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Abstract

This paper proposes a straightforward but e ective approac h to per-
form visual SLAM, especially suitable for underwater vehic les. One of the
most important steps in this procedure is the image registra tion method,
since it reinforces the data association and thus makes it possible to close
loops reliably. Since the traditional EKF-SLAM approaches are usually
costly in terms of running time, the approach presented in th is paper
strengthens this method by adopting a trajectory-based schema that re-
duces the computational requirements. The pose of the vehide is esti-
mated using an Extended Kalman Filter (EKF), which predicts the vehi-
cle motion by means of a visual odometer and corrects these pedictions
using the data associations (loop closures) between the curent frame and
the previous ones. Since the use of standard EKFs entail linearization er-
rors that can distort the vehicle pose estimations, the appr oach was also
tested using an Iterated Kalman Filter (IEKF) instead. The approach
has been tested on real underwater vehicles, in controlled genarios and in
shallow sea waters. The approach has shown an excellent pedrmance in
diverse experiments, with very limited errors of the estima ted trajectory.

1 INTRODUCTION

1.1 Problem Statement

Thanks to recent technological advances, the sub-aquatic worlds more ac-
cessible for exploration, scienti c research and industrial activity. At present,
Remotely Operated Vehicles(ROVs) are commonly used in a variety of appli-
cations, such as surveying, scienti c sampling, rescue operationsr industrial
infrastructure inspection and maintenance.

Trying to overcome some of the intrinsic limitations of ROVs, such as heir
limited operative range or the need for a support vesselAutonomous Under-
water Vehicles (AUVs) are progressively being introduced, especially in highly



repetitive, long or hazardous missions. Because they are untetihed and self-
powered, AUVs o er a signi cant independence from support shipsand weather
conditions. This can reduce notably the operational costs and thecomplexity
of human and material resources, comparing to operations condued with teth-
ered ROVs.

Localization, which consists in determining and keeping track of the obot
location in the environment, becomes a crucial issue in AUVs. The misen
success depends, to a great extent, on the precision of the estated vehicle
pose. Errors in orientation generate important drifts on the computed robot
trajectory thus hindering the accomplishment of the programmedmission.

There are several ways to estimate the robot motion in underwatevehicles,
for instance, (a) using inertial sensors, such as gyroscopes amacelerometers,
(b) with odometry computed via acoustic sensors (sonars or DVLf or cam-
eras, and, (c) combining inertial sensors and odometers, fusingllahe sensorial
data by means of navigation Iters, such as EKFs or particle lters, to smooth
trajectories and errors ([15], [16], [13]).

Nevertheless, all these measurements are, to a greater or lesggtent, prone
to drift, being necessary to adjust periodically the pose of the veltle to reduce,
as far as possible, the accumulated error. To this end, the so calleSimultaneous
Localization And Mapping (SLAM) [7] technigues constitute the most common
and successful approach to perform precise localization. The praipal aim of
SLAM is the reduction of errors present in odometry by localizing therobot with
respect to landmarks or signi cant points of the environment. This localization
process is reinforced by recognizing regions previously visited by érobot in a
process known as loop closing. Landmarks are incorporated to an énemental
map and their location is re ned simultaneously with the vehicle pose.

In most of the sub-aquatic environments, the process of sensinfje environ-
ment becomes particularly complex. When light propagates in waterjt interacts
with molecules and dissolved particulate matter. As a consequencehe light
traveling distance underwater is dramatically reduced when compaed to air.
Contrarily, sound propagates faster and it is able to travel largerdistances in
water than in air. Consequently, acoustic sensors have been tratibnally con-
sidered the best choice for AUVs [18, 24, 19, 5]. However, acoussensors have
low spatial and temporal resolutions compared to optical sensotsThis means
that, in general, they capture less details and scan at lower frequeies than
modern cameras with high resolutions and fast frame rates. Thusalthough the
quality of images in sub-aquatic environments is strongly limited by the water
and by the illumination conditions, in certain situations optical cameras o er
more advantages than acoustic sensors [4]. Visual platforms areohreally ap-
propriate in the water column where it can be di cult to see the seabed or other
reference points. However, for surveying or intervention appliciions, where the
vehicle has to navigate relatively close to the sea bottom or it has to loate
itself near the object to be manipulated, the use of cameras can dainly be a
convenient option.

Lately, researchers are focusing their e orts on the enhancermé of visual
SLAM techniques (the use of cameras to perform SLAM) to be appliable in
sub-aquatic environments and to be operative online, in missions catucted by
real underwater vehicles.



1.2 Related Work

Visual SLAM in natural sub-aquatic scenarios has several inargully di culties
not present in land: the light attenuation, ickering, scattering, t he special
nature of underwater environments with no man made structuredframeworks,
and the subsequent di culty to de ne, nd and track, reliable feat ures or natural
landmarks that can be used to match scenes visualized from di ererviewpoints
and time instants.

The key of a successful underwater visual SLAM lies in the data asiation
procedure to detect loop closings. This data association has to beobust un-
der di erent viewpoints and illumination conditions. In the context of visual
SLAM, the data association is also known as image registration. The imge
registration is in charge of recognizing scenes visualized by the robérom dif-
ferent viewpoints, in frames that have certain overlapping, and tocompute the
camera relative displacement between both views.

The literature is scarce in e cient visual SLAM solutions specially addr essed
to underwater and tested in eld robotic systems. Most of these slutions partic-
ularize the approach commonly known as EKF-SLAM [7], correcting tre dead-
reckoning data with the results of an image registration process in &xtended
Kalman Filter (EKF) context. These systems normally incorporate newly ob-
served visual landmarks in a state vector that contains also the vkicle pose and
velocity. One of the positive issues of this approach is the continuasicorrection
of the vehicle and all the landmark poses contained in the lter at evey itera-
tion, which involves a simultaneous re nement of the vehicle trajecobry and of
the whole map. As a consequence, the Iter running time increases ith the
size of the map, making the system not applicable on-line for long rowds.

The same idea is used to locate an AUV equipped with a stereo camera
with respect to a ship hull in [21]. In this work, 3D landmarks correspading
to points on the hull are computed from the stereo images. Similarly b [7], the
Iter state contains the vehicle pose and the observed landmarks.

Salvi et al [20] proposed a new method for underwater SLAM wherghe
vector state is composed of the pose and the velocity of the vehiclgiven by
a DVL, and the 3D pose of the successive detected landmarks comfed with
a stereo camera. The image registration process is used for the dr update
and it is obtained by comparing new 3D landmarks with all those that are
stored in the Iter state. Previously to the lter execution, images are pre-
processed to enhance their contrast and increase their brightrss. proposed
a new method for underwater SLAM where the vector state is compsed of
the pose and the velocity of the vehicle given by a DVL, and the 3D pos of
the successive detected landmarks computed with a stereo canzer The image
registration process is used for the lter update and it is obtained by comparing
new 3D landmarks with all those that are stored in the lter state. P reviously
to the lter execution, images are pre-processed to enhance tliecontrast and
increase their brightness.

Another concern for researchers has been how to make their appaches ro-
bust or immune to linearization errors inherent to EKF-based methads. To solve
this problem, Aulinas et al implemented a submapping EKF-SLAM approach
and tested it on an AUV, with highly convincing results [1].

A di erent alternative was proposed by Eustice et al with the Delayed State
Filtering [10] approach: the state vector only contains the current vehiclgose,



its linear velocity, acceleration and the angular rate. The success&poses of the
vehicle are predicted by dead reckoning and incorporated to the ler state. Im-
ages are taken at every position. Imagery overlapping provides & constraints
and image registration, which are used to de ne the observation faction of
the update stage. Since landmarks are not included in the Iter stae vector,
the computational resources needed for every iteration are minothan in other
approaches. However, the image registration process is still cdgtin time.

Other authors have focused the underwater visual SLAM problemfrom the
graph-optimization or bundle adjustment point of view. Using these methods,
the successive odometric poses of the vehicle, and, in some cadés, position
of landmarks constitute the subsequent nodes of a graph linked bgdges, which
usually represent the distance from node to node. When a loop is cled, the
complete graph is optimized, which means a complete graph adjustnm entail-
ing nodes (their labels) and distances between them [3]. This approaceludes
the linearization errors, but graphs grow hugely with the amount of landmarks
incorporated to the map thus increasing the computational resouces needed.

Accordingly, this study presents a vision-based approach to pedrm under-
water SLAM to accurately estimate the pose of an AUV. The proposl of this
work is to integrate information coming from a monocular bottom-looking visual
system, an altimeter, and a dead reckoning sensor.

While our research is close to that presented in [10], several distinins
with this inspiring work should be emphasised, mainly addressed to deease
the running time and the errors in the EKF results.

To reduce the error associated to the Kalman ltering process, weuse a
trajectory-based schema that includes in the Iter state the suaessive vehicle
displacements and rotations, instead of referring them to the glohl frame [6, 5].

Furthermore, the optimization of time and resources in the image rgistra-
tion process is tackled twofold. First, a unique and simple RANSAC-baed
algorithm lters out outlier correspondences and simultaneously canputes the
relative roto-translation between the evaluated frames. Secondwe execute this
image registration process only between images corresponding todations that
are within a xed search radius, skipping the overlapping veri cation process
proposed in [10]. Results exposed in forthcoming sections are aimed tvalidate
the bene ts of these design decisions.

The main advantages and contributions of our proposal are sumnyized
next:

1. It is simple and fast, and requires less computational resourceakan pre-
vious solutions. The state vector does not include the landmarks, & the
complexity of the image registration process is reduced without lodsg
robustness and accuracy in the loop closing determination proceda.

2. Detecting loop closings properly is extremely important as they povide
valuable information to the SLAM process. Since the proposal presnted
here uses external altitude information, it is not constrained to costant
altitude missions. In this way, the proposed image registration mettod is
able to deal with translation, rotation and scale changes.

3. Our approach to SLAM adopts a Trajectory Based schema [6], in order to
reduce estimation errors and computational complexity.



4. Finally, the approach has been assessed with an EKF and with atterated
Extended Kalman Filter (IEKF) [2] to evaluate the convenience of using
IEKFs instead of EKFs to reduce the linearization errors.

The system implementation has been tested on real underwater twts in
aquatic environments, giving conclusive results.

The paper is structured as follows: section 2 explains the data ass@tion
and image registration procedure used to detect loop closings; san 3 details
the design and the structure of the EKF used to perform the visud SLAM,;
section 4 shows extensive experimentation that validates our apmach and,
nally, section 5 concludes the paper and outlines some forthcomingvork.

2 IMAGE REGISTRATION

In SLAM, data association refers to the registration of current snsory input
to previously gathered data. This process permits to identify pars of the en-
vironment already visited by the robot. Registering successfully soh pieces
of information is essential to perform loop closures, which impose seral pose
constraints that increase accuracy in the incremental localizationprocess.

When using vision sensors, data association is tightly related to imageeg-
istration. Image registration consists in overlaying several image®f the same
scene or part of the scene, taken at di erent times, and from di erent view
points. The goal of the image registration process is to verify if thee exists
total or partial frame coincidence, and in case there is, to measur the relative
motion of the camera between the two points at which both frames were taken.

Image registration usually relies on the detection and matching of imge fea-
tures. If two frames represent, totally or partially, the same scene, features corre-
sponding to coincident parts of that scene, should present, to aertain extend,
similar descriptors. This statement depends on multiple conditions, nainly:
changes on view point, scale or position, illumination conditions, brighhess or
contrast.

In consequence, applying special attention to the image registrédn process
is fundamental to get accurate pose estimates underwater.

Given two images, our proposal to data association starts by seahing their
features and descriptors according tdScale Invariant Feature Transform (SIFT)
[17]. Although other feature detectors and matchers can also besed, SIFT has
been choosen for the rst set of experiments because its invaria® to changes
on translation, rotation, scale and to illumination conditions. Furthe rmore,
they provide su cient number of putative correspondences for loop closing,
increasing the robustness of the registration process [10].

Due to the nature of the aquatic environments where our robots ave to
operate, an image preprocessing algorithm is recommended to enmze contrast
and thus to improve the feature detection and matching. Here, imges are
Itered in the frequency domain using a Butterworth low pass lIter. See in
gure 1 two examples of underwater scenes, un ltered ((a),(c)) and ltered
with the low pass lter ((b),(d)). The image of gure 1-(a) was take n in a pool
and the one on gure 1-(c) was taken in the sea. Section 4 shows amparison
of the SLAM results with and without Itering.

Feature coordinates, which are found in pixels, are then converigto meters,
assuming a locally at oor and that the distance to the bottom and t he camera



(b) (d)

Figure 1: Image processing previous to the image registration. (a) and (c) original
images, (b) and (d) ltered images

(b)

Figure 2: Feature matching using underwater images. Yellow lines represent corre-
spondences between features. (a) Overlapping images (b) Na overlapping images.

focal length are known. The former can be measured with an altimedr and the
latter through a camera calibration process. Thanks to this, chamges on the
vehicle altitude which are responsible for scale changes between imegy can be
properly taken into account.

The next step towards the image registration is to compute featue matchings
between the two images currently involved. In underwater scendos it is very
likely to obtain wrong correspondences due to problems inherent tehis media,
for instance: bad illumination, blur, scatter, untextured sea oor or excessive
texture in the bottom, or the fact that, in certain scenes most of the gathered
images look similar.

Figure 2-a exempli es a common situation where there exists overlaping
between two images. The majority of the features are matched aoectly, but
there are still some wrong associations. Although they represend small per-
centage of the total number of matchings, these outliers distortthe registration
result. Also, SIFT, as well as many other feature matchers, are likly to de-
tect matchings even between images corresponding to non overlpjng areas,
as illustrated in Figure 2-b. Wrong image associations can cause wrgnloop
closings and, as a consequence, unrecoverable errors in the SLAWbcess.

In order to nd a model where inliers t and outliers are discarded, a method
based on RANSAC([11]) has been used for image registration. The keaspect
of the data association is to determine whether two images overlapranot and,
if they do, compute the roto-translation that better explains the correct overlay
between them. Our proposal is based on the following premise: cagct match-
ings tend to propose a single roto-translation whilst incorrect matdings do not
and thus can be considered outliers.

Algorithm 1 shows the proposed procedure to compute the roto+anslation
between two underwater images using RANSAC. The symbol denotes the
compounding operator, as described in [22]. Roughly speaking, thislgorithm
randomly selects a subsetC of feature matchingsM and then computes the



Algorithm 1: RANSAC Image Registration

Input:
Fret : Features fp1;p2; ;Pm g in the rst image
Feur : Features fqr;qp; ;0n g in the second image

M : Matchings M = f(i;j )jvisual _matching (pi;qj)g
niter : Number of iterations to perform
N : Number of matchings to be randomly selected

: Maximum allowable error per matching

: Min. number of selected matches to consider a model

Output:

Xpest : The estimated roto-translation

"pest . The error of the estimated roto-translation
found : Boolean stating if reliable matching found

Algorithm:
begin
k 0;"pest 1 ;found false ;
while k <nlter do
C random selection of N items from M ;
;") nd _motion( Fret ; Feur ; C);
foreach (i;jj)2 (M C) do
if ki X gk< then
L | ¢ CIf (i)

if jCj> then
xX;") nd _motion( Fret ;Feur ;C);
if "<" pest then
| "best " Xbest X ;found  true;

k k+1;




Figure 3: RANSAC underwater image registration

roto-translation X =[x;y; ]' that better explains them, under the assumption
of a local planar motion. This assumption is perfectly acceptable in may
common surveying missions where AUVs have to move parallel to theembed
which is formed by sand, rocks, algae and with no relevant relief. In his case,
image points will not correspond exactly to coplanar points on the sene, but
in practice they can be considered to do, if the lens axis is perpenditar to
the bottom and height of the camera is much greater than the heigh of the
elements lying on the seabed.

Next, each of the non-selected matchings is tested to check if it $ X with
an acceptable error level. If so, it is selected too. Finally, if the numier of
selected matchingsjCj exceeds a certain threshold, the roto-translation that
better explains all the selected matchings is computed. After a xe&l number
of iterations, the best of the computed roto-translations consttutes the output
of the algorithm, and those correspondences that can not be retad through
this transformation with an acceptable error are considered to beoutliers. If
not enough matchings have been selected in any of the iterationshe algorithm
assumes that the two images do not overlap.

Compared to other methods where the camera motion between twamages
is computed after the ltering of outliers, this algorithm is able to disc riminate
outliers from inliers while it computes the camera transformation, sinplifying
and speeding up the whole process

The algorithm relies on the so calledfind _motion function, which takes a
set of feature matchingsC and their coordinates in the rst ( Fres ) and in the
second image F¢,r ) as inputs. This function provides the roto-translation X
that better explains the overlap between the images by searchinghe values of
X, Yy, and that minimize the sum of squared distances between the matchings
in C. More speci cally, the roto-translation X and the associated error' are
computed as follows:

X = argm)i(nf(x) Q)
o= 1(X) &)
being
f(x)= s x  qii? (3
8(ij )2C

wherep; and g are feature coordinates inFrer and Feyr respectively.

As an example, gure 3 shows the feature correspondences aftapplying
our proposal to the images previously shown in gure 2-a. It can beseen how
the wrong correspondences have been rejected and only thosgpéaining the



true motion remain. Our proposal has also been applied to the images gure
2-b, determining correctly the lack of overlap.

3 VISUAL SLAM

Being based on EKF-SLAM, our approach performs three main step: predic-
tion, state augmentation and update. During the prediction, the robot pose is
estimated by means of dead reckoning. The state augmentation is igharge of
storing the newly acquired information. Finally, the measurement sep updates
the prediction by associating the current image to previously storel data using
the data association algorithm described in section 2.

Our proposal is to perform the measurement update using only onevery N
frames and thus reducing the computational cost. Henceforththe used frame
will be called a keyframe and N will be referred to as the keyframe separation

In this study, similarly to the Trajectory-Based schema, the state vector X «
is de ned as follows:

Xie=DExgng; o T @
where eachx: L2 [ k) denotes a roto-translation from keyframe F; ;
to keyframe F; and x§ represents the initial robot pose relative to a world
xed coordinate frame. Let us assume, without loss of generalitythat x$ =
[0;0;0]". Thus, contrarily to other EKF Visual SLAM methods where the
visual features themselves are stored in the state vector, ourrpposal requires
much less computational resources because it stores only the nioh estimates
between keyframes.

The pose of the most recent keyframe with respect to the world »ed coordi-
nate frame can be computed ax? = x9 x3 x3 x$ 1. Also, the current
robot pose can be computed by composing the last keyframe posstanate and
the dead reckoning information.

3.1 Prediction and state augmentation

Under the assumption of static environment, the state vector des not change
during the EKF prediction step. However, it has to be augmented asfollows
when a new keyframe is available.

Xy =Xy 1?XE r )

whereX , is the predicted state vector andx; * is the motion estimate provided
by the dead reckoning sensors. From a practical point of view and irorder to
take advantage of the cameras, a visual odometer was used in thexperiments
conducted with the robot. Details are given further in section 4.

Keyframes are also stored outside the state vector.

3.2 The update step
3.2.1 Image Overlapping

In order to detect loop closings, every time a new keyframe is gathred, it could
be compared with all the previous ones using the image registrationlgorithm



Figure 4: Simple camera model to determine whether two images overlap or not. Given
two images gathered at times t; and t; and heights A; and A; using a camera with
an angle of vision of degrees, the observed regions have a diameter ofv; and w;
respectively. The term d denotes the distance between the image acquisition points.

proposed in section 2. However, performing such exhaustive testt every Iter
iteration can be extremely time consuming.

Therefore, computing the image registration process only on imagethat
really present an acceptable overlap and discarding those that do at, would
save time and resources and increase the accuracy in the matchingrocess.
Di erent approaches can be found in the literature concerning thisissue [8].

One way to evaluate the degree of overlapping between two images t®n-
sidering only pure geometrical issues. Similarly to [10], the camera eldf view
can be modeled as a cone. Under this assumption, the region of thea bottom
observed by the camera is a circle whose radius depends on the leredd of view
and the height at which the image is gathered.

Being the eld of view constant, the observed region basically depets on
the camera's height when the image is obtained. Accordingly, it can belecided
whether two images overlap or not using the height information and te position
at which they were gathered. This idea is illustrated in Figure 4.

It is easy to see that the diameter of the observed region is as follav

wg =2 Ay tan(E) (k=1j) (6)

Two images gathered at timest; and t; can overlap if the following condition
is satis ed:

B P O = (7)
where p; and p; denote the camera position at timest; and tj respectively, and
can be taken from the state vector.

In consequence, the image registration process between the cent image
and all the previous ones can be done only in case the condition of egtion 7
is ful lled.

As Equation 7 only depends on the positions and does not involve any iage
analysis, it is fast to compute.

Notice that dnax should be modi ed depending on the position uncertainties.
Although doing so will lead to a more accurate search radius, it would icrease
the computation time while the corrective e ects would be almost nedigible.
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If the robot is moving at a constant height A, then dnax is constant: dmax =
A, tan(3), and equation 7 can be reformulated as:

” pi P ” = o Omax (8)
whered; denotes a distance threshold, always smaller thad,x , used to decide
whether there is image overlapping or not.

Missions like ours, where robots have to survey an area for mappingbject
detection or intervention are quite common to be performed at costant height.
Although, in practice, controllers do not keep the vehicle at exactlythe same
altitude, for all practical purposes, it can be considered that they do, if the
mean altitude at which the camera is working is much higher than the alitude
oscillations and the mean height of the seabed relief. This is valid in all te
environments where our system has to operate, that is in encloseghvironments,
shallow waters or coastal areas where the sea bottom is formed tsmall rocks,
algae and sand.

Using a threshold forjjpi  p;jj simpli es the approach since, it permits to
do the registration of the current image directly with all the rest of images that
are closer thand;, thus avoiding the process of evaluating unlikely overlaps.
The challenging point now is to determine the optimum value ford; to get the
maximum number of loop closings with the minimum quantity of outliers in t he
majority of the compared image pairs. As this value depends on the ¢ight and
on the lens eld of view, it has to be adjusted in every mission and at eery
di erent environment. Section 4 details the experimental processfollowed to
nd the optimum value of di and a quanti cation of the saved computational
resources.

3.2.2 Data Associations as Measurement Vector

The data association procedure is in charge of evaluating if two imagecontain
elements of the same scene, although they have been taken fromedent points
of view. Scene coincidence normally entails coincidence in some set e&fures.
If two images overlap, the data association procedure provides amstimate of
the roto-translation between them.

This information is used to build our measurement vectorZy:

Ze=[(zH" @A @& ©)

where C1;C2; ;Cn denote the keyframes that match the current one and
zF' represents the motion estimated by our RANSAC based approachrém the
keyframe C; to the most recent one.

In EKF-SLAM, the observation function h; is in charge of telling how z<!
is expected to be according to the state vectoX, . Because of the state vector
format, this can be computed as follows:

hi(X )= x&, x82 = xk? (10)

Figure 5 illustrates the idea of a measuremengS' and the associated obser-
vation function h;.
The observation matrix H; is as follows:

11



Figure 5: lllustration of a measurement (thick red arrow) an d the corresponding ob-
servation function (dashed blue arrows)

2 3
@h @h @h @h
Hi = — =4=L —_— o 5 11
@X x,  @%, @ @, -
It is straightforward to see that
2 3
000

H, = & 000 _@h @h .. _@h Z (12)

T RP ek, e&l, Tekl,
Ci

By applying the chain rule, the non-zero terms of this Equation are & follows:

@h _ @h |
ek’, @&, 8% = A
i Ci+l j 1
@& Xczfrz _ X] (13)
@f X,
According to [9] this can be computed as follows:
@h . :
—  =4J1 fg; g higy  J2 fg X% 0ix (14)
ek, | |
k

whereJ; andJ, are the Jacobians of the composition of transformations [22]
and
g =X8ua xGhn oK (15)

At this point, the full observation function h and the full observation matrix
H considering all the matched keyframes are as follows:

2 3 2 3
hy Hi
nxo=§ ML =gt (16)
hn Hn

In few words, the observation function estimates the relative podion be-
tween two overlapping frames composing all the intermediate displaeaments
stored in the state vector in successive iterations. Also, the measement vec-
tor stores the relative position between the same overlapped fraes directly

12



obtained from the image registration algorithm. The di erence between both
values, which is the so called lter innovation, is the measure used byhe Kalman
Iter to improve the trajectory.

It is worth to emphasize that, for each pair of registered images, he whole
portion of the trajectory that connects them is explicitly correct ed, contrarily to
traditional methods that only explicitly correct the endpoints. For example, all
the robot motions depicted as dashed blue arrows in gure 5 will be coected
by the single measurememzlfi .

At this point, the standard EKF update equations, which basically depend
on the observation function and the measurement vector, can besed.

In order to reduce the linearization errors an IEKF [6] [2] can be usd instead
a classic EKF. Roughly speaking, the IEKF consists on iterating an EKF and
relinearizing the system at each iteration until convergence is achieed. When
the IEKF achieves convergence, the state vector in the last iterfion constitutes
the updated state X .

Section 4 shows and analyzes the results obtained by an implemenian of
this SLAM approach using an EKF and an IEKF.

4 EXPERIMENTAL RESULTS

In order to show the validity of our proposal, some image sequencewere
recorded in diverse conditions using a simulated and a real robot. Lar our
algorithms were run o -line on these recordings.

4.1 Experiments with a Simulated Environment

For the simulated experiments the underwater robot simulator UWSm [23] was
used. The environment where the simulated robot was deployed caisted of a
mosaic of a real sub-sea environment. Pictures shown in Figure 2 arexamples
of the imagery gathered by the simulated underwater camera.

The simulated mission consisted in performing a sweeping task. Durinthe
mission execution, images obtained from a monocular bottom lookingamera
were gathered. The robot pose was also recorded but solely used ground
truth. Altitude was constant in these simulations. The visual odometry was
computed in 2D through the homography that transforms image fatures inter
frames.

Tests were performed with two di erent keyframe separations, 5and 10
and using an IEKF instead of an EKF, to minimize linearization errors. With
the con guration of the simulated environment particularly set for these tests,
running the algorithm with a separation of 5 frames means, in the staight parts
of the trajectory, an overlap between consecutive keyframesf&5% of the image.
A separation of 10 frames leads to an overlap close to a 10%.

In order to test the robustness of our approach in front of the dift accu-
mulated in the visual odometry estimations, we added synthetic noie to the
odometry data. Five noise levels were tested for each keyframe garation. The
noise used is additive zero mean Gaussian and the covariance rangesm a
[ x; y; 1=[0;0;0] (noise level 1)to [ x; y; 1=[4 10 %4 10 %5 10 4
(noise level 5). The random noise was added to each visual odomgtestimate.
For each con guration (5 or 10 frames of separation between kdyames) and

13
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Figure 6: Errors in meters and 2 bound. (a) Using keyframe separation of 5. (b)
Using keyframe separation of 10.
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Figure 7: Example of the results obtained with noise level 2 and keyframe separation
10. GT and DR denote Ground Truth and Dead Reckoning. (a) Traj ectories (b)
Registered images

noise level, 100 trials have been performed in order to obtain signi cat statisti-

cal results. The resulting SLAM trajectories have been comparedo the ground
truth in order to quantitatively measure their error. The error of a SLAM tra-

jectory is computed as the mean distance between each of the SDAestimates
and the corresponding ground truth pose.

The results obtained when using a keyframe separation of 5 are st in
Figure 6-a and those obtained using a keyframe separation of 10 ardepicted
in Figure 6-b. It can be observed that the SLAM error is signi cantly below
the error in dead reckoning. It is clear that the di erences due to the keyframe
separation and the noise level are very small. Thus, these experimts suggest
that our proposal leads to pose estimates whose quality is nearly uelated to
the dead reckoning noise and to the keyframe separation, as longahe overlap
between consecutive keyframes is su cient.

Also, it is remarkable that the error covariances, which are shown a 2
bounds in Figure 6, are small and signi cantly lower than those of dea reck-
oning. That is, even if very di erent dead reckoning trajectories are used, the
SLAM results are very close to the ground truth.

Figure 7-a shows an example of the results obtained with noise level @d
a keyframe separation of 10. The gure shows the resulting SLAM tajectory,
which is almost identical to the ground truth. This is especially remarkable
taking into account that the starting dead reckoning data, as it can be seen, is
strongly disturbed by noise. Figure 7-b depicts the data associatios that have
been performed during the SLAM operation.
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Figure 8: The Fugu-C

4.2 Experiments in a Water Tank
4.2.1 Experimental Setup

Experiments in aquatic environments were conducted with the FuguC plat-
form (Figure 8). Fugu-C is a low-cost mini-AUV developed at the University
of the Balearic Islands. The sensor suit for this vehicle includes twotsreo rigs,
one looking forward and another one looking downward, a MEMS-basd Iner-
tial Measurement Unit and a pressure sensor. Even so, only the infmation
gathered by the down-looking camera was used for the experimestdescribed
below.

In order to feed our SLAM approach with odometric visual information, and
considering that the robot moves in 3D and its visual equipment, twoo -the-
shelf stereo visual odometers, LibViso2 [12] and Fovis [14] were a&ssed and
compared to be used in our experiments with the robot.

These two approaches were initially selected because of three mairasons:

1. Both systems are based on similar principles and are perfectly swble
for real-time stereo vision-based applications. They simplify the feture
detection and tracking process, accelerating the overall procede and min-
imizing the number of failures. Both algorithms have been tested in ral
platforms with high dynamics, such as cars and aerial vehicles.

2. A pure stereo-3D process is used to estimate motion in 6DOF.

3. The large amount of feature matchings makes it possible to deal ith high
resolution images, which is especially important for an stereo odomet.

By experimentally evaluating both odometers in undersea conditionswe ob-
served that LibViso2 translation errors were smaller than those offovis. Also,
both odometers provided rotation errors below 0.008=m [25]. As a consequence
of these assessment, LibViso2 was used as the visual odometer imese exper-
iments. The LibViso2 motion estimates in the x-y plane constitute our 2D
odometric data and the z position estimates provide the height infomation.
Furthermore, the pressure sensor was used to correct the dtiin z caused by
the odometry. Both odometric data and corrected height were povided at 10Hz.

It is worth to emphasize that we use stereo odometry due to the limied sen-
sor suit of our robot. Of course, the described methodology canédreproduced
using other odometers such as a DVL, if available.

The rst experiments with the robot were conducted in a pool 7 meters
long, 4 meters wide and 1.5 meters depth, whose bottom was coveravith a
printed digital image of a real seabed. In order to obtain a ground tuth in this
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Figure 9: Examples of images obtained during the experiments

(@) (b) ()

Figure 10: Ground truth and odometry corresponding to (a) r st mission, (b) second
mission and (c) third mission.

environment, each gathered image was registered to the whole ptied digital
image, which was previously known.

In this environment, three missions were executed. The rst missio con-
sisted in a single loop, the second mission was a sweeping trajectoryc the
third one was also a single loop. However, prior to the execution of té third
mission, several objects such as amphoras and rock replicas weteployed inside
the pool in order to simulate a realistic, non at, sea oor. Figure 9 shows some
examples of the imagery gathered during the third mission. Figures Q-a, 10-b
and 10-c show the ground truth and the visual odometry correspnding to the
rst, second and third missions, respectively. It can be observedhat, although
visual odometry properly approximates the overall trajectory, there is also a
signi cant drift error.

4.2.2 Tuning the Search Radius

As stated in Section 3.2.1, deciding which of the gathered images mayver-
lap with the current one is a crucial issue to save execution time. Altlough
RANSAC would reject two non-overlapping images, such rejection idime con-
suming. Thus, it is important to feed RANSAC only with images that are likely
to overlap and avoid unnecessary computation.

According to Equation 8, the selection of candidate overlapping imags can
be performed using a xed search radiusd; . In this way, given the current
image, only those whose estimated position is within the search radiuare sub-
sequently tested using RANSAC. As it was explained in Section 3.2.1, uisg a
constant value is reasonable in surveying missions as they tend to bexecuted
at a constant altitude.

In order to tune d;i for our experiments we computed the theoretical radius
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| Mission [ min | max [ mean | std |
1 2.33| 2.64| 2.51 | 0.03
2 402 | 447 | 4.27 | 0.05
3 2.06| 2.62| 2.36 | 0.1

Table 1: Minimum, maximum, mean and standard deviation of dmax for each of the
three missions. Data are expressed in meters.

@) (b) ()

Figure 11: Count of RANSAC failures and successes dependingon the search radius
for (a) mission 1, (b) mission 2 and (c) mission 3.

dmax Of Equation 7 for every image pair that could be matched during the
SLAM execution. This data was recorded for each of the three af@mentioned
missions. To do so the height information provided by the visual odoneter and
the pressure sensor was used.

Table 1 summarizes the results by showing the minimum and maximum
values ofdmax , as well as the mean and the standard deviation. Since in those
experiments the robot navigated at an altitude with low variations, dmax Vvalues
computed for all the possible image pairs are always in a very narrowange,
re ected in a small standard deviation. The di erences between misions are
due to the di erences in altitude between them.

According to this data, a good criteria to select a xed search radis is to
use the mean values. Thus, a rst approximation is to setds = 2:51m in the
rst mission, di = 4:27m in the second mission andd; = 2:36m in the third
one. However, this criteria tends to be too optimistic. In particular, even if two
images actually overlap, the overlapping region may be too small or prduce
too few features for RANSAC to match them properly.

In order to obtain a more adequate value ford; , we proceeded as follows.
First, the three missions were performed using our SLAM proposalvith the
obtained mean values asl; . Thus, the mean values constitute our initial guess.
Every time RANSAC was executed, the estimated distance betweerthe two
compared images was recorded and labeled assaccessor a failure depending
on the RANSAC output: if RANSAC was able to nd a roto-translation between
the images we considered it a success whilst those cases in which RANScould
not nd such roto-translation were considered a failure. Failures ae, precisely,
the situations we want to avoid as they correspond to non overlapmg images
rejected by RANSAC, which is time consuming.

Using this information, the amount of successes and failures can lmmputed
as a function of the distance between images. Also, it is clear that ta number of
failures and successes that will appear if a certain search radius iglgcted is the
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| Mission | True positive | False positive |

1 64.03% 14.89%
2 77.13% 9.76%
3 56.49% 18%

Table 2: True and false positives for the three mission when using the proposed search
radius ds .

| Mission | df | dmax | Improvement |
1 186.58 s| 726.84 s 74.33%
2 416.35 s| 2243.74 s 81.44%
3 143.54 s| 479.57 s 70.07%

Table 3: Execution times using the proposed search radius ;) and the theoretical
one (dmax )-

sum of failures and successes corresponding to all the distancesvlr or equal
to the selected radius. Figure 11-a, 11-b and 11-c summarize this fiormation
for the rst, second and third mission respectively. It can be obseved how
the number of failures increases with the search radius whilst the nonber of
successes seems to stabilize from a certain search radius onward.

Our goal is to select a search radius for each mission so that the numer
of failures is reduced whilst the number of successes is as large asspible.
According to the obtained data, the optimal search radius is 0.6m duing the
rst mission and 0.7m during the second and third missions. Figure 11 kows
clearly how these values correspond to the region where the numbef failures
is very low and the number of successes has reached a highly accaipie local
maximum. Thus, henceforth during the rst mission only those images whose
distance to the current one is belowd; = 0:6m will be analyzed by RANSAC.
The same criteria will be applied during the second and third missions usg
di =0:7m in both cases.

In order to evaluate the selected values fod; , we measured the number of
true and false positives they produce. In this context, a true pogive appears
when a couple of images that RANSAC would not be able to match is discaled
because of the search radius prior to the RANSAC execution. A faks positive
corresponds to the situation in which two images that RANSAC actudly could
match are discarded because of the search radius. In other wasda true positive
appears when discarding a RANSAC fail and a false positive appears hven
discarding a RANSAC success. Table 2 summarizes the results.

For example, in the second mission the number of RANSAC executionss
reduced a 86.89% (743 + 9:76). That is, for both, true and false positives,
RANSAC is not executed, and only a 9.76% correspond to discarded iages
that should have been registered.

Table 3 shows the improvements in the execution time when performig
SLAM using the proposed search radiugli compared with the execution time
when using the purely geometrical criteriadmax . The time was computed ex-
ecuting a Matlab implementation on an Intel Centrino 2 at 2.4GHz, with only
one CPU kernel used, and running Ubuntu 10.04. The separation beeen
keyframes was 30 frames.
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It can be seen that the reduction in the running time is related to the per-
centage of skipped RANSAC executions shown in table 2.

It should be noticed that, although the process has been tested ging a
non optimized codi cation running on a regular computer, the execuion time
obtained for each mission, whend; is used, is close (slightly above) to the
real mission duration. For instance, the navigation time for mission 1was 169
seconds while the whole SLAM process took 186.58 seconds. Thudtaining
an on-line version is straightforward.

Although the experimental method to tune the search radius reqires a train-
ing work each time the robot is deployed in an unknown environment, itis
worthwhile performing the proposed approach taking into accountthe huge re-
duction in computation time.

Further experiments will analyze the accuracy of the pose estimais based
on the d; values obtained here.

4.2.3 Quantitative evaluation

As stated in section 4.2.1, three di erent missions have been condted in a
water tank. The rst mission consisted in a single loop, the second oe consisted
in a sweeping trajectory and the third mission consisted in a single loopver a
non- at terrain. Both ground truth and visual odometry have be en shown in
Figure 10. In the three cases, a signi cant odometric error appess.

In order to provide a complete evaluation, the goal was to comparehe
quality of every main component of the present approach.

In our implementation, all the following combinations were easily con g-
urable and interchangeable, allowing the achievement of the dieren results
exposed later.

First, for each of the three missions, our approach has been testl using
both, IEKF and EKF, in the update step. For each Iter update met hod, the
system has been tested using both, the images as they are provididy the
camera and lItering them using a Butterworth low pass lter as suggested in
section 2. For each of these con gurations, three di erent keyfame separations
have been tested: 20 and 30 frames to show the SLAM behavior in galistic
operation and 90 frames to push the system to its limits.

In addition, for each Iter update, image treatment and keyframe separation,
the visual odometry was corrupted with 5 di erent levels of additive zero mean
Gaussian error. The covariance of this noise ranged from ; y; ]=1[0;0;0]
in noise level 1to [ x; y; ]=[4 10 ®°/4 10 >4 10 4] in noise level 5. For
each of these cases, 50 trials were executed. This leads to a totl 9000 trials.

The error of each SLAM estimate in each trial was computed by compring
it to the corresponding ground truth pose. The error of each trid is de ned as
the mean error of the corresponding SLAM estimates. This error \as nally
divided by the true trajectory length of the corresponding mission provided by
the ground truth. In this way, the error units are meters of error per traveled
meter. Thanks to this, the errors obtained for each of the threemissions can be
compared and also joined in order to obtain an overall measure of ality.

The rst relevant observed results is that, in all cases, the statigical di er-
ences between keyframe separations of 20 and 30 are barely appiable. This
leads to a similar conclusion to the one obtained under simulation: as log as
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Figure 12: Mean and standard deviation of the errors corresponding to 30 and 90
keyframe separations for (a) raw images and EKF update, (b) r aw images and IEKF
update, (c) ltered images and EKF update and (d) Itered ima ges and IEKF update.
The standard deviation is depicted as 0.1 to provide a clear representation.

su cient overlap between consecutive images is provided, the qualy of our
proposal is scarcely in uenced by the keyframe separation.

The results comparing keyframe separations of 30 and 90 are shawvin Fig-
ure 12. All the aforedescribed test cases are shown. In all fourases it can be
seen a signi cant improvement when using 30 frames instead of 90. 180, as the
noise level increases, the error when using a separation of 30 frasibarely in-
creases, whilst using 90 frames leads to a growing error. Moreovehe standard
deviation of the error remains almost constant when using 30 frame between
SLAM executions, suggesting that even large di erences betweeimnitial esti-
mates, re ected by the large odometric covariance, lead to SLAM esults close
to the ground truth. Thus, using 30 frames instead of 90 providesa signi -
cant improvement in the pose estimates. Accordingly, hencefortithe keyframe
separation used during this quantitative evaluation will be 30 frames How-
ever, either using 30 or 90 frames, the SLAM estimates provide an iportant
improvement with respect to the stereo visual odometer.

Figure 12 also provides some insights regarding the other proposedLAM
components. For example, it can be observed in Figures 12-a and 42how the
IEKF update and the EKF update provide similar results. The same can be
observed when comparing Figures 12-c and 12-d. This suggestsatth at least in
these missions, the reduction of linearization errors thank's to theuse of IEKF
is nearly unobservable. Additionally, when comparing the results coresponding
to Itered and non ltered images it becomes clear that image Itering actually
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Figure 13: Comparison between pose errors using raw images @ad Itered images,
combined with an (a) EKF and (b) IEKF. The standard deviation is depicted as 0.1
to provide a clear representation.

| Noiselevel | 1 | 2 | 3 | 4 | 5 |
Visual odometry | 0.023 | 0.033 | 0.037 | 0.043 | 0.049
SLAM 0.008 | 0.009 | 0.01 | 0.011| 0.013

Improvement 62.8% | 71.0% | 72.1% | 74.0% | 74.0%

Table 4: Comparison of errors in visual odometry and SLAM usi ng a keyframe sepa-
ration of 30, EKF update and lItered images. Errors are expre ssed in meters of error
per travelled meter.

leads to an appreciable improvement in the accuracy of the pose astation.

Figure 13 compares explicitly the errors obtained using raw images ah |-
tered images combined with both, an EKF and an IEKF. It can be obseved
that Itering the images actually provides a signi cant improvement in terms
of error reduction with respect to the results obtained using raw inages. Com-
paring Figures 13-a and 13-b con rms that the use of an IEKF bardy changes
the results. Also, the error standard deviation corresponding totests conducted
with Itered images are smaller than those resulting from the use of on- ltered
images.

In summary, the option that combines important reductions in running time
with smallest errors in the pose estimates is using a keyframe sepdian of 30
frames, an EKF for the update step and a previous image ltering to enhance
image contrast.

Table 4 summarizes the results by comparing the initial guess provide by
the visual odometer and the SLAM output. The percentage of impovement is
also shown.

4.2.4 Qualitative evaluation

Figures 14, 15 and 16 show some representative examples of the/8W operation
under di erent conditions for the three missions. In all cases, EKFupdate and
Itered images were used.

Each gure shows, for its particular mission, the robot trajectory, estimated
composing the odometry and the SLAM pose estimates of executiegnwith 30
and 90 keyframes of separation with noise levels 1, 3 and 5. All plotshew the
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Figure 14: Example results corresponding to the rst missio n. The rst row compares
visual odometry and ground truth. Next rows correspond to di erent keyframe sep-
arations. First, second and third columns are related to noi se levels of 1, 3 and 5 ,
respectively.

positive image registrations in blue and also incorporate the ground nuth to
facilitate its comparison with the resulting path. The robot is included in the
representation as a triangle pointing towards the direction of motim.

It can be observed that, in the three missions, the nal results ae scarcely
in uenced by the initial conditions (i.e. the noise level).

4.3 Subsea Experiments

A nal experiment was conducted in real undersea conditions, in Pot de Vallde-
mossa (Mallorca, Spain). Being a real environment, the oor was na at, fully
covered by stones and algae, and the robot motion was in uencedybsmall cur-
rents and waves. Also, due to the small waves and the sun light, soenminor
ickering and shadows appeared in the images. Figure 17 shows sonegamples
of the imagery gathered during this experiment.

Ground truth was not available. However, the desired mission was t@erform
an approximately eight shaped trajectory with the second loop larger than the
rst one, and ending at the same starting point. One arti cial mark er was
placed on the seabed to assure that the endpoint of the trajecty corresponded
with the initial point. The search radius was experimentally tuned to 1.4m.

Figure 18-a shows the obtained results using a keyframe separatioof 20
frames. All plots show the positive image registrations in blue, the tajectory
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Figure 15: Example results corresponding to the second misgon. The rst row com-
pares visual odometry and ground truth. Next rows correspon d to di erent keyframe
separations. First, second and third columns are related to noise levels of 1, 3 and 5,
respectively.
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Figure 16: Example results corresponding to the third mission. The rst row com-
pares visual odometry and ground truth. Next rows correspon d to di erent keyframe
separations. First, second and third columns are related to noise levels of 1, 3 and 5,
respectively.

Figure 17: Some images gathered during the experiment in the sea, in Port de Vallde-
mossa. The image on the rst row- rst column corresponds to t he start of the tra-
jectory and the image on the third row-third column correspo nds to the end. The
trajectory was performed at a constant depth.
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Figure 18: Visual odometry (dashed red line) and SLAM (conti nuous black like) pose
estimates in Port de Valldemossa using keyframe separatiors of (a) 20 frames, (b) 30
frames and (c) 60 frames

computed from the visual odometry in red and the SLAM trajectory in black.
Notice how loop closings are found not only in the origin-end of the trgectory
but also along it. Again, the robot is represented as a triangle, with me of its
vertex pointing towards the direction of motion.

It can be observed how visual odometry presents an important dft in this
scenario. To the contrary, the SLAM estimates are much closer tahe real eight
shaped trajectory and, thanks to the several loop closings eshkdished during
the mission execution, the trajectory is considerably correct, eding at the same
point where it started.

The same applies to Figure 18-b and Figure 18-c, where the resultif
separations of 30 frames and 60 frames are shown.

5 CONCLUSION AND FUTURE WORK

This paper proposes a simple and practical approach to perform wterwater
visual SLAM, which improves the traditional EKF-SLAM by reducing b oth the
computational requirements and the linearization errors. Moreoer, the focus of
this paper is the image registration, which is used in the SLAM data assciation
step, making it possible to close loops robustly. Thanks to that, as lsown in
the experiments, the presented approach provides accurate ge estimates both
using a simulated robot and a real one, in controlled and in real undewrater
scenarios.

Nonetheless, the presented approach makes two assumptionsathlimit the
environments where the robot can be deployed. On the one hand, is assumed
that the camera is always pointing downwards. Although this may seen a hard
requirement, the experiments with the real robot show that the anall oscillations
in roll and pitch inherent to the robot motion are not signi cantly inu encing
the results of our approach. However, avoiding this requirement ione of our
future research lines. The simplest way to solve this problem is to uséhe roll
and pitch provided by the gyroscopes in the IMU and use this informaion to re-
project the feature coordinates. On the other hand, the propsal presented here
assumes a locally at oor. Some experiments included in this paper sbw that
real oceanic oors with no signi cant relief are well tolerated by the proposal
presented here. However, incoming work is currently focused onsing stereo
data to overcome this restriction and to perform 3D SLAM.
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