
Towards an Experimental Assessment of the Slave
Elementary Cycle Synchronization in the Flexible

Time-Triggered Replicated Star for Ethernet

David Gessner, Inés Álvarez, Alberto Ballesteros, Manuel Barranco, Julián Proenza
DMI, Universitat de les Illes Balears, Spain

{davidges, ines.alvarez.91}@gmail.com {a.ballesteros, manuel.barranco, julian.proenza}@uib.es

Abstract—The communication subsystem of distributed em-
bedded systems (DES) that must operate continuously and satisfy
unpredictable requirement changes must be reliable and flexible.
Recently the Flexible Time-Triggered Replicated Star for Ether-
net (FTTRS) has been proposed as a communication subsystem
that satisfies these two attributes. It is based on the master/multi-
slave Flexible-Time Triggered (FTT) communication paradigm
and relies on two custom switches, each with its own embedded
FTT master. Both masters are active simultaneously and provide
the same service. Specifically, they simultaneously and periodi-
cally broadcast so-called trigger messages (TMs) in a redundant
manner to make them robust to transient channel faults. One
of the functions of these TMs is to divide the communication
time into rounds called elementary cycles (ECs). For the correct
operation of FTTRS, it is important that all slaves agree when
each EC starts and ends. A mechanism to achieve this has been
recently proposed. This paper presents a first implementation of
this mechanism and a series of experimental tests that constitute
a first step towards building a prototype of an FTTRS network.

I. INTRODUCTION

A distributed embedded system (DES), to operate con-
tinuously while satisfying unpredictable requirement changes,
must be both highly reliable and flexible. To achieve this it
requires a communication channel that satisfies those attributes
as well. The goal of the Flexible Time-Triggered Replicated
Star for Ethernet (FTTRS) [1] is to provide such a channel
for a project called Fault Tolerance for Flexible Time-Triggered
Ethernet-based systems (FT4FTT), which aims to provide high
reliability and flexibility to all crucial parts of a DES.

FTTRS is based on a switched Ethernet implementa-
tion of the Flexible Time Triggered (FTT) communication
paradigm [2], a paradigm that provides master/multi-slave
communication in a way that allows the communication to
adapt to changing real-time requirements. FTTRS attempts
to make such communication highly reliable for switched
ethernet by using fault tolerance. Its architecture is shown in
Figure 1. The main components are two interconnected custom
ethernet switches, each of which embeds an FTT master, and
a set of FTT slaves connected to both of them.

The embedded masters broadcast a periodic message called
trigger message (TM), which divides the communication time
into rounds of fixed duration called elementary cycles (ECs).
Specifically, each EC begins with a trigger message window
(TM window) in which each one of the two embedded masters
broadcasts several redundant TMs to the slaves while no other
traffic is exchanged on the network. The number of TMs

Switch 2
(master 2)

Switch 1
(master 1)

Slave A

Slave B

Slave C

ethernet link

Fig. 1. FTTRS architecture.

broadcast by each master in each EC is given by a parameter
k, which is a function of the bit error rate of the channel.
Moreover, the broadcasts are synchronized such that when
one master transmits its nth TM of a given TM window, the
other transmits its nth TM of the same TM window quasi-
simultaneously [3]. In other words, the TM transmissions of
the two masters occur in lockstep.

For FTTRS to function correctly, the slaves must agree
when each EC begins and ends. Since we want FTTRS to be
highly reliable, we have recently proposed a mechanism to
achieve this even if due to channel faults each slave fails to
receive all but one TM per TM window [4]. In this paper we
present a first implementation of this mechanism and a series of
tests to check that the implementation is correct. Moreover, we
provide some first results regarding the viability of achieving
a precise EC synchronization in practice with the mechanism.

The remainder of the paper proceeds as follows. Section II
summarizes the EC synchronization mechanism used by the
slaves. Section III describes our implementation of the EC
synchronization mechanism. Section IV describes the tests we
performed and the results we obtained. Finally, Section V
concludes the paper and points to future work.

II. THE SLAVE EC SYNCHRONIZATION MECHANISM

This section summarizes the slave EC synchronization
mechanism that was first presented in a previous paper [4].

As mentioned in the introduction, of the k TM replicas
broadcast by each master, the corresponding slave might
receive all k replicas or only a subset of them due to transient
faults. Regardless of which specific replicas each slave receives
on each of its links, the time instants when the slaves consider
each EC to start and end must align. This can be achieved by

c©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprint-
ing/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

s1

s2

m1,c

αs1 (1, c)

m2,c

αs1 (2, c)

m3,c

αs1 (3, c)

. . . mi,c

αs1 (i, c)

. . . mk,c

αs1 (k, c)

τ τ (k − i)τ

(k − 2)τ

(k − 1)τ

. .
.

m1,c

αs2
(1, c)

m2,c

αs2
(2, c)

m3,c

αs2
(3, c)

. . . mi,c

αs2
(i, c)

. . . mk,c

αs2
(k, c)

time

TM window

Fig. 2. Alignment of TM arrival times.

the recently proposed EC synchronization mechanism under
certain conditions, which we will call EC synchronization
requirements. These conditions can be summarized as follows:
(a) each of the slaves to be synchronized receives at least
one TM per TM window; (b) the TMs of a TM window are
broadcast such that all slaves that receive the same TM do
so at the same time through each of their links; (c) the TMs
are broadcast with the same fixed intertransmission time τ ;
and (d) the amount by which the clocks of the slaves drift
apart during one EC is negligible. Under these conditions, the
following EC synchronization mechanism can be used for the
slaves. (Note that because of condition (b), we do not need to
distinguish between the links of each slave.)

Let Sc denote the set of slaves in a given FTTRS network
that remain non-faulty at the end of EC c. Moreover, let mi,c

denote the TM with sequence number i in EC c, where i ∈ N
and 1 ≤ i ≤ k. Also, let Ms,c be the set of TMs that a
slave s ∈ Sc receives during the TM window of an EC c.
Furthermore, let αs(i, c) denote the expected arrival time of
mi,c ∈Ms,c at slave s ∈ Sc. Figure 2 illustrates these expected
TM arrival times during the TM window of an EC c for two
slaves s1, s2 ∈ Sc.

The expected arrival time of mk,c at a slave s is

αs(k, c) = αs(i, c) + (k − i)τ, (1)

which coincides with the end of the TM window. This is also
illustrated in Figure 2 for slaves s1 and s2.

If s received at least one TM replica mi,c in c, then (1)
can be calculated for all s ∈ Sc for each EC c. Because of
condition (b), in addition we have that

αs1(k, c) = αs2(k, c), where s1, s2 ∈ Sc. (2)

The EC synchronization mechanism for the slaves can there-
fore synchronize the end of the TM window of EC c among
s1 and s2 by using the TM arrival time αs1(k, c) = αs2(k, c)
as the synchronization event.

III. IMPLEMENTING THE SLAVE EC SYNCHRONIZATION

To simplify a first experimental assessment of the EC
synchronization mechanism, in our current implementation we
abstracted away the presence of two switches and masters.
This is a reasonable abstraction for an initial experimental

evaluation of the EC synchronization mechanism because
according to the FTTRS design the two masters are replica
determinate and thus provide identical service from the slaves
point of view [3]. The advantage of this abstraction is that
it allowed us to test the EC synchronization among slaves
without first having to implement the enforcement of master
replica determinism, which is required for two masters to
transmit their TMs in lockstep. Moreover, it also allowed us to
obtain some first results without having to implement how the
slaves manage the replication of the TMs caused by having
two masters generating sets of k TM replicas.

Regarding the specifics of our implementation, we took
as our starting point a software implementation of FTT-
SE [5], [6], which is a non-fault-tolerant switched Ethernet
implementation of FTT. In this implementation the slaves and
masters are implemented as processes to be executed in user
space on top of an x86-based computer running a GNU/Linux
operating system. In a typical FTT-SE network based on this
implementation, several computers running GNU/Linux are
interconnected by means of a single commercial off-the-shelf
(COTS) Ethernet switch. One of these computers executes the
process for the FTT-SE master, and each one of the others
executes an FTT-SE slave process.

For our implementation we made several changes to the
FTT-SE codebase. First, we modified the code for the master
such that it implements the behaviors that are relevant for the
FTTRS slave EC synchronization mechanism. Specifically, we
made changes for the master to transmit a pre-specified number
k of TMs per EC, and to do that with a fixed period τ within
each EC. Both k and τ , as well as the desired EC duration,
can be passed as arguments to the executable for the master.
Moreover, we modified the code for the master to encapsulate
k and τ in all TMs, and to add sequence numbers to them.
Regarding the EC duration, it was already encapsulated in the
TMs in the original FTT-SE codebase.

With respect to the code for the slaves, we modified it
to implement the EC synchronization mechanism using a busy
wait. When a TM mi,c is received by a slave s at time αs(i, c),
it calculates the time remaining to the end of the current TM
window. This time is then added to αs(i, c) in order to set
the absolute time when the TM window in EC c must end.
We call this time the TM window expiration time of EC c
and it coincides with αs(k, c) of equation (1). If mi,c was
the first TM received in c, a thread is created which will,
by means of a busy wait, indicate the TM window expiration
time. Note that the advantage of using a busy wait is that we
avoid sleeping the slave process. This provides better behavior
than timers because with timers processes are sent to sleep and
must be awoken by the OS, which may cause nondeterministic
delays. Finally, as explained in the next section, we added some
additional code to the slaves to evaluate the implementation of
the mechanism.

IV. TESTING THE IMPLEMENTATION

To test the implementation of the EC synchronization
mechanism we used software implemented fault injection
(SWIFI) [7]. This means that each slave process executes
additional code that forces them to ignore certain TMs. In this
way, we can test whether the implementation is robust to TM

Virtual
Switch

Master process

Slave process s1

Slave process s2

Testbed machine

Fig. 3. Virtualized prototype architecture.

losses as foreseen by the design of the EC synchronization
mechanism. In particular, the added SWIFI code chooses
which TMs must be ignored depending on their sequence
number. This is done such that all possible combinations of
missing up to k − 1 TMs on a slave’s link are tested, which
are all TM loss scenarios under which the designed mechanism
can synchronize the slaves. The number of these TM loss
combinations is given by(

k−1∑
e=0

(
k

e

))n

, (3)

where k is the number of TMs per EC, e is the number of lost
TMs, and n is the number of slaves attached to the network.

In addition to the SWIFI code, we also added instrumenta-
tion code to the slaves to timestamp the TM window expiration
time of each EC. This allows us to evaluate the precision with
which we are able to synchronize the ECs among the slaves.

A. Test setup

To test the slave EC synchronization we used two different
setups, but with several commonalities. First, in both setups
we used a single master and two slaves. This is the minimum
number of slaves and masters required for a first experimental
evaluation of the slave EC synchronization. Second, in both
setups the process for the master and the two processes for
the slaves were executed on the same machine and under the
same GNU/Linux OS instance. This made it possible for the
slaves to share the same clock, providing a common timebase
for their timestamping. Moreover, it simplified initializing the
communication between the master and the slaves. Finally, in
both setups the master process and slave processes are attached
to a single 100 Mbps Ethernet switch. Next, we highlight the
differences between the two setups.

1) Virtualized network setup: In this setup the single switch
is a virtual one and the processes are attached to it through
virtual Ethernet interfaces. Specifically, a virtual distributed
Ethernet switch is used [8]. This setup allowed us to check
the performance of the synchronization without taking into
account physical Ethernet interfaces, propagation delay, and
switching delay. A diagram of this setup can be seen in
Figure 3.

2) Shared machine with physical switch: In this setup the
single switch is a COTS Ethernet switch and each process
is attached to it by means of a different physical Ethernet
interface of the testbed machine. A diagram of this setup is
shown in Figure 4.

COTS
Switch

Master process

Slave process s1

Slave process s2

Eth1

Eth0

Eth2

Testbed machine

Fig. 4. Physical switch prototype architecture.

TABLE I. EXPERIMENT PARAMETERS.

k τ (µs) EC length (µs) # Test runs

Virtual Switch 4 100 1000 1000
COTS switch 4 100 1000 1000

B. Test parameters and results

To evaluate the results we define the measured EC offset
between two slaves s1 and s2 in cycle c as |ts1(c) − ts2(c)|,
where ts1(c) and ts2(c) indicate the recorded timestamp in EC
c by slave s1 and s2, respectively. In other words, we measure
by how much the TM window expiration times of the slaves
deviate in each EC. Note that since these times correspond
to αs1(k, c) and αs2(k, c), respectively, the measured EC
offset should be zero according to equality (2) of Section II.
Under our real experimental conditions, however, the EC
synchronization requirements are not perfectly satisfied and the
execution time of the slave processes is not deterministic, e.g.,
the process might be preempted by the OS. Thus, the measured
EC offset is a measure of the precision with which the EC
synchronization among two slaves is achieved in practice.

Table I shows the parameters we used in our tests. Specif-
ically, the EC length has been set to 1 ms. This is a suit-
able value for providing timely communications for typical
control applications. Regarding the intertransmission time τ
with which the master process sends the TMs to the slaves, it
must be greater than the transmission time of a TM, including
the Ethernet interframe gap (96 bit times). Since during the
TM window only TMs are exchanged on the network, this
prevents the TMs from being queued in the switch output
ports. This helps ensure that the TMs are not only transmitted
with an intertransmission time τ , but also reach the slaves
with the necessary interarrival time τ . Note that queuing at a
switch output port could prevent this by introducing significant
non-deterministic delays. This might occur, for instance, if
some TMs occupy a link for a longer or shorter time than
the expected TM transmission time due to errors in the link
such as dribble bits. In our experiments the TMs do not carry
scheduling data [2] and thus are only 14 bytes long, which
fits within the 46 bytes of data padding of an Ethernet frame
of minimum size (72 bytes). Since we are using 100 Mbps
Ethernet, we must therefore set τ to a value greater than
(72 · 8 + 96)/100 = 6.72 µs. We have chosen a value of 100
µs. We have also chosen to perform 1000 test runs, where each
test run injects all possible ways of losing TMs in both slaves
with k = 4. This yields (

∑4−1
e=0

(
4
e

)
)2 = 225 fault injections per

test run according to equation (3), giving us 225000 sample
points. This already provided us with important insights, as
described in the next paragraph and Section V, and we had
no need for testing different parameter sets with our current

TABLE II. MEASURED EC OFFSET RESULTS.

samples mean (µs) std. dev. (µs) max (µs)

Virtual Switch 225000 1.94 0.84 47.62
COTS switch 225000 0.69 1.36 91.37

Fig. 5. Histogram of measured EC offset for shared machine with virtual
switch. Bin size is 0.5 µs. The superimposed figure is a close-up of the right
tail of the histogram.

implementation and experimental setups.

The results are shown in Table II. The mean and standard
deviation of the measured EC offset indicate that with both
experimental setups the implementation achieves a good EC
synchronization, on the order of 0.1–0.2% of the EC length,
in most cases. However, the main measure of interest is the
maximum measured EC offset. This is so because FTTRS
provides real-time communication, where the end of each EC
constitutes a hard deadline for the round-based communication
to take place. Unfortunately, with the current implementation,
and with both experimental setups, we can get values that are
significantly larger than the mean: on the order of 5–10% of
the EC length. This is also confirmed by the histograms of
figures 5 and 6. They both reveal that the distribution of the
EC offset has a long tail in the current implementation.

V. CONCLUSIONS AND FUTURE WORK

This paper constitutes a first step towards building a proto-
type of FTTRS. Specifically, it presents a first implementation
of an EC synchronization mechanism for the slaves, which is
a key part of FTTRS. The implementation was tested with a
single master and two slaves, all executing as processes on
the same machine under the same GNU/Linux OS instance.
This significantly simplified a first experimental verification of
the implementation. The experiments consisted in having the
master process transmit its TMs to the slave processes through
both a virtual switch and a physical COTS switch. The results
of the tests are promising: they show that the implementation
achieves a good EC synchronization most of the time with
the experimental setups we used. Nevertheless, they also
highlighted that occasionally a large EC offset between the
slaves can be observed. This, as was to be expected, is due to
the slaves being executed as user processes on top of a non-
real-time OS. We inherited this from the FTT-SE codebase.
If large EC lengths are used, then a maximum EC offset on
the order of 50-100 µs, as we have measured, are acceptable.
However, with FT4FTT we are also targeting control applica-
tions with high sampling rates, where the measured values can
be problematic. In this paper we therefore confirmed that the
FTT-SE codebase must be further adapted to our needs.

Fig. 6. Histogram of measured EC offset for shared machine with COTS
switch. Bin size is 0.5 µs. The superimposed figure is a close-up of the right
tail of the histogram.

The next step involves updating the implementation to take
advantage of a Linux kernel that offers real-time features. We
are considering Xenomai [9] for this. Moreover, we also plan to
modify the experimental setup by moving the slave processes
and the master process to different machines and measuring
the EC offset in this new distributed setup. This will give us a
better view of the precision with which ECs can be synchro-
nized among slaves in an actual FTTRS implementation.

Further future work includes implementing the mechanisms
to achieve replica determinism for two FTTRS masters and
to then test the implementation of the EC synchronization
mechanism with two such replica determinate masters.

ACKNOWLEDGEMENTS

This work was supported by project DPI2011-22992 and
grant BES-2012-052040 (Spanish Ministerio de economı́a y
competividad), and by FEDER funding.

REFERENCES

[1] D. Gessner, J. Proenza, M. Barranco, and L. Almeida, “Towards a flexible
time-triggered replicated star for Ethernet,” in Proc. 18th IEEE Conf. on
Emerging Technologies & Factory Automation (ETFA), Cagliari, Italy,
Sep. 2013.

[2] P. Pedreiras and L. Almeida, “The Flexible Time-Triggered (FTT)
paradigm: an approach to QoS management in distributed real-time
systems,” in Proc. Int. Parallel and Distributed Processing Symposium.
IEEE Computer Society, 2001.

[3] D. Gessner, J. Proenza, and M. Barranco, “A Proposal for Master Replica
Control in the Flexible Time-Triggered Replicated Star for Ethernet,”
in Proc. 10th IEEE Int. Workshop on Factory Communication Systems
(WFCS), Toulouse, France, May 2014.

[4] ——, “A Proposal for Managing the Redundancy Provided by the Flex-
ible Time-Triggered Replicated Star for Ethernet,” in Proc. 10th IEEE
Int. Workshop on Factory Communication Systems (WFCS), Toulouse,
France, May 2014.

[5] R. Marau, L. Almeida, and P. Pedreiras, “Enhancing real-time communi-
cation over COTS Ethernet switches,” in Proc. 6th IEEE Int. Workshop
on Factory Communication Systems (WFCS). Torino, Italy: IEEE, 2006,
pp. 295–302.

[6] (2014, May) FTT-SE v2.6.2 source code. [Online]. Available:
http://paginas.fe.up.pt/∼ftt/repository/ftt-se.2.6.2.tar.bz2

[7] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and
tools,” Computer, vol. 30, no. 4, pp. 75–82, 1997.

[8] R. Davoli, “Vde: Virtual distributed ethernet,” in Proc. 1st IEEE Int.
Conf. on Testbeds and Research Infrastructures for the Development of
Networks and Communities. IEEE, 2005, pp. 213–220.

[9] P. Gerum, “Xenomai—Implementing a RTOS emulation framework
on GNU/Linux,” White Paper, Xenomai, 2004. [Online]. Available:
http://www.xenomai.org/documentation/xenomai-head/pdf/xenomai.pdf

