
A proposal for Flexible, Real-Time and Consistent Multicast
in FTT/HaRTES Switched Ethernet

Guillermo Rodriguez-Navas and Julián Proenza
Departament de Ciències Matemàtiques i Informàtica

Universitat de les Illes Balears, Spain
guillermo.rodriguez-navas@uib.es, julian.proenza@uib.es

Abstract

Hard Real-Time Ethernet Switching (HaRTES) is an
implementation of the Flexible Time Triggered (FTT) com-
munication paradigm over Switched Ethernet, which in-
tends to provide hard real-time communication in a flex-
ible manner. This paper presents a first proposal for en-
hancing HaRTES with a service of total order multicast
for synchronous messages. This service uses the central-
ized online scheduling service of FTT in order to reduce
complexity and bandwidth utilization.

1. Introduction

The distributed embedded systems community has ap-
parently overcome the old controversy between event-
triggered and time-triggered communication, and now
seems more in favor of hybrid solutions, which try to get
the best of both worlds. Among the techniques combining
event-triggered and time-triggered mechanisms, the Flex-
ible Time Triggered (FTT) paradigm stands out because
of its thoughtful design and maturity [1, 9]. Initially de-
veloped for CAN, FTT has been adapted to other types of
networks, including Ethernet and Switched Ethernet [7].

The properties of the FTT paradigm with respect to de-
pendability have received less attention than the real-time
properties. A few recent works have studied how to com-
bine FTT with traditional fault tolerance mechanisms, in
order to increase the reliability of the communication sys-
tem [5, 2] but, in general, many aspects still have to be ad-
dressed. This paper tackles one of such aspects: the need
of a communication service for guaranteeing total order
multicast/broadcast, also known as atomic broadcast [3]
for the synchronous messages of FTT. As reported in the
literature, this type of service can provide significant bene-
fits for dependability, typically reducing the complexity of
the algorithms for managing membership, reaching con-
sensus or, in general, handling node replication; see for
instance [10].

This paper considers one specific implementation of
FTT over Switched Ethernet: the Hard Real-Time Eth-
ernet Switching (HaRTES) [4]; this implementation ex-

HaRTES
(master)

Slave A

Slave B

Slave C

Slave D

Figure 1. HaRTES architecture.

hibits great potential for dependability and is already be-
ing used in the project FF4FTT as the basis for a novel
replicated star topology for Switched Ethernet. The total
order multicast protocol proposed in this paper defines a
novel 4-phase commit protocol that relies significantly on
the centralized online scheduling of FTT and its built-in
fault tolerance mechanisms.

2. Background

As shown in Figure 1, HaRTES uses a simplex mi-
crosegmented star topology, with one central element, the
HaRTES switch, to which each slave is connected through
a full-duplex link. The main particularity of HaRTES is
that this central element also contains the FTT master.

2.1 The FTT master functionality
In accordance to the FTT paradigm, the master

manages all communication following a centralized
master/multi-slave scheme, meaning that one single mes-
sage serves for polling several slaves [1]. The mas-
ter divides the communication time into rounds of con-
stant duration called Elementary Cycles (ECs). The EC
is partitioned into two windows: the Syncronous win-
dow (Sync), for transmission of synchronous messages,
and the Asyncronous window (Async), for transmission of
asynchronous messages. The master initiates each EC by
broadcasting a special message called the Trigger Mes-
sage (TM).

The TM also contains a field specifying which syn-
chronous messages should be transmitted within the just
initiated EC. This information, which we will call the
EC-schedule, is periodically calculated by the master us-
ing the information of its System Requirements Database

c©2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. doi:10.1109/ETFA.2013.6648153



(SRDB); a database that keeps information about all the
streams of messages existing in the system.

Each stream of messages can be either synchronous or
asynchronous and, analogously to CPU task scheduling,
is characterized by its period, message length, deadline,
offset, etc. For further flexibility, any slave can request
modifications of its own data in the SRDB, i.e. modifi-
cations of the streams that this slave generates. In order
to guarantee schedulability, the master executes an admis-
sion control test for any requested change and accepts the
change only if the test turns out positive.

2.2 Publisher/subscriber in FTT
The last implementations of FTT over Switched Ether-

net include a service for managing group communication
following the well-known multicast publisher/subscriber
scheme. Due to space limitations, the details of this ser-
vice cannot be explained in this paper, but we summarize
here the main properties it does provide.

Let N be the set of slaves of a HaRTES system, and
let M be the set of message streams that these slaves
exchange among them. The relationships between the
slaves and the streams can be described with the help of
two functions, Publisher-of and Subscriber-of, denoted
as Pi(m) and Si(m) respectively. These functions are
defined as P : N × M → {0, 1}, with Pi(m) = 1
if and only if slave i is the publisher of stream m; and
S : N ×M → {0, 1}, with Si(m) = 1 if and only if slave
i is a subscriber of stream m.

The master keeps a data structure with the existing
groups of publisher/subscribers, containing the identifica-
tion of the respective streams and the associated physical
addresses and ports. Specific requests issued by the slaves
allow addition (binding) and removal of new slaves, ei-
ther publishers or subscribers, to the groups. Note that
the above definitions do not prevent, in principle, having
more that one publisher per stream. But, in practice, the
master limits this number to one. Thus, if Pi(m) = 1 then
Pj(m) = 0 for any j 6= i.

In summary, every slave i knows Pi(m) and Si(m) for
each stream m ∈ M , whereas the master knows Pi(m)
and Si(m) for each slave i ∈ N and stream m ∈ M .
These properties constitute the basis of the failure detec-
tion mechanism described in Section 4.

3. Problem formulation

For the specification of our total order multi-
cast/broadcast service, we use the notation discussed
in [3]. It defines a primitive Broadcast(n) which indicates
that a node has transmitted message n and a primitive De-
liver(n) which indicates that a node has delivered message
n for processing.

Using these primitives, total order broadcast is fulfilled
if the following properties are satisfied [3]:

Validity. If a correct process broadcasts a message n,
then it eventually delivers n.

Agreement. If a correct process delivers a message n,
then all correct processes eventually deliver n.

Integrity. For any message n, every process delivers n at
most once, and only if n was previously broadcast by
the sender.

Total Order. If two correct processes p and q both deliver
messages n and n′, then p delivers n before n′ if and
only if q delivers n before n′.

3.1 Fault assumptions
Regarding channel faults, we only consider transient

faults of the links/ports that may lead to omissions of mes-
sages. Note that due to the segmented nature of the star
topology, these failures are typically inconsistent. Perma-
nent faults of the links, caused for example by partition
or stuck-at, can be handled with other mechanisms like
spatial redundancy, and thus will not be considered.

The failure semantics of the slaves is not restricted, but
we assume that the HaRTES switch provides suitable error
containment functions that prevent error propagation. In
particular, slaves that transmit synchronous messages out
of their authorized windows are detected and isolated by
the switch.

Our protocol assumes that the probability of failure of
the HaRTES switch, including the embedded FTT mas-
ter, is negligible. This reliability assumption is substanti-
ated with internal duplication and comparison of the mas-
ter, combined with replication of the switch. For instance
as it is proposed for the HaRTES replicated star topol-
ogy named FTTRS. An important feature of FTTRS upon
which our protocol also relies, is the assumption that the
TM is reliably and consistently transmitted in every EC.
This is enforced through the use of both temporal and spa-
tial redundancy: the TM is transmitted a number of times
over each replicated star [6].

3.2 Consistency attributes
The described mechanisms of HaRTES, combined with

appropriate fault tolerance mechanisms such as FTTRS,
enforce a number of properties which allow us to reformu-
late the problem of total order broadcast in simpler terms.
We call these properties consistency attributes.

More specifically, thanks to the reliable and consistent
broadcast of the TM and the centralized publish/subscribe
mechanism, the following attributes are fulfilled:

• All nodes start and finish the EC simultaneously.

• All slaves know which synchronous streams are
scheduled in the current EC.

• Each slave knows whether it should receive a mes-
sage to which it is subscribed, and can therefore de-
tect an omission of said message.



• The master knows which slave is the publisher of
each scheduled message. By monitoring the port as-
sociated to this slave, the master can detect whether
the publisher actually sent the message or not.

• The master knows exactly which slaves are sub-
scribers of a certain scheduled message. By forcing
every subscriber to acknowledge the reception of said
message, any inconsistent broadcast can be detected
by the master.

FTT also exhibits a very interesting property: the EC-
schedule implicitly provides an ordering of messages that
is consistent throughout the network. If the slaves are
forced to deliver the received messages in the same order
in which they were scheduled, it can be safely said that: in
an EC of FTT, agreement (delivering the same messages)
implies total order (delivering them in the same order).

4. Protocol description

We propose using a novel protocol for achieving agree-
ment and integrity, and suggest two techniques for achiev-
ing validity.

4.1 Achieving agreement and integrity
Both agreement and integrity can be achieved with a

commit protocol executed in 4 phases. These phases are
all executed within the transmission of two consecutive
TMs, and for this reason we say that the protocol provides
agreement and integrity on an EC-by-EC basis.

Figure 2 shows schematically how the different ele-
ments of the system participate in the four phases of the
protocol, whereas Figure 3 shows how the different phases
are mapped onto the EC structure. The latter also shows
the location of two important instants that will be dis-
cussed later on: the Accept point and the Delivery point.
The protocol works as follows.

In phase I, called the Schedule phase, the master (M)
broadcasts the TM containing the EC-schedule of the just
initiated EC. After reception of this message, all the slaves
know which streams are active for that EC. The example
of Figure 2 depicts a case in which there is only one stream
scheduled, with A acting as the publisher and the other
nodes being subscribers.

In phase II, called the Broadcast phase, every publisher
of a scheduled message broadcasts its message during the
Sync window. In this phase, the master is passive and the
switch performs store and forward. Note that the trans-
mission of any of the messages can be affected by channel
faults, and be inconsistent. Due to this, the subscribers
do not deliver the received messages yet, and wait for the
decision taken in the last phase.

Phase III, which is called the Acknowledge phase,
serves for notifying the master about the result of the
broadcasts. Given a scheduled message m, each sub-
scriber sends either a positive notification (ACK), if it re-
ceived the message, or a negative notification (NAK) if it

M M

M M

I -Schedule II -Broadcast

III -Acknowledge IV -Accept

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

Figure 2. The 4 phases of our commit proto-
col, with their message flows.

TM Sync Async TM

Elementary Cycle

Schedule Broadcast Acknowledge Accept

Accept
point

Delivery
point

Figure 3. Distribution of the 4 phases over
the EC structure.

did not receive the message. Although the protocol would
work as well with the ACK messages only, we introduce
the NAK messages for improving fault isolation, since re-
ception of a NAK proves that the node is working prop-
erly and the inconsistency is more likely due to a tran-
sient channel error. The ACK and NAK messages are not
transmitted immediately after reception of the messages;
instead, they are transmitted within the Async window.
In this phase, the master is still passive and the switch
performs store and forward. The slaves that are not sub-
scribers do not send any kind of notification to the master.

At the end of the Async window, the master has enough
information to decide whether the broadcast of a message
was consistent among its subscribers or not. This instant
is called the Accept point and marks the start of the last
phase, which is called the Accept phase. A message is ac-
cepted if and only if all of its subscribers have transmitted
and ACK. Otherwise it is aborted.

At the Accept point, the master constructs a vector
called EC-Status vector (EC-SV), which is very similar
in format to the EC-schedule and indicates with one bit (a
flag) which messages are accepted and can be delivered.
For broadcasting this information in a reliable and timely
manner, the master sends the EC-SV within the next TM.
This means that every TM actually transports two differ-
ent types of information: the EC-schedule of the new EC
and the EC-SV of the previous (just finished) EC.

After reception of the EC-SV, the subscribers can de-
liver the messages for processing. This instant is known



as the Delivery point. Delaying the message delivery until
the start of the next EC should not have a significant ef-
fect on the applications. In the FTT paradigm, the EC ac-
tually gives the minimum clock granularity, meaning that
the ordering and delays of the messages within one EC is
irrelevant for the application. This short delay can also be
easily incorporated into the scheduling equations.

If we define the following primitives: EC-Schedule(m)
indicating that message m was scheduled for the cur-
rent EC; EC-Broadcast(m) indicating that message m was
transmitted in the current EC by its publisher; and EC-
Deliver(m) indicating that a subscriber delivered message
m at the start of the next EC, then our protocol enforces
the following properties for any multicast/broadcast:

EC-Agreement. If a correct process EC-delivers a mes-
sage m, then all correct processes EC-deliver m.

EC-Integrity For any message m, every process EC-
delivers m at most once, and only if m was previ-
ously EC-scheduled and EC-broadcast.

Total Order is implied by the Agreement property.

4.2 Achieving validity
Following are two different techniques that can be ap-

plied in order to achieve the remaining property: Validity.
Our goal is to guarantee that every message transmitted by
a non-faulty publisher is eventually delivered.

The first possibility provided by FTT is the automatic
re-scheduling of erroneous transmissions by the master.
This technique was discussed in [8] for FTT-CAN, and it
can be adapted to any system in which the master is able
to detect every omission, like ours. The main advantage of
this approach is its simplicity, but it has the disadvantage
of delaying the retransmission of a message at least one
full EC: if an omission occurs in the i-th EC, the retrans-
mission will be scheduled not sooner than the (i+2)-th EC.
This happens because the Accept phase is located at the
end of the EC and there is not time for recalculating the
schedule before the transmission of the next TM.

Another possibility that reduces the delay of the re-
transmission is using a probabilistic approach for band-
width reservation in the next EC. The underlying assump-
tion is that the number of aborted messages in an EC will
usually be low. Therefore, what the master can do is re-
serve some bandwidth in the next EC, just in case a re-
transmission is needed. The schedule of messages for this
reserved bandwidth is directly the EC-SV, because it ex-
plicitly says which messages were aborted and need re-
transmission. In this manner, the master does not have to
recalculate the EC-schedule. Whenever retransmissions
are not needed, the unused bandwidth can be consistently
reclaimed by the slaves as part of the Async window.

5. Conclusions and future work

This paper presented a proposal for enforcing to-
tal order multicast/broadcast of synchronous messages

over an implementation of FTT Switched Ethernet called
HaRTES. A significant contribution is the definition of a
novel 4-phase commit protocol based on the online cen-
tralized scheduling of HaRTES and its centralized pub-
lish/subscribe service. The complexity and bandwidth re-
quirements of the protocol remain low because it depends
on having reliable and consistent transmission of the TM.

The next step of the work is to perform a complete
evaluation of the protocol, including formal verification
by means of model checking and reliability analysis. An
interesting problem is studying the relationship between
transient channel faults and false negatives, i.e. broadcasts
that are consistent de facto but which the master considers
inconsistent and aborts.

Acknowledgements

This work was supported by project DPI2011-22992,
granted by the Spanish Ministerio de Economı́a y Com-
petitividad, and by FEDER funding.

References

[1] L. Almeida, P. Pedreiras, and J. A. Fonseca. The FTT-CAN
protocol: Why and how. Industrial Electronics, IEEE
Transactions on, 49(6):1189–1201, 2002.

[2] M. Barranco, G. Rodriguez-Navas, D. Gessner, and
J. Proenza. Towards the integration of flexible-time-
triggered communication and replicated star topologies in
CAN. In IEEE 16th Conference on Emerging Technologies
& Factory Automation (ETFA), pages 1–4. IEEE, 2011.

[3] X. Défago, A. Schiper, and P. Urbán. Total Order Broad-
cast and Multicast Algorithms: Taxonomy And Survey.
ACM Computing Surveys, 36:2004, 2003.

[4] R. G. V. dos Santos. Enhanced Ethernet Switching Tech-
nology for Adaptive Hard Real-Time Applications. PhD
thesis, Universidade de Aveiro, 2010.

[5] J. Ferreira, L. Almeida, J. A. Fonseca, P. Pedreiras, E. Mar-
tins, G. Rodriguez-Navas, J. Rigo, and J. Proenza. Com-
bining operational flexibility and dependability in FTT-
CAN. Industrial Informatics, IEEE Transactions on,
2(2):95–102, 2006.

[6] D. Gessner, J. Proenza, M. Barranco, and L. Almeida. To-
wards a Flexible Time-Triggered Replicated Star for Eth-
ernet. In IEEE 18th Int. Conf. on Emerging Technologies
& Factory Automation. IEEE, Sept. 2013.

[7] R. Marau, L. Almeida, and P. Pedreiras. Enhancing real-
time communication over COTS ethernet switches. In 6th
IEEE Int. Workshop on Factory Communication Systems
(WFCS’06), June 2006.

[8] L. Marques, V. Vasconcelos, P. Pedreiras, and L. Almeida.
Tolerating transient communication faults with online traf-
fic scheduling. In Industrial Technology (ICIT), 2012 IEEE
International Conference on, pages 396–402. IEEE, 2012.

[9] P. Pedreiras, P. Gai, L. Almeida, and G. Buttazzo. FTT-
Ethernet: A Flexible Real-Time Communication Protocol
That Supports Dynamic QoS Management on Ethernet-
Based Systems. Industrial Informatics, IEEE Transactions
on, 1(3):162–172, Aug. 2005.

[10] S. Poledna. Fault-tolerant real-time systems: the problem
of replica determinism. Springer, 1995.


