
Towards a Flexible Time-Triggered Replicated Star for Ethernet

David Gessner, Julián Proenza, Manuel Barranco∗

DMI, Universitat de les Illes Balears, Spain
davidges@gmail.com

Luı́s Almeida
IT, Universidade do Porto, Portugal

lda@fe.up.pt

Abstract

Distributed embedded systems have traditionally been
designed using static approaches, i.e., assuming a static
environment. Such approaches, however, cannot guaran-
tee continuous operation under dynamic environments that
impose new requirements upon a system as time passes. As
a solution, flexible approaches have been proposed. One
such approach that allows a system to adapt to chang-
ing real-time requirements is the Flexible Time-Triggered
(FTT) communication paradigm. Nevertheless, if continu-
ous operation under dynamic environments is desired, then
flexibility is not enough. Indeed, it is also crucial for the
system to be sufficiently reliable. In this paper we there-
fore explore some design ideas to make FTT highly reliable
through fault tolerance by using replication. As a starting
point we will use the switch of the Hard Real-Time Ethernet
Switching (HaRTES) implementation of FTT.

1. Introduction
Traditionally, distributed embedded systems (DES)

have been designed to operate in environments that do not
change over time. This has led to static approaches that
are inadequate for continuous and correct operation un-
der dynamic environments. The alternative are flexible ap-
proaches. However, flexibility alone is not enough to guar-
antee continuous operation: reliability is also essential.

The goal of the project titled Fault Tolerance for Flexi-
ble Time-Triggered communication (FT4FTT) is to demon-
strate that it is possible to build a highly reliable DES
that can change its real-time operation upon changing re-
quirements imposed by a dynamic environment. For this
it takes as a basis a master/multi-slave communication
paradigm known as Flexible Time-Triggered communica-
tion (FTT) [9], which is a bandwidth efficient approach to
achieve flexibility with high reactivity.

Previous work has been done to increase FTT’s reliabil-
ity. However, it focused on FTT master replication without
using any channel replication [7] or using replicated buses

∗ c©2013 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redis-
tribution to servers or lists, or reuse of any copyrighted component of this
work in other works. doi:10.1109/ETFA.2013.6648137

HaRTES
(master)Slave A

Slave B

Slave C

Figure 1. HaRTES architecture.

only [4], even though buses have significant disadvantages
in terms of reliability when compared with replicated star
topologies [2]. Moreover, these approaches were partial
in the sense that they only focused on the communication
channel. Having a reliable channel alone, however, does
not necessarily improve the reliability of the whole system
by much. In fact, it has been shown that without being able
to tolerate the failures of nodes, introducing channel redun-
dancy in an attempt to improve the system’s reliability, at
least in the case of replicated stars, only improves the over-
all reliability to a small degree [3]. The FT4FTT project
therefore focuses on the whole system, including both the
communication channel and the nodes.

In this paper we present some design ideas for FTTRS,
a Flexible Time-Triggered Replicated Star, which will pro-
vide the communication channel for FT4FTT.

FTTRS uses as its basis the switch of the Hard Real-
Time Ethernet Switching (HaRTES) architecture, which is
an implementation of FTT for Ethernet [6]. This switch
allows the communication to be flexible, but it has not
been designed with high reliability in mind, such as it is
required in highly reliable DES. To make a system more re-
liable, a classic approach is to use fault tolerance. FTTRS
will therefore replicate the HaRTES switch, which includes
the FTT master it embeds, to increase the reliability of the
communication channel. This paper describes some ideas
on how to do this replication.

The paper is organized as follows. Section 2 gives an
overview of HaRTES; Section 3 presents the basic archi-
tecture for FTTRS; sections 4 and 5 discuss some specific
details of channel and master replication, respectively; and
Section 6 gives the conclusions and mentions future work.

2. HaRTES: an overview
As shown in Figure 1, HaRTES implements a simplex

(not replicated) microsegmented star topology, with the



HaRTES switch as a central element that provides the most
relevant functions of FTT. In particular, the switch embeds
an FTT master. This master grants access to the network
following a centralized master/multi-slave scheme. This
means that a single message from the master triggers the
transmission of messages in several slaves. Specifically,
the master divides the communication time into rounds
called Elementary Cycles (ECs), which are synchronized
among and have the same constant duration in all simul-
taneous communications that may occur across the switch.
The ECs are comprised of a synchronous window followed
by an asynchronous window. The FTT master initiates
each EC with the transmission of a Trigger Message (TM)
that is flooded to all slaves. This message not only marks
the beginning of a new EC, inciting the slaves to trans-
mit their synchronous messages followed by their asyn-
chronous messages, but it also dictates the schedule for the
next synchronous window, i.e., it tells the slaves which syn-
chronous messages they should transmit during that win-
dow. The schedule is calculated by the master based on
the contents of a System Requirements Database (SRDB).
This database specifies the communication requirements
for different message streams, which are sequences of mes-
sages related to the same entity (e.g., a sequence of read-
ings of the same sensor) and are analogous to a task in
processor scheduling. Example requirements are deadlines
and periods, which are both expressed as multiples of the
EC length. Slaves may request changes to the SRDB, but
these requests are subject to an online admission control
performed by the master. The admission control basically
ensures that the SRDB is only updated with the requested
change if the system will still be schedulable afterwards.

Regarding the slaves of the protocol, they are each con-
nected to the switch by means of full-duplex links. This
allows multiple simultaneous communications: while one
set of slaves is intercommunicating, another disjoint set of
slaves may intercommunicate at the same time.

3. FTTRS architecture
As stated in the introduction, our goal is to use fault-

tolerance to obtain highly reliable communication for
FT4FTT, while maintaining the flexibility provided by the
FTT communication paradigm.

To achieve high reliability, we need to eliminate all sin-
gle points of failure. This is achieved through some form
of redundancy.

In the case of HaRTES, the single points of failure are
the switch and the master it embeds: if they fail, the whole
system will suffer a global failure. This is in contrast to
the slaves and the links. Their failure must not necessar-
ily imply a global failure because they might not be critical
for the given application, or, if they are, the node replica-
tion provided by FT4FTT may tolerate their failure. In any
case, the architecture for FTTRS must replicate the switch
and the master. Furthermore, since it can not be gener-
ally assumed that there is failure independence between a
switch and the master embedded in that switch, the mas-

Switch 2
(master 2)

Switch 1
(master 1)

Slave A

Slave B

Slave C

slave link

interlinks

Figure 2. FTTRS architecture.

ter replicas should not be within the same switch, but be
distributed among the switch replicas. Additionally, for
the slaves to be able to make use of both switch replicas,
we also require links from each switch to the slaves. Re-
garding the number of replicas, duplication should already
grant a significant increase in reliability without the often
prohibitive cost of higher levels of replication (to know for
certain, a quantitative reliability evaluation is required). Fi-
nally, to tolerate the failure of one of the replicas, any repli-
cation scheme needs to ensure that the remaining replicas
can continue to provide a correct service and that the tran-
sition to a state with less correct replicas does not interfere
with the correct functioning of the whole system. For this,
it is necessary to ensure replica determinism [10]. Replica
determinism usually requires some form of communication
between the replicas. The only exception is under the as-
sumption that (i) the replicas behave internally in a com-
pletely deterministic way whenever they receive the same
inputs and (ii) their inputs are guaranteed under all circum-
stances to be the same. Since the switch and master repli-
cas receive their inputs through different links, we do not
want to depend on this assumption. We therefore require
a communication path between the replicas. Specifically,
for FTTRS, this means that we need a communication path
between the switches and between their embedded masters.
Moreover, this communication path is replicated as well to
further increase the reliability of FTTRS.

The above discussion leads us to the switch and master
replication scheme shown in Figure 2. The replicated com-
munication subsystem comprises two HaRTES switches,
each with its own master. The slaves are connected to both
switches by means of slave links and there are several re-
dundant links between the switches called interlinks. The
latter serve as a communication channel between the mas-
ters, which is used to provide them with replica determin-
ism. Furthermore, if the interlinks are also used to forward
slave messages from one switch to another, we benefit from
a further redundant path between any pair of slaves, reduc-
ing the probability of the slaves being divided into subsets
that cannot intercommunicate [8].

Another important point to consider when replication is
used is failure independence among replicas. For this, it is
necessary to prevent error propagation, i.e., it is necessary
to prevent an error generated in one replica to cause new
errors in other replicas.

2



To prevent the propagation of errors between replicas,
they need to be prepared to cope with the errors generated
in other replicas. The difficulty of this depends on how the
errors generated can manifest i.e., it depends on the failure
semantics of the replicas. In the most general case, replicas
may present byzantine behavior, which is the most diffi-
cult to deal with. Error propagation can be prevented much
more easily if we restrict the failure semantics of the repli-
cas. For this reason, we ensure that the switch and the mas-
ter replicas have more benign failure semantics. Specifi-
cally, we ensure that they have crash failure semantics, i.e.,
they either function correctly or they are silent. This can
be achieved by using an internal duplication and compari-
son mechanism. Both the switches and the masters are thus
prevented from generating spurious frames.

Note that ensuring crash failure semantics for the switch
and master replicas does not ensure failure independence
between a given switch and the master it contains. This is
acceptable since we view a switch/master combination as
a single entity whose components in any case depend on
common resources such as a common power source.

Finally, there is one design decision of the architecture
related to the service that FTTRS can provide to the node
replication in FT4FTT. Since FT4FTT will use node repli-
cation, it will also be necessary in FT4FTT to provide fail-
ure independence among slave replicas. This can be sim-
plified by restricting the failure semantics locally at each
of the slaves. However, this would usually imply compli-
cating the internal design of the slaves. Another solution
is to add error containment capabilities to the ports of the
central elements of a star topology [11]. We take this ap-
proach for FTTRS. In other words, the switches of FTTRS
provide error containment mechanisms at their ports to pre-
vent certain errors from spreading from one link to another.
Part of this error containment can be provided by taking ad-
vantage of the Frame Check Sequence (FCS) in the Ether-
net frames transmitted over the links. For this, the FTTRS
switches drop any frame that fails the FCS test. That is,
the switches in FTTRS are store-and-forward as opposed to
cut-through. In addition to this Ethernet-generic error con-
tainment, the switches have FTT-specific error containment
capabilities. Specifically, any unexpected frame received at
a switch port is dropped. This means that unscheduled syn-
chronous messages are dropped, as well as duplicate syn-
chronous messages received within the same EC.

4. Channel replication
Next, we give some specific design ideas on the channel

replication in FTTRS: we discuss how the channel replica-
tion can be used for the TM and for synchronous messages.
Asynchronous messages are out of the scope of this paper.

Concerning the TM, both slaves and masters must have
a common time base for the FTT communication to func-
tion correctly. Since the TM is used as a means to synchro-
nize the nodes, its transmission must satisfy the following
requirements. (R1) The TM of each EC must be received
by all slaves that have at least one non-faulty link attached

to a non-faulty switch. (R2) The TM must not be delayed
by more than a pre-specified amount of time. (R3) All cor-
rect slaves and masters must agree on when each EC starts.

To satisfy R1 there are several possibilities. One op-
tion is to use a total-order broadcast protocol [5]. However,
such an approach may make it difficult to also satisfy R2
because such protocols usually have a non-negligible time
overhead. Another approach is to use both spatial and tem-
poral redundancy for every TM such that at the beginning
of each EC the TM is flooded through both switches and
this is done more than once.

As to R3, if R1 and R2 hold, the masters can agree on
when an EC starts by enforcing replica determinism for
them (see Section 5). The slaves, on the other hand, can
agree on when an EC starts, independently of which replica
of the TM they receive, by, for instance, distinguishing TM
replicas using sequence numbers, which would be reset in
each EC, and setting a timer at each receiving slave. The
timeout would be set according to the sequence number in
the last TM received and according to the propagation de-
lay from the master to the corresponding slave. When it ex-
pires, the slave would consider the EC to start. With such
a mechanism the expiration times of the timers in all nodes
could be made to line up such that they would all consider
the EC to start at the same time.

Regarding synchronous messages from slaves, the repli-
cated channel should also be used to tolerate faults af-
fecting them. Two possible options are the following: (i)
transmit a given message through only one of the links
and, if this permanently fails, use the other, or (ii) always
send each message through both links. The second option
might lead receiving stations to receive duplicate frames in
a given EC. However, they can safely discard the second
copy because in FTT the master will never schedule two
identical frames within the same EC (an EC is atomic from
the scheduler’s point of view).

The advantage of the first option is that if a given mes-
sage is only transmitted through one link, then another mes-
sage can simultaneously be transmitted through the other
link, increasing the rate with which different messages can
be transmitted. However, such an approach would gener-
ally take longer to recover from errors than the second op-
tion. This is so because in the second option a retransmis-
sion might only be necessary if both simultaneously trans-
mitted copies of a frame are corrupted; whereas in the first
approach the corruption of the single copy might already
require a retransmission. On the other hand, the second
option would not allow an increase in the channel capacity.

In either case, each switch could forward received
frames to the other using the interlinks to increase the like-
lihood of the frames reaching all slaves—bandwidth con-
straints could be alleviated by using higher bandwidth links
for the interlinks. Whether a given switch must then for-
ward the frames to the locally attached slaves depends on
whether those slaves already received the frames through
the other switch. Only if not, the forwarding is necessary.
However, a given switch cannot check by itself whether an

3



attached slave already received a given frame. Only the
respective slave can know that for sure. Thus, the easiest
solution seems to be letting the switches always forward
all frames received through the interlinks and let the slaves
handle any duplicate frames.

5. FTT master replication
To tolerate the failure of one of the masters, they need to

be replica determinate [10]—otherwise inconsistencies be-
tween them may lead to the broadcast of conflicting TMs,
preventing the correct operation of the FTT protocol.

To enforce replica determinism for any set of compo-
nents, we need to identify the service they provide. For
the FTT masters specifically, the services they provide that
must be replica determinate are (S1) to dictate when each
EC begins and (S2) to dictate what synchronous messages
should be transmitted in each EC.

S1 is provided by the transmission instants of the TMs
and S2 by the schedules transmitted in the TMs. To have
the masters replica determinate we therefore need to ensure
that they each transmit their TMs at the same time, allowing
only a small imprecision, and that they transmit the same
schedule in the TMs corresponding to the same EC.

Ensuring that the masters transmit their TMs at the same
time can be achieved by executing a clock synchronization
protocol using the interlinks. As a basis, the IEEE 1588
protocol [1] could be used.

Regarding the TM schedules, if they differ, this is due
to inconsistent SRDBs between the masters when the next
schedule is calculated. To determine the cause of these in-
consistencies, note the following assumptions regarding the
masters. (A1) We assume that they have internal replica de-
terminism [10]. This means that the scheduling algorithm
and the admission control executed by the masters is de-
terministic. That is, given the same contents in the SRDB,
the scheduler will always produce the same sequence of
schedules. Likewise, given the same SRDB contents and
the same sequence of update requests, the admission con-
trol will always accept the same requests. (A2) Second,
we assume that at system startup time the SRDBs of the
masters are consistent, i.e., that they have identical con-
tents. (A3) Third, only SRDB update requests from slaves
may lead to changes in the SRDBs. Thus, under assump-
tions A1-A3, the only cause for SRDB inconsistencies are
inconsistent receptions of SRDB update requests.

There are two ways to enforce replica determinism for
service S2: ensure that the masters apply the same SRDB
updates in the same order before the next schedule is cal-
culated or, alternatively, allow inconsistencies between the
SRDBs of the masters temporarily, but ensure that they are
resolved before the next schedule is calculated.

For the first option, the problem is basically to enforce
total-order multicast [5] for the SRDB update requests, but
with real-time constraints. For the second option, enforc-
ing replica determinism becomes the problem of ensuring
replicated database consistency with real-time constraints.
In both cases the deadline is the time at which the next

schedule is calculated.

6. Conclusions and future work
In this paper we presented some first ideas for the de-

sign of FTTRS, a Flexible Time-Triggered Replicated Star
for Ethernet, which takes as its starting point the HaRTES
implementation of the FTT communication paradigm and
adds fault tolerance by using replication. We proposed an
architecture for FTTRS and then discussed some ideas re-
lated to the replication of the channel and the FTT master.

These ideas will now be further developed. For instance,
we will explore how to handle asynchronous traffic in order
to maximize the reliability of the system. Furthermore, the
different design ideas will be evaluated quantitatively in or-
der to estimate the reliability achievable with each, and how
their reliability compares with the original HaRTES. This
will give us an objective criteria to make a choice among
the different design options. The chosen design should then
be formally verified, e.g., by using model checking, to en-
sure its correctness. Finally, a prototype should also be
developed in order to prove the feasibility of the design.

Acknowledgements
This work was supported by project DPI2011-22992

and grant BES-2012-052040 (Spanish Ministerio de
economı́a y competividad), by FEDER funding, and by
the Portuguese government through FCT grant Serv-CPS
PTDC/EEA-AUT/122362/2010.

References
[1] IEEE Std 1588-2008, IEEE Standard for a Precision Clock

Synchronization Protocol for Networked Measurement and
Control Systems, 2008.

[2] M. Barranco, J. Proenza, and L. Almeida. Boosting the
Robustness of Controller Area Networks: CANcentrate and
ReCANcentrate. Computer, 42(5):66–73, May 2009.

[3] M. Barranco, J. Proenza, and L. Almeida. Reliability im-
provement achievable in CAN-based systems by means of
the ReCANcentrate replicated star topology. In 8th IEEE
International Workshop on Factory Communication Sys-
tems (WFCS), pages 99–108, May 2010.

[4] V. da Silva. Flexible Redundancy and Bandwidth Manage-
ment in Fieldbuses. PhD thesis, Universidade de Aveiro,
2010.

[5] X. Défago, A. Schiper, and P. Urbán. Total Order Broadcast
and Multicast Algorithms: Taxonomy And Survey. ACM
Computing Surveys, 36:2004, 2003.

[6] R. G. V. dos Santos. Enhanced Ethernet Switching Technol-
ogy for Adaptive Hard Real-Time Applications. PhD thesis,
Universidade de Aveiro, 2010.

[7] J. Ferreira. Fault-Tolerance in Flexible Real-Time Commu-
nication Systems. PhD thesis, Univ. de Aveiro, 2005.

[8] D. Gessner, M. Barranco, J. Proenza, and M. Short. A first
qualitative evaluation of star replication schemes for FTT-
CAN. In IEEE 17th Int. Conf. on Emerging Technologies &
Factory Automation. IEEE, Sept. 2012.

[9] P. Pedreiras and L. Almeida. The flexible time-triggered
(FTT) paradigm: an approach to QoS management in dis-
tributed real-time systems. In Proc. International Parallel
and Distributed Processing Symposium, page 9. IEEE Com-
put. Soc, 2001.

4



[10] S. Poledna. Fault-Tolerant Real-Time Systems: The Prob-
lem of Replica Determinism. Kluwer Academic Publishers,
1996.

[11] J. Proenza, M. Barranco, J. Llodra, and L. Almeida. Using
FTT and stars to simplify node replication in CAN-based
systems. In 17th IEEE Int. Conf. on Emerging Technologies
& Factory Automation. IEEE, Sept. 2012.

5


