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Abstract—Fault Tolerance for Flexible Time-Triggered
Ethernet-based systems (FT4FTT) is a project to devise an
architecture for distributed embedded systems that provides
both flexibility to changing real-time requirements and high
reliability through fault tolerance. One of the key parts of such
an architecture is the communication subsystem. When designing
such a subsystem many decisions have to be made. To understand
how such decisions impact the reliability of the final design, in
this paper we present a framework to evaluate the reliability of
a large number of potential designs. The approach is based on
storing a finite subset of the design space for the communication
subsystem of FT4FTT in an undirected graph and then generating
a continuous-time Markov chain from the graph to evaluate the
reliability of each design belonging to the subset.

I. INTRODUCTION

When designing a system to solve a problem there are
usually many different design variables, i.e., decisions that
need to be made. Depending on the value assigned to each of
them, we may come up with one design or another. If there are
n design variables, the set of possible designs can be thought of
as an n-dimensional space, where each dimension corresponds
to one particular variable. The values for a dimension are the
possible values for the corresponding variable and each point
of the space is a possible design that solves the problem. This
space is known as the design space for the given problem [1].

In this paper we focus on the design space that describes
the main design alternatives for the communication subsystem
of FT4FTT, a project whose goal is to provide high reliability
through fault tolerance for real-time distributed embedded
systems that must be able to adapt to changing real-time
requirements. The main criteria we use to compare the designs
is the reliability of each one of them. In particular, we are
interested in how the Flexible Time-Triggered Replicated Star
(FTTRS) [2], which is the current design for the communi-
cation subsystem of FT4FTT, compares with other possible
designs. For this purpose, we are currently developing a
framework to evaluate the reliability of a finite subset of the
FT4FTT design space.

This paper presents the basics of this approach under
the simplifying assumptions that only permanent faults may
occur and that there is perfect fault coverage, i.e., the system
always successfully isolates faulty components and, if there are
sufficient components left for a proper operation, continues
providing its service correctly. The main idea is to use a
single mathematical model to store all points of a finite
subset of the design space and then to use this model to

generate a Markov chain to evaluate the reliability of each
point of the subset. Specifically, we model a whole design
space subset with an undirected graph [3]. From this graph
we then generate subgraphs that are mapped onto states of a
Markov chain, which represent faulty or non-faulty states, as
determined by a boolean-valued function expressed in terms of
graph properties. Using this Markov chain we can evaluate the
reliability of all points of the design space subset and aspire
to find the optimal design in terms of reliability of the subset.

The remainder of the paper proceeds as follows. Section II
introduces the design space for the communication subsystem
of FT4FTT. Section III describes how we model a finite subset
of the design space by means of graphs. Section IV introduces
two functions to check if a graph represents a valid input to our
Markov chain generating algorithm and a non-faulty design,
respectively. Section V explains how we generate a Markov
chain and use it to evaluate the reliability of the points of a
design space subset. Finally, Section VI concludes the paper.

II. THE FT4FTT COMMUNICATION SUBSYSTEM DESIGN
SPACE

FT4FTT is based on a switched ethernet implementa-
tion of the Flexible Time-Triggered (FTT) communication
paradigm [4], a master/slave communication paradigm that
allows a real-time distributed embedded system to adapt to
changing real-time requirements. The potential designs for
the communication subsystem of FT4FTT will therefore be
master/slave and based on the use of ethernet switches. Thus,
all designs have the following types of components as building
blocks: ethernet switches, ethernet links, FTT masters, and
FTT slaves. Moreover, we can distinguish between FTT mas-
ters embedded within a switch, like in the HaRTES implemen-
tation of FTT [5], and external masters connected to one or
more switches by means of ethernet links, like in the FTT-SE
implementation [6]. Different designs for the communication
subsystem of FT4FTT may then differ in the number of
components of each type and how these components are inter-
connected, i.e., in their topology. This leads us to the following
discrete dimensions for the design space: (D1) number of
slaves; (D2) number of switches; (D3) number of masters;
and (D4) the topology of the network, which not only tells
us how the components are interconnected by ethernet links,
but also which masters are embedded within switches. Note
that the first dimension, the number of slaves, is the only one
not related to the redundancy of the communication subsystem
of FT4FTT. In fact, its values will generally be determined
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Fig. 1. Four example designs of the design space.

by application requirements other than reliability. We may
therefore not have complete freedom in setting a value for it.
Indeed, we will generally lower bound it to a value N > 0 to
take into account that a given application requires N slaves.
Furthermore, the second and third dimensions have a lower
bound of one, i.e., a design must have at least one switch
and one master. Moreover, note that the last dimension, the
topology, is not orthogonal to the others, i.e., its values are
conditioned to a certain extent by the other dimensions. Finally,
since FT4FTT is based on master/slave communication, the
topology of a design must be such that it allows the slaves to
communicate with each other and the master.

Regarding the cardinality of the dimensions, they are all
infinite as in principle there is no upper bound on the number
of switches, masters, and slaves — and thus topologies —
that a design may have. Therefore, the design space for
FT4FTT is also infinite and it is thus impossible to evaluate the
reliability of all its points. Nevertheless, we can upper bound
each dimension, i.e., limit the maximum number of switches,
masters, slaves, and topologies we consider, and evaluate the
reliability of the points of the corresponding finite subset of
the FT4FTT design space. However, even if the dimensions are
upper bounded, the number of points can be very high as the
cardinality of this subset is given by the Cartesian product
of each dimension, meaning that it increases geometrically
with the dimension. Moreover, analyzing the reliability of each
design point is NP-hard [7]. Thus, it is necessary to efficiently
store and process the points of a design space subset.

Figure 1 shows a few example designs, i.e., points of
the FT4FTT design space. In each of the subfigures arcs
represent ethernet links and rectangles represent components.
The components are labeled by their type: si indicates an
FTT slave, wi an ethernet switch, and mi an FTT master.
For instance, (a) is a design with two switches interconnected
by two ethernet links, with slaves that are connected to both
switches, and with two external masters, each connected to a
separate switch; and (d) is a design with three switches, each
with its own embedded FTT master, that are interconnected
forming a ring.

III. THE MODELING APPROACH

Let S be the set of all slaves, W the set of all switches,
M the set of all masters, and L the set of all ethernet links. In
our approach, we model each point di of the FT4FTT design
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Fig. 2. Two example designs with their graphs.
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space by an undirected graph Gi = (Vi, Ei), such that the set
of vertices Vi ⊆ S ∪W ∪M ∪ L and the set of edges Ei =
{{u, v} | u, v ∈ Vi and u is attached to v in the design di}.
We write V (Gi) and E(Gi) to indicate the vertex set Vi and
edge set Ei of a graph Gi, respectively. Figure 2 shows two
example designs with their corresponding graphs.

The union of two graphs Gi = (Vi, Ei) and Gj = (Vj , Ej)
is a graph Gk = (Vi∪Vj , Ei∪Ej) and we write Gk = Gi∪Gj .
Such a union graph Gk is also the graph of a point dk of the
design space. For example, Figure 3 shows the union graph of
the two graphs from Figure 2 and the design corresponding to
the union.

A graph Gj = (Vj , Ej) is a subgraph of a graph Gi =
(Vi, Ei) if Vj ⊆ Vi and Ej ⊆ Ei such that Ej = {{u, v} |
u, v ∈ Vj}. We write Gj ⊆ Gi. Moreover, Gj ⊆ Gi is an
induced subgraph of Gi if Vj ⊆ Vi and Ej = {{u, v} | u, v ∈
Vj and {u, v} ∈ E(Gi)}. In other words, Gj is an induced
subgraph of Gi if it can be obtained by deleting vertices from
Gi, but preserving the edges between all undeleted vertices.
We write Gj = Gi[Vj ] and say that Gj is the subgraph induced
by the vertex set Vj . Note that if we have a union graph Gk =
Gi ∪ Gj , then Gi = Gk[V (Gi)] and Gj = Gk[V (Gj)]. For
instance, the two graphs from Figure 2 are induced subgraphs
of the union graph from Figure 3.

With these notions, we can store all points of a design space
in a single graph. Specifically, let D be the set of points of the
design space. The union graph of the whole design space is the
graph GD = ∪n∈DGn. Now, if Subi(GD) = {Gk | V (Gk) ⊆
V (GD) and Gk = GD[V (Gk)]} is the set of all induced
subgraphs of GD, then Gi ∈ Subi(GD) for all di ∈ D. In
other words, from GD we can generate the graphs of all points
of the design space D by generating all induced subgraphs of
GD. However, note that this also generates additional graphs
that do not correspond to a point of the design space D, i.e.,
{Gi | di ∈ D} ⊂ Subi(GD). For instance, the null graph
({}, {}) and the trivial graph ({w1}, {}) are in Subi(GD), but



they do not correspond to acceptable designs for FT4FTT. We
therefore say that Subi(GD) contains the graphs of an extended
design space D′, such that D ⊂ D′.

IV. THE VALIDITY AND CORRECTNESS FUNCTION

As explained above, the extended design space D′, when
compared with the FT4FTT design space D, contains addi-
tional non-acceptable designs. To distinguish between graphs
that model acceptable designs and graphs that do not, we
use two boolean-valued functions: a validity function and a
correctness function. The first tells us if a graph models a valid
design, i.e., it tells us whether a graph models what we consider
possible ways of connecting slaves, switches, masters, and
ethernet links. The second function tells us whether a graph
models a correct, i.e., non-faulty system. An acceptable design
should be valid and correct. Next we define these functions.

The validity function for the FT4FTT communication sub-
system is a function v : γ → {0, 1}, where γ is the set of all
undirected graphs that have a vertex set V ⊆ S ∪W ∪M ∪L.
Specifically, we define it as

v(G) =

{
1, if G is valid
0, otherwise,

where valid means that G satisfies the following conditions:

• two vertices u1, u2 ∈ S∪W,u1 6= u2, cannot be adjacent,
i.e., two slaves or switches cannot be attached directly to
each other (they must be connected by an ethernet link);

• similarly, two vertices u1, u2 ∈ S ∪M,u1 6= u2, cannot
be adjacent;

• a vertex l ∈ L can only be adjacent to a vertex u ∈
S ∪W ∪M , i.e., ethernet links can only be attached to
slaves, switches, and masters, but not to other links;

• any vertex l ∈ L has at most degree 2, i.e., an ethernet
link cannot interconnect more than two components;

• if a vertex l ∈ L is adjacent to vertices u1 and u2, then
u1 ∈ W or u2 ∈ W , i.e., if a link interconnects two
components, then at least one of them must be a switch.

Note that in a valid graph a vertex m ∈ M and a vertex
w ∈ W may be adjacent. If they are, this models the master
m being embedded in the switch w. Moreover, note that if
v(G) = 1, then v(Gi) = 1 for each induced subgraph Gi ∈
Subi(G). This is so because our validity function only takes
into account the adjacency among vertices, and subgraphs of
a graph G do not make any vertices adjacent that were not
already adjacent in G. We say that validity is inherited by the
subgraphs.

Regarding the correctness function, it is a function c : γ →
{0, 1} defined as

c(G) =

{
1, if G is correct
0, otherwise,

where correct means that G satisfies a certain graph property.
For instance, since FT4FTT is based on master/slave commu-
nication, the graph property could be that G has a connected
component, i.e., connected subgraph, that spans a set of slaves
Sc and at least one master. By saying this we are saying that
in the modeled system all slaves in Sc can communicate with
each other and with at least one master. This graph property

1: procedure MCGENERATE(G, v, c)
2: if v(G) = 0 or c(G) = 0 then
3: return Error
4: end if
5: MC.addState(G) . root state
6: MC.addState(FAIL) . failure state
7: EXPLORE(G, c)
8: return MC
9: function EXPLORE(H, c)

10: for all vertex u ∈ H do
11: H ′ ← deleteV ertex(H,u)
12: if c(H ′) = 1 then
13: MC.addState(H ′)
14: MC.addRate(H,H ′, u)
15: EXPLORE(H ′, c)
16: else
17: MC.addRate(H,FAIL, failRate(u))
18: end if
19: end for
20: end function
21: end procedure

Fig. 4. Algorithm to generate a CTMC from a design space union graph.

allows us to evaluate the reliability of a design where Sc is the
set of slaves that are critical for the operation of the system.

V. EVALUATING THE RELIABILITY OF A DESIGN SPACE
SUBSET

To evaluate the reliability of all points of a subset of the
FT4FTT design space we assume that all components of a
design have known constant failure rates and fail independently
of each other, and no more than one component fails at
each instant. These are common assumptions for electronic
based components [8]. Under these assumptions we can use
a Continuous-Time Markov Chain (CTMC) for the reliability
evaluation [9]. Specifically, we will generate a CTMC from
the union graph corresponding to the design space subset we
want to evaluate. Since from the union graph we can obtain
the graphs for all points of the subset, we can generate the
CTMC such that it has a state for each point of the design
space subset. This will allow us to evaluate the reliability of
each point, as explained at the end of this section.

The procedure to generate the CTMC can be implemented
by a recursive algorithm. The pseudocode for this procedure is
shown in Figure 4. The initial parameters of the procedure are
a union graph G for the design space subset for which we want
to evaluate the reliability, a validity function, and a correctness
function (line 1). The procedure begins by checking whether
G is valid and correct (line 2) and exits with an error if it is not
(line 3). Otherwise it initializes the Markov chain, MC, with
two states (lines 5-6). The first state corresponds to the union
graph G. We call it the root state. The second state corresponds
to a faulty system and we call it the failure state. Subsequent
states of the CTMC are obtained by calling recursively the
function EXPLORE (line 7). This function has as parameters a
graph H and a correctness function (line 9). When the function
is called, a state has already been added to the CTMC for the
graph H . We call this state the parent state. Note that the
first time the function is called the parent state is the root
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state. The function starts by exploring all induced subgraphs
of H ′ that can be obtained from H by deleting single vertices
from it (lines 10-11). If the resulting subgraph H ′ is correct,
a state corresponding to H ′ is added to the CTMC (line 13)
and this state is made accessible through a transition from the
parent state (line 14) – validity is not checked as we know
that it is inherited from the parent state’s graph. The rate for
this transition gets assigned the failure rate of the vertex that
has been deleted (line 14). Next, the function is invoked again
for the newly added state (line 15), which becomes the parent
state in the recursive call. If the subgraph H ′ was not correct
(line 12), then no state is added for the subgraph and instead a
transition is added from the parent state to the failure state (line
17). Note that after reaching the failure state, the function stops
exploring new states. This allows to reduce both the number of
states of the CTMC and the execution time of the procedure.

To illustrate the procedure, consider the subset of the
FT4FTT design space that is given by limiting the number
of slaves, switches, external masters, and embedded masters
to one. The union graph G1 for this design space subset is
shown in Figure 5. We will assume that the failure of the
single slave is not tolerated. When the procedure is invoked,
the state corresponding to the union graph G1 becomes the
root state of the CTMC. We have labeled this state as 1 in
Figure 6. Through single vertex deletions we get the graphs G2

through G7 in Figure 5. Of these graphs, G2, G3, and G4

are considered faulty because they do not allow the slave to
communicate with a master. They therefore fail the correctness
function and, thus, transitions are added from the root state to
the failure state, as shown in Figure 6, with the corresponding
failure rate λu, where u is s1, l1, and w1 for G2, G3, and
G4 respectively. Graphs G5, G6, and G7, on the other hand,
allow communication between the slave and a master and
are therefore correct. The EXPLORE function of Algorithm 4
therefore adds new states for them to the CTMC, as well as
appropriate transitions from the root state. These new states are
labeled 5, 6, and 7 in Figure 6 for G5, G6, and G7 respectively.
Successive recursive calls of EXPLORE complete the CTMC.

Once the CTMC is built for a union graph G, it can be
used to compute the reliability of each point of the design
space subset corresponding to G. Let di be a point of the
design space subset and Gi its corresponding graph. The
generated CTMC will contain a state i corresponding to Gi

and the reliability of the design point di is simply obtained by
calculating the probability of not reaching the failure state from
state i. For example, the probability of not reaching the failure
state from state 5 in Figure 6 would give us the reliability of
the design corresponding to graph G5 in Figure 5.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a framework based on graphs
and Markov chains to evaluate the reliability of a large number
of designs for a communication subsystem for FT4FTT. This
is a first step towards determining which design decisions have
the greatest impact on the final reliability in FT4FTT. Future
work includes further reducing the state space by merging non-
faulty states that can be considered equivalent (e.g., in Figure 6,
states 6 and 7 could be merged); taking into account imperfect
fault coverage; using design of experiments techniques to find
out whether there are any interaction effects between the
different dimensions of the design space (e.g., maybe for a
low number of switches a certain network topology is the most
reliable, but with more switches a different one becomes more
reliable); automatically generating design space union graphs
from design space specifications based on the validity and
correctness function; and adapting our approach to consider
transient faults instead of permanent faults.
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