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Abstract—Traditional distributed embedded systems are con-
figured using static environment information and thus do not
support dynamic behavior of the system. The necessary flexibility
in the system may be provided by the Flexible Time-Triggered
(FTT) communication paradigm. If, in addition, it is required
that the system operates continuously, the suitable fault tolerance
mechanisms that provide high reliability have to be developed and
deployed in the system. To be able to successfully assess those
mechanisms, it is reasonable to develop simulation models that
support injection of various types of faults.

This paper describes an OMNeT++ simulation model for dis-
tributed systems that are based on the Hard Real-Time Ethernet
Switching (HaRTES) implementation of the FTT paradigm. The
contribution of the paper is twofold. First, we provide a library
of components that are required for modeling FTT networks
with arbitrary number of FTT slaves connected to a HaRTES
switch, and second, we used the developed components to build
an FTT system that is suitable for assessing some of recently
proposed mechanisms for tolerating certain transient faults in
the communication channel.

I. INTRODUCTION

Traditional distributed embedded systems (DESs) have not
been conceived to support both dynamic behavior of the system
and highly-reliable continuous operation. The Flexible Time-
Triggered (FTT) communication paradigm provides flexibility
in the system by means of on-line QoS management with
arbitrary scheduling policies [1]. It follows the master/multi-
slave communication model, which means that the master
polls several slaves using a special message called Trigger
Message (TM). In FTT, the communication is divided into
rounds of fixed duration called Elementary Cycles (ECs). Each
EC starts when the FTT master sends a TM, which contains
information about the current schedule (EC Schedule), i.e.
which messages should be transmitted by which slaves in the
current EC, and synchronizes all slaves. This way, message
scheduling is always under control of the FTT master and
can be adapted on-line depending on the current state of the
system. The current schedule is calculated by the FTT master
using information from the System Requirements Database
(SRDB). The EC is further divided into two windows: the
synchronous window, used for transmission of synchronous
messages, and the asynchronous window, used for transmission
of asynchronous messages.

Currently, there are several implementations of the FTT
communication paradigm. Initially, the FTT was developed
for CAN (Controller Area Network), a widely used protocol
in DESs (especially for automotive applications). Afterwards,
it was adapted to be used with other types of networks in-
cluding Ethernet (FTT-Ethernet) and Switched Ethernet (FTT-
SE). Hard Real-Time Ethernet Switching (HaRTES) may be
considered as an evolution of the FTT-SE protocol that brings

in many improvements such as simplified asynchronous traffic
handling, increased system integrity, seamless integration of
legacy nodes, and improved network synchronization [2].

To enable high reliability, several fault tolerance mecha-
nisms based on HaRTES have been proposed recently [3]–[5]
as a part of the Fault Tolerance for Flexible Time-Triggered
Ethernet-based systems (FT4FTT) project, which aims at pro-
viding high reliability and flexibility to a DES. To evaluate
the proposed fault tolerance mechanisms, it is faster and often
more convenient to develop adequate simulation models and
perform exhaustive simulations instead of implementing the
real prototypes. In addition, fault injection is usually easier to
enforce in a simulation environment.

OMNeT++ is a highly modular, easily extensible
component-based C++ discrete event simulation library and
framework, designed to support modeling of very large com-
munication networks built from reusable model components
[6]. The INET framework [7] is an open-source library for
OMNeT++ that contains models for large number of wired
and wireless communication protocols. It is worthy of remark
that in OMNeT++, a collection of components that implements
services of a protocol is referred to as simulation model or
simulation library, whereas the simulation instance of some
specific system is called network module.

This paper presents a simulation model for distributed
systems that are based on the HaRTES implementation of
the FTT communication paradigm. The model has been built
on top of the OMNeT++ INET framework, and provides the
library of components that can be used to simulate the behavior
of an FTT network with an arbitrary number of FTT slaves
connected to a HaRTES switch. Given that HaRTES is one
of the Ethernet-based implementations of the FTT paradigm,
the modules that provide the functionalities related to the
Ethernet protocol can be reused directly from the INET library.
Other modules were specifically developed to support specific
services of the FTT protocol. To assess some of the recently
proposed mechanisms for tolerating certain transient faults in
the communication channel, we built an FTT system (OM-
NeT++ network module) using the developed components and
OMNeT++ modules that enable injection of pseudo-random
transient faults into the communication channel based on the
specified bit error rate (BER). Finally, we present and discuss
some preliminary results of the simulations.

II. AN OVERVIEW OF HARTES

The simplified functional architecture of HaRTES is illus-
trated in Fig. 1. The figure shows the architecture of both
a HaRTES switch and an FTT slave. For simplicity, the
switch in the figure has only one Ethernet port (in case of
a real implementation, the number of MAC and PHY blocks
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Fig. 1. Simplified functional architecture of a HaRTES switch and an FTT
slave (based on [2] and [8]).

would correspond to the number of ports). Moreover, the real
architecture of the switch contains additional function blocks
such as queues and port dispatchers that are left out for brevity.

As can be seen from Fig. 1, the HaRTES switch contains
an FTT master and function blocks that are used for validation
and forwarding of FTT packets according to the rules in the
SRDB. Since the FTT master is integrated in the switch,
FTT slaves can transmit asynchronous messages autonomously
without a need for signaling mechanism used in FTT-SE,
which significantly simplifies asynchronous traffic handling.

When an Ethernet frame is received, it is first checked for
validity by the Packet Validation module against the current
schedule found in the EC Schedule (synchronous messages)
and other attributes from the SRDB (e.g. inter-arrival time
in case of asynchronous messages). All messages that do not
meet the system requirements are discarded, which increases
the system integrity. After validation, messages are enqueued
according to their type (real-time synchronous/asynchronous
or non real-time) and afterwards processed in the Packet
Forwarding module, which relays them to the corresponding
ports based on the unique message identifier (Stream Id) within
the FTT message. Non real-time (NRT) messages are enqueued
and processed separately using standard MAC relaying logic
under the control of the FTT master to avoid congestion, which
enables seamless integration of legacy nodes. A special type
of Slave-to-Master asynchronous messages that are used for
requesting updates in the SRDB are forwarded directly to the
Admission Control module for feasibility evaluation.

An FTT slave in the HaRTES network retains the same
architecture as in FTT-SE. The Node Requirements Database
(NRDB) in the FTT slave is the SRDB counterpart, which
stores local information about the messages and their attributes
for a particular FTT slave. This database is managed by the
application, but its changes are triggered by the FTT master
using dedicated Master-to-Slave asynchronous messages [8].
The Dispatcher module in the FTT slave is responsible for
transmitting the messages according to the schedule decoded
from each TM and the attributes from the NRDB.

III. SIMULATION MODEL DESCRIPTION

Component-based modeling is an appealing feature of OM-
NeT++ that enables hierarchical model design with reusable
components called modules. Modules can be simple (module
functionality is encapsulated in the corresponding C++ class)
or compound (module functionality is implemented by com-
bining a number of simple and/or compound modules). A
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Fig. 2. HaRTES switch and FTT slave modules in OMNeT++.

special type of compound module that is placed at the top
of the hierarchy is called network module. In order to run a
simulation, the user must provide at least one network module.

Our FTT simulation model corresponds to the HaRTES
architecture presented in Fig. 1 and is designed using a
modular approach. Given that the fault tolerance mecha-
nisms proposed so far within the FT4FTT project provide
no guarantees for the delivery of asynchronous messages, the
current implementation of our model is mainly focused on
synchronous traffic, and therefore offers only limited support
for asynchronous messages. In particular, handling the Slave-
to-Master and Master-to-Slave asynchronous messages is not
currently supported by the model. We must also note that NRT
traffic is not supported by the model at this time.

A. HaRTES Switch
The structure of the n-port HaRTES switch module in

OMNeT++ is shown in Fig. 2. The module and connections
represented with dashed lines are not part of the normal
HaRTES switch, but rather provide the functionalities related
to some of the FT4FTT fault tolerance mechanisms in the
switch, which will be described later. Moreover, the functions
for handling special asynchronous messages (Slave-to-Master
and Master-to-Slave) and NRT traffic are not currently im-
plemented. The modules responsible for these functions (the
Admission and the Dispatcher module) are currently designed
to simply discard these messages upon reception.

As can be seen from Fig. 2, some modules (such as
the Ethernet interface ETH, which contains MAC and PHY
components, and FIFO queues) are reused directly from the
INET library. Other modules are specifically developed to
simulate the behavior of the different function blocks described
in Section II. We will first describe the modules that are not
directly used for packet processing, but instead provide global
information related to the system configuration.

The SRDB module stores the system attributes that are
necessary for scheduling and validating the packets (message
deadline, period, size, inter-arrival time, etc.). It is initialized
at the beginning of the simulation using information from a
specifically defined XML file.

The Forwarding Table module is used by the Dispatcher to
forward data packets to the corresponding ports of the switch.
The forwarding rule is based on Stream Id following the pub-
lisher/subscriber communication model rather than using MAC
address information. The content of the table is initialized
using information from a specifically defined XML file on
simulation startup.



In FTT, slaves are instructed by the FTT master to transmit
the synchronous messages according to the current schedule
conveyed by the TM in each EC. When an Ethernet frame
from an FTT slave is received by the switch, it is first examined
inside the ETH in order to detect if the frame was corrupted
during transmission, and, if correct, it is delivered to the Clas-
sifier, which is responsible for the identification of the packet
type. Non real-time packets are enqueued directly in the NRT
FIFO queue, whereas FTT real-time packets are passed to the
Validator module. The Validator module validates FTT frames
received from the Classifier using information from the SRDB
and the current schedule. Depending on the message type, valid
FTT packets are enqueued either in the Sync (synchronous
messages) or the Async (asynchronous messages) FIFO queue.

Each EC is initiated by the Scheduler module. Periodically,
it constructs a TM with the current schedule and sends it
to the Dispatcher module. The period of the EC is defined
during the simulation startup. Clearly, the Scheduler takes over
some responsibilities from the dispatcher (such as defining the
time instant when each EC is initiated). The reason for this
is reducing the number of message objects, which results in
a more efficient simulation model. We must note that, at this
point, the Scheduler only checks if each synchronous message
should be sent in the current EC based on the offset and period
attributes in the SRDB. However, its C++ class could be easily
extended in order to enforce any scheduling policy.

Upon reception of the TM, the Dispatcher module broad-
casts it to all ports. The ETH in each port encapsulates the TM
into an Ethernet frame and transmits it over the communication
channel. After broadcasting the TM to all ports, the Dispatcher
gets the packets from the Sync FIFO queue and forwards
them to the corresponding ports based on the information
obtained from the SRDB and the Forwarding Table. After-
wards, the Dispatcher transmits the packets from the Async
FIFO queue. Since the functions for relaying NRT traffic are
not yet implemented in the model, messages retrieved by the
Dispatcher from the NRT FIFO queue are simply discarded
upon reception. As in the case of the Scheduler, in order to
attain a more efficient model, we combined packet forwarding
and dispatching functions in one module (the Dispatcher).

As explained in section II, the Admission module is respon-
sible for managing the changes to the SRDB that are requested
by FTT slaves using Slave-to-Master asynchronous messages
called slave update requests (Req). Given that asynchronous
messages are not yet fully supported by the model, the Slave-
to-Master messages, which are forwarded by the Dispatcher,
are discarded upon reception by the Admission module.

B. FTT Slave

The structure of the FTT slave module in OMNeT++ is
shown in Fig. 2. Similar to the HaRTES switch, some modules
(ETH) are reused from the INET library, whereas others
(marked with dashed lines) provide the functionalities related
to the fault tolerance mechanisms which will be described later.

The Dispatcher module receives and decodes each TM and
builds the synchronous messages that should be transmitted in
the current EC, using data provided by the Application module.
It also delivers to the Application module the synchronous
messages that are targeted to this specific FTT slave.

The NRDB module is almost equal to the SRDB in the
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Fig. 3. Synchronization mechanism in two slaves (reproduced from [5] with
the permission of the authors).

switch. The only difference is that it contains only local
information for a particular FTT slave.

C. Fault Tolerance Modules

The correct reception of the TM of each EC is critical for
the operation of FTT. Given that this message is used to convey
the current schedule and to synchronize all slaves, failing to
receive it would lead to a complete omission of the EC in a
slave. In order to prevent this, a fault tolerance mechanism
based on the temporal replication of the TM was proposed in
[5]. In particular, the HaRTES switch transmits the TM of each
EC multiple (k) times within a time slot called TM window
(TMW). The value k depends on the BER in the channel, and
if well calculated ensures that each slave receives at least one
TM even in presence of transient faults in the links. In each
TMW, TM replica transmissions are spaced uniformly in time
using a constant period (τ ) named TM inter-arrival time. Given
that a slave might receive all or only a subset of k replicas (due
to transient link faults), a synchronization mechanism must be
adopted to ensure that the start of the synchronous window
is aligned properly in each slave. To achieve it, the TM must
convey some additional information: the value of k; a sequence
number for each TM replica, which takes values from 1 to k;
and the value of τ .

We will briefly describe the synchronization mechanism
proposed in [5] using Fig. 3. Let us assume that mi,c and
mj,c are replicas of the TM with sequence numbers i and j
(i 6= j) received by the slaves s1 and s2, respectively, in EC c.
Also, let αs1(i, c) and αs2(j, c) be the time instants when mi,c

and mj,c are received by each slave. Both s1 and s2 will start
the synchronous window at the same time if we set a timer
in each slave to expire after (k − i)τ and (k − j)τ time units
after the reception of mi,c and mj,c, respectively. The timer
expiration time should be recalculated every time a new TM
is received by the slave.

The functionality of the described synchronization mech-
anism in OMNeT++ is provided by the modules represented
by the dashed lines in Fig. 2. In the model of the switch that
uses this synchronization mechanism, a TM from the Scheduler
is sent to the Replicator instead of the Dispatcher. After
reception of the TM, the Replicator creates k replicas (TMr),
appends additional information necessary for the synchroniza-
tion, and sends them to the Dispatcher for broadcasting.

In the model of the slave that uses this synchronization
mechanism, the Combiner module collects the TMr mes-
sages, decodes them, and forwards the current schedule to
the Dispatcher at the beginning of the synchronous window.
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As explained above, the start of the synchronous window is
determined with (k−i)τ , where i is the sequence number of the
TMr. This value is used to set a timer in the Combiner, which
is rescheduled every time a new TMr is received. When the
timer expires, the current schedule is sent to the Dispatcher, so
it may start transmitting the scheduled synchronous messages.

IV. SIMULATION RESULTS

To demonstrate the suitability of the proposed modeling
technique for the evaluation of FTT-based fault-tolerant ar-
chitectures by means of fault injection, we have assessed the
described fault tolerance mechanism in presence of transient
faults in the channel. More specifically, we performed a
number of simulations on the FTT system shown in Fig. 4.

The system consists of three FTT slaves connected to a
HaRTES switch using 10 m long 100 Mbps Ethernet links
with different BER for each slave link as given in Fig. 4. In
OMNeT++, transient link faults are injected into the communi-
cation channel in a pseudo-random fashion based on the packet
error probability pp = 1 − (1 − BER)N , where N is the bit
length of the packet. Each message has a special field called
bit error flag that is set during transmission according to the
probability pp. This flag is examined in the ETH of each node
in order to discover if it was corrupted during transmission.

Since our main goal was to assess the robustness of the
proposed fault tolerance mechanism, the system was config-
ured to send replicated TMs without scheduling data (i.e.
the slaves do not transmit synchronous messages). We also
adjusted some modules in the switch (the Scheduler) and slaves
(the Dispatcher) to collect certain statistical information of the
system. In particular, we count the number of ECs initiated
by the Scheduler and the number of successfully processed
ECs in each slave. The EC is considered successful if the
start of the synchronous window in the slave matches the
expected reference time that coincides with the end of the
TMW. Given that these time instants could differ due to the
rounding errors in OMNeT++ caused by the floating-point
arithmetic, we consider that the slave is properly synchronized
if their difference is less than 1 ns. To differentiate EC
omissions caused by the transient faults in the channel from
those originated in the simulation model (due to potential
modeling errors), we also counted the number of ECs in which
the slave successfully received at least one TM.

In order to obtain statistically confident results, we con-
figured the simulation environment to run one million ECs
with 1 ms period and τ = 10µs. We repeated the simulation
using different k values. The obtained results are presented in
Table I. The table shows the number of successfully processed
ECs. The same values were obtained in case of the number of
successfully received TMs, which means that the behavior of

TABLE I. PERCENTAGE OF SUCCESSFULLY PROCESSED ECS

k Slave1 Slave2 Slave3

1 94.3675% 99.9398% 56.2075%

2 99.6966% 100% 80.7965%

4 99.999% 100% 96.329%

8 100% 100% 99.8675%

16 100% 100% 99.9998%

the simulation model is correct (i.e. if slave receives at least
one TM, it will be properly synchronized).

From the table, we can see that all ECs are successfully
processed if k ≥ 2 in case of BER = 10−6 (the link of
Slave2) and if k ≥ 8 in case of BER = 10−4 (the link of
Slave1). In case of BER = 10−3 (the link of Slave3), it is
evident that 100% percentage cannot be achieved even with
k = 16. The percentage of successfully processed ECs in this
case is equal to 99.9998%, which means that only two out of
one million ECs are missed by the slave.

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented an OMNeT++ simulation model
for distributed systems based on the HaRTES implementation
of the FTT paradigm. Moreover, we showed how the proposed
modeling technique could be used for the evaluation of FTT-
based fault-tolerant architectures by means of fault injection,
and presented some preliminary results obtained by simulating
an FTT system that was built using the model’s components.

In our future work, we will extend the model in order
to support and assess via fault injection other fault tolerance
mechanisms. Also, we will consider how the developed model
could be utilized for addressing some performance aspects of
distributed systems based on HaRTES.
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