
An active star topology for improving fault
confinement in CAN networks

Manuel Barranco, Julián Proenza, Guillermo Rodrı́guez-Navas and Luı́s Almeida, Member, IEEE,

Abstract—The Controller Area Network (CAN) is a field bus
that is nowadays widespread in distributed embedded systems
due to its electrical robustness, low price, and deterministic
access delay. However, its use in safety-critical applications has
been controversial due to dependability limitations, such as those
arising from its bus topology. In particular, in a CAN bus there
are multiple components such that if any of them is faulty, a
general failure of the communication system may happen. In
this paper, we propose a design for an active star topology called
CANcentrate. Our design solves the limitations indicated above
by means of an active hub which prevents error propagation from
any of its ports to the others. Due to the specific characteristics
of this hub, CANcentrate is fully compatible with existing CAN
controllers. The paper compares bus and star topologies, analyzes
related work, describes the CANcentrate basics, paying special
attention to the mechanisms used for detecting faulty ports, and
finally describes the implementation and test of a CANcentrate
prototype1.

Index Terms—Fault tolerance, system analysis and design,
communication system fault tolerance, communication system
fault diagnosis, field buses, CAN protocol, star, topology, hub.

I. INTRODUCTION

The Controller Area Network (CAN) protocol is a field
bus which fulfills the communication requirements of many
distributed embedded systems. In particular, CAN provides
high reliability and good real-time performance with very
low cost. Due to this, CAN is nowadays used in a wide
range of applications, such as factory automation or in-vehicle
communication. Furthermore, there is still a high interest in
researching new solutions based on the mentioned properties
of CAN [1] [2].

Nevertheless, communication systems based on CAN
present several specific dependability problems, some of which
are caused by their bus topology. The main drawback of
any protocol using a bus topology is that the structure of
the network presents multiple components, which have direct
electrical connections to each other without proper error
containment. As a consequence, a fault in any of them may
generate errors that propagate and effectively prevent further
communication to take place. An example of this situation
is depicted in case A of Figure 1, in which a fault in the
medium access circuitry of node 2, e.g. with the transmitted
bits stuck at a fixed value (a dominant value in case of CAN),
blocks the communication channel and none of the nodes can
communicate with each other. Similar situations can happen

1The contents of this article have been the subject of a patent filing
submitted on the 16th of September of 2004.

Node

1
A

Node

2
Node

4
Node

3
B C

Fig. 1. Examples of failures of the communication system

with faults in the node itself, as well as with short circuits in
the bus transmission medium or in the connectors.

Moreover, a bus is shared by all communication paths
between every subset of nodes. Consequently, a partition in
just one point necessarily leads to a disruption of many
communication paths. This is depicted in case B of Figure 1
in which a partition in the bus mid point blocks any further
communication between nodes 1 and 2 with nodes 3 and 4.

Finally, case C shows the situation in which there is a par-
tition in the local connection of node 4 with the bus that does
not affect the bus integrity and which leaves node 4 isolated.
Consequently, the communication among the remaining nodes
is unaffected. From the communication system point of view,
this is the desired behavior when a fault occurs in one node
or node bus interface, because it exhibits the least impact on
the communication system itself.

The general framework within which this work has been
developed addresses two main objectives. The first objective
is to prevent situations in which one single fault in the com-
munication system leads to a severe failure of communication,
e.g. cases A and B in Figure 1. For the purpose of this paper,
we define severe failures of communication as those in which
more than one node cannot communicate with two or more
of the other nodes. In practice, we achieve this objective by
using an appropriate topology, namely a star, provided with an
innovative hub that enforces the necessary error containment.
This hub blocks error propagation from faulty nodes or from
faulty links to the rest to the system at the respective hub port.

Nevertheless, the star topology still contains one single
point of failure, i.e. the hub, which if faulty may lead to a
global communication failure. Even so, we consider the star
topology to be a good choice because it is easier to improve
dependability for the unique single point of failure of the star,
e.g. the hub can be placed in a more protected area within the
system, than for the multiple components that may cause a
severe failure of communication in a bus topology. Moreover,
replicated star topologies can be used to tolerate both hub as
well as link faults.

The second objective of our general framework is to exploit
the possibilities the star topology offers to further improve
dependability of CAN networks. In particular, the hub can

c©2006 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprint-
ing/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. doi:10.1109/TII.2006.875505

be provided with the appropriate capabilities to mitigate the
impact of faults not included in the scope of the first ob-
jective, i.e. those which do not lead to a severe failure of
communication. For instance, the hub could prevent that any
node impersonates another node, thus restricting the failure
semantics of the nodes.

This paper is devoted to the first objective, only, and it
addresses the design and implementation of a new simplex
star topology we have called CANcentrate. The design of a
replication scheme for CANcentrate can be found in our recent
work [3], whereas the achievement of the second objective
pointed out above will be the subject of future work.

One requirement was imposed from the beginning on the
design of CANcentrate: to preserve all the specifications of
CAN [4]. As a consequence of this compatibility, CANcentrate
preserves all the dependability properties already achieved
by CAN; commercial off-the-shelf components can be used
for building the CAN nodes of CANcentrate; and the hub is
transparent for any application that uses CAN.

In the following section we discuss the properties of existing
solutions to improve the dependability properties of CAN,
focusing on the advantages of a simplex star topology with
respect to simplex and replicated bus topologies. Moreover,
existing work on star topologies for CAN is also presented.
Section III presents the architecture of CANcentrate. Sec-
tion IV discusses the mechanisms that the hub of CANcentrate
includes in order to diagnose faulty nodes or links and discon-
nect them from the network. A prototype implementation of
CANcentrate is described in Section V. Section VI summarizes
the paper.

II. PROBLEM STATEMENT

Despite the good dependability properties exhibited by the
CAN protocol, it still presents some drawbacks. The several
techniques previously proposed in the literature to confine the
effect of faults in CAN systems are not completely effective.
This is because they still allow single faults of different types
and occurring in different physical points to provoke a severe
failure of communication.

Therefore, we can rewrite the objective of this work as
preventing the existence of multiple components in a CAN
network such that a single fault in any of them may cause a
severe failure of communication.

In order to better understand how CANcentrate achieves
this objective, next we describe the fault model and fault
assumptions considered in this work.

A. Fault model and assumptions

The fault model gathers the different kinds of faults that
may happen in the components of a CAN network and that
may cause a severe failure of communication:

• Stuck-at node fault. It occurs whenever a given node
is damaged and issues a constant bit value. Two types
of stuck-at fault exist: stuck-at-dominant and stuck-at-
recessive faults, depending on whether the bit value
issued by the faulty node has dominant or recessive value
respectively. In CAN, the logical ’0’ value is referred as

the dominant value, whereas the logical ’1’ is referred as
the recessive. Therefore, since the physical layer of CAN
is equivalent to a logic-AND of every node’s contribution,
only a stuck-at-dominant fault may cause a severe failure
of communication.

• Shorted medium fault. This occurs whenever the medium
is electrically connected to battery or to ground due to
a short-circuit. For obvious reasons, this fault prevents
any communication. When fault-tolerant cabling is used,
as recommended in CAN [4], such a fault only happens
when both wires are shorted to a fixed low impedance
electrical source.

• Medium partition fault. It occurs whenever the medium is
interrupted in such a way that the network is broken into
several subnetworks, which are called network partitions.
Therefore, any two nodes which are each one in a
different partition can no longer communicate with each
other. Moreover, signal reflections at the open extremities
may cause channel errors that prevent nodes in the same
partition from communicating properly [4].

• Bit-flipping fault. This occurs whenever a component of
the network (either a node or a medium) exhibits a fail-
uncontrolled behavior and starts sending erroneous and
random bits with no restrictions in the value domain.
In this case, even if a node is trying to send a correct
bit stream, this is destroyed by the dominant bits of the
bit-flipping stream. Some potential causes of this fault
are: a damaged node that sends random bit values; a bad
welding on the medium connector that generates random
bit values, etc.

• Babbling-idiot fault. It occurs whenever a node sends
messages that are erroneous in the time domain, then con-
suming more resources that it really needs and starving
the other nodes of the appropriate resources for commu-
nicating [5]. For instance, this type of faults may happen
as a consequence of a software fault in a node that results
in an infinite loop that sends messages continuously. To
deal with this kind of faults requires knowledge about
the scheduling of the messages, which depends on the
application executed at nodes. However, in the context
of this present work we focus on a solution independent
of the application. Therefore, although a babbling-idiot
fault may provoke a severe failure of the communication
system, we postpone its treatment for future work. Note
that, for instance, it is suitable to include in the hub a bus-
guardian, similar to the one proposed in [5], for dealing
with faults in the time domain.

Beyond the types of faults considered in this work as stated
above, we make no assumptions on the frequency and duration
of errors that may occur in any port or group of ports of the
hub. The only assumption made, since hub replication is not
considered, is that the hub itself will not fail.

B. Potential solutions

Some of the faults presented above can be confined in bus-
based CAN systems, up to a certain extent, using techniques
that are already known. These techniques are: the use of

replicated transmission media such as in [6] [7], the use of
reconfigurable transmission media such as in RedCAN [8],
and the use of bus-guardians such as in [5].

However, due to the characteristics that are inherent to the
bus topology, these techniques do not prevent the existence of
multiple components such that a single fault in any of them
may cause a severe failure of communication. First, replicated
buses may suffer from common-mode failures due to the fact
that they come together near every node, i.e. due to spatial
proximity [9]. Moreover, replicated buses cannot prevent a
faulty node from causing a severe failure when the node sends
incorrect information to all media. Second, RedCAN connects
nodes by means of a special ring in which one of its sectors
is redundant and only becomes active for tolerating stuck-
at faults in other sectors. Nevertheless, RedCAN only deals
with faults occurring in adjacent sectors or contiguous nodes;
requires specific RedCAN hardware for implementing nodes;
and increases the complexity of the nodes, thus increasing
their probability of failure. Finally, a bus-guardian can only
contain the propagation of errors generated by the node it
supervises and, thus, the bus-guardian is useless for containing
error propagation from a faulty medium. Moreover, a bus-
guardian and its corresponding node may also exhibit common
mode failures, due to spatial proximity, or due to the fact that
the guardian and its node can share resources or procedures,
e.g. power supply, clock synchronization algorithm, etc.

Since all these techniques –even if they are used together–
still allow multiple components to cause severe failures of
communication, alternative solutions have been researched,
namely those based on a star topology. In a star topology,
each node is connected to a central element, the hub, by its
own link. One advantage of a star topology is that links only
come into spatial proximity at the center of the star and that
a medium partition cannot cause a network partition. But the
most important advantage is that the center of the star, the hub,
has a privileged view of the system, as it simultaneously knows
the contribution from each node through its corresponding
link. Hence, an adequate hub could enforce confinement of
faulty transmission media and faulty nodes, by disconnecting
the adequate hub ports. Furthermore, fault independence would
be ensured between the hub and the nodes, if the hub acted
as their guardian.

It is obvious that the main drawback of a star topology is
that the hub represents a single point of failure. Nevertheless,
different strategies can be adopted in order to face this
problem. For instance, the hub reliability can be increased by
placing it in a well-protected zone inside the physical system
or by investing in its quality or even by adopting a replicated
star topology, as the one we have recently proposed in [3].

Some star topologies for CAN can be found in the literature
or in the market [10] [11] [12] [13]. Some of them are
passive stars in the sense that the hub acts as a concen-
trator where all the incoming signals are coupled. These
stars present important disadvantages [14] concerning coupling
loses, strong limitations on the star radius or in the bit rate,
electrical problems, etc. Other types of stars are known as
active stars, which overcome some technical problems of
passive stars. These topologies rely on an active star coupler,

which receives the incoming signals from the nodes bit by
bit, implements a logical AND, and retransmits the result to
all nodes. Unfortunately, neither of these passive nor of these
active stars do address severe failures of communication, or
only deal with stuck-at-dominant faults. Moreover, some of
them are not even compatible with the CAN protocol. A deeper
discussion on the drawbacks of existing passive and active star
topologies can be found in [14] and [15].

III. DESIGN OF CANCENTRATE

In order to overcome the inability of the architectures
described in the previous section to eliminate the presence
of multiple points of severe failure, we have proposed a new
communication infrastructure called CANcentrate.

CANcentrate is based on an active star topology and
presents a new hub that includes enhanced fault-treatment
mechanisms. From the hub perspective, each node together
with its dedicated link constitute an error-containment region.
A permanent fault within any of these regions manifests as a
permanently faulty port, which can be isolated by the hub to
prevent a severe failure from occurring.

This section is devoted to describing the CANcentrate
architecture, paying special attention to the internal structure
of the hub.

A. CAN synchronization and error handling basics

CAN communication relies on a complex bit synchroniza-
tion mechanism which guarantees that nodes have a quasi-
simultaneous view of every single bit on the channel (the so-
called in-bit response). This mechanism uses the recessive to
dominant transitions of the signal on the channel in order to
keep the nodes of the network synchronized with respect to the
node that is transmitting (the so-called leading transmitter).
In this way, nodes do not only agree in each bit value, but
also about the location of each bit inside the frame, i.e.
nodes are synchronized at both bit-level and frame level. This
synchronization allows definition of a number of additional
mechanisms (e.g. bit-wise arbitration, ACK bit, error frame),
which significantly improve the dependability and real-time
properties of CAN networks [4].

Other important characteristics of CAN related to depend-
ability concern the error-detection and the error-signaling
mechanisms. Any CAN node is able to detect five different
types of errors [4]: stuff error, format error, bit error, CRC
error and ACK error.

Whenever a CAN node detects an error, it signals it by
transmitting an error flag [4]. This flag aims at compelling
the other nodes to detect an error too and, consequently, to
abort the transmission/reception of the frame that is currently
being transmitted. In other words, the transmission of an error
flag upon error detection aims at enforcing that any frame is
either accepted by all nodes or rejected by all. This property
is called data consistency in the CAN specification [4].

There are different types of error flags, namely active and
passive error flags [4]. However, only active error flags, which
can only be sent by nodes that have not detected too many
errors so far (and thus nodes that are assumed as not being

Node k

Hub

Uplink
Downlink Link

Node i

Node l Node j

Fig. 2. Architecture of CANcentrate

affected by a permanent fault), ensure the globalization of an
error and, hence, data consistency.

The ability of globalizing an error is also important because
it allows nodes to re-synchronize after the detection of an error.
Note that a node detecting an error must assume that it has
become de-synchronized. This is because a node cannot know
whether the other nodes saw the same error at the same time or
not, as well as whether the error appeared as a consequence
of a previous de-synchronization at frame level. In case an
error flag globalizes an error, all the nodes transmit their own
error flags and, then, cooperatively transmit an error delimiter.
This error delimiter is built in such a way that all nodes finish
transmitting it at the same time thus re-synchronizing at frame
level again [4]. The frame constituted by all the overlapped
error flags, followed by the cooperative error delimiter is called
error frame.

B. Design rationale

Assuming dominant/recessive transmission, the hub must
implement a logical AND function of the individual trans-
missions received from every node. Moreover, and in order
to preserve the in-bit response, this logical AND must be
performed within a fraction of one bit time, despite the extra
delay which the internal circuitry of the hub may cause.

Furthermore, the hub must include some mechanisms in
order to identify permanently faulty ports. These mechanisms
require the hub to be able to discriminate the signal which
any node transmits from the signal resulting of the logical
AND which the hub broadcasts to the nodes. A simple way
to separate both signals is through the use of two different
cables for each link that connects each node to the hub.
Figure 2 shows the architecture of CANcentrate. The cable
which carries the signal from a node to the hub is called
the uplink, whereas the cable which carries back the resulting
signal from the hub to the node is called the downlink.

Therefore, two transceivers are required at the end of each
link; one for the uplink and another one for the downlink.
Figure 3 illustrates how the transceivers are connected at the
node’s end. Note that the receive data output pin (RxD) of the
uplink transceiver is left open whereas the transmit data input
pin (TxD) of the downlink transceiver is forced to have a reces-
sive level (the logical ’1’ value). It is important to remark that
the CANcentrate architecture can be implemented with both

CAN
controller

TxRx

RxD

TxD
“1” Downlink

Uplink

Tx

Rx

TxRx

RxD

TxD

Fig. 3. Configuration of the transceivers to connect a node to its link

...

Fault-Treatment
Module

Input / Output
Module

Coupler
Module

Tr

“1”

Rx_CAN

B0

B1

BnB2

C

iniErrorFrame

hubTx
Ena/Dis

ED2 ED1 EDn

clkT
clkR

...

errorFlagGenerator

Tr

Downlink
to a
node

Uplink
from a
node

Tr

“1”

Tr Tr

“1”

Tr

Ena/Dis Ena/Dis

physicalLayer

p

Fig. 4. Internal structure of the hub

commercial off-the-self CAN controllers and commercial off-
the-shelf CAN transceivers. This makes the solution practical
and relatively low-cost. Nevertheless, the hub requires some
specifically designed hardware, as discussed next.

C. Internal structure of the hub

The hub is divided into three modules, namely the In-
put/Output Module, the Coupler Module, and the Fault-
Treatment Module. The structure and interconnections of these
modules are depicted in Figure 4.

The Input/Output Module is made up of a number of
transceivers; two for each link. As Figure 4 shows, one
transceiver is assigned to every uplink in order to convert the
physical signal received from each node into a logical value
that the hub can process, B1..n. Moreover, one transceiver is
assigned to every downlink so that the logical output of the
hub, the coupled signal B0, is converted into a physical signal
that is broadcasted to every node.

The Coupler Module is made up of an AND gate, which
performs the coupling of the uplink signals, and a number
of OR gates, one per link, which allow the hub to disable the
contribution to the global AND from a specific uplink that has
been diagnosed as being permanently faulty. Since the AND
gate replaces the wired-AND functionality of the CAN bus,
this means that the output of the Coupler Module would be the
same of a CAN bus where there were no permanently faulty
component. The frame that results from coupling the frames
from the enabled ports is called the resultant frame hereafter.

The main purpose of the Fault-Treatment Module is to

detect permanently faulty ports and to isolate them from the
system, so they cannot cause severe failures of communication.
This function is carried out by performing both fault diagnosis,
which aims at finding out permanently faulty ports, together
with fault passivation, which aims at isolating permanently
faulty ports from the system.

The fault-diagnosis mechanisms of the Fault-Treatment
Module require the identification of the contributions from
every uplink as well as knowledge of the current state of the
resultant frame.

Fortunately, the use of a dedicated link for each node, as
well as the separation between uplinks and downlinks, allow
the identification of the contribution sent by each node.

The current state of the resultant frame represents what
all nodes are supposed to have received from the hub until
this moment. Therefore, it permits to identify which is the
meaning of the bit of the resultant frame that is currently being
broadcasted to all ports, as well as to forecast which should
be the proper contribution of each node for the following bit.

The knowledge of the current state of the resultant frame
requires to keep the synchronization of the hub with the
resultant frame at bit level as well as at frame level. On the one
hand, the Physical Layer Module in Figure 4 uses the typical
CAN synchronization mechanisms [4] for allowing the hub to
synchronize with the bit stream at bit level. In particular, this
mechanisms generate the reception and the transmission clock
signals (clkR and clkT) that indicate when to sample each bit
value and when to issue a bit to the medium, respectively.

On the other hand, the Rx CAN Module observes the bit
stream at the coupled signal B0 in order to achieve the
synchronization at frame level. As a result of this synchroniza-
tion, it generates a set of signals, C. These signals together
with B0 describe the current state of the resultant frame that
will be used for fault diagnosis by the Enabling/Disabling
units (Ena/Dis in Figure 4). The set of signals C provide
the following information: whether the bit is a stuff bit, the
expected correct bit value according to the stuff rule, the type
of frame and the specific frame field the bit belongs to, whether
the bit is the last bit of the End-Of-Frame field, and whether
the frame has passed the CRC checking (see Figure 5).

In order to keep the synchronization at frame level with the
nodes in spite of the presence of errors, when the hub detects
an error in the resultant frame, it forces a re-synchronization
by means of transmitting an active error flag. Since the hub
is not the original transmitter of the message, it can only
detect in the resultant frame those errors that a CAN node
would detect while receiving: stuff error, format error and
CRC error. When the Rx CAN Module detects any of these
errors at the resultant frame, it compels, via the iniErrorFrame
signal, the Error Flag Generator Module (errorFlagGenerator
in Figure 4) to transmit an active error flag through a dedicated
contribution, hubTx, driven into the global AND.

The final fault diagnosis and fault passivation are carried
out by the Enabling/Disabling units (Ena/Dis in Figure 4).
Each one of these units uses the set of signals C and the
coupled signal B0 to know the current state of the resultant
frame. This information is used together with the contribution
from its corresponding port (either B1, B2, etc.) in order to

Ci

bitStuffWaited

valueBitStuffWaited

Bi

frameField

Threshold
Control

clkR

resets

EDi

Enabling/disabling Unit
k

m

m

m

B0

portStatusi

2

NACKC
C

BFC

DBC

DBC Manager

+/-
reset

BFC Manager

NACKC Manager

+/-
reset

+/-
reset

CRCPassed

lastBitEOF

Fig. 5. Internals of one Enabling/Disabling Unit

diagnose whether its port is permanently faulty or not.
Whenever a given Enabling/Disabling Unit diagnoses its

corresponding hub port as being permanently faulty, it removes
the contribution of this port from the system by issuing a
logical ’1’ to the corresponding Enabling/Disabling signal,
ED1..n, which is connected to the OR gate that corresponds
to the faulty port (see Figure 4). In general, this mechanism is
similar to the one proposed in [6] to manage, locally in each
node, the media redundancy in a replicated bus topology.

IV. FAULT-DIAGNOSIS MECHANISMS

The main objective of the fault-diagnosis mechanisms the
hub includes is to detect permanently faulty ports. The failures
that are diagnosed by the Fault-Treatment Module cover all
the faults that are in the scope of this present work: stuck-at-
dominant, stuck-at-recessive and bit-flipping faults. Notice that
a shorted medium manifests itself at the hub port as a stuck-at
fault, whereas a medium partition can manifest itself as either
a stuck-at fault or a bit-flipping fault. That is because a shorted
medium is stuck at a constant voltage level (battery or ground),
whereas a medium partition can either force the medium to be
stuck at a constant voltage level, or cause channel errors due
to signal reflections at the open extremities of the cable.

The fault-diagnosis mechanisms are essentially imple-
mented by one Enabling/Disabling Unit for each port, whose
internals are shown in the Figure 5. These units operate
separately on each port, thus diagnosing a port as permanently
faulty with high accuracy and reducing the probability of
isolating non-faulty ports.

On the one hand, each Enabling/Disabling Unit has a
dedicated event counter and an associated manager module for
each type of fault that must be detected, as will be explained
later. Each management module basically analyzes the coupled
signal, B0, its corresponding port contribution Bi and the state
signals C, from Rx CAN, in order to decide how to increase
or decrease its corresponding event counter.

On the other hand, each Enabling/Disabling Unit has a
Threshold Control Module that is aimed at declaring the
port as permanently faulty when appropriate. The Threshold
Control Module takes into account the value registered by each
event counter and is programmed with a specific threshold for
each of them. Whenever any of the event counters exceeds
its corresponding threshold, the Threshold Control Module
declares the corresponding port as permanently faulty and
isolates the port contribution by setting the corresponding
EDi signal to ’1’. However, in order to increase the tolerance
to transient faults, the Threshold Control Module may use a
specific reintegration policy to re-enable the port contribution
and to allow the operation of all managers again, after a given
period of inactivity is observed at the port. This reintegration
policy has been described in [14].

A. Stuck-at-dominant faults

In order to detect stuck-at-dominant faults, each Ena/Dis
unit includes an event counter called Dominant Bit Counter
(DBC) and a DBC Manager Module. A DBC counts the
number of consecutive dominant bits that are received from
its corresponding port. The DBC Manager increases the DBC
in one unit or resets the DBC when observes a dominant
or a recessive bit at the uplink respectively. Whenever the
DBC value exceeds the Dominant Bit Threshold (DBT), the
Threshold Control Module isolates the corresponding port.

The DBT is configured in order to maximize the chances to
differentiate between situations in which a port really suffers
a stuck-at-dominant fault and situations in which the port is
occupied by many consecutive dominant bits, although it is not
stuck-at-dominant. The value of the DBT takes into account
two different contributions:

DBT = (Tstuff + 1) +N ∗ TerrorFlag

The first term, Tstuff + 1, specifies the minimum number
of consecutive dominant bits that violates the stuffing rule in
a CAN network (6 bits). This term includes the maximum
number of consecutive dominant bits allowed in CAN data
frames, Tstuff, plus the additional dominant bit needed for
violating the stuff rule. Whenever the stuff rule is violated,
it is expected that all nodes start to send an active error flag.
Nevertheless, it is possible that a node detects a second error
during its own error flag and starts sending again an active
error flag, thereby prolonging the sequence of consecutive
dominant bits. In the worst case, a node will see this second
error in the last bit of its first error flag, and will send a
consecutive active error flag. The second term, N ∗TerrorFlag,
is intended to cover these situations. It specifies the maximum
number of consecutive dominant bits that are considered as
overlapped or consecutive active error flags.

Note that for N = 2 the threshold coincides with the one
proposed in [6]. In that case, the threshold can be exceeded
if two additional errors occur in the error flag that follows a
violation of the stuff rule. Using a higher value of N reduces
the probability of performing an erroneous stuck-at-dominant
diagnosis.

The value of N can be configured depending on the
application. For instance, in an environment with high electro-
magnetic interference, we may consider that N = 4 is tolerant
enough and does not imply a significant loss of reactivity in
diagnosing stuck-at-dominant faults.

B. Stuck-at-recessive faults

Due to the AND function that the hub implements, a
port suffering a stuck-at-recessive fault does not interfere the
communication among the rest of the nodes in the star, and
cannot cause a severe failure of the communication system.
Nevertheless, detection of such faults may still be useful in
order to implement additional fault-tolerance mechanisms at
higher levels of the system architecture, for example to detect
a crashed or absent node.

Since a CAN node may be without transmitting, which
actually means sending recessive values, for a long time, it
would be theoretically impossible to differentiate between a
stuck-at recessive node and an operational but non-transmitting
node. Nevertheless, the CAN protocol specifies that every
CAN controller must transmit a dominant bit in the ACK slot
of every frame that is correctly received [4]. Therefore, the
absence of this bit can be used to detect stuck-at-recessive
ports.

For each port, such detection is carried out by a specific
Non-Acknowledge Counter (NACKC) and its manager module,
NACKC Manager Module. Whenever the NACKC Manager
detects, thanks to the C signals, that the current state of
the resultant frame is the ACK slot and that the frame
has passed the CRC checking, it checks in Bi if the node
is sending a dominant value to acknowledge the frame. If
this dominant value is not sent, then the NACKC Manager
increases the NACKC. The NACKC Manager decreases the
NACKC whenever a dominant bit is issued through the port.

When the NACKC exceeds the Non-Acknowledge Threshold
(NACKT), the Threshold Control Module does not disable
the port, but notifies the user about the inactivity of the port
by means of a LED. The specific value for the NACKT can
be configured depending on how strict we want to be when
considering a port as being stuck-at-recessive. For instance,
since a node should send an active error flag after omitting an
ACK bit, even a NACKT value equal to 2 can be considered if
we want to be very strict when detecting a crashed or absent
node.

C. Bit-flipping faults

The CAN standard specifies a mechanism in each node
that may be used in order to detect bit-flipping faults: a
Transmission Error Counter (TEC) and a Reception Error
Counter (REC). These counters are increased and decreased
following some rules established in the CAN specification, and
may cause a node to reduce its impact on the communication
process, for instance, by disconnecting itself from the network
in order to prevent further propagation of local errors.

Nevertheless, the mechanism based on the TEC/REC
presents some deficiencies that suggest the hub should not
rely that nodes will ensure fault confinement. First, normal

CAN nodes can fail in arbitrary ways and for this reason may
stop performing fault confinement. Second, if a medium is the
source of bit-flipping faults affecting all nodes, it cannot be
isolated by the nodes. Moreover, to replicate the TEC/REC
within the hub for each port is not recommendable, either,
because such mechanism was designed for a bus in which
the contributions of all nodes are mixed, thus with an error-
detection accuracy lower than what is achievable with the hub.
Therefore, we decided to include in each Enabling/Disabling
Unit a dedicated Bit-Flipping Counter (BFC) and its associated
BFC Manager.

Each BFC Manager independently evaluates the correctness
of its corresponding port by checking whether its contribution
Bi deviates from the expected behavior according to the
current state of the resultant frame (C and B0). Although
the behavior of a CAN node is quite complex in the general
case, we have been able to identify three independent types of
behaviors: when a node is a leading transmitter, when a node
is a receiver and when a node is engaged in error and overload
signalling [4].

A transmitter node must still respect the restrictions imposed
by the CAN standard, thus the BFC Manager adapts the error-
detection mechanisms specified in the CAN protocol [4]. By
means of these mechanisms it directly detects errors effectively
generated by the transmitter node. Notice that, in contrast, in
a bus the node contributions are mixed and so an error can
be assigned to the transmitter even if it was in fact generated
elsewhere.

When a node is a receiver, the BFC Manager expects this
node to send only recessive bits, except for two cases. First,
the BFC Manager expects a dominant bit during the ACK
slot if the frame observed by the hub has passed the CRC
checking performed by the Rx CAN Module. Second, the
BFC Manager will allow a dominant bit during the idle field
since it would correspond to the transmission of a Start of
Frame bit [4].

During error or overload signalling, the BFC Manager
checks whether the node correctly cooperates to construct the
active error or the overload frame, including the case in which
the node is the first that starts transmitting the error frame.

Finally, the BFC Manager isolates the port when the BFC
exceeds a specific Bit-Flipping Threshold (BFT). For the
specific value of the BFT and for the number of units that
the BFC has to be increased or decreased, we recommend to
use values such that the fault diagnosis performed by the BFC
Manager is more strict than the fault diagnosis performed by
a CAN node using the TEC/REC [4]. For instance, a possible
solution could be to increase the BFC in 8 units when detecting
any error, to decrease it in 1 unit when a data frame or a remote
frame is correctly transmitted, and to set the BFT to 128.

V. CANCENTRATE PROTOTYPE IMPLEMENTATION

This section is aimed at describing the basics of the first
prototype of CANcentrate and presenting experimental results.
The prototype is divided into several parts. The internal part of
the hub (the Coupler Module and the Fault-Treatment Module)
has been implemented using the VHSIC Hardware Description

Language (VHDL) and a Xilinx Field Programmable Gate
Array (FPGA). A dedicated board was built for implementing
the Input/Ouput Module with capacity to connect four nodes.
One UTP (Unshielded Twisted Pair) Category 5/5e/6 cable
was used for each link. Each uplink / downlink within a cable
used a different two-wire differential line. The CAN nodes
have been totally implemented using commercial off-the-self
components, and were based on CANivete boards [16] with
just an extra CAN transceiver.

The tests to check the functionality of the CANcentrate hub
were carried out at two different levels: at the level of the
VHDL design of the hub and at the level of the physical net-
work. Under error-free conditions, the following aspects have
been checked at both levels: the state machines that constitute
the hub, the synchronization at bit level and at frame level,
and the correct assignment of roles (transmitter/receiver) of the
nodes after the arbitration phase. Additionally, many different
scenarios concerning the faults included in the scope of the
present work were tested. Specifically, we checked that the hub
correctly increases the appropriate event counters and isolates
the corresponding ports whenever the pertinent thresholds are
exceeded. In every case, the observed behavior of the hub was
correct during both error and error-free conditions.

For thoroughly testing CANcentrate at the level of the
physical network, we built an experimental platform made
up of three CAN nodes. In each node a test software was
continuously trying to transmit CAN frames without any
additional delay. This ensures that the network load is close to
the maximum and, with 3 nodes, there is an arbitration every
frame.

Furthermore, different fault-injection mechanisms were used
in combination with this platform. Stuck-at-recessive faults
were easily injected by disconnecting the link of a CAN node
from the hub. In contrast, injection of both stuck-at-dominant
and bit-flipping-faults was done by means of a signal generator
device. Transmitting different periodic square signals with
periods ranging from a few bit times to several frame times,
allowed verifying both the stuck-at-dominant isolation and the
further re-enabling of the ports. Regarding bit-flipping faults,
the signal generator was used with short periods from a few bit
times to less than one bit time. Additionally, bit-flipping faults
were also injected by mechanically connecting/disconnecting
a link.

Other experiments have been conducted in order to measure
the performance of CANcentrate. Two important results have
been obtained. First, the average of the extra delay introduced
by the hub is 155 ns (in particular, the total extra delay
introduced by the two transceivers of the Input/Output Module
is 120 ns). The internal part of the hub was also built with
8 and 16 ports. The measurements indicate that the extra
delay introduced by the internal part of the hub does not
visibly depend on the number of ports it is provided with.
Additionally, several cables of different lengths as well as
different bit rates were used in order to measure the perfor-
mance of the network with respect to the star diameter and
the bit rate. Due to implementation limitations, the maximum
used bit rate was 690kbit/sec. At this bit rate, normal com-
munication was achieved with a star diameter of 70 meters.

With such diameter, the turnaround time was about 1180ns,
which includes two times: the propagation delay through the
cable (70m*4.5ns/m=315ns), the delay of four transceivers
(4*60ns=240ns), and the delay of the internal part of the
hub (35ns). In order to work at 690kbit/sec, the bit time was
divided into 8 time quanta of 181ns and the sample point was
approximately located at 1267ns, which is far enough from the
beginning of the bit time to take into account the turnaround
time. With 80 meters the communication capabilities were
disrupted. Notice that the maximum length of a bus operating
at the same bit rate would be around 100 meters.

VI. CONCLUSIONS

The use of CAN in safety-critical applications has been
controversial due to a few factors, such as its bus topology.
Communication systems relying on simplex or replicated bus
topologies suffer from several impediments to enforce error
containment, even if they are used together with bus-guardians.
In contrast, in star topologies the hub can play a key role to
diagnose and passivate faults, thereby reducing the number
of components whose failure can cause a severe failure of
communication, to a unique single point of failure, i.e. the
hub.

In this paper we proposed a new active star topology, called
CANcentrate, that is compatible with commercial off-the-shelf
CAN components and that can be used with any CAN-based
protocol (e.g. TTCAN [9], FTT-CAN [17], Timely CAN [18],
etc).

We explained the architecture and the fault-treatment mech-
anisms of the central device of CANcentrate, a hub, which can
be built using off-the-shelf FPGA technology. Moreover, we
described the implementation and test of a first prototype of
CANcentrate that we have built.

In general, CANcentrate is a further step towards improving
dependability of CAN networks.

REFERENCES

[1] S. Cavalieri, “Meeting Real-Time Constraints in CAN,” IEEE Transac-
tions on Industrial Informatics, pp. 124–135, May 2005.

[2] T. Nolte, M. Nolin, and H. A. Hansson, “Real-Time Server-Based Com-
munication with CAN,” IEEE Transactions on Industrial Informatics,
pp. 192–201, August 2005.

[3] M. Barranco, L.Almeida, and J. Proenza, “ReCANcentrate: A replicated
star topology for CAN networks,” ETFA 2005. 10th IEEE International
Conference on Emerging Technologies and Factory Automation, Cata-
nia, Italy, 2005.

[4] ISO, “ISO11898. Road vehicles - Interchange of digital information -
Controller area network (CAN) for high-speed communication,” 1993.

[5] I. Broster and A. Burns, “An Analyzable Bus-Guardian for Event-
Triggered Communication,” in Proceedings of the 24th Real-time Sys-
tems Symposium (RTSS). Cancun, Mexico: IEEE, Dec 2003, pp. 410–
419.

[6] J. Rufino, P. Verı́ssimo, and G. Arroz, “A Columbus’ Egg Idea for CAN
Media Redundancy,” FTCS-29. The 29th International Symposium on
Fault-Tolerant Computing, Winconsin, USA, June 1999.

[7] J. Rushby, “A Comparison of Bus Architectures for Safety-Critical Em-
bedded Systems,” SRI International, Menlo Park, California,” Contractor
Report, 2003.

[8] L.-B. Fredriksson, “CAN for critical embedded automotive networks,”
IEEE Micro, Special Issue on Critical Embedded Automotive Networks,
vol. 22, no. 4, pp. 28–35, July-August 2002.

[9] H. Kopetz, “Time-Triggered Protocols for Safety-Critical Applications,”
Presentation, Vienna University Of Technology, TU Wien, Karlsplatz
13, 1040 Vienna, Austria, March 2003.

[10] M. Rucks, “Optical layer for CAN,” 1st International CAN Conference,
November 1994.

[11] CiA, “CAN physical layer,” CAN in Automation (CiA), Am
Weichselgarten 26, Tech. Rep. [Online]. Available: headquarters@can-
cia.de

[12] IXXAT, “Innovative products for industrial and automotive communica-
tion systems,” 2005. [Online]. Available: http://www.ixxat.de/index.php

[13] G. Cena, L. Durante, and A. Valenzano, A new CAN-like field network
based on a star topology, Polytechnic Institute Torino Std. 23, July 2001.

[14] M. Barranco, G. Rodrı́guez-Navas, J. Proenza, and L. Almeida, “CAN-
centrate: An active star topology for CAN networks,” WFCS’04. IEEE
Workshop on Factory Communication Systems, Vienna, Austria, 2004.

[15] M. Barranco, J. Proenza, G. Rodrı́guez-Navas, and L. Almeida, “A CAN
hub with Improved Error Detection and Isolation,” 10th International
CAN Conference, March 2005.

[16] P. Fonseca, A. Santos, and J. Fonseca, “A dynamically reconfigurable
CAN system,” Proceedings of the 5th International CAN Conference,
1998.

[17] L. Almeida, P. Pedreiras, and J. A. Fonseca, “The FTT-CAN Protocol:
Why and How,” in IEEE Transactions on Industrial Electronics - special
issue on Factory Communication Systems, vol. 49, no. 6, December
2002.

[18] I. Broster and A. Burns, “Timely use of the CAN Protocol in Critical
Hard Real-time Systems with Faults.” in Proceedings of the 13th
Euromicro Conference on Real-time Systems (ECRTS). IEEE, 2001,
pp. 95–102.

Manuel Barranco received the first degree in In-
formatics Engineering from the University of the
Balearic Islands (UIB), Palma de Mallorca, Spain,
in 2003, and he is currently a Ph.D. candidate in the
Department of Mathematics and Informatics at the
UIB. He is also a member of the System, Robotics
and Vision (SRV) research group at this university.
His research interests include dependable and real-
time systems, fault-tolerant distributed embedded
systems, event-triggered and time-triggered commu-
nication sytems, and field-bus networks such as the

Controller Area Network (CAN).
Julián Proenza received the first degree in Physics
from the University of the Balearic Islands (UIB),
Palma de Mallorca, Spain, in 1989, and he is cur-
rently a Ph.D. candidate in the Department of Math-
ematics and Informatics at the UIB. He is currently
a Lecturer in the Department of Mathematics and
Informatics at the UIB. His research interests include
dependable and real-time systems, fault-tolerant dis-
tributed systems, clock synchronization and field-bus
networks such as CAN (Controller Area Network).

Guillermo Rodrı́guez-Navas received the first de-
gree in Telecommunication Engineering from the
University of Vigo, Spain, in 2002. He is currently
doing a PhD in Computer Science at the University
of the Balearic Islands, Spain. He is also a member
of the System, Robotics and Vision (SRV) research
group at this university. His research is focused on
dependable and real-time distributed embedded sys-
tems. In particular, he has addressed various issues
related to the Controller Area Network (CAN) field
bus, such as fault tolerance, clock synchronization

and response time analysis.
Luı́s Almeida graduated in Electronics and
Telecommunications Engineering at the University
of Aveiro in 1988 and received a PhD in Electrical
Engineering in 1999 from same University. He is an
Assistant Professor at the Electronics and Telecom-
munications Dep of the University of Aveiro, Portu-
gal, and a senior researcher at the IEETA research
unit of the same university. Formerly he was a design
engineer in a company producing digital telecom-
munications equipment. His research interests lie
in the fields of real- time networks for distributed

industrial/embedded systems and control architectures for mobile robots. He
is a Senior member of the IEEE Computer Society.

