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Using Timed Automata for Modeling Distributed
Systems with Clocks: Challenges and Solutions

Guillermo Rodriguez-Navas and Julián Proenza

Abstract—The application of model checking for the formal
verification of distributed embedded systems requires the adop-
tion of techniques for realistically modeling the temporal behavior
of such systems. This paper discusses how to model with timed
automata the different types of relationships that may be found
among the computer clocks of a distributed system, namely ideal
clocks, drifting clocks and synchronized clocks. For each kind of
relationship, a suitable modeling pattern is thoroughly described
and formally verified.

Index Terms—Embedded systems, real-time systems, clock syn-
chronization, model checking, timed automata, hybrid automata

I. INTRODUCTION

MODEL checking is a technique that, given a formal
model of a system and a set of properties to be fulfilled,

automatically determines whether the possible behavior of this
model agrees with the stated properties or not [1], [2]. This
technique is suitable for formally verifying both hardware
and software systems, and is slowly gaining further industrial
acceptance [3], [4], [5].

Model checking can certainly be considered a mature tech-
nology, but the lack of a proper methodology for constructing
formal models has proven to be one of the main barriers to
its widespread use [6], [7], [8]. As long as simple and clear
modeling patterns are not available for the average system
modeler, this will continue to be a major obstacle.

In the context of real-time embedded systems, any formal
model specified must include not only the functional aspects
of the system, but also its temporal behavior. The theory of
timed automata [9] was developed for introducing temporal
properties in a simple and explicit manner, by means of so-
called clock variables. Several model checkers based on timed
automata have been developed and they have been successfully
applied to diverse systems [10], [11], [12], [13], [14], [3], [15].

But the specific problems associated with the modeling
of computer clocks have not been investigated independently
from the systems where they are applied. Given that computer
clocks are an integral part of many distributed embedded
systems, providing application-independent modeling patterns
is essential.

In this paper we present three modeling patterns, based
on timed automata, for specifying the temporal behavior of
distributed systems with computer clocks. The use of each
modeling pattern is illustrated with an example that is formally
verified. We begin with a brief review of the theory of timed
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formàtica, Universitat de les Illes Balears, Spain

automata in Section II, then we introduce in Section III
the main challenges to be faced when modeling computer
clocks. In Section IV we discuss the specific strategy that
we follow in order to address such challenges. The suggested
modeling patterns are thoroughly described in Section V and
they are formally verified in Section VI. Finally, Section VII
summarizes the paper and discusses some further research.

II. TIMED AUTOMATA AND THE MODELING OF TIME

In this section, we introduce the formal definition of timed
automaton and discuss its dynamical behavior.

A. Formal definition of timed automaton

A timed automaton (TA) is basically a discrete automaton
extended with a finite set of real-valued variables, named
clocks, for modeling the passage of time.

Definition 1 (Clock). A clock is a variable ranging over R+.

Clocks are usually denoted with the letters x, y, z. A clock
constraint is a condition defined over a clock x or over a clock
difference x− y.

Definition 2 (Clock constraint). For a set C of clocks, with
x, y ∈ C, the set of clock constraints over C, Ψ(C), is defined
by

α := x ≺ c | x− y ≺ c | ¬α | (α ∧ α)

where c ∈ N and ≺∈ {<,≤}.

For the sake of brevity, clock constraints of the form ¬(x <
c) and ¬(x ≤ c) will be written, respectively, as x ≥ c and
x > c.

The notions of clock and clock constraint are incorporated
to the timed automaton formalism as follows [1].

Definition 3 (Timed automaton). A timed automaton A is a
tuple (L, l0, E,Label , C, clocks, guard , inv , AP ) with

• L, a non-empty, finite set of locations with initial location
l0 ∈ L

• E ⊆ L× L, a set of edges
• Label : L→ 2AP , a function that assigns to each location
l ∈ L a set Label(l) of atomic propositions AP

• C, a finite set of clocks
• clocks: E → 2C , a function that assigns to each edge
e ∈ E a set of clocks, clocks(e), to be reset

• guard : E → Ψ(C), a function that labels each edge
e ∈ E with a clock constraint guard(e) over C, and
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Fig. 1: Timed automaton A1

• inv : L→ Ψ(C), a function that assigns to each location
an invariant inv(l).

The state of a timed automaton consists of the current
location of the automaton plus the current values of all clock
variables. This makes the number of possible states of a
timed automaton uncountable. But these states can be grouped
in order to define an equivalent (bisimilar) finite transition
system, for which the reachability analysis is feasible [9], [1].

The resulting transition system can evolve in two different
ways: with discrete transitions and with delay transitions. A
discrete transition occurs whenever an enabled edge is taken.
It takes no time and may cause a change of location and
clock resets. In contrast, a delay transition has effect only on
the clocks, which are increased by a certain (non-negative)
amount. Invariants on clocks are used to limit the amount of
time that may be spent in a location and to force the model
to progress over time.

In summary, clocks can only be initialized in discrete
transitions. After that, their values are either increased through
delay transitions or reset again by another discrete transition.

For depicting timed automata we adopt the following con-
vention: circles denote locations and edges are represented by
arrows; the initial location is highlighted with a thicker line.
Invariants are written in bold face in order to differentiate them
from guards.

B. Dynamics of a timed automaton

The initial state of a timed automaton is the pair (l0, v0),
where l0 is the initial location of the timed automaton, and
v0 is the time assignment assigning 0 to all clock variables.
Once initialized, clocks start incrementing their value, all at
the same rate. Conditions on the values of clocks (i.e. clock
constraints) are used as enabling conditions (or guards) of
discrete transitions: only if the clock constraint is fulfilled,
the transition is enabled, and can be taken; otherwise, the
transition is blocked.

Let us consider the timed automaton A1 of Figure 1 as an
example. The timed automaton of Figure 1 has two clocks,
x and y, two locations l0 and l1, and an edge from location
l0 to l1 labeled with the guard y ≥ 1, and the reset set {x}.
Location l0 is labeled with the location invariant x ≤ 2.

Assuming that all of the clock variables are initially set to
zero and that the initial control location is l0, the automaton
starts in the state (l0, x = y = 0). As the clocks increase (by
means of delay transitions) synchronously with time, it may
evolve to all states of the form (l0, x = y = t), where t is a
non-negative real number less than or equal to 2. At any state
with t ∈ [1, 2] it may change to state (l1, x = 0, y = t) by
following the edge from l0 to l1, that resets x.

t

x, y

y

x
x

x

1

2

1 2

a
b

c

Fig. 2: Possible behavior of timed automaton A1, with three
potential traces

Figure 2 shows over a single graph three possible traces of
clocks x and y, according to A1. The grey area indicates the
dense time interval t ∈ [1, 2] in which a discrete transition
from l0 to l1 is possible. The points labeled as a, b and c cor-
respond to the instants t = 1, t = 1.2 and t = 2, respectively.
For each point, a dashed line indicates the behavior of clock x
if the transition would be taken. Note that the timed automaton
may not idle forever in location l0 since the location invariant
x ≤ 2 forces it to leave location l0 within 2 time units.

C. Temporal evolution of a set of clock variables

Note that when the operation of a timed automaton starts,
for each clock x we know that x = t. But if a clock x is reset
at a certain instant, for instance at t = tx, then the value of
this clock will be x = t − tx from that moment on, as long
as it is not reset again.

Figure 3 illustrates the implications that this property has on
the difference between the clocks of a timed automaton. In this
figure, we represent the evolution of two clock variables (x and
y) over time. These clocks are reset at tx and ty , respectively.
It can be observed that the difference between these variables
(also known as the offset) changes as a consequence of every
reset of a clock, but remains unchanged otherwise; the clocks
always evolve in parallel.

Quantitatively, the difference between the clocks x and y,
i.e. x−y, at a certain instant t is a real number that equals the
distance between the instant in which y was reset for the last
time and the instant in which x was reset for the last time,
because x− y = t− tx − (t− ty) = ty − tx. For the specific
case depicted in Figure 3, the offset between the clocks is:

x− y =

 0, for 0 ≤ t < tx;
−tx, for tx ≤ t < ty;
ty − tx, for t ≥ ty.

Once this is clear, we are ready to understand why this type
of relationship between clock variables is not good enough
for the realistic modeling of computer clocks in distributed
embedded systems.

III. PROBLEM STATEMENT

A proper formal model of a real-time system should include
the time properties of such system. In this section we discuss
how computer clocks may influence the temporal behavior of
a distributed application, and why modeling such effects with
timed automata is not straightforward.
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Fig. 3: Representation of the temporal evolution of two TA
clocks

A. Clock drift and clock synchronization

Computers measure time by means of physical devices,
called clocks, that exhibit a near-regular behavior over time.
We use the term Ci(t) to denote the value of the clock i at
the instant t. The value of Ci(t) is usually approximated with
a continuous linear function of rate ri(t) = Ċi(t).

Due to physical imperfections and other factors, like aging
and temperature, computer clocks deviate from their nominal
rate and then measure real time with some imprecision. The
speed at which one clock deviates from real time is called the
drift (ρ) and is defined as:

ρ(t) =
Ci(t)− Ci(t0)

t− t0
− 1

Note that the rate of a clock can be expressed as Ċi(t) =
1+ρ(t). A computer clock is said to be non-faulty if it exhibits
bounded drift. It is, if there is a value ρmaxi > 0 such that
|ρi(t)| ≤ ρmaxi for every t. Typical values of ρmaxi are in the
order of 10−4 to 10−6.

Given a pair of computer clocks, their drifts will make them
diverge from each other at a certain speed that is equal to
the difference between their individual rates, as illustrated in
Figure 4(a). This difference of rates is called their consonance.
If two computer clocks exhibit bounded drift then their con-
sonance is also bounded, with γmaxij = ρmaxi + ρmaxj . But he
difference between the values of the clocks is not bounded,
which may be a problem for many applications.

The design of a distributed embedded system becomes
easier if the nodes share a common perception of time [16],
[17]. But such systems have to apply some kind of clock
synchronization algorithm for periodically correcting the oth-
erwise drifting clocks. The goal of the clock synchronization
is to ensure that the values of any pair of (non-faulty) clocks of
the system do not diverge more than a certain amount, which
is called the precision (π). Figure 4(b) depicts two computer
clocks that are periodically synchronized such that clock Cj
is corrected in order to follow clock Ci.

The value of the precision can be related to a number of
parameters of the adopted clock synchronization algorithm. If
a set of computer clocks is reset every R time units with a
residual error of ε0 and the maximum drift between one clock
and the reference clock is ρmax, then π ≤ 2(ε0+Rρmax) [17].

Many techniques exist for clock synchronization, but dis-
cussing them is out of the scope of this paper. We will hereafter
focus on the effect of clock synchronization and not on the
means to achieve it.
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Fig. 4: Evolution of two computer clocks: (a) drifting clocks;
(b) with clock synchronization

B. Effect of the clock drift on the application behavior

The temporal behavior of a system may vary significantly
depending on the properties of the computer clocks used by
the nodes. It will be shown on a simple example: a set of nodes
executing just one time-triggered task. A task is a process that
is activated upon the occurrence of a certain event, executes
some function and then waits until the next event occurrence.
When the triggering event is a time event, the task is said to
be time-triggered.

Algorithm 1 shows a program that executes one task period-
ically, with period T. The function get_time() returns the
current value of the clock. In each activation, Task1 uses this
function for calculating the next activation instant, which is
kept in variable next, then executes its intended function, by
calling the function execute_task(). Once this function is
finished, it enters the waiting state, by executing the statement
sleep until next.

Algorithm 1 Definition of a periodic task, with period T

process Task1:
loop

next = get time() + T
execute task()
sleep until next

end loop

This implementation requires an underlying mechanism
(typically a RTOS) to account for the time elapsed and to
wake up Task1, for example with a signal, once the clock
has reached the value in next. Other implementations are
possible, for instance with programmable hardware timers, but
RTOS are the most common solutions.

The function get_time() needs some time to be exe-
cuted, e.g. δ time units, which would cause some skew on
the activation period. However, given that the value of δ is
small and is usually compensated by software (e. g. by using
a period of T − δ instead of T), it can be neglected for our
study.

Let us assume that the executed function is the usual
Read-Process-Write procedure of control applications. Under
these assumptions, the behavior of Task1 can be modeled
with the automaton of Figure 5. This timed automaton has
four locations, namely (S)leep, (R)ead, (P)rocess and (W)rite,
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Fig. 5: TA of a periodic Read-Process-Write task

Fig. 6: Theoretical behavior of a node executing Task1 (ideal)

where the prefix c: indicates that R and W are committed
locations. In the context of timed automata, a committed
location is one in which delay transitions are not possible,
so it is left immediately. The functions read(i) and write(o)
represent the actions for reading an input and writing an
output. The specific details of these functions are not further
discussed because we want to keep the focus on the temporal
properties of the model.

There are two clock variables in the automata: x and z. The
former controls the periodic execution of the task, whereas the
latter controls the time for processing, i.e. the time spent in
location P. The model assumes that this processing takes some
time in the range [Cmin, Cmax], with Cmax < T time units.

The behavior enforced by this automaton is depicted in
Figure 6. Each small vertical arrow marks the transition
from location S to location R and indicates the activation of
execute_task(). They are separated by T time units.

If a set of nodes executing Algorithm 1 were modeled with
the automaton of Figure 5 then they would behave in perfect
synchrony. For instance, if they were initially synchronized
then they would all activate the task at the same instant. If
one of them had an initial offset of ∆ then in every round it
would activate its task ∆ time units later that the others.

However, this is not a realistic behavior, because as shown
in Section III-A, computer clocks have a tendency to drift
away from each other. Then, what kind of behavior can be
expected in realistic conditions? That depends on the specific
characteristics of the computer clocks used.

In a distributed system where nodes use computer clocks
without any kind of clock synchronization, one can expect a
behavior such as the one depicted in Figure 7. This graph rep-
resents the operation of three nodes that execute Algorithm 1.
One of them is using an ideal clock (which is not possible,
but is useful for comparison purposes), another one is using a
slower clock and the last one is using a faster clock.

Although the three nodes are initially synchronized and ac-
tivate execute_task() simultaneously, they progressively
get more and more separated because of their individual drifts.

2ρT 4ρT

Fig. 7: Possible behavior of 3 nodes executing Task1 (drifting
computer clocks)

ππ π

Fig. 8: Possible behavior of 3 nodes executing Task1 (syn-
chronized computer clocks)

The solid black bar highlights the upper bound of the offset
among the nodes in every round. A task can in principle be
released at any instant within this interval, but in the graph we
have represented the worst case. The upper bound of the offset
increases in every round, as it was discussed in Figure 5. This
effect is also known as clock skew.

In contrast, in a distributed system where nodes use com-
puter clocks that are periodically synchronized, one can expect
a behavior like the one in Figure 8. Here one of the nodes has a
clock that acts as the global (reference) clock whereas the other
nodes use clocks that are resynchronized with precision π with
respect to this clock. Then, the tasks are not simultaneously
released, but the distance between the release instants is
bounded by the precision. This unavoidable variability on the
activation instants is often known as the application jitter. In
the graph it is represented with the solid black bar.

C. Related work

Several authors have addressed, in many different contexts,
the problem of realistically specifying distributed systems with
clocks [10], [18], [19], [20], [21], [22], [23], [24], [25]. But it
cannot be said that the specification of such systems is a clearly
understood issue, at least for the average system modeler.

Some papers address the problem from a formal perspec-
tive [19], [21], [22], [24], [25]. These papers usually present
simple models and focus on proving correctness, but they
fail to relate the modeling technique with the properties of
the systems to which it could be applied. Also, these papers
require a deep knowledge of mathematics and are hard to
understand by common system modelers and developers.

Other papers address the problem more pragmatically [10],
[18], [23], as they face it while specifying a complete (and
real) system. These models are complex, and that complexity
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Fig. 9: First principle: separation of concerns

obscures many important details of the modeling. According
to the nomenclature introduced in [6], they are not traceable:
it is difficult to understand how the used modeling techniques
relate to the properties modeled.

In general, the limitations of the previous work are due
to the fact that the construction of formal models is not
addressed methodologically. Then their results can not be
easily generalized to other systems. Developers need modeling
patterns that are simple, clear, trustful and traceable [6], [7],
[8]; which allow them to understand what can be modeled and,
more importantly, how.

Our work confronts these limitations by systematically
describing and validating one modeling pattern for each type
of computer clock. A preliminary discussion of these modeling
patterns was performed in [26], but that previous work is
extended here significantly.

IV. OUR MODELING STRATEGY

Our strategy for defining clear modeling patterns follows
the four principles that are explained in this section.

A. Isolate the time aspects from the application aspects

Computer clocks are an integral part of any distributed
embedded system and then are used in all kind of applications.
For this reason, it is important to provide modeling patterns
that are application-independent. This can be achieved only if
we are able to specify the time aspects of the model separately
from the application aspects.

Our approach is based on the idea of using one timed
automaton, which we will call timer, for modeling the tem-
poral evolution of the system. This timer automaton (Tmr)
is connected to the application automaton (App) through two
synchronization channels, set and expire, as shown in Figure 9.

The operation of the timer, which is inspired by the model
in [11], corresponds to the timed automaton of Figure 10. This
automaton has two locations, (E)xpired and (W)aiting, and one
local clock x. The timer can be reset at any moment. Once
it is set, the amount of time spent in location W depends
on the variable T, which may have a constant value or be
overwritten by the application if required. The timer expires
in the transition from W to E.

This scheme, which should be replicated for each node of
the system, constitutes the basis of the modeling. So far it only
models a perfect computer clock, but we will explain how it
can be extended for specifying other realistic features.

B. Model time with timers

Our modeling patterns will rely on the concept of timer for
specifying the temporal properties of the system. But there

E W

x ≤ Tset?

{x}
x == T

expire!

set?

{x}

Fig. 10: Automaton of Tmr: an ideal, resettable timer

exist actually two different paradigms for managing time in a
distributed system: the timer-driven paradigm and the clock-
driven paradigm [16], and only the first one uses timers.

The timer-driven paradigm assumes that each node mea-
sures time locally by means of timers, and does not presume
the existence of clock synchronization. In contrast, the clock-
driven paradigm is built upon the assumption that there is
clock synchronization and thus all the nodes share a global
time reference. Instead of timers, these systems use time marks
that indicate when to perform a certain action. For instance,
the algorithm of Task1 shown in Section III-B follows the
clock-driven paradigm.

Clock-driven systems represent a problem for model check-
ing, because they use clocks that are not reset and use
time marks that may have great values. If this was modeled
directly then it could increase the state space to a size
hard to handle computationally and make model checking
impossible. Fortunately, whenever a program is designed to
have some periodical behavior, it is possible to model the
system on the basis of rounds and such rounds can be specified
with resettable timers. This modeling based on rounds must
guarantee that the evolution of the model still satisfies the
expected temporal behavior of the system.

C. Use perturbed timed automata for modeling drift

Perturbed timed automata were defined as a notion to deal
with uncertainty when modeling real systems with timed au-
tomata [20]. They can be applied for modeling the uncertainty
caused by using non-ideal clocks. Combined with the timers
defined so far, they constitute a fundamental element of our
modeling patterns.

A perturbed timed automaton is a discrete automaton with
real-valued clock variables that evolve with a rate in the range
[rl, ru], such that rl ≤ ẋ ≤ ru. Note that a timed automaton
as defined in Section II is a trivial case of perturbed timed
automaton in which 1 ≤ ẋ ≤ 1 for every clock x.

Any perturbed timed automaton can be translated into an
equivalent timed automaton, as long as the bounds over the
clock rate (ru and rl, mentioned above) are constant and
known a priori [20]. This important result implies that they
belong to the class of automata that can be verified by means
of model checking [27].

The transformation to timed automata can be explained with
a simple example. Let us consider a timer that expires after
T time units, and uses a computer clock that ticks with a
rate in the range [1 − ρ, 1 + ρ], with 0 < ρ < 1. Due to the
uncertainty of the rate, it is not possible to determine in which
exact instant the timer will expire; it is only possible to bound
a time interval in which it may happen. The earliest expiration
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Fig. 11: A timer that measures T t.u., with drift ρ: (a) shows
the location of the expiration interval, (b) shows the mapping
to an ideal clock

l0

x ≤ tmax

l1
x ≥ tmin

Fig. 12: Equivalent timed automaton

instant would occur if the clock evolved at the fastest rate (i.e.
at 1 + ρ); so this instant is tmin = T

1+ρ . The latest expiration
would occur if the clock ticked at the slowest rate; this instant
is tmax = T

1−ρ . This is shown graphically in Figure 11(a).
The same behavior can be achieved with only one ideal

clock, after applying the transformation illustrated in Fig-
ure 11(b). Here the solid black circles indicate the boundaries
of the same time interval, but defined over the ideal clock.
Note that they lay on the diagonal line of the graph, which
corresponds to the time measured by the ideal timer.

Figure 12 specifies a timed automaton that models this
behavior. This automaton has two locations, l0 and l1, and
the expiration of the timer happens in the transition to l1.
Thanks to the guard and the invariant defined in l0, this
transition is only possible in the interval [tmin, tmax], which is
the desired behavior. Then, the transformation from perturbed
timed automata to time automata relies on the fact that the
uncertainty of the clock rate can be moved into the guards and
the invariants of the timed automata, as long as the maximum
drift (ρ) and the measured time (T) are known in advance.

In general, and given that the typical values of ρ are much
less than the unit [17], in our modeling we will apply these
appromixations: tmax = T

1−ρ ' T(1 + ρ), and tmin = T
1+ρ '

T(1− ρ).
It is important to remark that, after applying this transforma-

Tmr1 App1
expire

Tmr2 App2
expire

Tmr3 App3
expire

Clock
Pointer

set

Fig. 13: Relationship between the clock pointer and the other
automata, assuming 3 nodes

tion, the resulting timed automaton will include all the possible
behaviors for every clock rate in the range [1− ρ, 1 + ρ]. This
constitutes a very positive aspect of the modeling, because it
guarantees that the results provided by model checking are
not only valid for one specific clock rate, but for the whole
range of possible rates. This is a significant advantage in front
of testing, for instance, in which generating all the possible
clock rates is not possible.

D. Use clock pointers for modeling synchronization

As discussed in Section III-A, distributed embedded systems
very often adopt clock synchronization for ensuring that all
the clocks do not deviate from each other more than a given
amount, called the precision. This is achieved by forcing all
the clocks to follow one specific reference clock, which may
be one particular clock of the system or can be calculated from
the contribution of several clocks.

For modeling these dependencies among clocks, we will
define what we call a clock pointer. The function of the clock
pointer is to restart the timers that measure time for each
application. The scheme is shown in Figure 13. It ensures
that all timers start counting time at the same instant in every
round. From that moment on, each timer evolves according
to its own drift, independent from the other timers, like a
perturbed timed automata. But the deviation among the timers
is corrected in the next round, as soon as the clock pointer
resets again all the timers simultaneously. In this way, the
expirations of the timers can never drift away more than what
is desynchronized in one round.

Note that this mechanism is not modeling the details of the
clock synchronization algorithm, but only its effects.

This approach assumes that the operation of the system is
round-based, but more importantly it assumes that two nodes
cannot be at the same time in rounds that are not consecutive.
This means that the jitter never exceeds one half of the total
duration of the round.

V. MODELING PATTERNS WITH UPPAAL

This section illustrates how to apply our modeling strategy
with one of the most popular model checkers based on the
theory of timed automata: the UPPAAL model checker [11].
Three different modeling patterns will be described: one for
systems with ideal clocks, one for systems with drifting clocks
and one for systems with synchronized clocks. The validation
of these modeling patterns will be performed in Section VI-A.
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Listing 1: Two nodes using ideal clocks (system declaration)
Tmr0= Idea l Tmr ( 0 ) ;
Tmr1= Idea l Tmr ( 1 ) ;
App0= App ( 0 ) ;
App1= App ( 1 ) ;
/ / L i s t o f p r o c e s s e s :
sys tem Tmr0 , Tmr1 , App0 , App1 , Obs , Dummy;

UPPAAL models are specified as templates; where a tem-
plate is an automaton as defined in Section II-A but enriched
with several language elements that improve expressiveness,
such as channels, variables, types and user-defined functions.
A template may also have local declarations and parameters.

Together with the templates, the system modeler must
provide the system declaration, which is a sequence of instruc-
tions for instantiating the required templates and indicating the
value of their parameters. The final model is the result of the
parallel composition of the templates instantiated in the system
definition.

A. System with ideal clocks

We will show how to build a model of a system with two
nodes executing a time-triggered task like the one presented in
Section III. According to our first principle, we will define one
timer automaton, Tmr, and one application automaton, App,
for each node. The system declaration is shown in Listing 1.

Note that we instantiate two templates, Ideal_Tmr and
App, and that both have an input parameter of type integer.
This parameter connects the application with its corresponding
timer. In this example, Tmr0 and App0 constitute one node
(Node 0) and are synchronized through the channels set[0]
and expire[0]. Conversely, Tmr1 and App1, which consti-
tute Node 1, are synchronized through the channels set[1]
and expire[1]. Two more processes are declared, Obs and
Dummy, but they will be discussed in Section VI-A since they
are strictly related to the formal verification of the pattern.

The template Ideal_Tmr corresponds to the timed au-
tomaton of Figure 14(a). It is a resettable timer of duration
T[i]. Note that in the expiration of this timer, a variable
named n is increased. This variable is also related to the
formal verification of the pattern and then will be discussed
in Section VI-A.

The timed automaton of the template App is shown in
Figure 14(b). Our aim is to illustrate the interaction be-
tween the application and the timer, and not providing a
very detailed description of the application functionality. This
makes the pattern more generalizable. Specifically, the channel
exec_task[i] is provided as an abstraction of a function
call. System modelers can use this channel to activate a
particular function of the system, as long as that function is
also modeled as another automaton. For instance, in [26] it
was used for triggering the transmission of a CAN message.

The App automaton starts in the committed location l1.
This location is used for initializing the variables of the
system; in this case, assigning the activation period of each

Waiting
x<=T[i]Expired

x==T[i]
expire[i]!

n:= n + 1

set[i]?
x:= 0

set[i]?

x:= 0

(a)
l4l3l2l1

exec_task[i]!

expire[i]?set[i]!

T[i]:= period

(b)

Fig. 14: The two UPPAAL templates used for specifying the
system: (a) corresponds to an ideal timer of period T whereas
(b) corresponds to the application

Listing 2: Two nodes using ideal clocks (variable declaration)
/ / System v a r i a b l e s :
c o n s t i n t p e r i o d = 256 , N= 2 ;
chan s e t [N] , e x p i r e [N] , e x e c t a s k [N ] ;
i n t T [N ] ;
/ / O b s e r v e r v a r i a b l e s :
u r g e n t chan a ;
i n t [ 0 ,N] n= 0 ;

task, T[i]. Without losing generality, we assume that all
tasks have the same period, and that it is defined as a constant
named period in the variable declaration. This declaration
is shown in Listing 2.

In our model, the timers are not only assumed to have the
same period, but they are implicitly assumed to be in phase. If
required, an arbitrary offset of ∆ time units can be introduced
also in the initialization of any application, by forcing the
automaton App to stay ∆ time units in location l1. This
would require declaration of a new local clock variable, a
change of l1 to non-committed, and definition of both a guard
and an invariant condition to control the transition to l2.

Location l2 is a committed location and then it is left
immediately. The transition to l3 activates the timer, through
the synchronization channel set[i]. The process stays in
that location until the expiration of the ideal timer, which
is signaled by the corresponding Tmr through the channel
expire[i]. Once the expiration occurs, App steps into
the committed location l4 and then signals exec_task[i]
while transiting to l2, where the whole cycle is started again.
This models a perfecty periodic activation of the task.

This modeling pattern does not allow any change of the
period of the tasks during the operation of the system. Such
a change could be incorporated, if required, in the transition
from l4 to l2, by overwriting the variable T[i], right before
resetting the timer.

The variable declaration of Listing 2 includes two variables,
the urgent channel a and the integer variable n, that are
required for the formal verification of the pattern. Their use
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Listing 3: Three nodes with drifting clocks (system declara-
tion)

Tmr0= Per t Tmr ( 0 ) ;
Tmr1= Per t Tmr ( 1 ) ;
Tmr2= Per t Tmr ( 2 ) ;
App0= App ( 0 ) ; App1= App ( 1 ) ; App2= App ( 2 ) ;
/ / L i s t o f p r o c e s s e s :
sys tem Tmr0 , Tmr1 , Tmr2 ,

App0 , App1 , App2 , Obs , Dummy;

and meaning will be clarified later on, in Section VI-A.

B. System with drifting clocks

For illustrating the specification of drifting clocks with our
modeling pattern, we will consider a system with three nodes,
one of them having an ideal clock and the other two having
drifting clocks. The node with the ideal clock will be useful
only for comparison. For simplicity, the non-ideal clocks are
assumed to exhibit both the same maximum drift, ρ.

Like in the previous example, the nodes are supposed to
work in rounds of duration T. Due to this, the maximum de-
viation (in absolute value) accumulated in one round between
one drifting clock and the ideal clock is ρT.

The system declaration is shown in Listing 3. It is very
similar to the declaration discussed in Section V-A, but for the
timers we now instantiate a new template, called Pert_Tmr.
The input parameters are used again for indicating the corre-
spondence between Tmr and App.

Figure 15(a) shows the template Pert_Tmr. It behaves like
a timer that, instead of defining an exact instant for expira-
tion, defines a bounded temporal interval (between Tmin[i]
and Tmax[i]) in which the expiration may happen. Note
that this modeling is consistent with what was explained in
Section IV-C about translating perturbed timed automata into
timed automata.

Figure 15(b) shows the template for the application. The ini-
tial location is used for initializing both variables, Tmax[i])
and Tmin[i]. Again, all the timers are supposed to work with
the same period, yet this is not strictly required by the pattern.
The variable eps[i] models the possible deviation caused by
the drift in one round. It is defined as a constant variable in
the variable declaration, which is shown in Listing 4, and is
calculated offline. For this case, we assume T = 300 time units
and ρ = 10−2. Therefore, and given that Node 0 is supposed
to be ideal, the array of integers eps[N] is initialized with
the values {0, 3, 3}.

Apart from the initialization of the perturbed timers, process
App does not change with respect to what was described in
Section V-A.

C. System with synchronized clocks

The application of our approach for modeling systems with
synchronized clocks will be illustrated here. We will consider
a system with three nodes executing a periodic task, like in

Waiting
x<=Tmax[i]Expired

x>=Tmin[i]
expire[i]!

n:= n + 1, x:= 0

set[i]?
x:= 0

set[i]?

x:= 0

(a)
l4l3l2l1

exec_task[i]!

expire[i]?set[i]!

Tmax[i]:= period + eps[i],
Tmin[i]:= period - eps[i]

(b)

Fig. 15: The two UPPAAL templates used for specifying the
system with drifting clocks: (a) is the timer and corresponds
to a perturbed timed automata, whereas (b) models the appli-
cation (Task1)

Listing 4: Three nodes with drifting clocks (variable declara-
tion)

/ / System v a r i a b l e s :
c o n s t i n t p e r i o d = 300 , N= 3 ;
i n t eps [N] = {0 , 3 , 3} ;
chan s e t [N] , e x p i r e [N] , e x e c t a s k [N ] ;
i n t Tmax [N] , Tmin [N ] ;
/ / O b s e r v e r v a r i a b l e s :
u r g e n t chan a ;
i n t [ 0 ,N] n= 0 ;

the previous examples. For simplicity, the clock of Node 0
will be taken as the reference clock of the other computer
clocks, which will be assumed to drift from the reference with
a consonance of at most γ.

We assume that the nodes are resynchronized with a period
R. Therefore, and neglecting the residual error after clock
correction, the precision of the synchronization algorithm is
π ≤ 2γR.

As it was explained in Section IV-D, for our modeling we
introduce an additional timed automaton, the clock pointer,
with a very specific function: it has to reset the timers of
the applications in every round, thus preventing them from
drifting away too much. The clock pointer is restarted by the
node taken as the reference time.

In our example, the clock pointer is called Half_Tmr and
is modeled with the automaton of Figure 16. It works as an
ideal timer: it is set via channel set_half, measures a time
duration of halfT and signals expiration through channel
half; where halfT is declared as a constant that equals half
of the period of the tasks, it is T

2 . Channel half is an UPPAAL
broadcast channel [11], which means that it can be used for
synchronizing several timed automata simultaneously; unlike
the regular channels of UPPAAL, which only allow binary
(hand-shaking) synchronization.

The system declaration of this example is shown in List-
ing 5. The template Half_Tmr is instantiated once, under
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Waiting
x<=halfTExpired

x>=halfT
half!

x:= 0

set_half?

x:= 0

Fig. 16: Template of the clock pointer. It is named Half_Tmr
because it measures half of the round duration

Listing 5: Three nodes using synchronized clocks (system
declaration)

HTmr= Half Tmr ;
Tmr0= Per t Tmr ( 0 ) ;
Tmr1= Per t Tmr ( 1 ) ;
Tmr2= Per t Tmr ( 2 ) ;
App0= App ( 0 ) ; App1= App ( 1 ) ; App2= App ( 2 ) ;
/ / L i s t o f p r o c e s s e s :
sys tem HTmr , Tmr0 , Tmr1 , Tmr2 ,

App0 , App1 , App2 , Obs , Dummy ;

the name HTmr. One template Pert_Tmr and one template
App are instantiated for each node. Again, the input parameter
relates the application automaton with its corresponding timer.

The template Pert_Tmr does not change with respect to
what was described in Section V-B. Figure 17 depicts the
template App. In the transition from l1 to l2, each node
initializes the values of its timer, Tmax[i] and Tmin[i].
The timers in this case are not set with a duration of T, they are
set instead with a nominal duration of half round (HalfT) and
with an imprecision of eps[i]. This imprecision corresponds
to the maximum deviation accumulated by a synchronized
clock with respect to the reference clock in one complete
synchronization round. It equals γR for all the clocks except
for the reference clock, in which case it equals 0.

Location l2 is also committed and thus left immediately.
The transition to l3 is different for the node that is the
reference (condition i==ref) and the rest of the nodes
(condition i != ref). Only the former sets the clock pointer
via the channel set_half. The value of ref is initialized
in the system declaration as shown in Listing 6.

All of the nodes remain in location l3 until the expiration
of the Half_Tmr, which is notified through the broadcast

l6
l5

l4l3l2

l1
i != ref

expire[i]?

set[i]!

exec_task[i]!

half?i == ref

set_half!Tmax[i]:= halfT + eps[i],
Tmin[i]:= halfT - eps[i]

Fig. 17: Application template when having synchronized
clocks

Listing 6: Three nodes using synchronized clocks (variable
declaration)

/ / System v a r i a b l e s :
c o n s t i n t h a l f T =150 , N= 3 ;
c o n s t i n t r e f = 0 ; / / Tmr0 i s t h e Ref c l o c k
chan s e t [N] , e x p i r e [N] , e x e c t a s k [N ] ;
chan s e t h a l f ;
b r o a d c a s t chan h a l f ;
i n t Tmax [N] , Tmin [N] , eps [N]= {0 , 3 , 3} ;
/ / O b s e r v e r v a r i a b l e s :
u r g e n t chan a ;
i n t [ 0 ,N] n= 0 ;

channel half. This means that this automaton measures the
first half of the round for each and every node of the system.
Once this happens, they step into the committed location l4
and, while transiting to l5, they start their own perturbed
timer (via channel set[i]) for measuring the second half of
the round. As soon as Tmr[i] expires, and signals it through
expire[i], the corresponding App[i] leaves l5, indicates
the execution of the task with channel exec_task[i]) and
goes back to location l2, where the whole cycle is restarted
again.

Listing 6 shows the variable declaration of this example.
The system is assumed to work with a period of T = 300
time units, and then the constant halfT is declared with the
value 150. The constant ref is initialized to 0. The value of
γ is taken as 10−2, and without losing generality, we consider
that the resynchronization period is also equal to T, so both
eps[1] and eps[2] are initialized with the value γT = 3.

Note that the variables ref and eps[i] convey all the rel-
evant information about the clock synchronization algorithm.
These variables are also independent from the parameters of
the application, such as the periods of the tasks.

It is possible to model the case of having a reference clock
that is not one of the nodes that execute the application.
For that, it is enough to define the reference clock with
a template such as App, but without the signaling through
channel exec_task that appears in the transition from l6
to l2.

VI. VALIDATION OF THE MODELING PATTERNS

In order to assess the properties satisfied by our models,
and check whether they adhere to the expected behaviors
or not, we will use the verifier provided by UPPAAL. The
formal verification will be complemented with a graphical
representation of the dynamics of the systems.

A. Formal verification procedure

The goal of the formal verification is to prove that the
temporal behavior of each modeling pattern corresponds to
what was described in Section III. It is:

1) Perfect synchronization for ideal clocks
2) Unbounded clock skew for drifting clocks
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Reached

Initial

n>=N
a!
x:= 0,
n:= 0

n>0
a!
x:=0

(a)

a?

(b)

Fig. 18: The two timed automata used for verifying the
precision: (a) is the Observer, (b) is a dummy automaton
required for the evolution of the Observer

3) Clock jitter with precision π for synchronized clocks
A simple way to assess these properties is by defining an

automaton that acts as an external observer. This automaton,
which we call Obs, is depicted in Figure 18(a). For the
evolution of the observer, we define the trivial timed automaton
shown in Figure 18(b), which is called Dummy. The function
of this automaton is simply to ensure that any transition of
Obs is taken as soon as it is enabled by its guards. The
way to instantiate these templates is shown in every system
declaration of Section V.

The automaton Obs uses a global integer variable n that,
as it was shown in Figure 14(a) and Figure 15(a), is increased
every time that one of the automata Tmr expires. Note that
Obs leaves the initial location (Initial) when the condition
n > 0 is satisfied, i.e. as soon as the earliest timer expires.
After that, it stays in location Reached until the last of the
N timers has expired (condition n >= N becomes true).

Thanks to this mechanism, the time spent by Obs in the
location Reached indicates the offset between the fastest
and the slowest clocks in the round. In order to measure this
time, we use the local clock variable x, which is reset in the
transition to Reached.

The formal verification of our modeling patterns becomes
a search of the maximum value achievable by x. This can be
performed by model checking the following three properties:

1 . A[ ] n o t d e a d l o c k
2 . A[ ] Obs . Reached imply ( Obs . x <= X)
3 . E<> Obs . Reached and ( Obs . x == X)

where X is a non-negative integer.
The first property is used for verifying liveness of the

system. It is satisfied if the model is free from deadlock.
The second property, if satisfied, proves that X is an upper
bound of the clock x of the process Obs. The third property,
if satisfied, proves that the value X is reachable by x, so it
actually constitutes its maximum value.

B. Formal verification results

When using the patterns for ideal clocks, the properties are
satisfied for X = 0. This means that the applications execute
their tasks in perfect synchrony, as expected.

For the modeling patterns with drifting clocks, we know
that property 2 must never be satisfied, regardless of the value
of X, since there is no upper bound of the offset. Conversely,

property 3 must always be satisfied. In our example, this is
successfully verified for any value 0 < X < T.

Model checking the property 3 for X ≥ T is not possible
with the current version of the observer, because whenever this
amount of offset is accumulated between the clocks, then two
nodes may be in rounds that are not consecutive and then the
variable n is no longer useful for knowing how many timers
have expired in one round. In fact, the concept of round is not
applicable anymore. But the results are still valid, since the
behavior is consistent with the properties of a set of drifting
clocks.

In order to assess the behavior of the modeling patterns for
synchronized clocks, we can refine the properties 2 and 3 with
the information available about the synchronization algorithm.
The properties then become:

2b . A[ ] Obs . Reached imply
( Obs . x <= eps [ 1 ] + eps [ 2 ] )

3b . E<> Obs . Reached and
( Obs . x == eps [ 1 ] + eps [ 2 ] )

When introduced in the UPPAAL verifier, both properties
are satisfied. This proves that the applications execute their
tasks with some jitter, which does not exceed the precision of
the synchronization algorithm.

An interesting feature of our modeling patterns is that they
include behaviors that are rarely found in real systems, like
for instance a clock being as fast as possible in one round, as
slow as possible in the next round, then fast again, and so on.
This over pessimistic approach is not a problem as long as
the desired properties of the system are satisfied. It becomes a
problem whenever one property is not fulfilled, because then
the modeler should be able to discriminate whether the cause
of the violation of the property is one of these rare behaviors
or not.

The UPPAAL verifier provides some help for dealing with
this situation. If a property is not satisfied, it generates a trace
that allows the modeler to see in which conditions the property
is violated. Many traces can be actually looked for: shortest,
random and fastest; but unfortunately it does not guarantee
that all possible counterexamples have been examined. A
better solution would be to have a mechanism for refining
the specification of the system, but addressing this problem is
out of the scope of this paper.

C. Graphical representation

Showing possible traces of our models does not validate
the modeling patterns we have presented, at least in a formal
manner. But they help to understand the behavior enforced by
the patterns and, in general, make them more trustful.

Figure 19 depicts the temporal behavior enforced by our pat-
tern in the case of a system with two nodes with ideal clocks.
The upper graph shows the evolution of both timers over time;
they can be represented over the same graph because they
behave identically. The two horizontal lines show when each
application is activating its task via exec_task[i]. The
behavior is perfectly synchronous.
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t

Tmr0.x
Tmr1.x

T

App0

App1

Fig. 19: Expected temporal behavior when using ideal timers

t

Tmr2.x t

Tmr1.x t

Tmr0.x

App0 (Ideal)

App1 (Fast)

App2 (Slow)

T(1 + ρ)

T(1− ρ)

T

Fig. 20: One of the possible worst-case behaviors when
modeling drifting clocks

Figure 20 shows one possible behavior of the system
modeled in Section V-B. It corresponds to one of the worst
scenarios, since the clock of Node 1 goes as fast as possible
whereas the clock of Node 2 goes as slow as possible. The
three upper graphs show the temporal evolution of the cor-
responding timers. The bottom timelines show the activation
instants for each application. Notice that although they are
initially synchronized, the activation instants of App1 and
App2 get more and more apart as time goes by. The offset is
represented with a horizontal solid black bar, as it was done
in Section III.

Finally, Figure 21 depicts one possible behavior of the
system having synchronized clocks that was presented in
Section V-C. The top graph represents the evolution of the
clock pointer, which was called Half Timer (process HTmr).
The three graphs below show the temporal evolution of the
timer set by each application.

The expiration instants of the Half Timer are highlighted
with a transparent circle. As explained in Section V-C, when-
ever this timer expires, each and every other timer is restarted.

t

Tmr2.x t

Tmr1.x t

Tmr0.x t

HTmr.x

App0 (Ref.)

App1 (Fast)

App2 (Slow)

T
2

T
2 + Tγ

T
2 − Tγ

T
2

Fig. 21: Possible behavior of a system with synchronized
clocks

These timers behave as perturbed timed automata, and measure
the duration of the second half round with a potential offset
(with respect to the reference clock) of Tγ. The expiration
instants of these timers, which also mark the activation instants
of the tasks, are highlighted in the graph with a black circle.
Note that HTmr is reset upon the expiration of Tmr0, since
Node 0 is supposed to be the reference clock.

In this example, Node 1 evolves as fast as possible whereas
Node 2 evolves as slow as possible. This corresponds to one
of the worst-case scenarios, in which the offset between the
applications equals the precision of the clock synchronization
algorithm.

VII. CONCLUSION

Developing suitable modeling patterns is crucial in order
to simplify the construction of formal models and make the
adoption of model checking easier and faster [6], [7], [8]. A
suitable modeling pattern must be simple, clear, trustful and
traceable.

This paper discussed a number of modeling patterns for
timed automata, which can be used for specifying the three dif-
ferent types of computer clocks that may exist in a distributed
system: ideal clocks, drifting clocks and synchronized clocks.
Our modeling strategy follows four principles: isolation of the
time aspects from the application aspects, modeling of time
with timers, adoption of perturbed timed automata for mod-
eling drifting clocks and use of clock pointers for modeling
clock synchronization.

The presented patterns are application independent, and
allow the modeler to trace in which parts of the model the
different characteristics of the clocks are to be included: the
drift, the clock synchronization period, the reference clock, etc.
Each modeling pattern has been applied to a simple example
with UPPAAL and has been formally verified.
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With respect to the formal verification, the possibility of
refining our modeling in order to eliminate the most extreme
behaviors of the clocks remains open.

The most positive aspect of our modeling strategy, from
the designer’s point of view, is the separation of concerns
between the application and the management of time. But
this also introduces some extra complexity, in the form of
new automata, additional channels, additional clocks, etc. That
increases the state space and, in some cases, may render model
checking unfeasible. The problem could be aggravated if other
modeling patterns were used.

In order to avoid this problem, it is necessary to investigate
optimization techniques that may merge the patterns into
equivalent models of lower complexity. This could be par-
ticularly useful in the context of model-based system design.
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