
Modelling MajorCAN with UPPAAL

Matias Bonet, Gabriel Donaire and Julián Proenza
Dept. de Matem̀atiques i Inform̀atica, Universitat de les Illes Balears, Palma de Mallorca, SPAIN

matias.bonet@uib.es, gabriel.donaire@uib.es and julian.proenza@uib.es

Abstract

The Controller Area Network (CAN) protocol produces
data inconsistencies in some scenarios. A previous work
proposed a new protocol called MajorCAN which is a small
modification to CAN. MajorCAN does not present the re-
ported error scenarios thus ensuring data consistency. Al-
though MajorCAN has been thoroughly simulated, no formal
verification has been performed so far. In this paper we de-
scribe how we have modelled MajorCAN using a network of
timed automata inUPPAAL. This is the first step of its formal
verification by means of model checking.

1. Introduction

The Controller Area Network (CAN) protocol, a field-bus
first developed for automotive applications, is widely used in
the automation industry as well. The main reason for its suc-
cess is its real-time and dependable behaviour. Among the
dependability properties, the specification of this standard
claims that CAN presentsdata consistency. This means that
within a CAN network it is guaranteed that a frame is either
simultaneously accepted by all nodes or by none. Besides the
existence of theerror passive state[3] in which this property
does not hold, Rufinoet al. identified [3] some specific sce-
narios in which some nodes receive a frame and some others
do not. The same authors proposed a set of protocols to be
executed on top of CAN to solve the problem [3]. In a later
analysis new scenarios of inconsistent communication were
identified in which both CAN and the proposed higher-layer
protocols fail [2]. In order to cope with all these scenarios
a modification to the CAN protocol called MajorCAN was
proposed [2].

In order to illustrate the scenarios of Rufinoet al. let us
consider the case in Fig. 1. A disturbance corrupts the last but
one bit of theEnd Of Framefield (EOF) of the set of nodes
calledX. In the next bit, these receivers start the transmis-
sion of an error flag. Thedominantfirst bit of this error flag
is seen by the nodes belonging to setY and by the trans-
mitter as an error in the last bit of their EOF. The nodes be-
longing toX will reject the frame, the nodes belonging toY
will accept the frame following the CAN’s last bit rule, and
the transmitter will schedule the frame retransmission. If the

Figure 1. Inconsistency scenarios in CAN [3]

transmitter suffers a hardware failure that prevents it from
completing the retransmission, the nodes belonging toY re-
ceive the frame whereas those ofX do not. Another scenario
[2] which has a higher probability of occurrence happens if
the transmitter can not see the error flag in the last bit of EOF
due to an additional disturbance in that bit. In this case, the
transmitter does not even try to retransmit the frame and the
same inconsistent reception takes place.

The MajorCAN protocol [2] does not exhibit this kind of
scenarios and it is designed to ensure that for each frame
all nodes agree on whether to accept it or not. We aim at
formally verifying that MajorCAN works properly by using
the model checkerUPPAAL [1]. The first step, which is to
model the protocol, is described in this paper.

2. MajorCAN m protocol description
The MajorCAN protocol [2] is designed to ensure data

consistency in the presence of up tom erroneous bits per
frame. For this reason the notation MajorCANm is used,
wherem has to be substituted by a specific value in each
instantiation of the protocol. The following explanation uses
m as a parameter to achieve the maximum generality.

Both in CAN and in MajorCAN, the EOF contains no rel-
evant data. If a frame contains errors only in the bits of the
EOF, it is a correct frame and could be accepted. Whether
it is accepted or not is just a matter of agreement among the
different nodes, this is what MajorCAN has to do. In con-
trast, if errors are in bits previous to the EOF the frame must
be rejected. According to the CAN specification whenever
a CRC error is detected, transmission of an error flag starts
at the bit following the ACK delimiter, that is at the first bit
of the EOF. Since a frame with a CRC error is clearly erro-
neous, its consistent rejection has to be ensured. Up tom−1
additional errors in the first bits of the EOF may delay the
detection of said error flag by some nodes. Therefore a node

c©2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. doi:10.1109/EFTA.2007.4416948



first detecting an error in the(m+1)th bit of EOF or later can
be sure that it was not caused by a CRC (or previous) error
and thus it can accept the frame. In contrast, a node first de-
tecting an error in the bits between the first one and themth
should make its decision based on what the others are doing.
In order to determine what the others are doing, this node
will sample the bit slots where only a node having detected
the error in the(m + 1)th bit of EOF or later would send its
error flag. Aimed at doing this sampling able to tolerate the
m−1 additional errors that may still occur, the node that ac-
cepts the frame signals this with an extended error flag, and
the ones sampling the corresponding bits check2m − 1 bits
and perform a majority vote on these values.

More specifically, the MajorCAN EOF field will be di-
vided in two subfields: a first one ofm bits and a second
one from the(m + 1)th to the(3m − 3)th bit (see [2] for
a more detailed description of MajorCAN). A node detect-
ing an error in the second subfield of EOF accepts the frame
and notifies the acceptance with an error flag extended up to
the (3m + 5)th bit. In contrast, a node detecting an error
in the first subfield must sample from the(m + 7)th to the
(3m + 5)th bit, and perform a majority voting on these sam-
ples to see if the other nodes are accepting the frame. It is
important to remark that if any node detects its second error
during the bits corresponding to the EOF and the extended
error flags, this is not signaled with any additional error flag.
Otherwise error flags of second errors could spoil the agree-
ment process.

Fig. 2 shows the behaviour of a MajorCAN5 node when
the first error is detected in different bits of EOF. Vertical
arrows indicate the bits where the sampling is performed.

3. UPPAAL modelling features
An UPPAAL [1] model is built as a set of concurrent pro-

cesses. Each process is graphically designed as a timed-
automaton. This automaton is represented as a graph which
haslocationsas nodes andtransitionsas arcs between loca-
tions. The firing of each transition can depend on aguard
and/or on asynchronization. A guard is an expression which
uses the variables and clocks of the model in order to indi-
cate when the transition is enabled, i.e. may be fired. The
synchronization is the basic mechanism used inUPPAAL to
coordinate the action of two or more different processes.

We have used two types of synchronizations. The first
type isbinary synchronizationthat uses normal channels de-
clared as, e.g.,chan a . When a process is in a location
from which there is a transition labeled witha! the only
way for the transition to be enabled is that another process
is in a location from which there is a transition labeled with
a? and viceversa. If at a specific instant there are several
possible ways to have a paira! and a? , one of them is
non-deterministically chosen during model checking. And
the second type isbroadcast synchronizationthat uses broad-

error flag

6-bit error flag, no sampling is performed, frame is rejected
CRC error

EOF
r

ACK
rr rr rr rrr rr rrr

6-bit error flag, sampling is performed
Error in 1rst r rr r rr rrr rr rrrd error flag

error flag

6-bit error flag, sampling is performed
Error in 3rd r r rr rrr rr rrrd error flag

6-bit error flag, sampling is performed
Error in 4th r rr rrr rr rrrd error flag

6-bit error flag, sampling is performed
Error in 5th r rr rr rr rrrd error flag

extended error flag, frame is accepted
Error in 6th r d extended error flagr r r r r

6-bit error flag, sampling is performed
Error in 2nd r r r rr rrr rr rrrdr

r r

r r r

r r r r

extended error flag, frame is accepted
Error in 7th r d extended error flagr r r r r

extended error flag, frame is accepted
Error in 8th r d extended error flagr r r r r

extended error flag, frame is accepted
Error in 9th r d extended error flagr r r r r

extended error flag, frame is accepted
Error in 10th r d extended error flagr r r r r

r

r r

r r r

r r r r

r r

r r

r r

r r

r r

r r

r r

r r

r r

r r

r r

extended error flag, frame is accepted
Error in 11th r d extended error flagr r r r r r r r r r r

extended error flag, frame is accepted
Error in 12th r d extended error flagr r r r r r r r r r rr

r

r

Figure 2. Behaviour of a MajorCAN5 Node

cast channels declared as, for example,broadcast chan
b. When one process is in a location from which there is
a transition labeled withb! and one or more processes are
in locations from which there is a transition labeled withb?
all these transitions are enabled and if triggered, they are trig-
gered all at the same time. However, if there are no processes
in locations from which there is a transition labeled withb? ,
the transition labeled withb! is enabled anyway.

Locations in UPPAAL can be of three different types.
Among them we are just going to describe two, which are
the types used in our model; normal locations and commit-
ted locations. Normal locations do not require any specific
explanation since they correspond to the behaviour described
so far. In contrast committed locations are such that if a
model has one or more active committed locations, no tran-
sitions other than those leaving said locations can be enabled
and time may not pass until all active committed locations
are abandoned. A committed location is differentiated from
a normal location with a “C” in the center of the circle used
for representing it. The last feature ofUPPAAL is the concept
of template. Any of the various processes (automata) consti-
tuting the complete model can be designed using a template.
A template is an automaton definition which has a set of pa-
rameters that can be of any of the data types accepted byUP-
PAAL. This is particularly useful for modelling distributed
systems like ours, since the same template can be used as a
basis for defining each and everyone of the system’s nodes.



4. A model for MajorCAN

Our model for MajorCAN is a network of timed automata
that consists of three parts: first, an arbitrary number of in-
stantiations of a template calledNode, each one modelling
the behaviour of a single MajorCAN node; second, an au-
tomaton calledbit st that forces allNode instantiations
to exchange each bit in a synchronized fashion; and third, an
automaton calledError Counter that keeps the number
of erroneous bits per frame under the maximum numberm
that MajorCANm must be able to cope with.

4.1. Bit synchronization

As it happens in CAN, MajorCANm nodes resynchronize
each time a new bit is transmitted. The automaton called
bit st , which is depicted in Fig. 3, is intended to model
this resynchronization. The aim is not to model the details of
the CAN (or MajorCAN) resynchronization, but to provide a
basic mechanism for the different nodes in our model to, first,
evolve bit by bit in a synchronized manner as it would happen
in a real network, second, decide the value of the bus during
each bit period and third, halt the complete model evolution
once the maximum number of bits has been transmitted.

In order to perform the last function,bit st uses the
clock t to limit the duration of each single bit and the vari-
able bit to count the number of transmitted bits. From
the initially active location, which istime bit , bit st
evolves to locationend time to halt the model evolution as
soon asbit reaches its maximum value. In contrast, while
said value is not reached,bit st evolves to the commit-
ted locationbit transition when the clockt indicates
that the duration of a bit (T BIT ) has elapsed. In this tran-
sition, t is reset in order to start counting the duration of
the next bit,bit is increased and the global variablebus
that models the value of the bus in that moment is preset
to a recessivevalue (logical ‘1’). From the committed lo-
cationbit transition , bit st evolves immediately to
the initial location generating the broadcast synchronization
next! . This will be received by all instantiations ofNode
that will use this synchronization to evolve simultaneously
and to decide the final value ofbus for the current bit.

Figure 3. Thebit st automaton

4.2. The model for a node

A number of decisions have been made to simplify the
modelling of the nodes. First, given that the operations that
a node has to perform in MajorCAN in order to decide ac-
ceptation or rejection of each frame are the same for trans-
mitter and receivers, we have decided to model both kinds
of nodes with the same template (Node). Second, Major-
CAN is supposed to ensure consistency for each transmitted
frame, therefore the modelling of the frame retransmission is
not required in order to prove data consistency. Note that for
this reason the automatonbit st stops generatingnext!
when the bit counter reachesLS, which is the Last Sampling
bit. And third, all the problems that MajorCAN solves are
concentrated in the last bits of the frame. Thus, the rest of
the frame’s bits have not been modelled.

In Fig. 4, the resultingNode template can be seen. The
first modelled bit of the frame is the ACK delimiter. In case
an error is detected by any node in this bit or in a previous
one by means of the CRC, said node has to start transmitting
an error flag in the next bit, which is the first bit of EOF. The
transition from theinitial location toack delimiter
models the transition to the ACK delimiter bit. Once in this
location,Node may nondeterministically decide whether it
has not detected an error in this bit or in the CRC (and thus
it evolves to locationEOF) or it has detected one (and thus
it evolves toerror flag ACK). In the second case,Node
generates the binary synchronizationerror! for the er-
ror counter (see Section 4.3) to be able to count the number
of erroneous bits. From locationerror flag ACK, Node
sends a regular error flag updatingbus to zero for EFL
(Error Flag Length) consecutive bits and then irreversibly
evolves toreject frame .

In contrast, from locationEOFeach time a new bit has to
be processed (next? is received), several possibilities have
to be taken into account. On the one hand,Node may see
the value ‘1’ in the bus without suffering an error or, having
bus the value ‘0’, suffer an error that makes it see the value
‘1’. In both cases,Node goes back to locationEOFand if
it reaches the maximum number of bits of the EOF (EOFL)
it irreversibly evolves to locationaccept frame . And on
the other hand,Node may also see the value ‘0’ in the bus
without suffering an error or, havingbus the value ‘1’, suffer
an error that makes it see the value ‘0’. In both cases,Node
evolves to locationerroneous bit .

From erroneous bit , in case the error was detected
after theMfirst bits of the EOF,Node transmits an extended
error flag and later evolves toaccept frame . In contrast,
if the error was detected in any one of the firstMbits,Node
transmits a regular error flag and then evolves to location
Sampling . As soon as the bit counter reaches the first bit
that has to be sampled (FS), Node increases the counter of
dominant bits (VAC) each time it sees a ‘0’ (either because
there is a ‘0’ in the bus or because there is a ‘1’ but an error



locally changes this value) and increases the counter of reces-
sive bits (VRC) each time it sees a ‘1’ (again, either because
there is a ‘1’ or because there is a ‘0’ but an error locally
changes it). When the last bit (bit==LS ) has been sam-
pled, Node evolves toaccept frame if more dominant
bits have been sampled or toreject frame otherwise.

4.3. The error counter
As indicated at the beginning of Section 4, the goal of the

Error Counter automaton depicted in Fig. 5 is to limit
the number of erroneous bits in a frame. From the descrip-
tion of theNode template provided in Section 4.2, it is clear
that each time a node suffers an error that changes its view
on the bus value, it notifies it by means of theerror! bi-
nary synchronization. So each time a new bit is transmit-
ted (next! is generated bybit st ), Error Counter
evolves to locationerror bit . In case an error affects
this bit in any node and the maximum number of errors
(MAXE=M) has not been reached, the error count (EC) is in-
creased but only when the next bit is transmitted (next? ).
Thereby if more than one node sees an error in this bit, the
error count is increased only once. Note in Fig. 4 that when
EChas reached its maximum value, theNode automaton is
unable to generate more errors.

5. Conclusion and future work
With the final goal of demonstrating that MajorCANm en-

sures data consistency at frame level in the presence of up to
m erroneous bits, we have developed a set of automata to
model the relevant features of the protocol behaviour. We
have already performed a thorough simulation and debug-
ging of the resultant model using theUPPAAL simulator, and
we are planning to complete the model checking using the
UPPAAL query language.

6. Acknowledgement
This work is partially supported by DPI 2005-09001-C03-

02 and FEDER funding.

References

[1] K. G. Larsen, P. Pettersson, and W. Yi.UPPAAL in a Nutshell.
Int. Journal on Software Tools for Technology Transfer, 1(1–
2):134–152, Oct. 1997.

[2] J. Proenza and J. Miro-Julia. MajorCAN: A modification to the
Controller Area Network protocol to achieve Atomic Broad-
cast. InProceedings of the IEEE Int. Workshop on Group Com-
munications and Computations. IWGCC. Taipei, Taiwan, April
2000.

[3] J. Rufino, P. Veŕıssimo, G. Arroz, C. Almeida, and L. Ro-
drigues. Fault-tolerant broadcast in CAN. InProceedings of
the IEEE 28th Int. Symp. Fault-Tolerant Computing. FTCS-28.
Munich (Germany), June 1998.

Figure 4. TheNode template

Figure 5. TheError Counter automaton


