
A first qualitative evaluation of star replication schemes for FTT-CAN

David Gessner, Manuel Barranco, Julián Proenza
Dpt. Matemàtiques i Informàtica

Universitat de les Illes Balears, Spain
david.gessner@uib.es

Michael Short
Electronics & Control Group

Teesside University, Middlesbrough, U.K.
m.short@tees.ac.uk

Abstract

Highly dependable distributed embedded systems (DES)
have traditionally been developed using static approaches,
i.e., assuming a mostly constant environment. However, the
little flexibility of such approaches does not allow contin-
uous operation under dynamic environments. The Flexi-
ble Time-Triggered (FTT) communication paradigm is a
promising approach to introduce the required flexibility.
However, for continuous operation reliability is also cru-
cial. Replicated star topologies are particularly well-suited
to provide an increased reliability. Nevertheless, for FTT-
CAN, the implementation of FTT for CAN, no replicated
star topology that takes advantage of FTT-CAN’s features
to increase reliability and error containment exists. This
paper discusses important design questions that need to be
solved to create such a novel solution.

1. Introduction
Traditionally, highly-dependable distributed embedded

systems (DES) have been developed assuming that the
communication requirements remain static during a sys-
tem’s operation. This has led to static approaches that pre-
vent a system to function correctly when continuous opera-
tion under dynamic environments is required. The alterna-
tive are approaches that introduce flexibility. A particularly
promising one is the Flexible Time-Triggered (FTT) com-
munication paradigm [8], which has been applied to both
the Ethernet and the Controller Area Network (CAN) pro-
tocols. However, flexibility alone is not enough for contin-
uous operation under dynamic environments. It is also nec-
essary to ensure that the system’s reliability is high enough.

The application of the FTT paradigm to CAN is known
as FTT-CAN [1]. It allows to dynamically change, at run-
time, the communication requirements of a CAN-based
DES while at the same time guaranteeing that all accepted
changes will satisfy real-time constraints. Moreover, it sup-
ports both event- and time-triggered communication.

FTT-CAN has originally been designed on top of the
standard CAN bus. A bus topology, however, has several
reliability limitations [2]. Moreover, FTT-CAN introduces
a master node that needs to be replicated in order to avoid a
new single point of failure. As a solution, a replicated bus

approach for FTT-CAN has been proposed [14], as well as
mechanisms to replicate the FTT master [6].

These solutions, however, still have important depend-
ability limitations. First, the master replication does not
consider certain types of CAN fault scenarios [10, 12] that
may prevent a node from detecting that a frame it has trans-
mitted has been rejected by some nodes. Second, repli-
cated bus topologies are vulnerable to common-mode fail-
ures such as spatial proximity failures due to the bus repli-
cas coming near together at every node [2]. In contrast, a
replicated star is less vulnerable to common-mode failures
and can provide better error containment.

Recently, an approach to integrate ReCANcentrate [2], a
replicated star topology for CAN, with FTT-CAN has been
proposed [3]. ReCANcentrate is comprised of two hubs
that can contain media errors at the ports to which the nodes
are connected. The mentioned integration consists in con-
sidering FTT-CAN and ReCANcentrate as two orthogonal
components and composing the former on top of the lat-
ter. Although this approach takes advantage of some of the
dependability-related benefits of star topologies, it prevents
the hubs from exploiting certain FTT-CAN features to fur-
ther improve reliability and error containment, e.g., to treat
errors in the time and value domains.

This paper explores several questions that need to be ad-
dressed to design a star replication scheme for FTT-CAN
that takes advantage of FTT-CAN’s features.

Section 2 describes the basics of FTT-CAN and Sec-
tion 3 the fault model, assumptions, and goals under which
different star replication schemes will be considered; Sec-
tion 4 discusses the main problems that need to be solved;
Section 5 concludes the paper and indicates future work.

2. FTT-CAN
FTT-CAN implements a centralized master/multi-slave

access to the network. The master divides the communica-
tion time into rounds of fixed duration E called Elementary
Cycles (ECs). Each EC is comprised of an asynchronous
window followed by a synchronous window. The FTT mas-
ter initiates each EC with the transmission of a Trigger
Message (TM), to which the slave nodes synchronize. This
message dictates the schedule for the next synchronous
window, i.e., it tells the slave nodes which messages they
should transmit during that window. The schedule is cal-

c©2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. doi:10.1109/ETFA.2012.6489702



culated by the master from the contents of a System Re-
quirements Database (SRDB), which specifies the commu-
nication requirements for different message streams. Ex-
ample requirements are deadlines, periods, and minimum
inter-arrival times. Slave nodes may request changes to the
SRDB, but these requests are subject to an online admis-
sion control performed by the master. The admission con-
trol basically ensures that the SRDB is only updated with
the requested change if the system will still be schedula-
ble afterwards. Regarding the asynchronous window, its
access is event triggered.

3. Fault model, assumptions, and goals
Our fault model establishes the following. (i) The

FTT masters have crash-failure semantics, which can be
achieved through an internal duplication and comparison
mechanism. (ii) A hub channel—a hub, together with all
the cabling media and transceivers at the connected nodes
and the hub—cannot generate spurious messages, which is
obvious for the transceivers and cabling, and can be en-
forced for the hubs if necessary. (iii) The hub channels can
suffer permanent or transient media faults. (iv) The slave
nodes can generate faults in the time and value domains.
Specifically, they can transmit messages at the wrong time
(or not at all) or with the wrong contents. Regarding the
latter, it is important to deal with messages with spurious
CAN IDs because they can cause blocking and interference
to legitimate messages that need to be delivered in a timely
manner. However, wrong contents in the data field of mes-
sages is considered application-specific and is out of the
scope of this paper, although it could be addressed, e.g.,
through the well-understood mechanisms of node replica-
tion and voting.

Regarding assumptions, we assume that each hub chan-
nel provides a CAN broadcast domain (simply broadcast
domain from here onwards), which is defined as a set of one
or more CAN segments (cabling plus CAN transceivers) in-
terconnected in such a way that they satisfy two properties:
(1) a new bit is not transmitted on any of the segments until
the previous bit has stabilized in all of them, i.e., CAN’s
in-bit response is preserved, and (2) the value of the stabi-
lized bit is the logical AND of all the latest bits that have
been transmitted over each of the segments, i.e., the behav-
ior is equivalent to CAN’s wired-AND. CANcentrate [2] is
an example of a hub that provides a broadcast domain.

We also assume that each hub, like the ones in CAN-
centrate [2], can detect media errors at its ports and isolate
the ports if the media errors persist longer or appear more
frequently than a given threshold.

Another assumption is that each hub channel provides
Total-Order Broadcast (TOB), also known as atomic broad-
cast [4]. Although CAN does not always guarantee TOB
[13], some authors used experimental data to claim that
the chances of TOB violation in CAN are negligible [5].
Even if the claim is wrong, solutions have been proposed,
e.g., [13, 11], and the issue appears solvable for FTT-CAN.

Finally, as indicated in the introduction, our goal is to al-

low highly-dependable DES to function correctly and con-
tinuously under dynamic environments. This means that
we want to maximize both flexibility and reliability. Thus,
the star replication schemes to be considered for FTT-CAN
must maintain both FTT-CAN’s flexibility and the contain-
ment of media errors provided by the hubs. In addition,
the FTT-CAN masters will have to be replicated. Lastly,
for consistency, trigger messages with different schedules
must not reach the same node during the same EC.

4. Design questions
Although the solutions to use will be FTT-CAN specific,

the problems to solve that we will discuss can be stated in
general terms. For instance, any replication scheme needs
to determine how to handle duplicates and how to deal with
the partitioning of the communication participants (slave
nodes and masters) into subsets that cannot communicate
with each other. Furthermore, for any master/slave protocol
with replicated masters, we need to decide how to enforce
replica determinism [9] for the master replicas.

Handling duplicates. Duplicates can be categorized
as application caused duplicates (a-duplicates), i.e., dupli-
cates whose transmission has been explicitly requested by
a correctly functioning application on a node; redundancy
caused duplicates (r-duplicates), i.e., duplicates result of
the channel replication; faulty duplicates (f-duplicates),
i.e., duplicates caused by a spurious transmission by a
faulty node; and retransmissions due to channel faults.

One approach to handling duplicates is to simply accept
them. This is basically the approach currently followed in
CAN, where it is well known that duplicates can occur. For
this reason, CAN applications usually do not transmit mes-
sages that carry information that is relative to previous mes-
sages. Note that in CAN duplicates only appear occasion-
ally, mainly due to retransmissions; whereas in replicated
channels that redundantly send each message through all
replicas of the channel (spatial redundancy), even under
error-free conditions, duplicates occur for each and every
message, namely in the form of r-duplicates.

Using the approach that has already been used in Re-
CANcentrate [2], it is possible to avoid delivering to the
application these additional duplicates. For this, all the hub
channels need to be interconnected such that they form a
single broadcast domain. This allows to clearly identify r-
duplicates because they are the only ones that could be re-
ceived within the same bit time through the redundant links
of a node. A node could then simply ensure that of all the
r-duplicates only one is delivered to the application.

With an additional assumption, it is even possible to en-
sure that only the strictly necessary duplicates, namely a-
duplicates, are delivered. The assumption is that it is not
required that two indistinguishable messages, i.e., with the
same ID and data, are delivered to a node during the same
EC. For synchronous messages this assumption holds be-
cause FTT-CAN requires them to have a period that is an
integer multiple of E [1]. For asynchronous messages there
is no equivalent restriction. Nevertheless, these messages



need to have a minimum inter-arrival time for their tem-
poral properties to be verified and we believe that most
applications do not require this time to be shorter than a
typical EC length. In any case, even if a shorter minimum
inter-arrival time is required, messages can easily be made
distinguishable, e.g., by adding short sequence numbers to
the data field. With the assumption, a node simply needs to
keep track of the messages it received since the start of the
current EC and, when it receives a duplicate in the same
EC, it can discard it because it must be an r- or f-duplicate,
or a retransmission of a message it already has. This ap-
proach also has the advantage that it does not require the
hub channels to form a single broadcast domain.

Avoiding partitioning. If all participants (nodes and
masters) are correctly connected to at least one and the
same broadcast domain, they can communicate and no par-
titioning exists. Thus, a way to reduce the chances of parti-
tions when links are affected by faults is to interconnect the
hubs to provide the coupling of all the broadcast domains
into a single one like in ReCANcentrate.

Another solution is to keep separate broadcast domains
and use a store and forward mechanism through hub inter-
connections to transport messages from one broadcast do-
main to another when link faults occurred that could lead
to a partitioning. An important distinction with respect to
forming a single broadcast domain is that errors in one hub
channel would not necessarily affect others. If the same
messages are transmitted over different broadcast domains,
transient faults could thus also be tolerated through spatial
instead of through temporal redundancy (retransmissions)
alone. However, once there is no longer a shared broad-
cast domain, e.g., due to faults, it becomes necessary to
transport each and every message to ensure communica-
tion between all participants, which doubles the required
bandwidth. In that case, the initial reduction in bandwidth
achieved by tolerating some transient faults through spatial
redundancy, instead of by temporal redundancy, becomes
negligible. On the other hand, for some applications this
could be an acceptable degraded mode of operation.

Enforcing replica determinism of masters. Enforcing
replica determinism of the masters depends on several fac-
tors. We will discuss the following important ones: (i) the
definition of replica determinism for the masters; (ii) the
number of active masters; (iii) the channel available for the
masters to communicate with each other; (iv) the location
of the masters; and (v) whether masters need to schedule
retransmissions.

The first factor requires us to define when we consider
masters to be replica deterministic. As mentioned in Sec-
tion 3, different schedules must not reach the nodes during
the same EC. This must be true independently of the num-
ber of masters. Taking this as the definition of replica de-
terminism of masters, it will be achieved when they have
obtained the same schedule for each EC.

The second factor is the number of active masters, i.e.,
masters that are not a backup, but are currently responsible
for transmitting a TM in a broadcast domain.

If there is more than one, each responsible for a dif-
ferent set of broadcast domains, avoiding different sched-
ules reaching the same node requires them all to convey the
same schedule in their TMs during each EC. This requires
an agreement protocol to be executed just before sending
the TM in each broadcast domain.

The protocol could be an SRDB synchronization proto-
col that ensures that all masters have an identical copy of
the SRDB just before each of them calculates the schedule.
Since the masters have crash-failure semantics, it would be
guaranteed that they only send a TM if they calculated the
same correct schedule.

Another option is having the agreement protocol be
master/slave itself, i.e., one of the active masters is the pri-
mary one and it uses TOB to inform the other (secondary)
masters of the schedule to transmit in the next TM.

Alternatively, assuming the masters started with equal
SRDBs, the agreement protocol could simply consist in
ensuring TOB of slave update requests in the set of all
broadcast domains (as opposed to TOB in each individ-
ual broadcast domain). This is so because, considering the
crash-failure semantics of the masters, if two or more mas-
ters have different SRDBs, this can only be due to them
having received a different subset of the SRDB update re-
quests issued by slaves. This solution, by itself, only seems
promising if no new masters can be added to a running
system, no reintegration of faulty masters is required, and
(as discussed shortly) masters do not reschedule messages
corrupted by errors. Otherwise, an SRDB synchronization
protocol would be necessary anyway.

If there is only one active master and it is connected to
and responsible for all broadcast domains, it must simply
transmit the same TM in all of them. This avoids the prob-
lem of different schedules reaching the same node. How-
ever, there is still the issue of the active master crashing
and a backup master taking over as seamlessly as possible,
which in fact also exists when there is more than one ac-
tive master. Thus, an agreement protocol is necessary in
any case, even if it is just between active and backup mas-
ters, to seamlessly tolerate the failure of an active master.
Moreover, it is necessary for the masters to communicate
to indicate whether they are alive or not.

In any case, communication between masters is neces-
sary, for which we can distinguish two broad solutions. Use
the hub channels themselves or have a separate channel,
which we may call master channel. How masters commu-
nicate impacts the design of the replica determinism en-
forcement and to make a choice the location of the masters
must also be considered.

The basic choices are masters within the hubs or within
nodes. If they are within nodes, having a dedicated master
channel would be costly since an additional full communi-
cation infrastructure just for the masters would be required.
It may therefore be more sensible to use the hub channels.
However, this would take away bandwidth for the commu-
nication of slave nodes. If they are in the hubs, the already
necessary infrastructure that connects hubs to solve the par-



titioning problem may be used.
Regarding the location of the masters, there are a few

additional worthwhile comments. Since the SRDB is a
specification of correct message streams, it would allow
a hub to use that information to implement more ad-
vanced error treatment mechanisms, e.g., a hub could check
whether a node connected to a port is transmitting more fre-
quently than the specification allows. If the masters are in
the hubs, the hubs could have direct access to a copy of
the SRDB. If they are in the nodes, the access would be
more complicated. However, the big disadvantage of mas-
ters in the hubs are common mode failures between mas-
ters and hub channels. On the other hand, since the mas-
ters would be embedded in already necessary components
(the hubs), less hardware would be required (which reduces
costs and may improve overall reliability). Regarding scal-
ability, adding additional masters is not as trivial in hubs as
when they are simply nodes.

Finally, the replica determinism of the FTT masters also
depends on whether messages affected by transient errors
are autonomously retransmitted by the sender or whether
it is the master that reschedules a message corrupted by
errors [7]. In the latter case, the schedule calculated by the
masters not only depends on the contents of the SRDB, but
also on whether messages have been corrupted by errors or
not. This means that the masters must all agree on whether
a message needs to be rescheduled or not. To achieve this,
one possibility is to use, as before, an agreement protocol
to decide if a rescheduling should be done.

5. Conclusions and future work
This paper discusses trade-offs and potential solutions

for important design questions in a star replication scheme
for FTT-CAN, namely, how to handle duplicates, how to
avoid the partitioning of the communication participants,
and how to enforce replica determinism for the masters.

However, without doing a quantitative dependability
evaluation of different replication schemes it is not clear
which scheme is best for reliability. This will be the next
problem to solve. Nevertheless, from a purely qualitative
point of view, the most promising one has the following
features. The hubs contain the FTT masters, which gives
them direct access to a copy of the SRDB and allows them
to use that copy to detect and isolate nodes that behave in-
correctly in the time and value domains; the protocol used
to ensure replica determinism of the masters is an SRDB
synchronization protocol, which allows the reintegration of
masters that have become faulty, and the online addition
of new masters. Finally, separate broadcast domains are
kept initially, allowing spatial redundancy to tolerate some
transient faults. Only after a partitioning is detected, the
hubs would reconfigure themselves to form a single broad-
cast domain, which would allow all nodes that have at least
one correct link to a correct hub to communicate with each
other, but without the negative impact on bandwidth that a
store and forward mechanism would have.

As further future work we can point out the design and

implementation of a concrete star replication solution for
FTT-CAN.

Acknowledgement
This work was supported by the Spanish Economy and

Competitivity Ministry with grant DPI2011-22992 and by
FEDER funding.

References
[1] L. Almeida, P. Pedreiras, and J. A. Fonseca. The FTT-

CAN protocol: Why and how. Industrial Electronics, IEEE
Trans. on, 49(6):1189–1201, 2002.

[2] M. Barranco, J. Proenza, and L. Almeida. Boosting the
Robustness of Controller Area Networks: CANcentrate and
ReCANcentrate. Computer, 42(5):66–73, May 2009.

[3] M. Barranco, G. Rodriguez-Navas, D. Gessner, and
J. Proenza. Towards the integration of flexible-time-
triggered communication and replicated star topologies in
CAN. In Emerging Technologies & Factory Automation
(ETFA), 2011 IEEE 16th Conf. on, pages 1–4. IEEE, 2011.

[4] X. Défago, A. Schiper, and P. Urbán. Total Order Broadcast
and Multicast Algorithms: Taxonomy And Survey. ACM
Computing Surveys, 36:2004, 2003.

[5] J. Ferreira. Fault-Tolerance in Flexible Real-Time Commu-
nication Systems. Phd, Universidade de Aveiro, 2005.

[6] J. Ferreira, L. Almeida, J. A. Fonseca, P. Pedreiras, E. Mar-
tins, G. Rodriguez-Navas, J. Rigo, and J. Proenza. Combin-
ing operational flexibility and dependability in FTT-CAN.
Industrial Informatics, IEEE Trans. on, 2(2):95–102, 2006.

[7] L. Marques, V. Vasconcelos, P. Pedreiras, and L. Almeida.
Tolerating Transient Communication Faults with Online
Traffic Scheduling. In IEEE Int. Conf. on Industrial Tech-
nology, Athens, 2012.

[8] P. Pedreiras and L. Almeida. The flexible time-triggered
(FTT) paradigm: an approach to QoS management in dis-
tributed real-time systems. In Proc. Int. Parallel and Dis-
tributed Processing Symposium, page 9. IEEE Comput.
Soc, 2001.

[9] S. Poledna. Fault-Tolerant Real-Time Systems: The Prob-
lem of Replica Determinism. Kluwer Academic Publishers,
1996.

[10] J. Proenza and J. Miro-Julia. MajorCAN: A Modification
to the Controller Area Network Protocol to Achieve Atomic
Broadcast. IEEE Int. Workshop on Group Communication
and Computations, Taipei, Taiwan, 2000.

[11] J. Proenza and E. Sigg. A first design for CANsistant: A
mechanism to prevent inconsistent omissions in CAN in the
presence of multiple errors. In Conf. on Emerging Technolo-
gies & Factory Automation, pages 1–4. IEEE, Sept. 2009.

[12] G. Rodriguez-Navas, C. Winter, and J. Proenza. Injection of
aggregated error flags as a means to guarantee consistent er-
ror detection in CAN. In Int. Conf. on Emerging Technolo-
gies and Factory Automation, pages 1–4, Toulouse, Sept.
2011. IEEE.

[13] J. Rufino, P. Verı́ssimo, G. Arroz, C. Almeida, and L. Ro-
drigues. Fault-Tolerant Broadcasts in CAN. In FTCS ’98:
Proc.s of the The Twenty-Eighth Annual Int. Symposium
on Fault-Tolerant Computing, page 150, Washington, DC,
USA, 1998. IEEE Computer Society.

[14] V. F. Silva, J. A. Fonseca, and J. Ferreira. Adapting the
FTT-CAN Master for multiple-bus operation. In 5th IEEE
Int. Conf. on Industrial Informatics, pages 305–310. IEEE,
July 2007.


