
A Proposal for Managing the Redundancy Provided by the Flexible
Time-Triggered Replicated Star for Ethernet

David Gessner, Julián Proenza, Manuel Barranco
DMI, Universitat de les Illes Balears, Spain

davidges@gmail.com, {julian.proenza, manuel.barranco}@uib.es

Abstract

Distributed embedded systems that must operate con-
tinuously and satisfy unpredictable requirement changes
must be reliable and flexible. Flexibility for changing real-
time requirements may be provided by Hard Real-Time
Ethernet Switching (HaRTES), an implementation of the
master/multi-slave Flexible Time Triggered (FTT) commu-
nication paradigm. HaRTES relies on a single switch that
embeds the FTT master and thus constitutes a single point
of failure. Moreover, the trigger messages (TMs), which
are periodic polling messages sent by the master to the
slaves, are critical for the correct operation of any FTT
implementation. Nevertheless, HaRTES has no mecha-
nism to prevent their loss. To provide high reliability
through fault tolerance, the Flexible Time-Triggered Repli-
cated Star (FTTRS) duplicates the HaRTES switch and
master, and modifies the masters to proactively retransmit
the TMs. This spatial and temporal redundancy requires
an appropriate management by the slaves. This paper dis-
cusses how this management can be performed.

1. Introduction
If a distributed embedded system (DES) must operate

continuously while satisfying unpredictable requirement
changes, then it must be both highly reliable and flexible.
In particular, this requires that the communication channel
of the DES satisfies those attributes.

The goal of the Flexible Time-Triggered Replicated Star
for Ethernet (FTTRS) [1] is to provide such a channel for
systems with changing real-time requirements. It is part of
the Fault Tolerance for Flexible Time-Triggered Ethernet-
based systems (FT4FTT) project, which aims at providing
high reliability and flexibility for all crucial parts of a DES.

FTTRS is based on Hard Real-Time Ethernet Switch-
ing (HaRTES) [2], a switched Ethernet implementation
of the Flexible Time Triggered (FTT) communication
paradigm [3]. HaRTES implements a micro-segmented
star topology with the HaRTES switch as a central element.
The switch provides the most relevant functions of FTT by
embedding the FTT master, which polls multiple slaves by
means of a single periodic message called trigger message
(TM). The master thereby divides the communication time
into rounds of fixed duration, where each round is initiated

Switch 2
(master 2)

Switch 1
(master 1)

Slave A

Slave B

Slave C

slave link

interlinks

Figure 1. FTTRS architecture.

by a new TM transmission. These rounds are called ele-
mentary cycles (ECs) and are divided into a synchronous
window followed by an asynchronous window. In each
EC, the corresponding TM conveys a schedule that tells the
slaves which messages to transmit during the synchronous
window. During the asynchronous window, a slave can
transmit asynchronous messages autonomously.

In HaRTES, the single switch with its embedded master
is a single point of failure. Moreover, transient channel
faults can easily prevent a slave from receiving a TM, even
though these messages are critical for the correct operation
of the FTT scheme implemented by HaRTES.

The single point of failure is eliminated through the FT-
TRS architecture [1] (see Figure 1). It has two HaRTES
switches, each with its own master. The slaves are con-
nected to both switches by means of slave links and there
are redundant links between the switches called interlinks.

Regarding the TMs, we propose to always transmit each
TM multiple times. This makes them significantly more
robust to transient link faults, but without introducing non-
deterministic delays in their delivery, as would be the case
with on-demand retransmission schemes.

For FTTRS to function, the slaves must be prepared to
manage the redundant channel provided by the duplicated
switches, as well as the redundant TMs broadcast by each
master. This paper discusses how the slaves perform this
management.

Section 2 describes the fault model and a few assump-
tions. Section 3 proposes a mechanism for the slaves to
manage the TM redundancy; whereas Section 4 discusses
how slaves can manage the channel redundancy. Finally,
Section 5 concludes the paper and points to future work.

c©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. doi:10.1109/WFCS.2014.6837600



2. Fault model and assumptions
In FTTRS, the switches and the masters are fail-silent.

This means that they have crash-failure semantics, i.e.,
they either provide a correct service or they remain silent
permanently. This is enforced through internal duplication
and comparison. Moreover, the masters are assumed to be
replica determinate [4]. In FTTRS this means that they
broadcast the same contents in their TMs and that they co-
ordinate their TM broadcasts to occur simultaneously. The
enforcement of this is currently under development.

Regarding the slaves, they have incorrect computation
failure semantics in the value domain, i.e., they can trans-
mit incorrect data in their messages, but they cannot trans-
mit at arbitrary times. In particular, they are prevented
from transmitting messages while the TMs are broadcast.
This prevents the delivery of TMs being delayed by pend-
ing or in-progress slave transmissions, which is important
for the TM redundancy management to work properly (see
Section 3). The slave failure semantics are enforced using
port guardians at the switches [5] and additional integrity
checks to prevent two-faced behaviors (see Section 4.2).

We exclude from our fault model all software faults, i.e.,
the software is assumed to be fault free.

Finally, slave links and interlinks can suffer both per-
manent and transient faults. However, since all corrupted
frames are dropped by the FTTRS switches and slaves (due
to the frame check sequence in the Ethernet frames), the
faults can only manifest as the loss of messages.

3. Managing the TM redundancy
As explained in the introduction, in FTTRS each TM

is transmitted multiple times. Specifically, each EC starts
with a trigger message transmission window, or TM win-
dow for short. During that window, each master broadcasts
k replicas of the TM, where k is a function of the channel’s
bit error rate. Nothing else is transmitted on the slave links
during the TM window. If k is well calculated, this ensures
that each slave receives at least one TM replica from each
master, even in the presence of transient link faults. With
this, the delivery to the slaves of the data conveyed in the
TMs is ensured: a slave can simply read the data from any
of the TMs it receives in a given EC. However, TMs not
only convey data, but are also used to synchronize the start
of each EC among the slaves.

In HaRTES, the slaves use as the EC synchronization
event the arrival time of the single TM of the corresponding
EC. In FTTRS the synchronization mechanism is modified
to work with the new TM transmission scheme.

Of the k TM replicas transmitted on each slave link, the
corresponding slave might receive all k replicas or only a
subset of them due to transient errors in the links. Regard-
less of which specific replicas each slave receives on each
of its slave links, the time instants when the slaves consider
each EC to start and end must align. This can be achieved
by a simple mechanism if (a) k has a value that guarantees
that each slave gets at least one TM replica if it has a link
without permanent faults that is connected to a non-faulty

s1

s2

m1,c

αs1 (1, c)

m2,c

αs1 (2, c)

m3,c

αs1 (3, c)

. . . mi,c

αs1 (i, c)

. . . mk,c

αs1 (k, c)

τ τ (k − i)τ

(k − 2)τ

(k − 1)τ

. .
.

m1,c

αs2
(1, c)

m2,c

αs2
(2, c)

m3,c

αs2
(3, c)

. . . mi,c

αs2
(i, c)

. . . mk,c

αs2
(k, c)

Figure 2. Alignment of TM arrival times.

master; (b) some additional information is conveyed in the
TMs; (c) all TM replicas belonging to the same EC have
the same size; (d) the TM broadcasts of the masters are co-
ordinated as stated in the previous section, i.e., when one
master broadcasts the ith TM replica, the other master does
the same quasi-simultaneously, giving the appearance that
the TM broadcasts occur in lockstep; (e) all TM replicas
of the same EC are broadcast with the same constant time
τ between the start of the broadcast of one replica and the
next, where τ is greater than the sum of the TM transmis-
sion time and the Ethernet interframe gap (this is important
to ensure that the TM transmissions are spaced uniformly
in time even if the transmission time of some TM repli-
cas is shortened due to transient errors); (f) the amount by
which the clocks of non-faulty slaves can drift apart dur-
ing one EC is negligible; and (g) the difference between
propagation times on the slave links is negligible.

As stated previously, satisfying (a) requires knowing the
channel’s bit error rate, or at least a pessimistic estimate.
Regarding (b), the additional information is the value of
k; a sequence number for each TM replica, which takes
integer values from 1 to k; and the value of τ , which we
call the TM interarrival time. The duration of an EC is also
necessary, but this was already provided in the TMs used in
HaRTES. Requirement (c) can be trivially achieved since
the replicas contain the same data, except for the sequence
number, whose code can be made to have the same length
in all replicas. Requirements (d) and (e) are achieved
through the replica enforcement mentioned in Section 2.
Requirement (f) is realistic for typical EC durations (on
the order of a few milliseconds). Finally, requirement (g)
is realistic if the difference in the lengths of the slave links
is not too excessive. If these requirements are satisfied,
then the following EC synchronization mechanism can be
used for the slaves.

Let Sc denote the set of slaves in a given FTTRS net-
work that remain non-faulty at the end of EC c. Moreover,
let mi,c denote the TM with sequence number i in EC c,
where i ∈ N and 1 ≤ i ≤ k. Also, let Ms,c be the set of
TMs that a slave s ∈ Sc receives in EC c. Furthermore,
let αs,l(i, c) denote the time at which mi,c ∈ Ms,c is re-
ceived by slave s ∈ Sc on link l ∈ {l1, l2}, with {l1, l2}
denoting the set of slave links of s. Note that because of
requirements (d), (e), and (g), if mi,c is received through



both l1 and l2, then αs,l1(i, c) ≈ αs,l2(i, c). In the follow-
ing we therefore omit the link subscript, e.g., we simply
write αs(i, c). Figure 2 illustrates the TM arrival times for
an EC c and two slaves s1, s2 ∈ Sc.

The expected arrival time of mk,c at a slave s is

αs(k, c) = αs(i, c) + (k − i)τ. (1)

This is also illustrated in Figure 2 for slaves s1 and s2.
Note that (1) can only be calculated if i and c exist such

that mi,c ∈Ms,c, i.e., if s received at least one TM replica
in c. Since we are assuming requirement (a), this will be
the case. Thus, (1) can be calculated for all s ∈ Sc for each
EC c. If in addition we have that

αs1(k, c) = αs2(k, c), where s1, s2 ∈ Sc, (2)

then we can synchronize the start of EC c among s1 and s2
using the TM arrival time αs1(k, c) as the synchronization
event.

For (2) to be true it is enough for requirements (d), (e),
and (g) to be satisfied. In that case, if there exists mi,c ∈
Ms1,c ∩Ms2,c, then αs1(i, c) = αs2(i, c), and (2) is ob-
viously true. On the other hand, if there does not exist
mi,c ∈ Ms1,c ∩Ms2,c, there must still exist mi,c ∈ Ms1,c

and mj,c ∈ Ms2,c, where i 6= j, because of require-
ment (a). If i < j, then αs2(j, c) = αs1(i, c) + (j − i)τ
and thus αs2(k, c) = αs1(i, c) + (j − i)τ + (k − j)τ =
αs1(i, c) + (k − i)τ = αs1(k, c). Therefore (2) is again
satisfied and the slaves can be synchronized. A similar ar-
gument can be made if j < i.

Because of requirement (f), the synchronization can be
achieved in practice by having s1 set a timer to expire after
(k − i)τ units of time when it receives a TM mi,c at time
αs1(i, c). When the timer expires, the slave would consider
the EC c to start. Similarly, slave s2 would set a timer
to expire after (k − j)τ units of time when it receives a
TM mj,c at time αs2(j, c), where j may have a different
value than i. The timers of both slaves would expire at
αs1(k, c) = αs2(k, c), and they would consider c to start
at the same time, thus having synchronized the start of c.

Regarding the synchronization of the end of an EC c
among two slaves s1, s2 ∈ Sc, it can be achieved by having
them each set a second timer to expire d units of time after
the above described timer expires, where d is the duration
of c, which is available to the slaves because of (b).

4. Managing the channel redundancy
The previous section described a mechanism that the

slaves can use to manage the redundant TMs transmitted
by the masters. This mechanism was designed to work
even if some of the TMs are lost due to transient faults.
This section focuses on how the slaves can manage the re-
dundancy present in FTTRS to tolerate permanent faults,
namely, the spatial redundancy of the channel.

4.1. Transmission and reception of messages

In FTTRS, if a slave needs to transmit a message, it
does so through each of its two slave links. This simpli-
fies transmissions substantially in presence of permanent

Figure 3. Replica radiation.

faults: slaves use their links simultaneously all the time
and therefore link or switch failures are masked instead of
requiring an error treatment by the slaves. In other words,
when permanent faults occur, slaves do not change the way
in which they transmit messages.

As to the reception of messages, in FTTRS all messages
coming from a slave link and destined to other slaves are
forwarded through the interlinks. This means that the two
transmissions of a message by a transmitting slave, each
occurring on a separate slave link of the transmitter, result
in up to four messages being received by a recipient slave.
This is illustrated in Figure 3. We call the phenomenon of
two transmissions resulting in up to four receptions replica
radiation.

Note that replica radiation makes sure that a pair of
slaves communicate through the maximum number of pos-
sible paths between them. Since the switches have crash
failure semantics and the slaves do not present two-faced
behaviors (see Section 4.2), all copies of a message re-
ceived by a slave due to replica radiation will be identi-
cal. Moreover, identical messages received in an EC must
have originated from the same transmission, i.e., they are
replicas of the same message, and therefore cannot be con-
fused with messages from other transmissions. This is
so because both synchronous and asynchronous messages
are unique in each EC. Specifically, in FTTRS, as well
as in other FTT implementations, no two identical syn-
chronous messages are ever scheduled for the same EC.
Asynchronous messages are also unique in each EC be-
cause in FTT they must have a minimum interarrival time
that is an integer multiple of the EC length. To ensure the
uniqueness of synchronous and asynchronous messages
even if the slaves behave incorrectly, the port guardians
at the FTTRS switches drop any message that violates the
schedule or the minimum interarrival time of a message.
Thus, a slave can be sure that if it receives the same mes-
sage multiple times in an EC, then all copies correspond to
the same transmission.

When it is time for the slave to deliver the message to
the locally executing application, only a single copy of the
received messages should be delivered. In this way, the
channel redundancy is made transparent to the slave’s ap-
plication. Since all copies are identical, any one of them
can be delivered by the slave. This maximizes the proba-
bility of a message transmitted by one slave being deliv-



ered by the intended recipients in the presence of perma-
nent faults in links or interlinks.

With respect to the time of delivery, messages are not
delivered as soon as the first copy is received. Instead,
and according to a total order multicast service [6] that
is also implemented by the FTTRS masters, and which is
currently developed within the FT4FTT project under the
name of ReTOPS, the message delivery should only be per-
formed by a slave when instructed to do so by the masters.
We refer the reader to [6] for the details on when deliveries
should be performed according to this total order multicast
service.

4.2. Preventing two-faced behaviors

As stated above, the management of the channel redun-
dancy relies on the slaves not exhibiting two-faced behav-
iors. This calls for mechanisms to prevent this unwanted
behavior.

In FTTRS, like in other FTT implementations, each of
the messages that slaves exchange belongs to a stream [3].
Such a stream specifies certain real-time properties such
as deadlines, periods, and minimum interarrival times, and
other properties such as which slave is the transmitter for
the messages of the stream. Streams also identify mes-
sages. This means that two messages transmitted in the
same EC and identified as belonging to the same stream
should be copies of each other and thus convey the same
payload. Therefore, to prevent one slave from presenting a
two-faced behavior to the others it is necessary to prevent
the transmission of two messages identified as belonging to
the same stream, but which carry different payloads. Note
that we do not worry about a slave transmitting messages
with invalid stream identifiers since such messages would
be dropped by the port guardians at the switches.

According to our fault model we only consider two-
faced behaviors caused by hardware faults. A hardware
fault can cause a slave to exhibit a two-faced behavior by
corrupting a payload before it is transmitted on one link,
but after it was transmitted on the other link. Other causes
of two-faced behavior are assumed to have a negligible
probability. For example, it might also be possible for a
two-faced behavior to occur due to the program counter of
a slave’s CPU being corrupted in such a way that the CPU
jumps back to previously executed code after it has trans-
mitted the original payload on only one slave link. If it
jumps back to the segment of code that reads the payload
from some sensor, the sensor reading might have changed,
and a different payload might be obtained. Although we
acknowledge that in theory such a scenario could occur, we
consider it very unlikely. Moreover, software techniques
similar to the ones used to prevent processes from concur-
rently accessing critical code regions (e.g., semaphores)
could be used to further reduce the probability of such a
scenario.

Our proposal to prevent two-faced behaviors consists in
using additional integrity checks — that is, in addition to
Ethernet’s frame check sequence, which cannot detect pay-

load corruptions that occur before the payload is handed
over to one of the two Ethernet interfaces of the transmit-
ting slave. Specifically, we propose to calculate a check-
sum for each payload to be transmitted. Importantly, the
checksum must only be calculated once for each payload.
When a slave transmits the payload, it appends the cor-
responding checksum. On the switch side of the links,
the port guardians submit all incoming messages to an in-
tegrity check using the additional checksum. If a message
does not pass the check, the corresponding port guardian
drops it. Thus, frames that could lead to two-faced behav-
iors due to a corrupted payload do not propagate beyond
the slave links of the transmitting slave.

5. Conclusions and future work
HaRTES has two key vulnerabilities. The first is the

lack of robustness against permanent faults due to the
HaRTES switch and master being a single point of failure.
The second is the susceptibility to losing the master’s peri-
odic trigger messages due to transient faults, even though
these messages are critical for the correct functioning of
HaRTES. To eliminate these vulnerabilities FTTRS intro-
duces both spatial and temporal redundancy. In this paper
we proposed a series of mechanisms that allow the FTTRS
slaves to manage this redundancy.

Future work includes the implementation of a software
driver for the slaves to show the viability of the mecha-
nisms introduced in this paper, and the design of mecha-
nisms to maximize the number of slaves that can continue
to operate even if all interlinks fail and therefore the mas-
ters may no longer be replica determinate.

Acknowledgements
This work was supported by project DPI2011-22992

and grant BES-2012-052040 (Spanish Ministerio de
economı́a y competividad), and by FEDER funding.

References
[1] D. Gessner, J. Proenza, M. Barranco, and L. Almeida, “To-

wards a flexible time-triggered replicated star for Ethernet”,
in 18th IEEE Conf. on Emerging Technologies & Factory
Automation (ETFA), Sept. 2013, Cagliari, Italy.

[2] R. G. V. dos Santos, Enhanced Ethernet switching technol-
ogy for adaptive hard real-time applications, PhD thesis,
Universidade de Aveiro, 2010.

[3] P. Pedreiras and L. Almeida, “The Flexible Time-Triggered
(FTT) paradigm: an approach to QoS management in dis-
tributed real-time systems”, in Proc. Int. Parallel and Dis-
tributed Processing Symposium, 2001. IEEE Comput. Soc.

[4] S. Poledna, Fault-tolerant real-time systems: the problem of
replica determinism, Kluwer Academic Publishers, 1996.

[5] A. Ballesteros, D. Gessner, J. Proenza, M. Barranco, and
P. Pedreiras, “Towards preventing error propagation in a
real-time Ethernet switch”, in 18th IEEE Conf. on Emerg-
ing Technologies and Factory Automation, 2013, Cagliari,
Italy.

[6] G. Rodriguez-Navas and J. Proenza, “A proposal for flexible,
real-time and consistent multicast in FTT/HaRTES Switched
Ethernet”, in 18th IEEE Conf. on Emerging Technologies &
Factory Automation (ETFA), Sept. 2013.


