
Developing TOBE-CAN: Total Order Broadcast Enforcement in CAN

Manuel Barranco, Julián Proenza
Dpt. Matemàtiques i Informàtica, Universitat de les Illes Balears, Spain

{manuel.barranco, julian.proenza}@uib.es

Abstract

One of the drawbacks of the Controller Area Network
(CAN) that must be overcome to make it suitable for criti-
cal applications is its incapacity for providing a Total Or-
der Broadcast (TOB) communication service. A number of
mechanisms were proposed to solve this problem, but each
one of them only addresses a specific TOB limitation. Thus,
this paper introduces TOBE-CAN, the first solution that
comprehensively overcomes all the TOB flaws these previ-
ous mechanisms deal with. TOBE-CAN takes advantage of
some of these mechanisms and further provides TOB while
tolerating faults that are beyond their capabilities.

1. Introduction

The Controller Area Network (CAN) is a mature, robust
and low-cost fieldbus with a tremendous success in a wide
variety of distributed embedded control systems. Due to
this, there is a significant amount of on-going work towards
overcoming some dependability limitations of CAN, in or-
der to make it suitable for critical applications [4]. One of
such limitations is its incapability of providing data consis-
tency, which is a fundamental service to achieve a consis-
tent state in any distributed control system. It is specially
relevant in systems that must attain a high degree of relia-
bility, as they typically need to consistently manage redun-
dancy. This service includes both Reliable Broadcast (RB)
and Total Order (TO) [2]. Basically, RB states that every
message transmitted by a correct node will be eventually
delivered to all correct nodes; whereas TO means that a cor-
rect node N1 receives message m1 before m2 if and only
if each one of all the other correct nodes also receives m1
before m2. Data consistency is also referred to as Atomic
Broadcast (AB) [8]. But to stress the TO property, we pre-
fer to use the term Total Order Broadcast (TOB).

When CAN was released, it was supposed to provide
TOB by means of its error signaling and globalization
mechanisms [1]. However, as discussed over the years,
those mechanisms cannot enforce TOB under certain fault
scenarios. First, when a CAN controller gets into the error
passive state [1], it can no longer globalize the local errors
it detects during a frame. If so, TOB cannot be ensured
because a receiver can reject the frame and the others ac-
cept it for not being aware of the problem. In particular,
if the sender does not retransmit the frame, then an Incon-
sistent Message Omission (IMO) occurs, i.e. only a sub-
set of the nodes definitively receive the frame. A second

Figure 1. TOBE-CAN architecture

type of scenarios which can provoke IMOs were identified
in [8, 5]. They are called the last-bit scenarios and happen
when errors affecting the last bits of the frame lead a subset
of nodes to not reject it. Additionally, newer scenarios were
identified in [7], in which errors in the intermediate bits of
the frame also lead to the same kind of inconsistencies.

Several mechanisms have been proposed for addressing
the impairments to TOB in CAN [8, 3, 5, 6, 7], but none of
them covers all the fault scenarios identified above. Thus,
the objective of this work is to develop a solution for CAN
that comprehensively treats all of them, taking advantage
of some of the features of the previously proposed mecha-
nisms. We refer this solution to as TOBE-CAN, i.e. a pro-
tocol that provides Total Order Broadcast Enforcement in
CAN. Moreover, TOBE-CAN does not only integrate and
adapt previous mechanisms, but further tolerates faults that
would lead those mechanisms to fail in achieving TOB.

2. Groundwork of TOBE-CAN

To achieve TOB in TOBE-CAN, we propose to com-
bine, modify and extend some of the previously proposed
mechanisms cited above. The first one is very simple and
consists in each node simply disconnecting its CAN con-
troller when the controller’s error counters reach a thresh-
old prior to its change to the error passive state.

The second mechanism we adapted is the one CAN-
sistant [5] provides for detecting all the last-bit scenar-
ios. In its original form, CANsistant is an specifically de-
signed hardware module that monitors the channel to indi-
cate when an IMO due to these scenarios can happen. Note
that any other solution for detecting IMOs at the frame’s
end, e.g. [3], does not cover all the last-bit scenarios.

The third mechanism consists in a circuit called Ag-
gregated Error Flag Transmitter (AEFT) [7], which can
be inserted between each node’s CAN controller and its
transceiver. The AEFT prolongs the duration of the CAN
error signaling in order to enforce that any error detected in
the intermediate bits of the frame is globalized and, then,

c©2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. doi:10.1109/ETFA.2012.6489700



that the affected frame is consistently rejected by all. No
other solution has been proposed so far to address incon-
sistencies caused by errors in these bits.

Finally, to also provide TO, we adapt some of the mech-
anisms of a protocol called TOTCAN [8], which executes
between the application and the standard CAN layer.

3. TOBE-CAN design
3.1 System architecture

Figure 1 sketches the architecture of TOBE-CAN. It
consists of several CAN nodes and N CANsistant repli-
cas. We will use the term replica to refer to a CANsis-
tant replica, whereas we call node to both a CAN node
and a CANsistant replica. Each CAN node can be imple-
mented using a Commercial-Off-The-Shelf (COTS) micro,
CAN controller (ctrl) and transceiver (txrx). A COTS txrx
can be also used for the interface of each replica to the
channel. But the replica’s core must be implemented as
a custom-made circuit, e.g. as a Field-Programmable Gate
Array (FPGA), that carries out the functionalities of CAN-
sistant. As it will be described, we extended the original
features of CANsistant in TOBE-CAN; so that apart from
detecting IMOs, each replica also transmits and receives
frames. Thus, each replica must be provided with buffers
to store frames, as well as with the capacity of signaling
and globalizing channel errors it detects locally. Hence, an
AEFT unit is attached not only to each CAN node, but also
to each replica to ensure that they can globalize errors.

Finally, the software of each CAN node is divided into
the application itself, a new protocol we call core-TOTCAN
(C-TOTCAN), and a regular CAN driver. C-TOTCAN is
based on TOTCAN [8], from which it basically keeps the
strategy each recipient uses for ordering the frames. Ba-
sically, in TOTCAN, each recipient inserts any received
frame into a FIFO queue and marks it as UNSTABLE,
meaning that it has not confirmation of that frame being
consistently received. The sender retransmits a copy of the
frame as long as it detects a possible inconsistency. Every
time a recipient receives the copy it shifts the original frame
to the tail of its own queue; so that when the sender does not
retransmit it anymore, the final position of the frame is the
same in the queue of every recipient. Then, the sender com-
pels all recipients to eagerly retransmit an ACCEPT mes-
sage associated to that frame, so that all of them eventually
receive this ACCEPT. Each recipient uses the ACCEPT to
mark the original frame as STABLE and delivers it to the
application when it reaches the head of the queue. As it
will be discussed, the way in which TOBE-CAN modifies
this strategy makes the system more robust and efficient.

3.2 Fault model
TOBE-CAN includes mechanisms to tolerate faults that

can prevent it from enforcing TOB. Faults affecting other
communication aspects, e.g. a babbling-idiot node block-
ing the channel, must be treated with other mechanisms.

Specifically, TOBE-CAN deals with faults that manifest
as follows. First, a faulty CAN node can send any kind of

information, as long as it does not impersonate a replica by
sending frames that are reserved for the TOBE-CAN pro-
tocol itself. This is reasonable since, conversely to TOT-
CAN, CAN nodes do not send any frame related to the
protocol itself. Second, a fault affecting the internal cir-
cuitry of a replica leads it to exhibit a crash failure, so that
it does not transmit any further message. This can be en-
forced by means of internal duplication and comparison.
In contrast, the fault model includes situations in which ex-
ternal transient disturbances, or temporary faults affecting
the replica’s interface, lead the replica to encounter a num-
ber of channel errors greater than the maximum number
of errors CANsistant can deal with [6]. Thus, a replica can
temporarily fail by not detecting a potential IMO. Finally, a
faulty AEFT leads its corresponding node to stop commu-
nicating, thereby exhibiting a crash failure too. This can
be achieved by providing the AEFT with self-checking cir-
cuitry that disconnects its node upon fault detection.

3.3 Functional description
Similarly to TOTCAN, TOBE-CAN broadcast a given

frame in two phases. In the first one, the frame is re-
transmitted until it is consistently received by all the re-
cipients. Then, an ACCEPT message associated to that
frame is transmitted, as many times as needed to be con-
sistently received too, to indicate to both the recipients and
the sender that the frame has been successfully broadcast.

3.3.1 Sender behavior

When the C-TOTCAN layer of the sender receives a frame
transmission request, it instructs the transmission of that
frame through its CAN controller. As in TOTCAN, the
CAN controller automatically retransmits the frame as long
as it encounters an error. In TOTCAN the sender assumed
that the frame is consistently exchanged when the con-
troller notifies of its successful transmission. However, the
inconsistency scenarios identified in [5] make it impossible
to rely on the sender’s controller for taking this decision.
Thus, when the controller notifies C-TOTCAN of a suc-
cessful transmission, the sender relies on the CANsistant
replicas for further retransmitting the frame as long as they
consider that this frame suffers from a potential IMO. The
sender only considers the frame to be successfully transmit-
ted (and then notifies it to the application) when it receives
an ACCEPT frame from the CANsistant replicas, confirm-
ing that the frame has been consistently broadcast.

3.3.2 Replica behavior

As concerns each replica, when it detects that a new frame
is correctly transmitted until the bit just before the last-but-
one bit of the End Of Frame (EOF) field, the replica stores
that frame in its Frame Retransmission Buffer (FRB).

If the replica detects an error at any of the two last
bits of the EOF, or that the frame suffers from a potential
IMO, it marks it as not consistently received (notConsRx).
Then, it tries to retransmit it until it is consistently received.
Specifically, at the beginning of each bus idle period, each



replica tries to retransmit the notConsRx frame of its FRB
that has the highest priority, i.e. the frame with the lowest
CAN identifier (CAN-ID). However, to prevent collisions
among the sender and different replicas willing to retrans-
mit the same frame, a different delay is assigned to each
one of them for accessing the channel. Consider N repli-
cas where each one of them has an univocally numerical
label r ∈ [1, N ], and let Ds,f and Dr,f be the delay with
which the sender and the replica r try to transmit the frame
f respectively. Initially, Ds,f = 1 and Dr,f = r+1. Then,
a node nod, either the sender or a replica, with Dnod,f

is allowed to access the channel for transmitting f at the
Dnod,f th bit of bus idle.

If the sender or a replica does not transmit the frame
in the bit of bus idle when it is expected to do so, then
the following replica in delay takes over. However, since
each replica waits for its predecessors to access the chan-
nel, there may be situations in which a node (another sender
or replica) accesses the channel for transmitting a frame
with a priority lower than f . To mitigate this priority in-
version problem, the replicas decrease their delays when
needed. Specifically, if at the k-th bit of bus idle the replica
r monitors a frame with a lower priority than the one it
wants to retransmit, and 1 <= k < Dr,f , then the replica
can assume that every node, nod, either the original sender,
or a replica whose Dnod,f ≤ k, either crashed or did not
detect the IMO. Thus, the replica decreases its Dr,f by k.
In this way, in the next bus idle, all replicas with Dr,f > k
will try to retransmit f without waiting for the sender nor
for the previously preceding k replicas. Finally, due to syn-
chronization differences at bit-level, the sender and differ-
ent replicas may start transmitting simultaneously the same
frame, f . If this collision provokes an error, each replica,
r, sets the Dr,f to its original value. This avoids a potential
deadlock due to the sender and/or different replicas contin-
uously colliding when trying to retransmit the same frame.

When a replica does not detect a potential IMO in a
given frame, it marks it as consistently received (consRx)
within the FRB and, then, it inserts an ACCEPT frame as-
sociated to that frame into a buffer we call the Frame Ac-
ceptance Buffer (FAB). From then on, the replica will con-
tinuously try to transmit that ACCEPT frame in the 1st bit
of bus idle until it is also consistently received. The replica
gives priority to the frames within the FAB over the ones
located at the FRB. In particular, it manages its FAB as a
FIFO queue, choosing the FAB’s frame it firstly detected as
consistently exchanged. This reduces the delay with which
the recipients deliver to the application the frames consis-
tently received so far but that have not been confirmed yet.
Moreover, as a consequence, the size of the buffers at the
recipients and at the replicas is also reduced, as they must
have enough capacity to accommodate all frames for which
the ACCEPT frame has not been broadcast yet.

The format of the ACCEPT frame is different to the
one proposed in TOTCAN [8]. In TOTCAN an ACCEPT
frame included a CAN identifier (CAN-ID) that carries
both control information and a value that identifies the orig-

inal sender. This restricted the amount of CAN-IDs that are
available for the application. Moreover, it made it hard to
control the priority with which different ACCEPT frames
should be transmitted. In contrast, in TOBE-CAN, all AC-
CEPT frames have the same CAN-ID, so that it only con-
sumes one of the possible CAN-IDs. Also, by assigning
the lowest CAN-ID to the ACCEPT frame, it is possible
to prioritize it over the rest of CAN frames, which further
reduces the delay of message delivery at the recipients.

Another format difference is that in C-TOTCAN the
data field of an ACCEPT frame includes a first byte called
arbByte, two bytes named idBytes, four bytes called hash-
Bytes, and a byte named abortByte. Since all ACCEPT
frames have the same CAN-ID, different replicas trying to
transmit an ACCEPT frame at the 1st bit of bus idle will
win the arbitration. Thus, to prevent the ACCEPT frames
from colliding, all replicas also apply the CAN bit-wise
arbitration during the arbByte. For this, each replica trans-
mits an univocal value during this byte and backs off if it
detects a dominant bit when transmitting a recessive one.

The idBytes and hashBytes identify the CAN frame the
ACCEPT refers to, by respectively specifying the CAN-ID
of that frame and a hash value calculated from the payload
of the original frame. Note that by including the hash value
in the ACCEPT frame it is unnecessary to use sequence
numbers to distinguish between editions of the same CAN
frame that carry different payloads.

The last byte of the ACCEPT frame, i.e. the abortByte,
is used to force all replicas to agree on whether or not an
ACCEPT frame must be transmitted. In this sense, note
that different replicas may have different views of the chan-
nel, depending on the local errors each one of them encoun-
ters. This may lead to situations in which only a subset of
the replicas consider that a CAN frame has been consis-
tently received and, then, that the corresponding ACCEPT
frame must be transmitted. An agreement on this decision
could be reached by forcing every replica to accept as valid
any ACCEPT frame it observes in the channel, even if it
did not schedule that frame. This means that replicas could
consider as false alarms all IMOs detected only by a subset
of replicas (false IMOs may happen in CANsistant [6] due
to local errors). However, to consider as valid any ACCEPT
frame would be incorrect if that frame is scheduled by a
replica that suffered from a fault that leaded it to encounter
a quantity of errors greater than the maximum number of
errors in whose presence CANsistant is able to detect all
possible IMOs. Thus, to further tolerate these faults, all
replicas must discard any ACCEPT frame that is not con-
sistently scheduled by all of them.

For this purpose, a replica that sends an ACCEPT frame
transmits the value FFh during the abortByte, which will
be basically encoded as a sequence of 8 recessive bits with
an in-between dominant stuff bit. Then, the replicas that do
not agree on transmitting that ACCEPT abort it by sending
a predefined pattern of dominant bits during the abortByte
and, when this byte ends, by globalizing an error. In this
way, if replicas observe the abort pattern within the abort-



Byte, then they discard the ACCEPT frame from their FAB
and mark the corresponding frame of the FRB as notCon-
sRx. This means that the management of the broadcast of
the original CAN frame is resumed to the phase in which
it must be retransmitted until it is consistently received by
all recipients. Moreover, by globalizing an error just af-
ter the abort pattern, it is ensured that no node receives an
ACCEPT frame for which all replicas have not reached a
consensus. Also note that, to not discard an ACCEPT from
the FAB unnecessarily, the replicas that do not observe the
abort pattern, when an error is signaled during an ACCEPT,
can assume that a channel error occurred and simply try to
retransmit the ACCEPT. This last feature does not threat
the agreement if errors during the abortByte lead a subset
of replicas to not observe the abort pattern and, thus, to not
discard the ACCEPT frame from their FAB. This is because
the replicas that did detect the pattern will eventually abort
the ACCEPT frames of those that did not.

Once this consensus has been reached, replicas still ex-
ecute the following algorithm to agree on whether or not
the ACCEPT frame has been consistently received by all
recipients. Each replica tries to retransmit the ACCEPT in
the 1st bit of bus idle as long as this frame suffers from
a channel error or from an IMO (as already said). Con-
versely, when the replica correctly receives the ACCEPT
and it does not detect an IMO, it does not transmit any-
thing but checks if another replica starts retransmitting the
ACCEPT. Thus, if no frame starts being broadcast at the 1st
bit of bus idle, or if the frame that starts is not an ACCEPT
frame, the replica knows that no other replica is trying to
transmit. This means that they all agreed that the ACCEPT
frame did not suffer from an IMO and, thus, that it was
consistently received. Otherwise, if the replica detects that
the ACCEPT is being retransmitted, it knows that at least
one replica did not agree on the previous ACCEPT. Thus,
it restarts the agreement algorithm considering the current
ACCEPT, i.e. it checks if the new ACCEPT suffers from
an IMO and, then, proceeds as just explained.

3.3.3 Recipient behavior

As concerns each recipient, as said before, its C-TOTCAN
layer keeps the TOTCAN strategy for ordering the frames
in its reception queue. The main difference with respect
to TOTCAN is that in C-TOTCAN the recipients do not
eagerly retransmit every ACCEPT frame to ensure that all
recipients eventually receive it. The CANsistant replicas
are the responsible for enforcing the reliable and consistent
reception of every ACCEPT frame, which is more efficient,
as an ACCEPT frame is retransmitted only when it suffers
from a potential IMO. Moreover, the replicas simultane-
ously reach a consensus on whether an ACCEPT frame has
been consistently received. This feature can be used by
higher layer protocols for taking specific decisions, e.g. in
a time-triggered protocol this could be used to determine if
a frame is consistently received in a given cycle and, then,
to schedule the appropriate frames in the next one.

Finally, note that in TOTCAN the recipient associates a

given time out to each frame of the queue to detect when
the sender crashes and, thus, to purge the frame to prevent
it from blocking the head of the queue. This is not neces-
sary in TOBE-CAN, as replicas take over when necessary
to retransmit a given frame. Anyway, to provide graceful
degradation, a single time out could be used to stop using
TOBE-CAN when all replicas crash.

4. Conclusions and future work

We presented the initial design of TOBE-CAN, a solu-
tion intended to comprehensively overcome the limitations
that make it impossible for CAN to enforce Total Order
Broadcast (TOB). TOBE-CAN integrates and adapts a set
of mechanisms previously proposed to face faults scenarios
reported in the literature as potential impairments to TOB
in CAN. Moreover, by extending these mechanisms it pro-
vides an holistic solution that further tolerates faults that,
otherwise, would lead previous mechanisms to fail. We
plan to formally verify and implement TOBE-CAN, as well
as to enhance its capabilities to address potentially new sce-
narios such as one recently discovered, in which discrepan-
cies in the DLC [1] value are the cause of inconsistency.

5. Acknowledgement

This work was supported by the Spanish Science and In-
novation Ministry with grant DPI2008-02195, by the Span-
ish Economy and Competitiveness Ministry with grant
DPI2011-22992, and by FEDER funding. We would also
like to thank Fuyu Yang for the comments about a new po-
tential inconsistency scenario in CAN.

References

[1] ISO11898-1. Controller Area Network (CAN) - part 1: Data
link layer and physical signalling., 2003.

[2] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and
related problems. S. J. Mullender, editor, ACM-Press, 1993.

[3] M. Livani. SHARE: A transparent approach to fault-tolerant
broadcast in CAN. In Proc.of the 6th Int. CAN Conf., 1999.

[4] J. Pimentel, J. Proenza, L. Almeida, G. Rodrı́guez-Navas,
M. Barranco, and J. Ferreira. Dependable Automotive CAN
Networks. Handbook on Automotive Embedded Systems.
CRC Press. Edited by N. Navet and F. Simonot-Lion, 2009.

[5] J. Proenza and J. Miro-Julia. MajorCAN: A Modification
to the Controller Area Network Protocol to Achieve Atomic
Broadcast. In IEEE Int. Workshop on Group Communication
and Computations, Taipei, Taiwan, 2000.

[6] J. Proenza and E. Sigg. A first design for CANsistant: A
mechanism to prevent inconsistent omissions in CAN in the
presence of multiple errors. In IEEE Conf. on Emerging
Technologies & Factory Automation, 2009.

[7] G. Rodriguez-Navas, C. Winter, and J. Proenza. Injection
of aggregated error flags as a means to guarantee consistent
error detection in CAN. In IEEE Conf. on Emerging Tech-
nologies & Factory Automation, 2011.

[8] J. Rufino, P. Verı́ssimo, and A. Guillerme. Fault-Tolerant
Broadcasts in CAN. In 28th Annual Int. Symposium on Fault-
Tolerant Computing, 1998.


