
Maintaining data consistency in ReCANcentrate during hub decouplings

Manuel Barranco, Julián Proenza
Dpt. Matemàtiques i Informàtica

Universitat de les Illes Balears, Spain
manuel.barranco@uib.es, julian.proenza@uib.es

Luı́s Almeida
DET/IEETA

Universidade de Aveiro, Portugal
lda@det.ua.pt

Abstract

The use of CAN in safety-critical applications has
been controversial due to dependability limitations. To
overcome some of them, we proposed a replicated star
topology, ReCANcentrate, whose hubs incorporate fault-
treatment and fault tolerance mechanisms. The two hubs
of ReCANcentrate are coupled with each other, thereby
forcing a single communication domain that simplifies the
management of the replicated media that each node per-
forms to ensure data consistency. This paper proposes
additional mechanisms to enforce data consistency even
when hubs become temporarily or permanently decou-
pled.

1 Introduction
The use of CAN in critical applications has been

controversial due to dependability limitations. Some
of them arise from its bus topology, which has scarce
error-containment and fault-tolerance mechanisms. To
overcome these limitations, we developed a replicated
star topology, called ReCANcentrate that includes two
hubs [1]. In ReCANcentrate each node is connected to
each hub by a dedicated link that contains an uplink and
a downlink. Both hubs are interconnected by means of at
least two interlinks each of which contains two indepen-
dent sublinks, one for each direction. Each hub includes
fault-treatment capabilities to contain errors originated at
nodes, links, interlinks and at the other hub, and to provide
tolerance to hub, link and interlink faults. ReCANcentrate
is fully compatible with off-the-shelf (COTS) CAN com-
ponents and any CAN-based application or protocol.

When using replicated media for fault-tolerant commu-
nication, one approach is to transmit the same data over
all media (or channels) in parallel. However, a bit er-
ror in one channel is enough for its traffic to evolve dif-
ferently with respect to the other channels, raising some
data consistency issues [2], namely the detection of repli-
cated frames arriving from different channels at different
instants of time (duplicates) and the detection of frames
that are omitted in only some channels (omissions). To
prevent the traffic from evolving differently in both stars,
the hubs of ReCANcentrate exchange their traffic through
the interlinks (Figure 1) and couple with each other [1].
In this way, both hubs transmit the same value bit by bit
in their downlinks, even when the uplinks from one node

Hub2 Hub1

Bus
Stub

Link

Node

Transceiver

CAN
controller

Micro
controller

Node

Interlink

Sublinks

Figure 1. Bus and replicated star analogy

differ. Therefore, we say that ReCANcentrate provides a
single communication domain behaving like a CAN bus
to which nodes connect through two communication con-
trollers (Figure 1). Consistency issues, then, are reduced
to handling different views of the same channel instead of
two different channels, which is substantially simpler.

In [1] we outlined a simple replicated media manage-
ment that takes advantage of this single communication
domain. Each node is constituted by COTS components
only: two CAN controllers and a micro-controller (Fig-
ure 1). Each CAN controller is connected to one hub,
only, by means of a dedicated uplink and downlink, using
two COTS transceivers [1]. Basically, each node manages
the media by transmitting through one hub, only, while re-
ceiving from both hubs at the same time. Detection of du-
plicates and omissions becomes straightforward because
each frame is broadcast simultaneously by both hubs.

ReCANcentrate includes replicated interlinks to enable
the referred simple media management even in presence
of interlink failures. However, hubs may be temporarily
or permanently decoupled due to faults affecting all inter-
links or any of the hubs. This paper discusses the threats
to the hub coupling and, thus, to the single communica-
tion domain and briefly explains on-going work towards
the design and implementation of a set of mechanisms that
will allow nodes to consistently communicate even if hubs
are temporarily or permanently decoupled.

2 Threats to the hub coupling
The physical layer of CAN implements a wired-AND

function of every node contribution, thereby providing a
dominant/recessive transmission [2]. Additionally, CAN
communication relies on a complex bit synchronization
mechanism that guarantees that nodes have a simultane-

c©2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. doi:10.1109/WFCS.2008.4638750

ous view of every single bit on the medium, i.e. CAN
presents in-bit response.

To cope with our fault model [1], each hub is able to
detect faults at nodes, links, interlinks or at the other hub
that manifest as stuck-at-recessive, stuck-at-dominant or
bit-flipping streams. Notice that a hub cannot build or
buffer CAN frames, so that its failure can only manifest,
in principle, as the generation or propagation of stuck-at
or bit-flipping bits.

The hub isolates faults by disabling the port of ori-
gin [1]. Additionally, the hub uses a specific reintegra-
tion policy to re-enable a port contribution whose fail-
ure is only temporary. Since stuck-at-dominant and bit-
flipping faults corrupt the data conveyed through the me-
dia, a hub detects and isolates them with a short delay [1].
In contrast, a stuck-at-recessive port does not issue errors
that necessarily corrupt data, hence its detection implies a
longer delay being based on the detection of consecutive
omissions of the ACK bit. Note that in CAN every opera-
tional controller contributes to all frames in transmission
with a dominant bit, the ACK bit, within the ACK slot [2].

As explained before, nodes can easily manage the
replicated media as long as both stars constitute a single
communication domain. The unique situation in which
this single domain is not enforced is when any hub contin-
ues coupling the contributions of its own nodes, but does
not couple with the other hub. This can only happen in
the following cases. Firstly, considering our fault model,
when all interlinks are faulty or one hub sends a stuck-at
or a bit-flipping contribution to the other hub through all
interlinks. Secondly, if a new type of fault, which we add
to our fault model, leads a hub to erroneously decide not
to couple with the other hub. This may occur if the faulty
hub does not send its traffic to the other hub, or if it stops
considering the traffic received from that hub.

In order to allow nodes to consistently communicate
even in presence of faults that lead to a hub decoupling,
we propose to enhance the fault-treatment capabilities of
ReCANcentrate. Firstly, we prevent nodes from commu-
nicating while a decoupling fault is not treated, otherwise
data consistency could be violated. Secondly, we force
both hubs and all nodes to agree on whether it is possible
to recover from a hub decoupling provoked by a tempo-
rary fault, or if it is only possible to use both stars inde-
pendently. We focus on enforcing such agreement; the
strategy nodes use to communicate using two decoupled
hubs is beyond the scope of this paper.

3 ACK interdependence

As explained before, it is necessary to prevent nodes
from exchanging any frame as long as the decoupling is
not treated. Unfortunately, a decoupling cannot be always
instantaneously detected and, meanwhile, nodes could ex-
change frames. For example, if all interlinks are stuck-at-
recessive, then a hub will only detect the decoupling after
observing that the ACK bit is omitted from the other hub
during several frames.

Therefore, we propose a new mechanism, based on
the ACK bit, that instantaneously blocks the communi-
cation in both stars when hubs become decoupled. Basi-
cally, during the ACK slot, each hub transmits the result-
ing ACK bit received from the other hub, only, without
regard of the ACK bits received from its own ports. Thus,
no frame will be exchanged in any star if both hubs are not
correctly coupled and synchronized bit by bit with each
other. We call this mechanism ACK interdependence.

After detecting and treating a decoupling, as explained
later on in Section 4, the hubs may decide that it is not
possible to couple with each other again. In such case,
each hub changes its mode of operation to broadcast the
ACK bits received from its own nodes. This allows nodes
to use both stars independently when necessary.

Note that the ACK interdependence mechanism relies
on a new hypothesis: no hub propagates the ACK bits of
its own nodes unless it has correctly treated its decoupling
with the other hub and nodes use both stars independently.
Thus, it is necessary to restrict the failure semantics of the
hub to ensure that it cannot maliciously fail by not ful-
filling this hypothesis. To achieve this, the hub could be
internally duplicated and compared. However, to avoid
excessively increasing the hub complexity, we are devis-
ing a guardian for each hub, called Hub Guardian, which
will prevent its corresponding hub from incorrectly broad-
casting the ACK bits received from its own nodes. An im-
portant requirement has been imposed to the design of this
guardian: to guarantee the failure independence between
itself and its corresponding hub.

4 Re-Start Procedure

The second enhancement specified in Section 2 de-
mands for a treatment mechanism that ensures that once
a hub decoupling is detected, the hubs and all nodes agree
on whether or not the single communication domain is
reestablished. To achieve this, we are designing a mech-
anism called Re-Start Procedure, which is based on a set
of frames the hubs and nodes interchange to consistently
treat the decoupling. During this procedure, each hub
sends what we call Identification Frames (IF) and Filling
Frames (FF), whereas each controller of each node sends
a different Identification Request Frame (IRF). Note that
in CAN, each frame begins with an identifier that indi-
cates its priority, so that any collision is solved by means
of a bit-wise arbitration of the identifiers [2]. All the IFs
of a given hub always have the same identifier, which is
reserved for that hub and whose priority is one of the two
highest ones. Each hub also owns one of the two lowest
prioritized identifiers and uses it to build its FFs. Besides,
each controller builds its IRF using an identifier reserved
for that controller. The IRFs have the lower priorities after
the two lowest prioritized identifiers reserved for the FFs.

Due to space limitations, next we only describe a brief
sketch of the Re-Start Procedure. Figure 2 summarizes
the steps a hub executes during this procedure.

4.1 Sublink Restoration
The first phase of the Re-Start Procedure is the Sublink

Restoration Phase (SRP), during which both hubs consis-
tently decide whether or not they become coupled again.
Each hub executes it immediately after detecting that all
the interlinks are faulty, i.e. when detecting a hub decou-
pling. First of all, each hub sends a constant dominant log-
ical value during a given period of time through all its out-
going sublinks and its downlinks. This compels the other
hub to isolate all its incoming sublinks and to also execute
this phase if it had not detected the decoupling yet. Ad-
ditionally, all CAN controllers connected to the hub will
receive the stuck-at-dominant value through their down-
links and will eventually enter into the bus-off state [2], in
which they will not try to communicate.

When both hubs are executing this phase, they test the
interlinks to decide whether or not it is possible to com-
municate with each other. In order to do that, the hubs try
to alternatively exchange, through all the interlinks in par-
allel, their IFs and rule out a given interlink whenever its
port has accumulated too many errors. On the one hand,
the phase finishes whenever both hubs successfully inter-
change a given number, M , of IFs. On the other hand,
a given hub also stops executing the phase if it rules out
all interlinks. When this happens, the hub decides that it
is impossible to re-couple and, then, permanently sends a
stuck-at-dominant value through all its outgoing sublinks.
This forces the other hub to finish the phase too.

Note that both hubs will consistently decide whether or
not to re-couple. This is because they use the CAN pro-
tocol to communicate with each other and, thus, they con-
sistently interchange each IF. Moreover, due to the in-bit
response property of CAN, in case hubs re-couple, both
of them will simultaneously finish the phase when inter-
changing the last bit of the last IF.

4.2 Re-coupling & Decoupling Node Agreement
After the SRP, the hub executes the Re-coupling Node

Agreement Phase (RNAP) or the Decoupling Node Agree-
ment Phase (DNAP), depending on whether it is re-
coupled with the other hub or not, respectively (Figure 2).
By means of these phases all nodes consistently diagnose
whether or not the single communication domain is re-
established. In each one of these phases each node CAN
controller requests the presence of the other hub, i.e. the
one it is not directly connected to. A controller performs
such a request by sending its IRF, and expects that the
required hub replies by broadcasting its IF. The targeted
hub will only be able to receive the request and reply to
it if both hubs are re-coupled, i.e. they are executing the
RNAP. Thus, in principle, if a controller receives the IF
it requests, its node could assume that the single broad-
cast domain is re-established. Conversely, if hubs are not
re-coupled, i.e. they are executing the DNAP, no hub will
receive an IRF. Thus, if a controller does not receive the IF
it requests, its node could decide that both hubs are decou-
pled. However, the node only comes to a final conclusion

A decoupling is detected

Set all outgoing ports to a
dominant value

Try to alternatively exchange
M IFs with the other hub

through the interlinks

Permanently set all
interlink ports to a
dominant value

Re-enable silent uplink ports

Re-coupling Node
Agreement Phase

Identification Request
Admission Period

Operate in
ReCANcentrate mode

Detection of N consecutive FFs

Operate
independently from

the other hub
Isolate every CAN controller
that has not sent its IRF and

has not acknowledge the
corresponding IF

Isolate every CAN
controller that has not

sent its IRF

All
interlinks
are ruled

out

A new
decoupling is

detected

Set all
downlinks
ports to a
dominant

value

M IFs have been interchanged

Decoupling Node
Agreement Phase

Sublink Restoration Phase

Detection of N
consecutive FFs

Release outgoing interlink
ports from dominant value

Release downlink ports
from dominant value

Release downlink
ports from

dominant value

Identification Request
Admission Period

Re-enable silent
uplink ports

Figure 2. Re-Start Procedure by one hub

depending on the view its two controllers have about the
single communication domain, as explained later.

The behavior of a hub during the RNAP is as follows.
First of all, the hub stops sending the stuck-at-dominant
value through the downlinks and re-enables the hub ports
corresponding to controllers that have been silent during
the Sublink Restoration Phase. This is because, during the
SRP, the hub was sending a suck-at-dominant value trough
all its downlinks thereby forcing all its correct controllers
to reach the bus-off state. Thus, a silent port indicates that
the corresponding controller is possibly correct. Then,
the hub begins an Identification Request Admission Pe-
riod during which it performs three different actions. As
first action, it expects to observe that each one of the con-
trollers connected to it sends an IRF in order to request
the presence of the other hub. The hub knows what is
the identifier of the IRF of each one of these controllers.
If the hub detects that any of them sends a frame other
than the IRF with the appropriate identifier, or does not
acknowledge the IF sent by the other hub, it isolates that
port. Moreover, when the phase finishes, the hub discon-
nects each controller that has not sent its IRF. The other
action the hub performs during this phase is to reply to any
IRF sent by a controller connected to the other hub. Each
hub knows what are the IRFs it can receive from these
controllers and will only reply to those IRFs. To detect
possible forged IFs, the hub includes a password within
the data field of the IF that only itself and the requesting
controller know. The third action the hub performs is to
constantly try to broadcast its FF when it is not replying
to a given IRF. As explained later, the FFs allow hubs and
nodes to quasi-simultaneously detect the end of the RNAP.

Concerning the role of a node during this phase, when
it detects that any of its controllers exits the bus-off state,
it requests the transmission of the corresponding IRF
through that controller. If the next frame the controller
monitors in the channel after sending the IRF is the re-
quested IF and its password is correct, the node diagnoses
that, in principle, the hubs are re-coupled. Notice that if

Hub A

Controller
X

Hub B

IRFXB

IFBX

IRFYA

IFAY FFA FFA FFA FFA

t1 t2 t3 t4 t5 t6 t7 tw
Controller

Y

Figure 3. RNAP case example

the hubs are actually coupled, the next frame that will be
broadcast through the network after an IRF is the corre-
sponding IF. This is because the hub whose presence has
not been requested by the IRF will not try to transmit its
IF and, thus, it is guaranteed that the requested IF is the
frame with the highest priority. This simple rule consist-
ing in expecting the IF just after the IRF allows the node
to avoid the use of a timeout to detect that the controller
cannot communicate with the requested hub.

Regarding the DNAP, the hub executes it if, after the
SRP, it is not re-coupled with the other hub, as said be-
fore. However, the hub also executes it whenever it de-
tects a new decoupling during the RNAP (Figure 2). More
specifically, a hub diagnoses a new decoupling during the
RNAP if it isolates all ports corresponding to the inter-
links; or if it diagnoses the other hub as faulty because that
hub has not immediately replied to an IRF, it has broadcast
an IF that was not requested, or it has broadcast a frame
other than an IF, an IRF or a FF. When this happens, the
hub definitively abandons the possibility of re-coupling;
aborts the RNAP; forces again its controllers to enter into
bus-off and, then, it executes the DNAP. The actions per-
formed by the hubs and the controllers in the DNAP are
equal to those they carry out in the RNAP, except that
during the Identification Request Admission Period of the
DNAP, the hub does not expect that the other hub replies
the IRFs sent by its controllers. Notice that when the hub
aborts the RNAP in order to execute the DNAP, it firstly
forces all controllers connected to it to enter the bus-off
state. This ensures that each one of these controllers that
already sent its IRF during the RNAP sends its IRF again
and detects that the hub constitutes an independent star.

The RNAP and DNAP finish when the hub monitors a
given number, N , of consecutive FFs. At the end of the
RNAP, since the hubs are re-coupled, both of them and all
controllers will simultaneously observe the last FF of the
consecutive FFs and, thus, the end of this phase. In con-
trast, although each hub and its corresponding controllers
will detect the end of a DNAP simultaneously, nothing en-
sures that a DNAP finishes at the same time in both stars.
This has no negative consequences, since nodes will use
the two hubs as two independent stars and they do not
need bit-level synchronization between them.

At the end of each one of these phases each node makes
a decision about the reestablishment of the single commu-
nication domain as follows. If one of its two controllers
has accumulated too many errors during the phase, the
node declares that controller as faulty, and accepts as valid
the view that the non-faulty one has about the communica-

tion domain. Similarly, if both controllers are non-faulty
and they agree, the node also uses their view of the com-
munication domain. In contrast, if they disagree, the node
permanently disconnects itself.

Figure 3 shows an example of the frames interchanged
among the hubs, A and B, and the two controllers of the
same node: X connected to A, and Y connected to B.
Each bullet indicates that a frame goes through a given
hub. A has a higher prioritized FF than B, and the IRF of
X has a higher priority than the IRF of Y . Before time
t1 both controllers are in bus-off and A constantly broad-
casts its FF. At t2 each controller exits that state and tries
to send its IRF; controller X wins and requests the pres-
ence of B with IRFXB. At t3, B broadcasts its IF to reply
to X , so that X assumes that there is a single communi-
cation domain. The same pattern is observed afterwards
when Y requests the presence of A. Finally, from t6 on,
A constantly broadcast its FF. When at tw it has broadcast
N FFs, the RNAP finishes and the node concludes that the
single communication domain is reestablished.

5 Conclusions and future work
In ReCANcentrate data are transmitted in parallel

through both stars to provide fault tolerance. The hubs
exchange their traffic through several interlinks and cou-
ple with each other. This creates a single communication
domain that allows each node to easily manage the media
to guarantee data consistency. The paper proposes new
mechanisms to enforce data consistency when hubs be-
come temporarily or permanently decoupled due to faults
that affect all interlinks or any of the hubs. The first mech-
anism blocks the communication in each star when hubs
become decoupled, to prevent inconsistent communica-
tion as long as the decoupling is not treated. Additionally,
a treatment procedure allows hubs and nodes to agree on
whether hubs can couple again. This ensures data consis-
tency since it allows all nodes to agree on whether or not
they can use both stars as a single one.

As future work, we plan to formally verify the cor-
rectness of our approach by modelling it using the model
checker UPPAAL [3]. Results obtained so far, analyzing
media and controller faults, support its correctness.

Acknowledgment
This work is partially supported by DPI 2005-09001-

C03-02 and FEDER funding.

References

[1] M. Barranco, L. Almeida, and J. Proenza, “Experimental
assessment of ReCANcentrate, a replicated star topology
for CAN”, in Safety-Critical Automotive Systems, 2006. So-
ciety of Automotive Engineers, USA.

[2] ISO, “ISO11898. Road vehicles - Interchange of digital in-
formation - Controller Area Network (CAN) for high-speed
communication”, 1993.

[3] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a Nut-
shell”, Int. Journal on Software Tools for Technology Trans-
fer, 1(12):134152, 1997.

