
Designing and Verifying Media Management in ReCANcentrate

Manuel Barranco, Julián Proenza
Dpt. Matemàtiques i Informàtica

Universitat de les Illes Balears, Spain
manuel.barranco@uib.es, julian.proenza@uib.es

Luı́s Almeida
DETI/IEETA

Universidade de Aveiro, Portugal
lda@ua.pt

Abstract

To overcome some dependability limitations of CAN
that arise from its non-redundant bus topology, we have
proposed a CAN-compliant replicated star topology, Re-
CANcentrate, whose hubs incorporate the necessary fault-
treatment and fault-tolerance mechanisms. This paper
presents ongoing work regarding the design and formal
verification of the strategy each node of ReCANcentrate
uses to manage the transmissions and the receptions on
the replicated star, as well as to tolerate faults.

1 Introduction
Although there has been an interest in using CAN [1]

and CAN-based protocols [2] as highly reliable commu-
nication infrastructures, one of the major limitations of
CAN is that it relies on a non-redundant bus topology with
scarce error-containment and fault tolerance mechanisms.
To overcome this limitation, we developed a replicated
star topology, ReCANcentrate [3], that includes two hubs
(Figure 1). Each node is connected to each hub by a dedi-
cated link containing an uplink and a downlink. Addition-
ally, both hubs are interconnected by at least two interlinks
each of which contains two independent sublinks, one for
each direction. Each hub includes fault-treatment capabil-
ities to contain errors originated at nodes or hubs, and to
provide tolerance to hub and link faults [3]. ReCANcen-
trate is fully compatible with off-the-shelf (COTS) CAN
components and any CAN-based application or protocol.

In ReCANcentrate the same data are transmitted in
parallel throughout each of the media replicas to provide
fault tolerance, i.e. each star is a channel that conveys a
replica of the same data. However, it is necessary to pro-
vide mechanisms to allow each node to use the replicated
media as a single CAN channel that enforces the same
properties of CAN concerning atomic broadcast [4].

For this purpose, firstly, it is necessary that each node
identifies duplicates and omissions. Duplicates are copies
of the same frame received at different instants of time,
each one through a different channel; whereas an omis-
sion occurs when a copy of a frame received from one or
more channels is omitted from any of the others. The sec-
ond step to achieve atomic broadcast is to properly man-
age duplicates and omissions. The node must discard du-
plicates, since they only carry redundant data. Besides, an
omission could be a sign that the network is partitioned,
so that nodes which are each one in a different partition

can no longer communicate with each other. Thus, when
it detects an omission, the node must initiate the appro-
priate treatment actions to ensure that all nodes agree on
whether the frame for which the omission is detected has
been consistently exchanged.

To solve these problems in time-triggered communica-
tions is relatively easy. Since the traffic is synchronized
among the different media replicas, removal of duplicates
and detection of omissions is done on the fly. However,
since CAN is an event-triggered protocol, it does not pro-
vide any mechanism for synchronizing the frames in the
different channels. In fact, due to the error-signaling and
arbitration mechanisms of CAN, a bit error in one channel
is enough for its traffic to evolve in a different way than in
the other replicas.

Some approaches were proposed to achieve atomic
broadcast when using replicated CAN busses [2] [5]. Any
of them could be adopted for ReCANcentrate. But they
are complex and expensive in terms of hardware and soft-
ware, or they would limit the accuracy of the fault di-
agnosis each hub performs [3]. Fortunately, the hubs of
ReCANcentrate exchange their traffic through the inter-
links and couple with each other [3], so that both of them
transmit the same value bit by bit in their downlinks.
Thus, the traffic cannot evolve in a different way in both
stars, i.e. the hubs can be seen as a single one that provides
a single communication domain.

This paper focuses on how each node of ReCANcen-
trate manages the media in order to communicate as if
there were a single CAN channel that ensures atomic
broadcast. The paper briefly explains how nodes can take
advantage of the hub coupling to manage the media and,
then, outlines the characteristics of an on-going software
implementation of the proposed management executed on
hardware COTS components. This paper reflects part of
the results we have obtained so far formally verifying the
media management we propose.

2 Fault model

The physical layer of CAN implements a wired-AND
function of every node contribution, thereby providing
a dominant/recessive transmission [1]. Besides, its bit
synchronization mechanism guarantees that nodes quasi-
simultaneously observe every single bit on the channel.

Our fault model [3] differentiates between faults oc-
curring at the media, i.e. at any hub or any link/interlink
(transceivers, connectors and cables), and at CAN con-

c©2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. doi:10.1109/ETFA.2008.4638442

 Hub2

Node i

Node j

Node k

Interlink

Sublink

Uplink

Downlink

Sublink

Hub1

Figure 1. ReCANcentrate architecture

trollers. Faults at a link/interlink can only generate stuck-
at or bit-flipping bits. Since a hub cannot build or buffer
frames, it can basically fail by generating or propagating
stuck-at or bit-flipping bits. However, a hub may also fail
by erroneously deciding not to couple with the other hub.

Notice that the single communication domain is no
longer enforced if all interlinks are faulty, or if a hub er-
roneously decides not to couple with the other hub. For-
tunately, the probability of such situations is almost neg-
ligible since there are several interlinks and the hub could
include internal redundancy to reduce the likelihood of an
incorrect decoupling. Therefore, these situations are be-
yond the scope of this paper.

Regarding faults at CAN controllers, we distinguish
between crash and byzantine failures. When a CAN con-
troller crashes, it stops performing any action, so that it
only delivers recessive bits to the network and it notifies
its node about nothing, i.e. about no transmission, no re-
ception, etc. A byzantine fault manifests arbitrarily in the
value and time domains. At the side of the network, a
byzantine CAN controller may generate stuck-at or bit-
flipping bits, as well as syntactically correct but semanti-
cally incorrect frames. Additionally, it may forge or delay
notifications to its node.

The hub detects and isolates stuck-at and bit-flipping
faults at the port of origin [3]; so that it confines these
faults happening at controllers, links, interlinks and at the
other hub. Since the detection of semantically incorrect
frames requires knowledge about the application executed
at nodes, we postponed their treatment for future work.

Finally, each node is responsible for managing the
notifications delivered by its CAN controllers. How-
ever, byzantine incorrect notifications are an old problem
present in any communication subsystem, independently
of whether or not it is based on a replicated media. Thus,
they are somehow out of the scope of this paper and we
only address them to some extent, as explained later.

3 Media management in ReCANcentrate
Due to the single communication domain hubs enforce,

the management of the replicated media can be basically
reduced to trigger each transmission towards one of the
hubs only, while receiving from both hubs at the same
time. The node is constituted by COTS components only:
two CAN controllers and a micro-controller (Figure 2).
A given CAN controller is connected only to one hub
by means of a dedicated uplink and downlink, using two
COTS transceivers [3]. One of the controllers acts as the
transmission controller, so that it is used to both trans-

CAN
Controller

Txrx Txrx

CAN
Controller

Txrx Txrx

Tx Rx

Micro
Controller

Uplink Downlink

Link to hub 2

Tx Rx

Uplink Downlink

Link to hub 1

Figure 2. Node architecture

mit the frames of its node and receive frames sent by
other nodes (the transmission controller does not receive
its own frames). The other controller is used as the recep-
tion controller. It receives frames transmitted by its own
node, as well as by other nodes. When a frame is success-
fully exchanged through the network, i.e. when a delivery
event occurs, each node expects that its two controllers
quasi-simultaneously notify of that event. This notifica-
tion can occur in two different manners. First, if the node
successfully transmits a frame, the transmission controller
and the reception controller notify of the transmission and
reception of this frame respectively. Second, if the node
receives a frame sent from another node, it is notified of
this reception by its two CAN controllers.

To diagnose that it cannot communicate through a
given hub, the node uses the Transmission Error Counter
(TEC) and the Reception Error Counter (REC) [1] of the
controller connected to that hub. Every CAN controller
includes the TEC/REC and, usually, also a threshold for
them, called error warning limit. When any of the error
counters of a controller reaches this limit, the node rules it
out and continues transmitting and receiving through the
controller that has no problems for communicating.

The node identifies duplicates and omissions by ob-
serving the way in which its controllers notify of each
delivery event. The node always expects duplicates in
the form of a simultaneous notification from its two con-
trollers, as explained before; whereas it detects an omis-
sion when a discrepancy between its controllers occurs so
that only one of them notifies of a delivery event.

Concerning the way in which the node treats an omis-
sion, recall that both hubs are coupled and that each node
is connected to each hub by a dedicated link. Thus, the
network can only be partitioned if hubs become decou-
pled, a situation that is out of our fault model. Therefore
the node can just accept the notification received from one
of its controller as valid.

To better understand these considerations about dupli-
cates and omissions, next we explain what discrepancies
a node may observe between its two controllers, and how
it treats them.

3.1 Faults and discrepancies
To analyze the discrepancies between the two con-

trollers of a node, let us differentiate again between faults
occurring at the media and at controllers. Media faults
manifest as the generation of stuck-at or bit-flipping bits
that usually generate errors that corrupt data.

In general, these errors block the channel. Conse-
quently, as long as the hub/s do not contain them by dis-

abling the adequate hub ports, no controller notifies about
a transmission or a reception and no discrepancy between
controllers can take place. When the media fault is iso-
lated, the channel becomes unblocked, but only the con-
trollers that have not been isolated so far will communi-
cate again. Thus, thereafter, each node that has an iso-
lated controller will observe what we call a notification
omission discrepancy, i.e. that only one of its controllers
notifies of a delivery event.

Notice that there are some situations in which a media
fault does not prevent all controllers from communicat-
ing, but that does lead them to inconsistently exchange
frames. First, a frame is inconsistently exchanged in any
of the error scenarios affecting the last-but-one bit of a
frame that have been identified for CAN [6]. Second, a
stuck-at-recessive fault may provoke an inconsistency if
it prevents a controller from monitoring the traffic, or if
it impedes that its contribution reaches its corresponding
hub. For instance, if a downlink is stuck-at-recessive dur-
ing the broadcast of a whole frame, the controller con-
nected to that downlink will not observe it. The media
management we propose takes into account these situa-
tions, but due to space limitations, this paper does not re-
flect how nodes treat them. Anyway, the probabilities of
the scenarios due to errors in the last-but-one bit are con-
troversial [7], whereas the probability of an inconsistency
due to a stuck-at-recessive fault should be also very low.

Regarding what discrepancies can be provoked by con-
troller faults, first notice that when a controller is crashed,
its node will observe a notification omission discrepancy
each time a new frame is exchanged. A controller that
suffers from a byzantine failure also provokes a notifica-
tion omission discrepancy, if it issues syntactically incor-
rect data to the media, or if it arbitrarily omits a notifica-
tion. Additionally, it can also provoke a notification non-
omission discrepancy, which occurs when both controllers
of a node notify of a delivery event, but they do not agree
on the frame the event is related to. This may occur if, for
example, a controller forges notifications.

3.2 Treatment of discrepancies
When a node observes a discrepancy, it must decide

which controller has problems. Then, the node rules out
that controller and will not pay attention to its notifications
anymore. When no controller has been ruled out so far,
the node treats the discrepancies between their visions of
a delivery event as follows.

A notification omission discrepancy can be provoked
by a media fault, a crashed controller, or a byzantine con-
troller. Hence, it is not possible to elucidate if the con-
troller that has problems is the one that omits the noti-
fication or the other. To treat this, we propose to use a
best-effort strategy that consists in assuming the notified
event and its corresponding controller as correct, but with-
out diagnosing the controller that omits it as faulty. If the
delivery event actually occurred, it means that the con-
troller that did not notify of it is faulty or has problems for
communicating due to a media fault. Thus, to accept the

frame allows tolerating the fault. If there were no delivery
event, the notification was actually performed by a byzan-
tine controller and to accept it is wrong. But, as said in
Section 2, to fully treat byzantine faults is out of the scope
of this paper. Moreover, since we do not diagnose the cor-
rect controller (which omitted the notification) as faulty,
at least we do not unfairly penalize it.

Regarding notification non-omission discrepancies, the
node can use them to diagnose byzantine controller faults
to some extent. In particular, a byzantine controller can
be detected when its notification coincides in time with
a notification of the correct controller, and both notifica-
tions refer to a different frame. Although the node cannot
know a priori which controller is actually faulty when this
happens, it can stop communicating and run an internal
test in order to make a decision. This capacity of fault
diagnosis is an advantage of our approach compared with
other solutions. Especially with respect to those that use
only one CAN controller [5], since they cannot detect con-
troller faults by means of a simple comparison.

4 Replicated media management driver

We are currently implementing the presented media
management as a driver that abstracts away the details of
the node structure and the media replication. This driver
basically includes a transmission and a reception buffer,
as well as a set of interrupt service routines to handle dif-
ferent communication events. Each controller is marked
as playing one of the following roles: transmission con-
troller or reception controller (Section 3). A controller
is also marked as non-active when it is ruled out. The
driver is devised to use CAN controllers that at least in-
clude three interrupts: a transmission interrupt, which is
originated when it successfully transmits; a reception in-
terrupt, who is triggered when it receives a new frame;
and an error interrupt, which is fired when it reaches the
error warning limit. The driver assumes interrupts with
the same priority, so that they are not nested.

The transmission routine and the reception routine re-
spectively handle the transmission interrupt and the re-
ception interrupt of a controller that is not ruled out.
When a delivery event occurs, it is expected that each con-
troller notifies of it by triggering one of these routines,
which will be executed in the node’s micro-controller.
One of the controllers will be served first, while the ex-
ecution of the interrupt triggered by the other controller
will be pending. However, the two routines must cooper-
ate to handle the event. For the sake of simplicity, the rou-
tine executed first will be referred to as routine A, whereas
the other as routine B. Besides performing the operations
needed to handle a delivery event, if both controllers are
not marked as non-active, it is necessary to check that the
notifications of both of them refer to the same frame. Rou-
tine A performs this checking. If affirmative, the routine
leaves an indication to inform routine B that it has val-
idated the correspondence between the notifications, so
that routine B does not have to check it again. Otherwise,

No

Reset the
indication
.

Yes Wait K units
of time.

No

No Yes
Notify the
application that a
notification non-
omission
discrepancy
occurred.

Yes
Has the other

controller
notified of a
reception?

Is the frame
received at the other

controller equal to
frame transmitted?

Is it indicated that
the frame has been
already validated?

Leave an
indication
about the fact
that the frame
has been
validated.

Release the
transmission buffer for
further transmissions.

Notify the
application that
a notification
omission
discrepancy
occurred.

Notify the application that
the frame has been
successfully transmitted.

Figure 3. Transmission routine

routine A indicates to the application that a notification
non-omission discrepancy occurred. Note that since rou-
tine A is executed first, it has to give enough time to allow
the other controller to fire the interrupt that will launch
routine B. If when this time expires, the other controller
has not fired that interrupt yet, routine A assumes that a no-
tification omission discrepancy occurred, and goes ahead
to perform alone the actions needed to handle the delivery
event. Concerning routine B, it must reset the indication
(left by routine A) that informs about the correspondence
between notifications. Otherwise, the execution of a rou-
tine corresponding to a future delivery event would accept
an obsolete indication. Besides, routine B performs the ac-
tions needed to handle the delivery event, but without car-
rying out the operations already performed by routine A.
This cooperation is only possible if the micro executes the
routines fast enough to prevent that a new delivery event
occurs before they finish. Otherwise, a given routine could
cooperate with a routine related to a later delivery event.

Due to space limitations, we only outline the general
structure of the transmission routine (Figure 3). Since a
frame transmitted by the transmission controller should
be received by the reception controller, the routine checks
if a former reception routine has validated the correspon-
dence between the frame transmitted and received. If neg-
ative, the routine waits K units of time to give enough time
to the reception controller to notify the reception of the
transmitted frame. If the reception controller notifies the
reception of a frame, but that frame does not coincide with
the transmitted one, the routine detects a notification non-
omission discrepancy. Finally, if the reception controller
does not notify the expected reception, the routine indi-
cates that a notification omission discrepancy occurred.

Besides these two routines, the driver includes a quar-
antine routine, which is triggered when a notification non-
omission discrepancy, or an error interrupt occur. In the
first case, the routine first executes a test to determine
which controller is faulty, whereas in the second case, it
is not necessary since the faulty controller is the one who
triggered it. The routine performs the operations needed
to mark the faulty controller as non-active, and to use the

surviving controller as the transmission controller if the
controller that has been diagnosed as faulty is the current
transmission controller.

5 Verification of the media management
To formally verify the correctness of the proposed

replicated media management, we are modelling it using
the model checker UPPAAL [8]. We want to verify that a
ReCANcentrate network, in which nodes manage the me-
dia using the proposed driver, keeps the atomic broadcast
properties [4] that CAN presents when the inconsistency
scenarios pointed out in Section 3.1 do not occur: validity,
agreement, at-most-once delivery, non-triviality and total
order. Results we have obtained so far applying model
checking indicate that such properties are fulfilled.

6 Conclusions
In ReCANcentrate data are transmitted in parallel

through both its stars to provide fault tolerance. In this
paper we outline how its nodes manage the replicated traf-
fic by means of a driver, whose implementation and for-
mal verification we are currently carrying out. A special
coupling between both hubs creates a single logical chan-
nel. Thus, conversely to other CAN replicated media ar-
chitectures, identifying duplicated and omitted frames is
straightforward, since each frame is quasi-simultaneously
broadcasted by both hubs even in the presence of faults.

References

[1] ISO, “ISO11898. Road vehicles - Interchange of digital in-
formation - Controller Area Network (CAN) for high-speed
communication”, 1993.

[2] J. R. Pimentel and J. A. Fonseca, “FlexCAN: A Flexible Ar-
chitecture for Highly Dependable Embedded Applications”,
The 3rd International Workshop on Real-Time Networks,
Catania, Italy, July 2004.

[3] M. Barranco, L.Almeida, and J. Proenza, “ReCANcentrate:
A replicated star topology for CAN networks”, ETFA 2005.
10th IEEE International Conference on Emerging Tech-
nologies and Factory Automation, Catania, Italy, 2005.

[4] J. Rufino, P. Verı́ssimo, G. Arroz, C. Almeida, and L. Ro-
drigues, “Fault-tolerant broadcasts in CAN”, FTCS-28, The
28th International Symposium on Fault-Tolerant Comput-
ing, Munich, Germany, 1998.

[5] J. Rufino, P. Verı́ssimo, and G. Arroz, “A Columbus’ Egg
Idea for CAN Media Redundancy”, FTCS-29. The 29th In-
ternational Symposium on Fault-Tolerant Computing, Win-
consin, USA, June 1999.

[6] J. Proenza and J. Miro-Julia, “MajorCAN: A modification
to the Controller Area Network to achieve Atomic Broad-
cast”, IEEE Int. Workshop on Group Communication and
Computations, Taipei, Taiwan, 2000.

[7] J. Ferreira, A. Oliveira, P. Fonseca, and J. Fonseca, “An ex-
periment to Assess Bit Error Rate in CAN”, Proceedings of
3rd International Workshop on Real-Time Networks, Cata-
nia, Italy, 2004.

[8] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a Nut-
shell”, Int. Journal on Software Tools for Technology Trans-
fer, 1(12):134152, 1997.

