
Using FTT and stars to simplify node replication in CAN-based systems

Julián Proenza, Manuel Barranco, Joan Llodrà
SRV - Dpt. Matem̀atiques i Inform̀atica.
Universitat de les Illes Balears. Spain

{julian.proenza, manuel.barranco}@uib.es

Luı́s Almeida
Instituto de Telecomunicações.
Universidade do Porto. Portugal

lda@fe.up.pt

Abstract

Nodes, among the components of distributed embedded
systems, exhibit the greatest permanent failure rate. Thus,
providing tolerance to nodes faults is mandatory whenever
high-reliability is required, being node replication the most
common technique for that purpose. This paper proposes a
novel technique suitable for CAN-based systems that simpli-
fies existing approaches taking advantage of a star topology
and the FTT protocol.

1. Introduction

Despite the success of the Controller Area Network
(CAN) [7] protocol in many application areas, there is a
widespread belief that CAN is unsuited to critical applica-
tions [10]. One of the reasons is the protocol limited support
for fault tolerance, particularly tolerance to nodes faults,
which impacts most strongly the final reliability [5].

The CANbids project [12] presented a solution for node
replication in which nodes periodically exchange the re-
sults of their computations and vote on them to achieve
fault masking. This is a complex solution given the ab-
sence of knowledge on the actions timings (event-triggered
approach). In particular, it requires the nodes to have com-
plex redundant internal structures and to execute non-trivial
protocols to ensure a system-wide consistency [12].

This paper proposes adopting a star topology and the
Flexible Time-Triggered over CAN (FTT-CAN) [1] proto-
col to significantly simplify the approach for nodes replica-
tion. The a priori knowledge on the channel traffic provided
by FTT-CAN together with a central hub with error con-
tainment capabilities can restrict the nodes failure semantics
without overly complicating their internal design. This re-
striction and again FTT-CAN are fundamental to simplify
the protocol to be used by the nodes to vote on the results
of the computation. A special module calledNode Replica-
tion Manager(NRM) allows reducing the attrition caused

by faults by recovering nodes that cannot recover by them-
selves.

2. System and fault models

Our system model assumes using the FTT-CAN [1] pro-
tocol, in which a master divides the communication time
into rounds of fixed duration called Elementary Cycles
(ECs), each of which is divided into an asynchronous win-
dow (for event-triggered traffic) and a synchronous window
(for time-triggered traffic). Each EC starts with the master
sending a Trigger Message (TM), which synchronizes the
slaves and tells them the synchronous messages they have
to transmit in the next synchronous window, according to
the System Requirements Database (SRDB). Slaves may re-
quest changes to the SRDB, which are subject to an admis-
sion control.

On this FTT protocol, our design uses active replication
to provide node fault tolerance, i.e. several nodes execute
replicas of the same program and, after each partial com-
putation, they exchange their results and vote on them. We
assume that the replicas are identical pieces of software, al-
lowing tolerating hardware faults but not software (design)
ones. Yet, we will generally follow the replication termi-
nology ofN-Version Programming(NVP) [2], despite NVP
assuming replicas with design diversity.

Each replica is partitioned into a set ofsegments. In ex-
ecution, each time a replica finishes a segment, it issues a
vector of results of this segment, calledcc-vector. Then a
decision algorithmis executed to obtain aconsensus cc-
vector which is sent back to all replicas to be used in the
following computations. This mechanism, calledcc-point,
provides masking of faults in a minority of replicas. We will
usea-replicato refer to any application program replica.

Regarding the fault model, the proposed mechanisms tol-
erate temporary hardware faults in the channel and both
temporary and permanent hardware faults in the nodes. In-
tentional and design faults are out of the scope of this paper.

c©2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. doi:10.1109/ETFA.2012.6489701



3. System Architecture

Our architecture is based on error containment bound-
aries enforced around each node that prevent error propa-
gation. These boundaries are built by restricting the nodes
failure semantics and preparing the other nodes to deal with
the errors that may still occur.

Since a node is essentially executing the application task,
performing cyclic votings on its results can easily handle
incorrect computation failure semantics[3], i.e. failing by
providing incorrect results either in the value or in the time
domains. Conversely, coping with more arbitrary failure
modes (e.g. impersonating other nodes, sending different
values to different nodes or babbling in the channel) requires
more complicated voting protocols. To avoid such compli-
cation, we decided to design mechanisms to prevent such
modes.

A key component in the architecture is the central hub
that enforces nodes failure semantics without complicating
their design, e.g. without internal duplication and compar-
ison. The hubpolicesits ports by using the traffic a priori
knowledge provided by the FTT periodic TM. For example,
the hub allows each node to send one cc-vector per segment,
only, in the synchronous window of the EC, thereby prevent-
ing babbling idiot failures[8]. Likewise, the hub makes sure
that each cc-vector from each node is sent in broadcast elim-
inatingtwo-faced failures[11], i.e. a node sending different
versions of the same message to different nodes. Finally,
the hub prevents the transmission of cc-vectors that are sent
with a wrong identifier thereby eliminatingimpersonation
failures[11], i.e. a node impersonating other nodes.

Given the high criticality of the hub in the architecture,
its circuits are internally duplicated and compared thus en-
forcing crash failure semantics. Nevertheless, hub replica-
tion to deal with the single point of failure that it represents
is left for future work.

Beyond these mechanisms included in the hub, enforcing
the desired failure semantics still requires certain properties
of the underlying communication protocol. Specifically, we
need a protocol providingReliable Broadcast(RB) [6] as
well as the ability to prevent babbling idiot behaviour gen-
erated by the channel itself, e.g., continuous retransmission
caused by a permanent fault.

Despite the known limitations of CAN in providing RB,
we will assume this property holds and we will deal with
RB in the specific scope of FTT-CAN in future work.

Concerning the babbling idiot behaviour generated at the
channel level, CAN normally prevents it using its native
error counting and node isolation mechanisms. However,
these are also known to be ineffective when there are di-
rect electrical connections between multiple nodes without
proper error containment, as in buses [4]. For example, a
transceiver that continuously sends a dominant value pre-

vents further communication.
To overcome this limitation, we use the CANcentrate [4]

hub given its high capacity to diagnose typical CAN physi-
cal layer permanent failures, i.e. stuck at dominant, stuck at
recessive or bit flipping failures, and disconnect the affected
ports.

Beyond the mechanisms presented before for restricting
the nodes’ failure semantics and contain certain errors, it is
also important to deal with the errors that may still cross the
nodes interfaces, e.g., a wrong result in the value domain
produced by a node and sent to the other nodes. For each
received message, nodes have to determine if it originates
from the FTT master, the hub or from another node. In the
first two cases, it is assumed correct since the FTT master
and the hub exhibit crash failure semantics. The latter case
is dealt with voting, given the incorrect computation failure
semantics of nodes. Finally, nodes, the FTT master and the
hub must consider the potential omission of any message.

3.1 Organization of the fault-tolerance operations

In this section we focus on the fault tolerance operations
performed at this architecture’s upper layer, which deals
with the execution of the application software. Other lower-
level fault tolerance operations (e.g. the ones performed by
the CAN controllers) are out of the scope of this paper. Nev-
ertheless, for some of these lower layers some requirements
on what they should do will be discussed.

The main operation performed in this upper layer to
achieve fault tolerance is the voting on the cc-vectors issued
by the a-replicas at the end of each segment. This voting,
which is executed at each node after the cc-vectors have
been exchanged at the synchronous window of the sched-
uled EC, provideserror compensation[9] (i.e. fault mask-
ing). Since all nodes are to execute the same voting, it is
necessary that this replicated operation presents replica de-
terminism [11]. In this architecture this can be achieved by
ensuring that non-faulty replicas of the voting do not use
non-deterministic constructs in their programming and that
they vote on the same set of cc-vectors. This is very easy
since the channel provides RB and there is an a priori agree-
ment that all cc-vectors for a specific segment have to be
exchanged in a specific EC.

To improve the global dependability, each node performs
the following three additional fault-tolerance operations on
its own faults:error detection(i.e. detection of its own er-
rors); fault passivation[9]; and recoveryof its a-replica
when it has suffered a temporary fault. Each node performs
detection of its own errors by comparing its own cc-vector
with the consensus cc-vector it calculates by voting. Each
node performs fault passivation by disconnecting itself from
the network when it is affected by faults. To prevent a quick
attrition of redundancy, disconnection should not be perma-



nent if the node is only affected by temporary faults. There-
fore, each node maintains an error counter for itself and its
a-replica which is increased each time it detects a new error
after a voting, and decreased when no error is detected. Only
when the error counter reaches a pre-established threshold,
the node considers itself permanently faulty and disconnects
itself from the rest of the system. Concerning recovery af-
ter temporary faults, for a-replicas we organize the voting
of their cc-vectors in such a way that the a-replica receives
by means of the consensus cc-vector the information that it
needs for recovering from its errors (i.e. the a-replica uses
the results of the voting as the input of its next segment).

Obviously no guarantee on the correct operation of these
mechanisms can be obtained. A node can fail to properly de-
tect its own errors, and even if it does not fail to do it, it can
later on fail to disconnect itself from the rest or even incor-
rectly recover and continue providing erroneous cc-vectors.
This is due to the lack of failure restriction of the nodes.
More accurately, only the failure behaviour seems restricted
to the other nodes after the hub prevents the transmission of
certain messages but each node can still fail arbitrarily, send
arbitrary values to the hub and internally make arbitrary er-
roneous actions. In order to increase the chances of errors
to be properly detected and recorded and of nodes to be cor-
rectly recovered after failures, a device (either an additional
node or a new part of the hub) calledNode Replication Man-
ager(NRM) will also execute the same voting as the nodes.
This should provide it with all the necessary information for
being able to detect the errors of all nodes, keep an error
counter for each of them, order the disconnection of one of
them and also help a node to recover, in case the severity of
its failure does not allow it to recover by simply using the
last result it obtained in the voting. The NRM will be in-
ternally duplicated and compared to force it to present crash
failure semantics.

4. The role of the NRM

As indicated above, the NRM is a new device that in our
architecture retains the ultimate responsibility for manag-
ing the node replication, so as to increase the chances of
node recovery while at the same time making unnecessary
for the nodes to present costly internal structures for restrict-
ing their failure semantics. Note that if there was no NRM
the alternative would be that regular nodes help others in re-
covery and thus their failure semantics should be restricted.

The NRM has been introduced as a mechanism to detect
faulty nodes and order their recovery, in such a way that
it either performs these tasks properly or it crashes without
affecting the nodes. Since the NRM acts when the node is
severely faulty and cannot recover by itself, we will call this
processreintegrationinstead of simply recovery.

Despite the prominence of the NRM in this process, it is

important that the nodes are as active as possible in their
reintegration. Thus when a node sees that its own error
counter has reached a threshold (meaning that it has reg-
istered a series of consecutive errors in the last votings) it
should carry out a complete reset. After finishing the reset
it should wait for the next TM to get a basic resynchroniza-
tion with the rest of the nodes and then it should send a
reintegration requestat the beginning of the asynchronous
window of that EC. The NRM should then transmit in the
same asynchronous window the so-calledreintegration in-
formationthat should include all that is required for a proper
reintegration of the node, e.g. the value of the node’s error
counter.

If the node is more seriously damaged, e.g. using a
wrongly low value of its error counter, it can be unable to
realize that it has to ask reintegration. This is why the NRM
will send a reintegration order to the nodes that have reached
their error thresholds. The order will be sent during the
asynchronous window and the affected nodes should react
as described above: performing a reset and then sending a
reintegration request.

Obviously a node can be even more seriously damaged
and ignore the reintegration order from the NRM. This is the
reason for introducing a watchdog timer in the design of the
node. Thereby the node’s software should be organized in
such a way that a periodic restart of the watchdog is timely
executed. If this timer is not restarted it would mean that
the node is lost and thus may be unable to obey the NRM
orders. Upon watchdog expiration a hardware-induced reset
will occur and the node will resume computation requesting
reintegration as described above.

Faulty nodes may wrongly send reintegration requests,
e.g. in a continuous manner, thereby causing a babbling idiot
scenario. The hub would be responsible for ensuring that
these wrong behaviours do not affect the other nodes. Thus
the hub will only permit the transmission of requests during
the asynchronous window and only one request per node.

Whereas the recovery potentially achievable with the
simple feeding of the consensus cc-vector to the local a-
replica takes place just after a segment is executed and be-
fore the next one starts, the reintegration we are describing
now is triggered in such a way that we cannot guarantee that
the node was executing the segment that corresponds to the
consensus cc-vector provided with the reintegration infor-
mation. Therefore this reintegration is much more likely to
succeed if the application is structured in such a way that a
node cyclically executes the same segment and, thus, it is al-
ways possible for it to use the consensus cc-vector provided
as starting point of the next iteration. Fortunately this is the
case of control loops such as those implementing a PID.

Due to the addition of the NRM, a third level of error
containment is introduced in the system. More specifically,
the hub will perform 3 different levels of error containment.



First the CANcentrate-like mechanisms devoted to contain
the errors generated at the channel’s physical layer. Sec-
ond the mechanisms based on the a priori knowledge on the
traffic that is provided by the FTT protocol. And third, those
based on the information provided by the error counters of
the NRM. Indeed, when the NRM decides that a node is not
recoverable anymore because its error counter has reached
another higher threshold, it will indicate its permanent dis-
connection from the rest. The hub will receive the corre-
sponding indication from the NRM and will physically carry
out the disconnection.

Both the NRM and the FTT master could be separated
nodes connected to the hub or directly placed inside the hub,
given the need that the latter has of some critical information
provided by them. This decision has to be made taking into
account that all of them (hub, FTT master and NRM) are
single points of failure that need to be replicated. If all are
together in an enhanced hub, the replication and the layout
of the system could be simplified and the final cost reduced.
Investigating whether such a configuration provides enough
reliability will be the subject of future work.

5. Conclusions and future work

We have presented the basic ideas of a new architecture
devised to provide simplified node replication on the basis
of a star topology and the FTT protocol. We have also in-
troduced a novel hardware module, called NRM, that con-
centrates all the complexity required to provide a reliable
recovery of the nodes that cannot recover by themselves.

Our approach has a number of additional advantages.
Since both the nodes (locally) and the NRM (globally) per-
form the voting, we have a recovery mechanism that adapts
to the severity of node failures. If the failure is not so severe,
the node recovers by itself using the consensus cc-vector
that it calculates. If it is more severe, the NRM helps the
node to recover. Moreover the NRM uses the asynchronous
window of FTT for the reintegrations, in such a way that it
is not necessary to reserve specific slots in the synchronous
window that would be wasted in the absence of reintegra-
tions. Finally it is important to remember that the use of
FTT not only gives us support for simplifying the fault tol-
erance implementation but also for achieving the flexibil-
ity FTT is originally designed for, what results in an added
value for the final system.

Future work will address the replication of the commu-
nication channel (provide replicated links for the nodes and
tolerance to hub faults) and of the new NRM. For the latter
is is possible to use schemes similar to the ones proposed
in the past for FTT masters. As indicated above, the possi-
bility of integrating the FTT master and the NRM into the
hub and then replicate the resulting device will be consid-
ered, as long as it provides enough reliability. Moreover it

is possible to study increasing the functionality of the NRM
to include features such as the dynamic allocation of repli-
cated task to specific nodes, depending on the changing fault
tolerance needs of the application.

6. Acknowledgement

This work was supported by the Spanish Science and
Innovation Ministry with grant DPI2008-02195, by the
Spanish Economy and Competitiveness Ministry with grant
DPI2011-22992, by FEDER funding and by the Portuguese
Government through FCT - Fundação para a Cîencia e a
Tecnologia, in the scope of project Serv-CPS -PTDC/EEA-
AUT/122362/2010.

References

[1] L. Almeida, P. Pedreiras, and J. A. Fonseca. The FTT-CAN
protocol: Why and how.IEEE Transactions on Industrial
Electronics, 49(2), December 2002.

[2] A. Avi žienis. The N-Version aproach to fault-tolerant
software. IEEE Transactions on Software Engineering,
11(12):1491–1501, December 1985.

[3] M. Barborak, M. Malek, and A. Dahbura. The consensus
problem in fault-tolerant computing.ACM Computing Sur-
veys, 25(2):171–220, June 1993.

[4] M. Barranco, J. Proenza, and L. Almeida. Boosting the ro-
bustness of Controller Area Networks: CANcentrate and Re-
CANcentrate.IEEE Computer, 42(5):66–73, May 2009.

[5] M. Barranco, J. Proenza, and L. Almeida. Quantitative com-
parison of the error-containment capabilities of a bus and a
star topology in CAN networks.IEEE Transactions on In-
dustrial Electronics, 58(3):802–813, Mars 2011.

[6] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and
related problems. In S. J. Mullender, editor,Distributed
Systems, ACM-Press, chapter 5, pages 97–145. Addison-
Wesley, second edition, 1993.

[7] ISO. International Standard 11898 – Road Vehicles – In-
terchange of Digital Information – Controller Area Network
(CAN) for High-Speed Communication. 1993.

[8] H. Kopetz. Real-Time Systems: Design Principles for Dis-
tributed Embedded Applications. Real-Time Systems. Engi-
neering and Computer Science. Kluwer Academic Publish-
ers, Boston, Dordrecht, London, 1997.

[9] J.-C. Laprie, editor.Dependability: Basic Concepts and Ter-
minology. Springer-Verlag Wien New York, 1992.

[10] J. Pimentel, J. Proenza, L. Almeida, G. Rodrı́guez-Navas,
M. Barranco, and J. Ferreira. Dependable automotive CAN
networks. In N. Navet and F. Simonot-Lion, editors,Auto-
motive Embedded Systems Handbook. CRC Press.

[11] S. Poledna.Fault-Tolerant Real-Time Systems: The Prob-
lem of Replica Determinism. Kluwer Academic Publishers,
1996.

[12] J. Proenza, M. Barranco, G. Rodrı́guez-Navas, D. Gessner,
F. Guardiola, and L. Almeida. The design of the CANbids
architecture. InProceedings of the 17th IEEE International
Conference on Emerging Technologies and Factory Automa-
tion (ETFA 2012), Krakow, Poland, September 2012.


