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Abstract—Vision based motion estimation algorithms are
widely used in ground-based and aerial robotics. Combined with
inertial measurement units, they have proven to be a precise
and low-cost sensor for velocity and pose estimation. In this
paper we show that stereo vision based odometry can be used
by autonomous underwater vehicles (AUV) that navigate close to
the seabed for velocity and incremental pose estimation in small
areas. We present the integration of two different stereo visual
odometry algorithms into an AUV and experiments carried out in
laboratory and harbour conditions comparing vision based pose
estimates with ground truth.

I. INTRODUCTION

The latest advances in Autonomous Underwater Vehicles
(AUVs) demand accurate estimations of the vehicle’s pose
and velocity. The tasks to be performed by such robots are
increasingly complex and, in most cases it is needed to
precisely position the underwater vehicle to a certain location
in order to execute the desired task. Navigation systems based
on wirelessly transmitted data, such as the Global Positioning
System (GPS) or mobile network positioning, can not be used
in underwater environments. One can overcome this issue by
introducing artificial landmarks. However the cost and effort
for this is high and for small missions it is preferred to rely
on positioning using self-contained sensors. One of the most
popular positioning sensors for underwater vehicles is the
Doppler Velocity Log (DVL) which provides precise velocity
and altitude updates. However, it is a big and expensive device
that cannot be integrated in many underwater vehicles.

Visual odometry is the process of estimating a vehicle’s 3D
pose using only visual images. This technique is becoming
popular in AUVs for navigation, station keeping and the
provision of feedback information for manipulation. Visual
odometry output is often fused with Inertial Measurement
Units (IMU) to provide a cheaper alternative to DVLs [1],
[2]. However, the limitations of underwater vision are widely
known, and its performance depends on many factors such
as visibility, lighting and distortion resulting from varying
refractive indices.

In this paper we present the integration of two existing
stereo visual odometry algorithms into an AUV, the experi-
ments carried out in laboratory and harbour environments, as
well as the evaluation method to compare the performance of
both algorithms.

First, the paper explains related work on visual odometry.
Section III describes the general concepts of visual odometry

systems and presents a brief overview of the two analyzed al-
gorithms, followed by the explanation of the evaluation method
in Section IV and experiments in different evironments. Fi-
nally, the conclusion of the study and future perspectives are
presented.

II. RELATED WORK

The basic visual odometry algorithm pipeline [3] consists
of the following steps: first, keypoints (landmarks) are iden-
tified in each camera frame and feature descriptors for these
points are extracted. Then, the depth for every landmark is
estimated using stereo, structure from motion or a separate
depth camera. Subsequently, features are matched across time
frames and the rigid-body transformation that best aligns
the features between frames is estimated. The result of this
process is an estimation of camera motion between frames
and therefore it is necessary to integrate this data over time to
obtain the vehicle’s absolute position and orientation.

Many implementations of visual odometers for AUVs use
this pipeline and adapt every stage (such us keypoint detector
type and feature matching method) to their needs. Common
feature detectors used for real-time visual odometry include
Harris corners [4], [5], FAST [6], [7] or SIFT [8], [9] features.
Wide range of approaches are involved in the process of
matching feature across frames, [10] propose a circle match
between stereo image pairs of two consecutive frames and uses
non-minima/maxima-suppression techniques [11] to reduce the
number of correspondences. RANSAC-based methods [12],
[13] and graph-based consistency algorithms [14] have also
been proven to robustly match features across frames.

Previous to the motion estimation stage, keypoint bucketing
[15] has been shown to help reduce the inlier reprojection
errors. Finally, the motion estimation process can be solved
through different methods. Using a closed-form solution to
the least-squares problem of absolute orientation [16], it is
possible to directly minimize the Euclidean distance between
matched features in order to compute the rigid-body transfor-
mation of the camera frame [7]. Several ground-based visual
odometers do not use 3D distances but implement the method
of minimizing the pixel reprojection error [7], [10], [14].

Other localization algorithms are for AUVs are based on
mosaics or structured environments and therefore assume prior
knowledge of the area to explore [17]–[19].

Many of the techniques and algorithms described in this
section are primary focused on ground and aerial vehicles and
most of them have not been tested in underwater environments.
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In this field, the complexity of the visual odometry task
increases due to the dynamic light conditions and decreasing
visibility with depth and turbidity. Our focus is primarily on
integrating and validating two different stereo-based visual
odometry approaches in such environments.

III. VISUAL ODOMETRY SYSTEMS

A visual odometry system consists of one or more cameras,
a processing unit, and the required algorithms that process
incoming images. Algorithms for visual odometry - as opposed
to full SLAM algorithms - focus on fast frame-to-frame motion
estimates without keeping a large history for loop closing. The
emphasis lies on accurate measurements at high frequencies.
Systems that use just one camera need translational movement
for 3D motion estimation and all measurements have to be
scaled by an unknown factor to be on a metric scale. Using a
calibrated stereo camera overcomes both of the aforementioned
problems as 3D coordinates of matched points in a single
left/right image pair can be computed by triangulation. We
therefore focus our work on visual odometry systems that use
stereo cameras.

The two publicly available algorithms we compare are
libviso2 [10] and fovis [7]. The former has been successfully
used on cars, and the latter has proven to work for micro aerial
vehicles.

We created wrappers for both libraries1 to integrate them
into the Robot Operating System ROS [20]. This simplifies the
integration in different robotic vehicles as well as comparison
with other integrated sensors.

Both algorithms have very similar processing pipelines
containing feature detection, filtering, matching, and motion
estimation. Table I summarizes the steps of the algorithms,
outlining similarities and differences. To limit the extent of this
paper, the interested reader is referred to the original papers
for a deeper understanding and a more detailed description of
the algorithms. In the following we give a brief overview of
both algorithms.

A. libviso2

The features used by libviso2 are simple blob and corner
detector masks, resulting in a large amount of interest points of
four different classes. Non-minima-/non-maxima-suppression
is used for initial feature reduction. In this step, two different
thresholds for minima/maxima selection are used resulting
in two sets of sparse strong features and dense less strong
features. This allows for a multi-stage matching coarse to fine
using matches of the strong features to limit the search range
for the weaker ones. The used descriptor contains only 16 val-
ues of Sobel filter responses distributed inside an 11x11 pixel
window. The similarity measure for two features is the sum of
absolute differences of their descriptors. The computation of
this measure is sped up using SIMD instructions.

The matching of features follows the following order:
current left image to current right image, current right image
to previous right image, previous right image to previous
left image and previous left image to current right image.

1See http://www.ros.org/wiki/viso2_ros and http://www.ros.org/wiki/fovis_
ros for source code and documentation.

If the target feature of the last matching is the same as the
source feature of the first matching the match is classified as
valid. Apart from the aforementioned search range limitation,
possibly wrong matches are discarded using a neighborhood
support heuristic. From the obtained matches a subset is drawn
that is distributed over the whole image by dividing the image
in a grid of subimages and drawing a fixed maximum number
of matches from each cell.

Subsequently, 3D coordinates of the features in the pre-
vious image pair are calculated through triangulation. Gauss-
Newton minimization of the reprojection error of these 3D
points onto the current left and right images leads to the
rigid transformation from the previous image’s camera pose
to the current camera pose. The motion estimation procedure
is wrapped in a RANSAC [21] scheme to get rid of outliers.

B. fovis

fovis uses the FAST feature detector [6], [22] with an adap-
tive threshold on three Gaussian pyramid levels. The number
of features is reduced taking the best features of each cell of a
regular grid. The feature descriptor is an intensity normalized
9x9 pixel window centered on the feature location. The bottom
right pixel is left out to get better memory alignment for rapid
similarity measure computation using SIMD instructions.

Features are matched from the current left to the left
reference frame. The right frames are used for disparity lookup
only. Inlier/outlier classification is done using the concept of
a maximally consistent clique, i.e. matches are sequentially
added while the relation of euclidean distance to other matched
features does not change from the reference to the current
frames. For motion estimation, the reprojection error from 3D
positions of current features to the reference left frame as well
as from 3D positions of the reference features to the current
left frame is minimized using the Gauss-Newton method. If
the reprojection error of a certain match exceeds a threshold,
that match is discarded. The motion estimate is refined using
only those matches that survived this process.

Apart from the used feature detectors, an important differ-
ence of the two algorithms is the selection of the reference
frame for motion computation. libviso2 does not have auto-
matic selection of the reference frame and replaces it in each
iteration. In contrast, fovis only replaces the reference frame
if the number of inlier matches drops below a given threshold.
Its purpose is to reduce the drift that could arise from sensor
noise or bad calibration.

Both algorithms use feature descriptors that are not invari-
ant to rotation or scale changes. The frequency of both algo-
rithms has therefore to be high to cope with these movements.

IV. EXPERIMENTS

The experiments carried out use data gathered during the
TRIDENT project2 both in laboratory and harbour conditions
using the Girona500 AUV [23] as vehicle (Figure 1). This
vehicle has been designed by the Universitat de Girona and,
without change, does not have stereo vision system, but allows
the mounting of external systems on the bottom payload area.

2See http://www.irs.uji.es/trident/



Table I. COMPARISON OF THE TWO VISUAL ODOMETRY ALGORITHMS.

libviso2 fovis
Feature Scales 1 (reduced) level 3 gaussian pyramid levels

Feature Detection 5x5 blob and corner masks FAST with adaptive threshold

Initial Feature Reduction non-minimum-/non-maximum-suppression grid filter

Descriptor 16 Sobel filter responses 9x9 pixel window, intensity normalized

Subpixel Position Refinement parabolic fitting ESM

Matching Search Space Limitation two-step candidate reduction initial rotation estimate (Mei et al.) + search window

Matching Images circlular match left to right & left to previous left

Match Reduction grid filter none

Initial Outlier Rejection 2D neighborhood support none

Outlier Classification iteratively during motion estimation (RANSAC) maximally consistent clique

Minimized Reprojection Error previous 3D to current left and right image previous 3D to current left and current 3D to previous left image

Motion Filtering Kalman none (external)

Keyframe Selection none (external) automatic, based on number of matches

Figure 1. The Girona 500 AUV during laboratory and harbour experiments.
The white box in the front of the lower part is the stereo camera. The cylinder
right next to it contains the image processing unit.

This feature is used to attach the stereo vision unit developed
by our group in the Universitat de les Illes Balears. This unit
is called Fugu-Flexible which is basically composed of two
stereo rigs and a computer system. Each module, hardware
and cameras, is placed in an independent sealed case rated
for up to 100 meters depth. The main Fugu-Flexible hardware
specifications are:

∙ Two stereo cameras, one with a focal distance
of 3.8mm (66∘HFOV), and the other with 2.5mm
(97∘HFOV).

∙ A motherboard with an Intel i5 processor at 2.33GHz
with 4 cores.

∙ A PCI express card with two firewire ports to connect
the cameras to the motherboard.

Figure 2 shows some example images from the laboratory
and harbour environments. Ground truth for the laboratory
experiment is extracted by matching each image that has been
captured against the known image that is printed on the floor
of the test pool. As the size of the print is known, 6 DOF
camera poses can be computed minimizing reprojection errors
of matched features.

For the harbour experiment, the determination of ground
truth is more difficult, as no external sensors have been used
and positions of natural landmarks are not known. One aim
of the project was the offline construction of a consistent
seabed mosaic (see [24]). The computation of this mosaic
includes global optimization of all camera poses. The resulting
trajectory does not suffer from drift and is therefore chosen as

Figure 2. Sample images from the sequences during the laboratory (top row)
and harbour (bottom row) experiments.

Table II. EXPERIMENT DETAILS

CIRS Lab Roses Harbour
Total Trajectory Length (m) 47.54 90.48
Average Velocity (m/s) 0.15 0.12
Average Altitude (m) 1.59 1.34
Average Depth (m) 2.98 1.46

our ground truth reference.

In the harbour experiment, a DVL and an AHRS have been
used as navigation sensors to let the vehicle follow a previously
defined trajectory autonomously. In the laboratory experiments,
the vehicle has been remotely controlled by a human operator.
Table II summarizes the characteristics of the experiments.

The AUV was configured to not control pitch, roll and
sway. Motions in these degrees of freedom are therefore rather
small and we cannot compute reasonable error measures for
them.

A. Evaluation Method

As visual odometry suffers from drift, comparing whole
trajectories, i.e. poses in time directly to ground truth is not
very meaningful. Instead, we subdivide the paths into small
pieces and compare velocities for each piece to the matching
piece in our ground truth. This method is widely used in visual
odometry evaluation [25] and depends clearly on the size of
the sub-paths. However, since it is used to compare different
visual odometers, the important thing here is to be coherent
with the size of the pieces for all algorithms.



Table III. COMPARISON OF TRANSLATIONAL AND ROTATIONAL
ERRORS FOR LABORATORY AND HARBOUR EXPERIMENTS.

Environment Algorithm Translation Rotation

Laboratory
libviso2 0.978% 0.001739 [deg/m]
fovis 0.601% 0.006311 [deg/m]

Harbour
libviso2 0.833% 0.007913 [deg/m]
fovis 1.049% 0.003122 [deg/m]

B. Results

A comparison of linear velocity estimates to ground truth
can be found in Figure 3 for libviso2 and 4 for fovis. Upper
graphics refer to experiments in laboratory while the bottom
ones refer to harbour tests. Linear velocity is shown on the left
for both odometry estimation (blue) and ground truth (green),
together with its error drawn in red. Finally, on right plot, a
comparison of angular velocity for odometry estimation (blue)
and ground truth (green) is also presented. No differences can
be highlighted comparing angular velocity error for libviso2
and fovis in both the laboratory and harbour conditions.
However, when linear velocities are examined, fovis presents
better performance when executed in laboratory environment.

These results are summarized in Table III for laboratory
and harbour experiments. The translation column indicates the
mean average translation error that suffers the odometer in
percent, which is the number of meters diverted for every 100
meters of trajectory. Furthermore, the rotation column indicates
how many degrees the odometer is deviated per meter, relative
to ground truth.

The results presented in Table III demonstrates that libviso2
has similar mean translation error for both environments, but
differs significantly in rotation error. As can be seen in Table
IV, the mean number of inliers per frame is larger in the
laboratory than in the harbour (where environmental conditions
are worse). It means libviso2 presents a strong performance in
the linear motion estimation even when the number of inliers
is small.

Results for the fovis odometer are substantially different in
translation error comparing laboratory and harbour conditions.
By examining the number of inliers of the two odometers
shown in Table IV it is easy to see that fovis is significantly
less robust in harbour environments where the quality of
the images is lower and the seabed has a poor texture (see
Figure 2). Furthermore, unlike libviso2, fovis presents a better
performance when estimating the angular motion in harbour
conditions. This improvement over libviso2 is due to the
method of keyframe selection based on the number of matches
introduced by fovis. This technique has a positive impact when
the vehicle experiences pure rotational movements, as it can
keep the reference frame for longer and therefore reduce the
drift significantly.

The runtime column shown in Table IV indicates the mean
algorithm execution time per frame. For both libviso2 and fovis
odometers the runtime is clearly related to the number of inliers
to be processed by the motion estimation algorithm, thus large
number of inliers increases processing time.

Table IV. COMPARISON OF NUMBER OF INLIERS AND RUNTIME FOR
LABORATORY AND HARBOUR EXPERIMENTS.

Environment Algorithm Num. inliers Runtime

Laboratory
libviso2 366 0.106 [s]
fovis 500 0.246 [s]

Harbour
libviso2 137 0.086 [s]
fovis 64 0.058 [s]

V. CONCLUSION

Visual odometry is a method for motion estimation that
gives good results using a low-cost sensor in reasonable con-
ditions. We presented open source wrappers for two publicly
available visual odometry algorithms to the community that
ease the integration into existing robotic platforms. We have
shown that these algorithms can be used in an underwater en-
vironment if both the visibility conditions and the appearance
of the sea floor result in images with sufficient texture. Like
all incremental motion estimation methods, visual odometry
suffers from drift and has to be combined with other sensors
to get precise long-term position estimates. Apart from that,
failure might occur in situations with insufficient texture,
motion blur, or bad visibility.

Despite the mentioned drawbacks we have shown that
a visual odometer using a downward looking stereo camera
can be a valuable sensor for underwater vehicles giving good
estimates for linear movement and rotation about the vehicle’s
vertical axis. Comparing the performance of libviso2 and fovis
in underwater environments, libviso2 is preferable when the
vehicle operates in real marine waters with critical lighting
conditions and slightly textured seabed. The robustness of this
algorithm against poor visibility contrasts with the fact of
having a worse rotation estimation when compared with fovis
in harbour experiments.

A possible improvement for the angular motion estimation
in libviso2 could be the implementation of the reference frame
selection technique developed by fovis algorithm. This method
could substantially reduce the drift in both linear and angular
estimates.
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Figure 3. Linear (a) and angular (b) velocity estimates compared to ground truth for the laboratory (top) and the harbour (bottom) experiments for libviso2.
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Figure 4. Linear (a) and angular (b) velocity estimates compared to ground truth for the laboratory (top) and the harbour (bottom) experiments for fovis.
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