: This is already proved by one of the in-range queries.
Specifically, the following query proves that all f-tuples stored
in app.rx_fbuf originated from the channel, and were there-
fore not self-received.

A2 fsns in range ( app . rx fbu f , FIRST RX FSN, LAST RX FSN)

P6: Since the f-tuples generated by the channel have mono-
tonically increasing integers as fsns, and f-tuples are appended
to app.rx_fbuf in sequence, the following query proves P6.

A2 i s so r ted by fsn fbu f ( app . r x f b u f )

P7: By construction the modeled application mtx-requests
an msn for each value in the range [FIRST_TX_MSN,

LAST_TX_MSN], both inclusive. Moreover, to model a trans-
mission, one of the modeled controllers encapsulates an msn
in an f-tuple and then adds that f-tuple to the cha.rx_fbuf

buffer. Thus, the following query proves property P7:
A2 ∀ (M: i n t [ FIRST TX MSN, LAST TX MSN ] )
obs . f i n i s h e d imply has msn fbuf ( cha . rx fbu f , M)
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P8: This property can be verified with the following query:

A3 obs . f i n i s h e d

P9: This query follows a similar logic to the one of P6:

A2 is sorted by msn fbuf ( cha . r x f b u f )

P10: The automaton modeling the application has two
locations: idle and wait_tx_success. It can only transition
from the idle location to the wait_tx_success location if
an mtx-request occurs. Similarly, it can only transition from
wait_tx_success back to idle if an mtx-request is satisfied,
i.e. when a boolean variable indicates a tx-success. Moreover,
from the query of P7, it is known that the automaton model-
ing the application cycles to the wait_tx_success for every
modeled mtx-request. Thus, it must only be shown that the
automaton does not remain indefinitely in wait_tx_success.
This is accomplished with the following query:

a p p l i c a t i o n . wai t tx success ; a p p l i c a t i o n . i d l e

VIII. CONCLUSION

The paper presents the design and verification of reCANdrv,
a media redundancy management driver for the nodes of a
ReCANcentrate network. ReCANcentrate is a CAN-compliant
replicated star topology with enhanced error-containment and
fault-tolerance mechanisms. The goal of reCANdrv is to
provide a correct redundancy management, i.e., to transpar-
ently and properly manage for the application the available
media redundancy under faults. Since ReCANcentrate has
been designed for systems that require high reliability, it must
be verified that this goal is achieved. To this end, the goal is
formalized as a series of properties based on a few realistic
assumptions. The properties are then verified by means of
model checking. For this, a model of a ReCANcentrate node
is created using UPPAAL. The model is presented in an
abstract way ([44] contains a description of the implementation
details). Afterwards a series of UPPAAL queries are presented.
These show that the model indeed satisfies the properties.

The driver provides a virtual CAN controller interface to the
application executing on the nodes. Thus, it hides the under-
lying replicated communication medium and the treatment of
faults from the application. It is thus possible to execute with
increased reliability standard CAN applications and higher-
layer protocols based on CAN on ReCANcentrate nodes.

Furthermore, since the only requirement put on the channel
is that it provides a single logical broadcast domain, the
ReCANcentrate node architecture and reCANdrv can also
be used in networks relying on other topologies as long as
they provide a single logical broadcast CAN domain, e.g., a
replicated bus topology where the two buses are coupled.

Moreover, the results of this paper allow to use model
checking to verify the properties of this kind of reCANdrv-
based networks. It will be easy to incorporate reCANdrv-based
nodes into any other model without having to specify their
low-level mechanisms, e.g. the driver, CAN controllers, timer,
etc., but just their properties. In this sense, the work presented
here is coherent with the common practice of abstracting away

the lower level mechanisms that substantiate certain properties
and just model the properties themselves.

Another contribution of the model presented here is that
some parts can easily be used to verify other systems, e.g.,
the approach used to model interrupts and ISRs, described in
detail in [44], can be used for the verification of other systems
that use these mechanisms. Also, the approach of verifying the
properties provided by reCANdrv by considering how modeled
messages are passed between different buffers can be used to
verify the properties of other distributed systems.

Finally, note that if controller failures are considered negli-
gible with respect to channel and link failures, then reCANdrv
can be used on nodes implemented with low-cost off-the-shelf
microcontrollers that provide dual on-chip CAN controllers,
instead of nodes with two self-diagnosing controllers.
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