
A Proposal for Master Replica Control in the Flexible Time-Triggered
Replicated Star for Ethernet

David Gessner, Julián Proenza, Manuel Barranco
DMI, Universitat de les Illes Balears, Spain

davidges@gmail.com, {julian.proenza, manuel.barranco}@uib.es

Abstract

Traditionally, distributed embedded systems have been
designed using static approaches, i.e., assuming a static
environment. However, when the environment is dynamic
and imposes changing requirements on the system, flexible
approaches are needed. If in addition the system must op-
erate continuously, then high reliability is also required.

The necessary flexibility for real-time requirements
may be provided by Hard Real-Time Ethernet Switching
(HaRTES), which is an implementation of the master/multi-
slave Flexible Time Triggered (FTT) communication
paradigm. To help provide high reliability, the Flexi-
ble Time-Triggered Replicated Star (FTTRS) adds network
fault tolerance by duplicating the HaRTES switch and mas-
ter, as well as the network links. This paper discusses how
to enforce replica determinism for the masters in FTTRS by
ensuring that they show corresponding outputs both in the
time and value domain. Moreover, it suggests how to pro-
ceed in case replica determinism is lost despite all efforts.

1. Introduction
If a distributed embedded system (DES) must operate

continuously while satisfying unpredictable requirement
changes, then it must be both highly reliable and flexible.
In particular, this requires that the communication channel
of the DES satisfies those attributes.

The goal of the Flexible Time-Triggered Replicated Star
for Ethernet (FTTRS) [1] is to provide such a channel for
systems with changing real-time requirements. It is part of
the Fault Tolerance for Flexible Time-Triggered Ethernet-
based systems (FT4FTT) project, which aims to provide
high reliability and flexibility for all crucial parts of a DES.

FTTRS is based on Hard Real-Time Ethernet Switch-
ing (HaRTES) [2], a switched ethernet implementation
of the Flexible Time Triggered (FTT) communication
paradigm [3]. HaRTES implements a micro-segmented star
topology with the HaRTES switch as a central element.
The switch provides the most relevant functions of FTT by
embedding the FTT master, which polls multiple slaves by
means of a single periodic message called trigger message
(TM). The master thereby divides the communication time
into rounds of fixed duration, where each round is initi-
ated by a new TM transmission. These rounds are called
elementary cycles (ECs) and can be divided into a syn-

Switch 2
(master 2)

Switch 1
(master 1)

Slave A

Slave B

Slave C

slave link

interlinks

Figure 1. FTTRS architecture.

chronous window followed by an asynchronous window.
In each EC, the corresponding TM conveys a schedule
that tells the slaves which synchronous messages to trans-
mit during the EC’s synchronous window. The schedule
is calculated by the master according to a system require-
ments database (SRDB), which specifies the system’s real-
time requirements and whose contents may be changed by
slaves using SRDB update request messages.

The architecture of FTTRS has been presented re-
cently [1]. Figure 1 shows its main components. It is com-
prised of two HaRTES switches, each with its own master
and SRDB. The slaves are connected to both switches by
means of slave links and there are several redundant links
between the switches called interlinks.

The masters in FTTRS also provide a total order multi-
cast service [4] for the slaves, such that a synchronous mes-
sage is either delivered by all or none of its intended recipi-
ent slaves. This service is being developed within FT4FTT
under the name of Reliable Total Order Publish/Subscribe
(ReTOPS). It assumes a single HaRTES switch, but can be
integrated with a replicated channel. Also, it is based on a
4-phase commit protocol that relies on a reliable TM [4].
Slaves transmit synchronous messages as dictated by the
schedule conveyed by the TM. Receiving slaves then ac-
knowledge to the master the reception of each of those mes-
sages using dedicated acknowledgment messages (ACKs),
but without yet delivering the received message to the lo-
cally executing application. If the master receives ACKs
for a given message from all intended recipient slaves, it
instructs those slaves to deliver the message in the next EC.
This is done by adding a status vector field to the next EC’s
TM, which is a bit vector where each position corresponds
to a given synchronous message that was scheduled in the
previous EC. Only if such a position has a bit value of 1,

c©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. doi:10.1109/WFCS.2014.6837599



the slaves deliver the corresponding message.
To replicate the switches and their ReTOPS-enhanced

masters, FTTRS uses active and semi-active replica-
tion [5]. This means that both switches, and their masters,
are simultaneously providing the same service — either
as equals in the case of active replication or with one be-
ing distinguished from the other in the case of semi-active
replication. Either way, since the replicas provide the same
service and the slaves use both of them simultaneously, this
allows the failure of either switch to be tolerated without
interrupting the communication between slaves. However,
for this to work, it is essential that the replicas are replica
determinate [5]: starting from the same internal state, they
must have corresponding outputs. What this means de-
pends on the service provided by the replicated entities.

In the case of the masters, their service is threefold: they
dictate when each EC begins, what synchronous messages
should be transmitted in each EC by the slaves, and which
synchronous messages transmitted in an EC should be de-
livered by the slaves. Using this definition for the mas-
ter service, we can distinguish between output correspon-
dence in the time and value domain. In the time domain,
the masters are replica determinate if they transmit their
TMs quasi-simultaneously, TM by TM. In the value do-
main, they are replica determinate if they convey the same
schedule and status vector in the TMs. Enforcing replica
determinism is called replica control [5], and in the time
domain it is a time synchronization problem; whereas in
the value domain it is a consensus problem: a set of dis-
tributed entities (the masters) must agree on a value.

Regarding the switches, their service is to drop erro-
neous frames and forward correct ones, where the latter
is non-standard forwarding based on streams (see Sec-
tion 3.1). We consider switches to show corresponding out-
puts if, when they receive the same frame, they consistently
drop the frame or forward it to the same set of slaves. Both
tasks take into account the local master’s SRDB. Thus, for
the switches to be replica determinate, their masters need
consistent SRDBs. Since this is already necessary for mas-
ter replica control, having master replica determinism helps
achieve switch replica determinism.

This paper discusses replica control for the masters in
FTTRS. Section 2 addresses the time synchronization prob-
lem and Section 3 the consensus problem. Section 4 ex-
plains what to do in case replica determinism is lost despite
all efforts. Section 5 concludes the paper.

2. Elementary cycle synchronization
As stated previously, ReTOPS relies on a reliable TM.

To provide this reliability, in FTTRS each EC starts with a
trigger message (TM) window. During that window, each
master transmits k replicas of the TM on all links and inter-
links, where k is a function of the channel’s bit error rate.
If k is large enough, each slave with a link to a correct mas-
ter receives at least one TM replica with a sufficiently high
probability, even in the presence of transient link faults.

To synchronize the masters’ TM transmissions, we pro-

pose a semi-active replication mechanism that takes advan-
tage of the k TM replicas. We consider one of the masters
the leading master (or leader) and the other the follower
master. The leader transmits TMs according to its own in-
ternal clock and does not synchronize itself with anyone.
The transmissions occur on the slave links of the switch
where the leader is located, as well as on the interlinks.
The follower also transmits on its slave links and the in-
terlinks according to its own internal clock. However, in
contrast to the leader, in each EC it resynchronizes its TM
transmissions using the arrival times through the interlink
of the incoming TMs. Specifically, it uses the arrival time
of each received TM to decide whether it needs to defer or
advance the start of its next TM transmission in order to
be in sync with the leader. Note that this means that until
the follower successfully receives a TM from the leader, its
TM transmissions might be out of sync. However, if the EC
duration and the value of k are appropriately set, and the
clock drift is not excessive, there should be enough resyn-
chronizations for the deviation in TM transmission times
to be acceptable. Resynchronization can then only fail to
occur when the leader crashes or all interlinks are affected
by permanent faults. In case of a crash of the leader, this is
tolerated transparently since the follower’s clock will now
dictate the ECs. If it is due to several permanent failures
affecting all interlinks, then the network will be partitioned
in two. In that case, maintaining synchronization is impos-
sible. Nevertheless, we are working towards making the
slaves handle this situation.

3. Towards consensus among masters
With perfectly reliable components, consensus prob-

lems can be solved by an exchange of messages [6]. How-
ever, when components can suffer faults, guaranteeing con-
sensus may be impossible [6]. Nevertheless, solutions can
be found that reach consensus with a certain probability.

The specific solutions depend on the failure assump-
tions. For instance, and using graph theory terminology,
when only edge faults are considered, the problem can
be modeled as the coordinated attack problem [6] and its
probabilistic solutions may be adequate; or, if only vertex
failures are considered, and these can fail arbitrarily, the
problem might be modeled as the Byzantine generals prob-
lem [6] and its solutions might be applicable.

In FTTRS, both edge and vertex failures are considered,
where edges are the slave links and interlinks, and the ver-
tices are the slaves and the switches with their embedded
masters. Links are assumed to have omission failure se-
mantics, i.e., they might either transiently or permanently
fail to forward a message. This makes sense considering
that links cannot generate frames themselves and that both
the HaRTES switches and the slaves drop corrupted frames.
Regarding the masters and the switches, they have crash
failure semantics, i.e., they either produce a correct result
or remain permanently silent. Finally, the slaves have in-
correct computation failure semantics in the value domain,
i.e., they might transmit incorrect values, but they cannot



transmit at arbitrary times. Notably, they cannot imperson-
ate other slaves and do not present two-faced behaviors,
i.e., they cannot send a message m through one slave link
and a message m′ through the other such that m and m′

purportedly provide the same information, while they ac-
tually convey different values. How the failure semantics
are enforced is out of the scope of this paper, but for the
slaves it mostly relies on port guardians implemented at the
switches [7] and additional CRC-based integrity checks,
and for the switches and masters it relies on internal du-
plication and comparison [1]. Finally, besides the failure
semantics, for the masters there are two additional and
realistic assumptions: they do not have any internal non-
determinism and they are initialized with the same internal
state, e.g., they start with the same SRDB contents.

With the above assumptions, and taking into account
that the masters provide their service on an EC-by-EC ba-
sis, consistent outputs by the masters can be achieved by
ensuring that they receive the same input within the same
EC. Specifically, it may be achieved if, within the same EC,
they receive the same SRDB update requests and they re-
ceive ACKs from the same set of slaves. However, in the
presence of link faults, it is not sufficient for each slave
to transmit the same message to each switch. After all,
messages might be lost in only one channel, preventing the
masters from receiving the same input.

To deal with message losses, a common approach is to
retransmit only when it is likely that the original transmis-
sion has not reached its destination. This is usually done for
bandwidth efficiency. Transmitting on an only-as-needed
basis, however, can be problematic if the transmission must
succeed before a tight and hard deadline. This is so be-
cause it may take a non-deterministic amount of time for
the sender to detect that a retransmission is necessary.

In FTTRS, bandwidth efficiency is secondary. The main
goal is high reliability. Moreover, the end of each EC con-
stitutes a tight and hard deadline since masters must reach
a consensus within each EC to be replica determinate. The
solution we therefore propose is similar to the one used for
reliable TMs: slaves proactively retransmit k times before
the end of an EC any message that must be received by both
masters within that EC, where k is again a function of the
bit error rate in the links. Moreover, to ensure consistent in-
put for the masters with a sufficiently high probability, the k
messages are also forwarded through the interlinks in case
some slaves only have a link to one of the switches. Note
that the value of k can, but does not necessarily need to be,
the same as the value of the k from Section 2. This solution
is simple, takes a predictable and deterministic amount of
time, and does not require any type of failure detection by a
transmitting slave or switch. Next, we describe the details
of this solution for the ACKs and then for the SRDB update
requests.

3.1. The cumulative ACK slot vector mechanism

As explained above, we aim for both masters to receive
ACKs from the same set of slaves by transmitting each

ACK k times in an EC. This could be achieved by hav-
ing each slave respond to a synchronous message reception
with k dedicated ACK messages. If a given slave receives
n synchronous messages, it would transmit nk dedicated
ACK messages. We propose a more efficient solution.

In HaRTES and FTTRS, each synchronous message
belongs to a synchronous stream, whose configuration is
stored in the SRDBs. Such a stream defines, among other
things, the period and deadline of its synchronous mes-
sages, and is used by the master as the scheduling unit,
analogous to tasks in processor scheduling. Since the peri-
ods are integer multiples of the EC length, no two messages
of the same stream are scheduled for the same EC. More-
over, a stream identifies a transmitter and set of recipients,
which are common to all messages of the stream.

Let σs = (µ1, µ2, . . . , µns) be a tuple of the streams for
which a slave s is a recipient, with ns being the number of
such streams. We denote the ith component of a tuple σs as
σs(i). We propose to store a tuple vs = (b0, b1, . . . , bns

) in
each slave s, which we call a cumulative ACK slot vector,
or ACK vector for short. Each slot vs(i) is initialized with
a value of 0, and set to 1 when s receives a synchronous
message from stream σs(i). Moreover, vs(i) is reset to 0
when a status vector is received that instructs the delivery of
the latest message of stream σs(i). In a given EC, an ACK
vector vs therefore keeps track of the streams for which s
has received, but not delivered, messages.

Whenever a slave transmits a message, which may be
synchronous or asynchronous, the current contents of the
slave’s ACK vector are piggybacked. Thus, any message
transmitted by a slave not only conveys the data specific to
that message, but also acknowledges the reception of all the
synchronous messages that the slave has received so far in
the current EC. This means that whenever a slave receives
a synchronous messagem, it must subsequently transmit at
least k messages before the end of the EC to acknowledge
m. If the slave still had messages to transmit, the ACK
vector will be piggybacked on them. Only if this is not the
case, the slave would have to transmit additional messages
whose payload is nothing but the ACK vector.

The above mechanism has several notable features.
First, all received messages are acknowledged at least k
times, but may be acknowledged more times if they are re-
ceived by a slave that still has more than k messages to
transmit in the same EC after the reception. This allows to
maximize the probability of the masters instructing a de-
livery for a given synchronous message by transmitting it
before others. In that case the message is received at the
earliest possible time within an EC and thus the probabil-
ity that a receiver has more than k transmissions pending
is highest. Second, the ACK vectors can be used for error
detection since an ACK slot should only be reset to 0 if the
delivery of the corresponding message has been instructed
through the status vector. If it is reset at any other time,
this is evidence of an error. Third, the ACK vectors may
help the masters infer the bit error rate on the slave links as
missing ACKs may indicate corrupted frames. This could



be used to decide on a value for the parameter k. Finally,
it requires less bandwidth than dedicated ACK messages.
This is especially noticeable if the message payload is so
small that padding must be used to comply with Ethernet’s
minimum payload size. In that case, the piggybacked ACK
vectors would substitute part of the padding.

A disadvantage of the mechanism is that there is the
danger of incorrect acknowledgments if an ACK vector
gets corrupted such that 0s become 1s. However, with the
above-mentioned error detection, and additional integrity
checks, the probability of this can be made negligible.

3.2. Towards consistent SRDB updates

As already mentioned, for the masters to be replica
determinate, they must have the same contents in their
SRDBs whenever they calculate the schedule for the next
EC. Since the masters start with the same SRDB contents,
and they have crash-failure semantics and no internal non-
determinism, inconsistencies in the SRDBs can only be due
to them having processed different SRDB update requests.

SRDB update request messages may be significantly
larger than an ACK vector. Also, their transmission oc-
curs during the asynchronous window and thus may occur
near the very end of an EC. For these messages we there-
fore favor an alternative to the piggybacking approach from
Section 3.1. Specifically, we propose to use a reconciliation
mechanism during the TM window. The idea is the follow-
ing. First, we define an a priori total order relation for the
update requests so that a master can always unambiguously
determine which is the next one to process from a set of re-
quests. We call this request that is the next to be processed
the minimum of the set. During the TM window, each mas-
ter exchanges with the other one the minimum of all the up-
date requests it has received so far. If this exchange is done
reliably, by the end of the TM window both masters will
either have exchanged the same update request message,
or different ones. In either case, after the exchange the set
of pending requests in each master will contain the same
minimum. By ensuring that the masters only process their
local minimum before the asynchronous window of each
EC, both masters will update their local SRDB equally.

Note that the above requires the reliable exchange of the
minimum. For this we again use the proactive retransmis-
sion of k replicas. Moreover, since the interlinks during the
TM window are also used to exchange TMs, there might
not be enough time to exchange both the TMs and the lo-
cal minimum of each master. This can be solved by either
increasing the duration of the TM window or by increasing
the available bandwidth in the interlinks.

4. Having a plan B
The above mechanisms all rely on the parameter k hav-

ing a sufficiently high value for at least one copy of a given
message (TM, ACK, or update request) to reach its desti-
nation even in the presence of several transient faults in the
links. However, since in practice the value of k cannot be
set arbitrarily high, this means that it may still be possible

for an unexpectedly long error burst to corrupt all k repli-
cas of a given message. This would lead to a loss of replica
determinism of the masters. Thus, for FTTRS to continue
to operate, we need an alternative approach (a “plan B”)
in case k turned out to have a too low value. We propose
to deal with such a situation by having the slaves favor the
leading master’s opinion over the follower master’s in case
of loss of replica determinism, i.e., when they receive con-
flicting TMs. Note that the follower can detect the loss of
replica determinism as long as it receives the TMs from the
leader through the interlinks. In that case, we propose the
follower to shut down its service to prevent any potential
interference with the leader’s service.

5. Conclusions and future work
This paper proposed how to enforce replica determin-

ism for the masters in FTTRS, a fault-tolerant duplicated
star topology based on a switched Ethernet implementa-
tion of the FTT paradigm. The guiding design principle for
achieving replica determinism is to proactively retransmit
any message that constitutes an input that must be consis-
tent for the masters. Following this principle, we can pro-
vide replica determinism under the tight deadlines that the
round-based FTT paradigm imposes.

Future work includes the design of a reintegration mech-
anism for the follower, in case replica determinism is lost;
an analysis of the reliability achievable for different values
of the parameter k, which gives the number of proactive
retransmissions; and an implementation of a prototype of
FTTRS based on the presented ideas.

Acknowledgements
This work was supported by project DPI2011-22992

and grant BES-2012-052040 (Spanish Ministerio de
economı́a y competividad), and by FEDER funding.

References
[1] D. Gessner, J. Proenza, M. Barranco, and L. Almeida, “To-

wards a flexible time-triggered replicated star for Ethernet”,
in 18th IEEE Conf. on Emerging Technologies & Factory Au-
tomation (ETFA), Sept. 2013, Cagliari, Italy.

[2] R. G. V. dos Santos, Enhanced Ethernet switching technol-
ogy for adaptive hard real-time applications, PhD thesis,
Universidade de Aveiro, 2010.

[3] P. Pedreiras and L. Almeida, “The Flexible Time-Triggered
(FTT) paradigm: an approach to QoS management in dis-
tributed real-time systems”, in Proc. Int. Parallel and Dis-
tributed Processing Symposium, 2001. IEEE Comput. Soc.

[4] G. Rodriguez-Navas and J. Proenza, “A proposal for flexible,
real-time and consistent multicast in FTT/HaRTES Switched
Ethernet”, in 18th IEEE Conf. on Emerging Technologies &
Factory Automation (ETFA), Sept. 2013.

[5] S. Poledna, Fault-tolerant real-time systems: the problem of
replica determinism, Kluwer Academic Publishers, 1996.

[6] N. A. Lynch, Distributed algorithms, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1996.

[7] A. Ballesteros, D. Gessner, J. Proenza, M. Barranco, and
P. Pedreiras, “Towards preventing error propagation in a real-
time Ethernet switch”, in 18th IEEE Conf. on Emerging Tech-
nologies and Factory Automation, 2013, Cagliari, Italy.


