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Abstract Scan matching algorithms have been extensively
used in the last years to perform mobile robot localization.
Although these algorithms require dense and accurate sets of
readings with which to work, such as the ones provided by
laser range finders, different studies have shown that scan
matching localization is also possible with sonar sensors.
Both sonar and laser scan matching algorithms are usually
based on the ideas introduced in the ICP (Iterative Closest
Point) approach. In this paper a different approach to scan
matching, the Likelihood Field based approach, is presented.
Three scan matching algorithms based on this concept, the
non filtered sNDT (sonar Normal Distributions Transform),
the filtered sNDT and the LF/SoG (Likelihood Field/Sum of
Gaussians), are introduced and analyzed. These algorithms
are experimentally evaluated and compared to previously
existing ICP-based algorithms. The obtained results suggest
that the Likelihood Field based approach compares favor-
ably with algorithms from the ICP family in terms of ro-
bustness and accuracy. The convergence speed, as well as
the time requirements, are also experimentally evaluated and
discussed.
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1 Introduction

Nowadays an outstanding issue in robotics is mobile robot
localization. Thrun et al. (2005) define mobile robot local-
ization as the problem of determining the pose of a robot rel-
ative to a given map of the environment. However, in many
robotic applications it is not possible to have an a priori map
of the environment. In such situations, the problem may be
addressed by building local maps of the environment while
the robot is executing a mission and, subsequently, deter-
mining the robot pose by matching the local maps.

The choice of a specific map to represent the knowledge
regarding the environment is a difficult task. Maps can be
roughly classified in two categories, referred to as Feature-
Based Maps and Location-Based Maps.

Feature-based maps, which are composed of a set of fea-
tures together with their Cartesian location, are extensively
used in the localization context. However, these maps in-
troduce geometric constraints such as the existence of lines
and corners in the environment (Castellanos et al. 2001;
Dissanayake et al. 2002; Bosse et al. 2004). Thus, they are
not well suited to model non-structured environments.

Location-based maps, which offer a marker for any lo-
cation in the world, usually do not assume geometric con-
straints. A classical location-based map is the occupancy
grid (Moravec 1988; Elfes 1989). These maps have two ma-
jor drawbacks to performing localization. First, it is compu-
tationally expensive to match such dense representations of
the space. Second, the granularity inherent to a grid repre-
sentation may produce low resolution estimates of the robot
pose.

To deal with those problems, some authors determine the
robot displacement by matching up successive sets of raw
range readings, called scans. This technique is known as
scan matching (Burguera et al. 2005; Pfister et al. 2002;
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Weiss and Puttkamer 1995). Scan matching neither assumes
geometric constraints nor builds dense, grid-based, repre-
sentations of the environment. Thus, it is well suited to local-
izing a mobile robot with high precision both in structured
and non-structured environments.

First attempts to perform mobile robot localization by
matching successive range scans were inspired by the com-
puter vision community. A standard approach to image reg-
istration is the ICP (Iterative Closest Point). Although the
name ICP was first presented by Besl and McKay (Besl and
McKay 1992), very similar ideas were presented by other
authors such as Chen and Medioni (1992) or Zhang (1994).

The ICP concepts were introduced in the mobile robot
localization context by Lu and Milios (1997). These authors
proposed some changes to the original algorithm to make it
more suitable for robotic applications. As a matter of fact,
due to the great success of this approach, many other scan
matching algorithms rely on the same basic structure. In the
context of this paper, these algorithms will be referred to as
ICP-based algorithms.

Although different localization strategies have been used
with a variety of range sensors, such as sonar (Leonard and
Durrant-Whyte 1992; Tardós et al. 2002), ICP-based algo-
rithms have been mostly used to localize mobile robots en-
dowed with laser range finders. Today, off the shelf laser
sensors provide thousands of readings per second with a sub
degree angular resolution. Other sensors, such as standard
Polaroid ultrasonic range finders, are only able to provide
tenths of readings per second, with angular resolutions one
or two orders of magnitude poorer than laser. Moreover, ef-
fects such as multiple reflections or cross-talking are very
frequent in sonar sensing, producing large amounts of read-
ings which do not correspond to real objects in the environ-
ment.

However, ultrasonic range finders have interesting prop-
erties that make them appealing in the mobile robotics com-
munity (Lee 1996). On the one hand, their size, power con-
sumption and price are better than those of laser scanners.
Consequently, they are well suited for low cost and domes-
tic robots, such as automatic vacuum cleaners. On the other
hand, their basic behavior is shared by underwater sonar sen-
sors, which are extensively used in underwater and marine
robotics. Thus, typical underwater sonar, although being far
more complex than standard Polaroid ultrasonic range find-
ers, can benefit from of those localization techniques that
take into account the sonar limitations.

Recent studies demonstrated that ICP-based algorithms
can be used with sonar sensors (Burguera et al. 2005),
especially if an accurate sensor model is defined (Bur-
guera et al. 2007c). For instance, in (Burguera et al. 2008),
each sonar reading is modeled as a Normal distribution,
thus accounting for range and angular uncertainties. Then,

statistical compatibility tests are used to establish read-
ing to reading correspondences in an ICP-based frame-
work.

In spite of its great success, ICP-based algorithms present
important flaws. Other paradigms have been recently intro-
duced to avoid such problems. For example, the NDT (Nor-
mal Distributions Transform) (Biber and Straßer 2003) de-
fines the scan matching concept from a completely differ-
ent point of view, which will be described in detail later in
this document. Also, Hähnel et al. (2003) define a proba-
bilistic laser scan registration. In this study, hill-climbing
strategies are used to maximize a likelihood function built
from a laser range finder model. In order to evaluate this
model, ray-tracing techniques have to be applied. These new
paradigms are strongly related to the concept of Likelihood
Field, which is a common and computationally cheap way
to model range sensors and perform localization given an a
priori map. Nevertheless, these paradigms rely on accurate
and dense sets of laser range readings, and are not suited to
working with sonar sensors.

Our objective is to define new sonar scan matching para-
digms which do not rely on the establishment of correspon-
dences. This paper focuses on the use of Likelihood Fields
to perform such a task. Henceforth, the scan matching tech-
niques relying on Likelihood Fields will be referred to as
Likelihood Field based or LF-based for short. The theoret-
ical basis of LF-based scan matching is presented, and two
new variants of Likelihood Fields to be used with sonar read-
ings are introduced.

The main contributions of this paper are as follows; first,
the theoretical basis of the LF-based scan matching is pro-
vided. This theoretical basis is a generalization of the one
presented by Biber et al. (2004), where Likelihood Fields
were not explicitly taken into account. Then, two novel
methods to achieve robust and accurate scan matching lo-
calization, particularly suitable when sonar sensors are used,
are introduced. At first, the sNDT (sonar Normal Distrib-
utions Transform), which involves important arrangements
to the original NDT concept to cope with the high num-
ber of outliers provided by sonar sensors. Secondly, the
LF/SoG (Likelihood Field/Sum of Gaussians), which is orig-
inally designed to work with sonar sensors but can be di-
rectly used with other range sensors. Both methods are eval-
uated by means of a complete set of experiments, com-
paring them with other well known scan matching algo-
rithms.

Although not being the central point of this paper, the
required processes to deal with the sparsity of sonar readings
are also presented as a necessary tool both for sNDT and
LF/SoG.
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2 Notation

Scan matching algorithms require two sets of range read-
ings called scans. Let Sref = {q1, q2, . . . , qn} be a set of n

points gathered at frame A, which is called the reference
scan. Let Scur = {p1,p2, . . . , pm} be a set of m points gath-
ered at frame B , which is called the current scan.

The aim of scan matching algorithms is to estimate the
robot motion between frames A and B . Let xA

B be the
scan matching estimate of the relative position between
the frames A and B . Thus, xA

B represents a rototransla-
tion in the plane. A common assumption is that the error
in scan matching is Normal. Thus, we will represent the
scan matching estimate as a multivariate Normal distribution
xA
B = N(x̂A

B ,P A
B ). Being xA

B a rototranslation in the plane,
the mean vector x̂A

B has the form [x, y, θ ]T , where x and y

represents the translation and θ represents the rotation. Ac-
cordingly, the covariance P A

B is a 3 × 3 matrix.
To deal with processes corrupted by Gaussian noise, a

common approach in stochastic mapping and SLAM is the
use of the operator ⊕ (composition of transformations).
This operator is used throughout this paper both for points
and transformations. A detailed description can be found in
(Tardós et al. 2002).

Let S′
cur = {p′

1,p
′
2, . . . , p

′
m} be the set of Scur points pro-

jected to the coordinate frame of Sref . That is, p′
i = xA

B ⊕pi ,
∀pi ∈ Scur .

Broadly speaking, the problem of scan matching is one of
finding the robot motion xA

B that maximizes the overlap be-
tween the parts of the environment represented by Sref and
Scur . The intuitive concept of overlap turns into very differ-
ent mathematical definitions depending on the specific scan
matching algorithm under consideration. For instance, in the
ICP context, the overlap is a function of the sum of distances
between pairs of closest points in Sref and S′

cur . In the Like-
lihood Field based approach, the overlap is represented by
the likelihood of having the readings in S′

cur given a like-
lihood function constructed according to Sref . The formal
definitions of overlap for the different approaches to scan
matching presented in this paper are provided in Sects. 3
and 5. Finally, Table 1 summarizes the main acronyms used
throughout this paper.

Table 1 Table of acronyms

Acronym Name

ICP, sICP (sonar) Iterative Closest Point

IDC, sIDC (sonar) Iterative Dual Correspondence

MbICP Metric Based Iterative Closest Point

pIC, spIC (sonar) Probabilistic Iterative Correspondence

NDT, sNDT (sonar) Normal Distributions Transform

LF/SoG Likelihood Field/Sum of Gaussians

3 ICP-based algorithms

A general description of ICP-based scan matching algo-
rithms is provided next so that their behavior and main draw-
backs can be understood and, later, compared to our pro-
posal, the LF-based approach.

3.1 Overview

ICP-based algorithms consist of an iterative process to esti-
mate the robot displacement and rotation that maximize the
overlap between two consecutive sensor scans by establish-
ing correspondences involving points in the two scans.

Let xA
Bk

= [xk, yk, θk]T be the ICP-based scan matching
estimate of the relative position between the frames A and B

at the iteration k, k being 0 at the beginning of the process.
A particular case is, thus, xA

B0
, which is the initial estimate.

This initial estimate has to be computed by other means, for
instance, using odometry.

In an ICP-based algorithm, at iteration k > 0, the follow-
ing three steps are executed until convergence is achieved.

– Scur is expressed with respect to frame A using xA
Bk−1

. Let
S′

curk
= {p′

1,p
′
2, . . . , p

′
m} be the set of transformed points.

That is p′
i = xA

Bk−1
⊕ pi , ∀pi ∈ Scur .

– For each point qi ∈ Sref , the corresponding point p′
j is

determined as the closest point in S′
curk

whose distance
d(qi,p

′
j ) is below a certain threshold dmin. The set of

correspondences Ck = {(i, j) | 1 ≤ i ≤ n,1 ≤ j ≤ m} is
obtained.

– The motion estimate xA
Bk

that minimizes the sum of
squared distances between qi and xA

Bk
⊕ pj is computed,

being (i, j) ∈ Ck .

When convergence is achieved, the algorithm ends and
xA
Bk

constitutes the solution xA
B . Otherwise, the process iter-

ates.
As stated previously, the goal of scan matching is to find

the xA
B that maximizes the overlap between Sref and Scur . In

the last step of the described ICP-based algorithm, a func-
tion of Sref , Scur and xA

B is minimized. Accordingly, the
overlap is measured, in the ICP context, as minus the pre-
vious function. Obviously, the goal of the minus sign is to
turn the problem of maximizing the overlap into one of min-
imizing the sum of squared distances.

The main difference between ICP-based algorithms is
how the distance d(qi,p

′
j ) between scan points is computed.

The original ICP uses Euclidean distance. Although the use
of this distance provides good estimates of the displacement
between the scans, it does not do so when dealing with ro-
tation. Among others, IDC (Iterative Dual Correspondence)
and MbICP (Metric-based Iterative Closest Point) (Minguez
et al. 2006) deal with the rotation problem. IDC establishes
two sets of correspondences; one dealing with the translation



Auton Robot

using Euclidean distance and the other with the rotation by
means of an angular distance. MbICP defines a new distance
measure that simultaneously accounts for translation and ro-
tation errors. However, none of these methods take into ac-
count the range sensor imprecisions. Some other methods,
such as the research of Pfister et al. (2002) and the pIC
(probabilistic Iterative Correspondence) (Montesano et al.
2005) deal with this problem. The former, by weighting the
contribution of each scan point according to its uncertainty.
The latter defines an interesting framework to deal with un-
certainties in scan matching computing statistical compati-
bility between the scan points by means of the Mahalanobis
distance.

3.2 Drawbacks

In spite of its high success, ICP-based algorithms have two
important drawbacks, which are described next.

Correspondences: What scan matching wants to estimate is
a roto-translation between two nearby places in the envi-
ronment. However, this estimation is carried out by means
of the partial and noisy projections of the environment
provided by range sensors. This fact is particularly rele-
vant when observing the concept of correspondence. When
point-to-point correspondences are established it is implic-
itly assumed that corresponding points have been produced
exactly at the same position in the environment. This as-
sumption is not correct, not only because of the existence
of spurious readings, but mainly because sensors sample
the environment, providing a discrete view of its surround-
ings. Moreover, at a given iteration k, only points belong-
ing to Ck are taken into account to compute xA

Bk
. Thus,

the problem is not only that sensors provide partial views
of the environment, but also that the algorithm itself dis-
cards information when establishing correspondences. Dif-
ferent attempts have been performed to minimize these ef-
fects, ranging from point-to-line correspondences (Lu and
Milios 1997) to the use of statistical compatibility tests
(Montesano et al. 2005; Burguera et al. 2008). However,
the problems derived from the establishment of correspon-
dences are inherent to the ICP-based approach. Thus, to
solve them, a different scan matching approach is neces-
sary.

Poor convergence: ICP-based algorithms do not hold infor-
mation to guarantee coherence between iterations. Once a
minimization is performed, a new set of correspondences
is established. Moreover, the threshold dmin is context de-
pendent and has to be tuned. Depending on the value of
this parameter, the algorithm can discard too many read-
ings when searching corresponding points. In these cases,
the set of correspondences changes a lot from one iteration
to the next. Thus, the function to be minimized is changing
in every iteration due to the different correspondence sets.

Depending on the threshold dmin and, thus, on the specific
context where the ICP-based algorithm is deployed, the
changes on the function being minimized may result in a
large number of iterations until the algorithm converges. In
some cases, changing correspondences may result in oscil-
lations around a minimum and even prevent convergence.

In order to deal with these problems, new approaches to
scan matching are necessary. Although the concept of Like-
lihood Field is not new, its use in the scan matching context
prevents the establishment of correspondences and, thus,
solves the two aforementioned problems. In consequence,
the use of Likelihood Fields in scan matching seems to be a
good approach to overcome some of the ICP-based limita-
tions.

4 Sonar scan matching

Figure 1 summarizes the necessary processes to perform
sonar scan matching. The matching box is in charge of find-
ing the robot motion that maximizes the overlap between
the two scans. In other words, it corresponds to the same
concept as scan matching using laser sensors. The rest of
the processes, which are necessary to tackle the sparsity of
sonar readings, are outlined next. Only short descriptions are
provided to give an overview of the full sonar scan matching
process. Detailed descriptions are beyond the scope of this
paper. More details can be found in (Burguera et al. 2008)

4.1 Measurement grouping

The scan concept itself is not of direct application to ultra-
sonic range finders. Instead of having a single sensor scan-
ning the environment, as in the case of a laser range finder,
a set of sonars at fixed poses with respect to the robot are
used. Thus, a whole view of the environment consists only
of a few readings, usually between eight and twenty four,
depending on the robot configuration.

Fig. 1 Overview of the sonar scan matching processes
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Scan matching algorithms require dense sets of readings
with which to work. Accordingly, to perform sonar scan
matching, some processes to group the sonar readings along
short robot trajectories are needed. These processes will be
referred to as the Scan Matching Decision and the Scan
Building.

The Scan Matching Decision is in charge of collecting
sonar readings and odometric estimates and storing them in
the so called Transformations History. The Scan Matching
Decision is also in charge of deciding when sufficient data
has been collected so that a scan can be built. When suffi-
cient sensor readings have been collected, according to the
Scan Matching Decision, the Scan Building process is exe-
cuted. This process makes use of the Transformations His-
tory and builds the sonar scan by representing the stored
sonar readings with respect to a common coordinate frame.

When the two scans Scur and Sref have been generated by
the Scan Building, the matching process (either ICP-based
or LF-based) is executed.

4.2 Trajectory correction

After execution of the matching process, the estimate xA
B

between the coordinate frames of Sref and Scur is available.
However, the scan readings have not only been gathered at
frames A and B , but along a much larger set of robot poses.
Thus, it is desirable to correct all the motion estimates in-
volved in the Scan Building process according to xA

B . This
task is performed by the Trajectory Correction process.

The Trajectory Correction computes the most probable
trajectory followed by the robot that agrees with the es-
timation provided by the scan matching. This can be ex-
pressed as a constrained optimization problem. In (Burguera
et al. 2008) a method based on an IEKF (Iterated Extended
Kalman Filter) is proposed to solve this problem. Figure 2

Fig. 2 Example of trajectory correction. The line of dashes shows the
trajectory prior to the trajectory correction. The continuous line shows
the corrected trajectory

shows an example of the effect of the Trajectory Correction
process.

5 LF-based algorithms

This section focuses on the definition of Likelihood Fields
as a framework to register point clouds in the mobile ro-
bot localization context. Biber et al. (2004) derive the the-
ory behind the NDT from a probabilistic interpretation of
the ICP algorithm. They formulate the estimation of the
robot motion as a Maximum Likelihood problem and pro-
pose Newton’s algorithm as a way to perform the optimiza-
tion. In Sect. 5.1, these concepts are detached from the
NDT and ICP algorithms and formulated in the more gen-
eral context of Likelihood Fields, which are also defined. In
Sect. 5.2, Newton’s algorithm is clearly stated and linked to
the proposed Likelihood Field approach. Additionally, Biber
(2007) used some properties of Newton’s algorithm in the
NDT context to compute the error of the scan matching es-
timate in form of covariance matrix. They made some as-
sumptions that are not realistic if noisy sets of sonar read-
ings are used. Section 5.3 extends these concepts to the more
general Likelihood Field context and adapts them, thus ren-
dering them suitable in the sonar context too.

The theory provided in this section constitutes the basis
of two algorithms, the sNDT and the LF/SoG that will be
described later in this paper.

5.1 Overview

A Likelihood Field is defined (Thrun 2001) as a function of
x − y-coordinates depicting the likelihood of obstacle de-
tection. Likelihood Fields are usually built using an a priori
map.

In the context of this paper, a Likelihood Field can be
defined as follows. A Likelihood Field is a function f :
R2 → R computing the likelihood of having a range read-
ing at given x − y-coordinates. Moreover, this function is
constructed using the range readings in Sref , and not a pri-
ori maps.

It is important to emphasize that a Likelihood Field is
not a PDF (Probability Density Function). However, turn-
ing a Likelihood Field into a PDF only involves the use of
a normalization factor η. To fully understand the utility of
Likelihood Fields in scan matching, let us define the PDF
g(x) as follows:

g(x) = ηf (x). (1)

The underlying idea is to consider g(x) as a generative
process for S′

cur: it is assumed that a point p′
i ∈ S′

cur has
been generated by drawing from the probability distribu-
tion defined by g(x). Being Scur the result of composing xA

B
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with each point in Scur , the problem of scan matching can
be seen as the one of finding the xA

B that makes the gener-
ative process assumption true. From a probabilistic point of
view, this can be expressed as the problem of maximizing
the following likelihood function:

#(x) =
∏

pi∈Scur

g(x ⊕ pi) (2)

where x represents a rototranslation between the Likelihood
Field and the Scur coordinate frames. The idea behind this
function is to project each point in the current scan onto
the PDF g by means of the aforementioned rototranslation.
Then, the PDF is evaluated at each of these projected points
and the results are multiplied. A good rototranslation x will
project the points in Scur onto regions of g with high val-
ues (i.e. with high probability of having a sonar reading).
Thus, the better the rototranslation x, the higher the values
of #(x).

The rototranslation x that maximizes this likelihood
function constitutes the scan matching estimate xA

B . In con-
sequence, the likelihood function #(x) represents the over-
lap between the two scans. If the NDT grid is used as the
Likelihood Field f (x), the likelihood function #(x) turns
into the energy function proposed in (Biber et al. 2004).

As it may be computationally expensive to maximize
Eq. 2, a usual approach is to use log-likelihood functions.
Thus, the problem of scan matching using Likelihood Fields
can be expressed as one of minimizing the following nega-
tive log-likelihood function:

− log(#(x))

= −
∑

pi∈Scur

log(g(x ⊕ pi))

= −
(

(m logη) +
∑

pi∈Scur

log(f (x ⊕ pi))

)
(3)

where m is the number of points in Scur . η being a constant
value, it is clear that it will not influence the minimization
process. Thus, it is not necessary either to compute it or to
turn the Likelihood Field into a PDF.

This approach has some advantages when compared to
the ICP-based approach. On the one hand, no correspon-
dences are established. On the other hand, only one func-
tion has to be minimized. This is important because, in the
ICP-based context, since the set of correspondences changes
at every iteration, then so too the function to be minimized.
Thus, although the ICP-based structure is the same through-
out its whole execution, it minimizes a different function at
every iteration. Some problems arise from this issue, as de-
scribed in Sect. 3.2. Moreover, the underlying probabilistic
approach to LF-based scan matching makes it easy to esti-
mate the error of the matching process in the form of covari-
ance matrix, as will be shown later.

The key issue when using Likelihood Fields is how to
build an accurate Likelihood Field from sensor data. The
main difference between the approaches presented in this
document refers to how the Likelihood Field is built.

5.2 Optimization

The optimization process consists of minimizing Eq. 3. As
stated previously, the constant term m logη does not affect
the minimization. Thus, to provide a simpler notation, let the
function to be minimized be as follows:

h(x) = −
∑

pi∈Scur

log(f (x ⊕ pi)). (4)

Newton’s algorithm has proved to be an effective tool in
this context (Biber and Straßer 2003), and has interesting
properties that will be shown later. Newton’s algorithm is
commonly used to find the minima by using the gradient
vector and the Hessian matrix instead of the function itself
and the gradient vector. Next, Newton’s method for finding
a minimum of the score function is presented.

1. Start with an approximation x0 to the minimum point.
This approximation can be obtained using odometry. Set
k ← 0.

2. Evaluate the gradient vector ∇h(xk) and the Hessian ma-
trix H(xk).

3. Compute the next estimate xk+1 ← xk +$x, being $x =
−(H(xk))

−1∇h(xk)

4. If convergence is achieved, the algorithm ends and xk+1
constitutes the scan matching estimate xA

B . Otherwise, set
k ← k + 1 and iterate.

Newton’s algorithm to find the minima of a function is
proposed in this paper to perform the optimization in the
context of LF-based scan matching. Other minimization al-
gorithms could be used and, of course, if a closed form so-
lution exists for one specific Likelihood Field definition, is
greatly preferred.

5.3 Estimating the covariance matrix

In (Biber 2007) some properties of Newton’s algorithm were
used to estimate the error of the scan matching estimate.
This section outlines the mentioned approach and shows
how this approximation of the scan matching error is valid
in other Likelihood Field approaches providing Newton’s al-
gorithm is used to perform the optimization.

At each iteration, Newton’s algorithm approximates the
function being minimized, h(x), by a quadratic. In particu-
lar, when convergence is achieved at the minimum xA

B , this
quadratic has the form:

h(x) + h(xA
B ) + 1

2
(x − xA

B )T H(xA
B )(x − xA

B ). (5)
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A common approach is to model the scan matching error
as a Normal distribution with mean xA

B and covariance P A
B .

Thus, the PDF of the error is the following Gaussian:

perror(x) = η′ exp
(

−1
2
(x − xA

B )T (P A
B )−1(x − xA

B )

)
(6)

The negative log-likelihood of perror(x) is as follows:

− log(perror(x))

= − log(η′) + 1
2
(x − xA

B )T (P A
B )−1(x − xA

B ). (7)

It has implicitly been assumed that the quadratic in Eq. 5
is a sufficiently good approximation of h(x) when Newton’s
algorithm has converged to a minimum. In other words, it is
assumed that the higher order terms of the Taylor series are
small. It can be observed in Eq. 4 that h(x) is constructed by
projecting the points in Scur onto the Likelihood Field. Thus,
it is assumed that the range readings are properly modeled
by points. This is a reasonable assumption if laser sensors
are used. Due to the very high accuracy of laser, the readings
can be assumed to be points truly located at the detected ob-
ject. In consequence, the function h(x) will most likely have
a clear minimum around the true robot motion and Newton’s
algorithm may converge to a xA

B very close to that minimum.
On the contrary, if sonar sensors are used, the point read-

ing assumption is not as good as it was with laser. Mainly
because of its low angular resolution, an object detected by
an ultrasonic range finder may not be located on the point
reading, but in a certain area around the point. Thus, some
ambiguities may appear, resulting in a minimum of h(x) not
being as clear as in the case of laser sensors. Thus, Newton’s
algorithm may not be able to converge to a solution xA

B as
close to the minimum as in the case of laser.

As stated previously, Eq. 5 approximates h(x) only
around a minimum. In other words, the closer xA

B is to the
real minimum, the better the approximation. As the research
in (Biber 2007) is based on laser sensors, it is assumed that
Eq. 5 constitutes a very good approximation of h(x). In
consequence, taking into account Eqs. 5 and 7, and per-
forming some additional assumptions, they conclude that
P A

B = H(xA
B )−1. In other words, the scan matching error

can be easily computed from the Hessian matrix used by
Newton’s algorithm.

However, in the sonar case, although the xA
B computed

by Newton’s algorithm may be good enough to localize the
robot, it can not guarantee that Eq. 5 is an approximation of
h(x) as good as that of the laser case. In consequence, in
the sonar case we can not conclude that the scan matching
error is equal to H(xA

B )−1. Nevertheless, looking at Eqs. 5
and 7 it is clear that the scan matching error, although being
bigger in the sonar case, has a similar shape to the one of the
laser case. At this point, we have experimentally observed

(a)

(b)

Fig. 3 Example of covariance matrices of the error when perform-
ing the matching in (a) a synthetic straight corridor and (b) a syn-
thetic square room. The 99% confidence ellipses drawn correspond to
K = 104, for the inner one, K = 2 × 104, for the central ellipse, and
K = 3 × 104 for the external one

that the lower sonar accuracy can be accounted for, when
computing the scan matching error, by assuming that P A

B is
proportional to H(xA

B )−1

P A
B = H(xA

B )−1K. (8)

The problem is, now, how to find the value of K . Its value
can not be deduced from previous equations as it depends
on the specific function being optimized. Thus, it should
be tuned experimentally for each LF-based scan matching
method.

Figure 3 depict the 99% confidence ellipses for different
values of K . The scans used in the matching process are
synthetic to provide two clear examples of a perfect corridor
and a square room. It can be observed how, in Fig. 3a the el-
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lipse spreads out along the corridor, which is the direction of
maximum uncertainty. In Fig. 3b the uncertainty region has
a circular shape, as in the square room there is no predomi-
nant direction for the error. Moreover, the ellipses in Fig. 3b
are much smaller than those in Fig. 3a because the matching
was more accurate.

6 The sonar normal distributions transform (sNDT)

The sNDT constitutes a good example of the LF-based sonar
scan matching. Being an improvement of the NDT (Biber
and Straßer 2003) to deal with sonar sensors, it demonstrates
how an existing scan matching algorithm can be used with
sonar sensors if the real behavior of these sensors is explic-
itly taken into account.

The main structure of the sNDT algorithm coincides with
the NDT. First, a grid is built. The idea behind this grid is
similar to the one of Likelihood Field. When the grid has
been built, a score function is defined so that optimizing
this function leads to the solution of the scan matching. The
sNDT structure is the same, except that the grid building
process is different and that a filtering procedure is applied
to the scans. For this reason, the NDT approach is first pre-
sented, though adapted slightly to the Likelihood Field back-
ground. Then, the two improvements that define the sNDT
are presented.

6.1 The normal distributions transform (NDT)

Biber and Straßer presented the NDT approach in (Biber and
Straßer 2003) as an ad hoc method to register point clouds.
The idea was refined and a probabilistic interpretation was
provided in (Biber et al. 2004). The key idea of the Normal
Distributions Transform (NDT) is to model the distribution
of a point cloud by a grid of Normal distributions. A descrip-
tion of the original NDT is provided in this section, albeit
adapted slightly to the approach presented in this paper; the
LF-based scan matching.

The NDT grid is built from qi ∈ Sref . It starts dividing the
space containing Sref in N cells of size L×L and searching
the set of qi points lying inside each cell. In the seminal
NDT paper, the value of L was set to 1m. Depending on
the position of the grid’s origin in the range [0,L) × [0,L),
the points of Sref will be divided in different groups. Let us
denote by α a particular position of the grid’s origin. Then,
for each cell j containing at least three points, the following
steps are executed:

1. Let &α,j be the set of n points qi ∈ Sref contained in this
cell.

2. Compute the mean µα,j and the covariance matrix Pα,j

of the points in &α,j .

3. To prevent singular and near singular covariance matri-
ces, the smallest eigenvalue of Pα,j is tested to be at least
0.001 times the biggest eigenvalue. If not, it is set to this
value. The parameter 0.001 was experimentally tuned in
(Biber and Straßer 2003).

4. Model the probability of having a reading at point x

contained in cell j by the bivariate Normal distribution
N(µα,j ,Pα,j ). By dropping the normalization factor off
the PDF (see Eq. 1), the Likelihood Field corresponding
to cell j is as follows:

fα,j (x) = exp
(

−
(x − µα,j )

T P −1
α,j (x − µα,j )

2

)
. (9)

The Likelihood Field fα(x) associated to Sref and the
grid’s origin α is then built using the computed fα,j (x) as
follows:

fα(x) =






fα,1(x), x ∈&α,1,

fα,2(x), x ∈&α,2,

. . .

fα,N (x) x ∈&α,N .

(10)

As a result of the previous algorithm, each cell in the
space containing Sref is modeled by a bivariate Normal dis-
tribution. This may be a good approximation locally, how-
ever, important discontinuities appear in the cell limits. Fig-
ure 4a illustrates this point. Using this grid may lead to prob-
lems similar to those of establishing correspondences in the

Fig. 4 Likelihood Fields generated by NDT being L = 1 m. The repre-
sented area is 18 m×10 m (a) Single grid. (b) Sum of four overlapping
grids
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ICP-based approach. Moreover, the minimization algorithm
requires the Likelihood Field to be continuous and differen-
tiable and certainly this is not true in that model.

To reduce the effects of these problems, the original NDT
approach proposes the use of four overlapping grids, instead
of a single one. Now, each point falls into four cells. Thus,
four Likelihood Fields are built, each of them considering
a particular position of the grid’s origin. Given a point x,
four likelihood values, f1(x), f2(x), f3(x) and f4(x), are
available. Using this approach, to evaluate the Likelihood
Field at position x, the contributions of the four grids are
added up

f (x) =
∑

1≤α≤4

fα(x). (11)

Figure 4b shows the result of summing the four overlap-
ping grids. Although the function is not continuous, it is, in
practice, usable in Newton’s algorithm context.

When f (x) is defined, the optimization process has to be
carried out. According to Eq. 4, the function to be optimized
in the NDT approach should be as follows:

h(x) = −
∑

pi∈Scur

log
( ∑

1≤α≤4

fα(x ⊕ pi)

)
. (12)

However, instead of minimizing h(x) as defined in the
previous Equation, the NDT minimizes the following score
function, s(x):

s(x) = −
∑

pi∈Scur

∑

1≤α≤4

fα(x ⊕ pi). (13)

The main advantage of defining this score function in-
stead of the negative log-likelihood is that it makes the opti-
mization process easier and faster. Moreover, (Biber et al.
2004) shows that s(x) is a good approximation of h(x).
Thus, the NDT computes xA

B by minimizing the score func-
tion s(x) by means of Newton’s algorithm as described in
Sect. 5.2.

6.2 Building the sNDT grid

As stated previously, the sNDT follows the same structure
as the NDT except that the grid is built taking into account
the sonar behavior and the scans are filtered. Next, both the
sNDT grid building and scan filtering are presented.

The NDT approximates the probability of having a read-
ing at a certain position in a given cell j of a particular
grid α by the Normal N(µα,j ,Pα,j ). For clarity purposes,
subindexes will be dropped throughout this section and the
Normal distribution written as N(µ,P ).

Both µ and P are computed using all the points lying
inside the cell. Computing them in such a way may be prob-
lematic in the presence of outliers. If laser sensors are used,

Fig. 5 The Normal distributions adjusting two sets of sonar readings
containing (a) two artifacts and (b) one artifact. The dots represent
the readings. The line represents the true location of the walls. Those
readings not lying near the line correspond to artifacts. The grayscale
images represent the Normal distributions

the number of outliers is so low that the algorithm has even
to check whether the covariance matrix becomes near sin-
gular or not. However, if sonar sensors are used the number
of outliers is not negligible. Moreover, the low angular res-
olution of these sensors tends to create dense regions of out-
liers, called artifacts. Artifacts are strongly dependant on the
sonar beam incidence angle. In other words, artifacts may
present different shapes depending on the robot pose. Thus,
they should not be taken into account when computing the
mean and the covariance of a given NDT cell because the
NDT is assumed to be static with respect to xA

B .
Figure 5 shows two sets of sonar readings and the Normal

distributions adjusting them according to the NDT. Both sets
of readings correspond to straight walls and both sets have
artifacts. The influence of the artifacts is clear. In Fig. 5a, due
to the two artifacts the mean has been moved upwards and
the covariance along the Y axis is increased. In Fig. 5b, the
artifact makes the Normal distribution to concentrate around
it.

Our goal is, thus, to define a method to compute the mean
and the covariance of the Normal distribution that better fits
the inliers of a given set of sonar readings.

A common approach, especially in the computer vision
community, to find the model that best fits to inliers (and dis-
cards outliers) of a given set of data points is the RANSAC.
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This method has also been used in the robotics community
to approximate sets of range readings by polygonal models.

RANSAC (Random Sample Consensus) was introduced
by Fischler and Bolles (Fischler and Bolles 1981) as a new
paradigm for fitting a model to experimental data containing
a significant percentage of outliers.

The RANSAC algorithm is an iterative process. In each
iteration, a subset of the original data points is randomly se-
lected. These points are used to estimate the model that best
fits them. Then the algorithm determines, for every point of
the remaining set, how well the point fits to the estimated
model. If the number of points that fit well to the estimated
model is large enough, the algorithm ends and the model
constitutes the output of the algorithm. Otherwise, the algo-
rithm iterates.

The proposed RANSAC approach to fit a Normal dis-
tribution to a set of sonar readings will be referred to as
RANSAC/GD (RANSAC/Gaussian Determination). It is de-
scribed in Fig. 6. Line 11 of the algorithm requires further
explanation. It is in charge of deciding whether the data
point x fits the model defined by µ and P or not. Our pro-
posal is to exploit the probabilistic meaning of the model to
take this decision. Being the model N(µ,P ) a bivariate Nor-
mal distribution, the following expression is a chi-squared
distribution with two degrees of freedom:

D(x,µ,P ) = (x − µ)T P −1(x − µ). (14)

To decide if the data point x fits the model, a confidence
level β can be used. Thus, the point x is accepted if and only
if D(x,µ,P ) < χ2

2,β . In our implementation, a confidence
level β = 0.99 has been used, being χ2

2,0.99 + 9.21.
Line 20 also requires some explanation. In this line, a

model is checked to decide whether it is better than any pre-
vious model or not. The decision is taken according to the
eigenvalues of the covariance matrix. The underlying idea is
that the sonar readings being analyzed are those contained
in one sNDT cell. They are only a small part of a bigger set
gathered in an environment where some continuity is sup-
posed. Thus, it is reasonable to assume that in most cases
the inliers of a given cell define a common structure with
the inliers of one or more contiguous cells. Selecting the
model according to the presented ratio between eigenval-
ues rewards those Normal distributions not concentrating
around a specific value, but spreading along the dominant
direction defined by the inliers.

Lines 29 to 33 also require further explanation. At this
point, the estimated covariance is iteratively increased by δI
(where I is the 2 × 2 identity matrix and δ a scalar so that
δ < λ) until the lowest eigenvalue is greater than λ times
the biggest one. This adjustment has two main objectives.
First, to prevent singular and near singular covariance ma-
trices, as they could lead the minimization process to nu-
merical problems. From this point of view, the value of λ

Algorithm:RANSAC/GD

Input:
Q: Set of sonar data points

nI ter: Number of iterations to perform
n: Number of points to be randomly selected
m: Minimum number of points to consider a model
β: Desired confidence level to accept a data point
λ: Narrowness factor
δ: Narrowness resolution

Output:
µbest: The estimated mean
Pbest: The estimated covariance
εbest: The quality of the estimated model
Sbest: The set of inliers used to build the model

1

begin2

k ←0;3

εbest ←0;4

while k < nI ter do5

S1 ← random selection of n data points from Q;6

S2 ← ∅;7

µ ←mean(S1);8

P ←covariance(S1);9

foreach x ∈ (Q − S1) do10

if (x − µ)T P−1(x − µ) < χ2
2,β then11

S2 ← S2 ∪ {x};12

end13

end14

if |S2| ≥ m then15

µ′ ←mean(S1 ∪ S2);16

P ′ ←covariance(S1 ∪ S2);17

εmax ←max(eigenvalues(P ′));18

εmin ←min(eigenvalues(P ′));19

if εmax/εmin > εbest then20

εbest ← εmax/εmin;21

µbest ← µ′;22

Pbest ← p′;23

Sbest = S1 ∪ S2;24

end25

end26

end27

if εbest > 0 then28

repeat29

εmax ←max(eigenvalues(Pbest));30

εmin ←min(eigenvalues(Pbest));31

Pbest ← Pbest + δI32

until εmin/εmax < λ ;33

end34

end35

Fig. 6 The RANSAC/GD algorithm

should be, at least, 0.001 (Biber and Straßer 2003). The sec-
ond goal is to prevent the Normal distribution PDF from
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Fig. 7 The results of using
RANSAC/GD. The effect of
varying the narrowness factor λ
can be observed. (a) Single cell
with λ= 0.001. (b) Single cell
with λ= 0.05. (c) Four
overlapping grids with
λ= 0.001. (d) Four overlapping
grids with λ= 0.05

being too narrow in one direction. The problem of having
very narrow PDFs appears when the initial estimate of the
rototranslation between the scans is not very good. This is
common when using sonar sensors, as the robot has moved
a considerable distance to build the scans relying only on
odometry. In those cases, a narrow PDF would lead to val-
ues close to zero in most of the addends of the score function
(see Eq.13). Thus, it would be difficult for the minimization
process to decide the direction towards which the minimum
is located. In these cases, the value λ = 0.001 used with
laser sensors would be problematic, and greater values are
preferred. By experimentally tuning this parameter, we have
observed that λ≥ 0.1 is required in the sonar case, and that
the value of λ= 0.5 is the best choice for all the tested envi-
ronments.

A final consideration has to be made regarding the selec-
tion of the parameters m, n and nIter. Although some de-
tails are provided in (Fischler and Bolles 1981) about how
they should be selected, they strongly depend on the spe-
cific problem that is being solved. In our case, they have
been chosen experimentally and are n = 5 (so that at least
five points have to lie inside each NDT cell to be analyzed),
m = 0.35|Q| and nI ter = 1000. Using these parameters,
the obtained results are good and the algorithm runs fast.

Figure 7a and 7b show the Normal distributions that bet-
ter fit the inliers of the same set of sonar readings shown in
Fig. 5a. The effects of the narrowness factor λ can be ap-
preciated: the bigger the narrowness factor, the bigger the
dispersion along the smallest axis. The advantages of this
approach are clear if one compares these images to the one
obtained without using RANSAC/GD (Fig. 5a).

Figures 7c and 7d show the results of building the NDT
grid using the RANSAC/GD approach with different values
of λ. It can be observed that the use of RANSAC/GD pro-
duces an accurate representation of the environment and that
the greater part of spurious readings have been discarded.
The raw readings used to build the previous grids are shown
in Fig. 8a. It can also be observed how the very narrow Like-
lihood Field in Fig. 7c may be problematic if a bad ini-
tial rototranslation is provided, as explained previously. In
those cases, the narrow Likelihood Field would lead to val-
ues close to zero in most of the addends of the score func-
tion.

6.3 Filtering scans

As shown in the previous section, not all the readings
belonging to Sref have been taken into account when
building the sNDT grid. Only the inliers selected by the
RANSAC/GD have been taken into account. Thus, a sim-
ilar approach should be applied to readings in Scur . This
approach will be referred to as RANSAC/GF (RANSAC/
Gaussian Filtering).

RANSAC/GF is a technique to filter the readings in Scur
so that the generative process assumption is valid. As a re-
sult of this, Scur will be divided in two subsets. The subset
containing the readings that make the generative process as-
sumption valid is referred to as the set of accepted readings.
The subset containing the rest of the readings is referred to
as the set of rejected readings.

The key idea behind the RANSAC/GF is similar to the
sNDT grid building, but applied to Scur . Given a grid’s ori-
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Fig. 8 RANSAC filtering. (a)
and (c): original sets of sonar
readings. (b) and (d): filtered
sets of sonar readings

gin α, for each cell j let &′
α,j denote the set of inliers se-

lected by RANSAC/GD. That is, we define &′
α,j ← Sbest

(see Fig. 6). Then, the set of accepted readings is built as
follows:

&′ =
⋃

1≤α≤4

⋃

1≤j≤N

&′
α,j . (15)

In other words, the set of accepted readings is defined
as the set of readings that have been selected as inliers by
RANSAC/GD in any grid and cell when applied to Scur . To
ease notation, from now on, in the context of the sNDT, the
term Scur will refer to the set of accepted readings. In other
words, Scur ←&′.

Figure 8 exemplifies the RANSAC/GF approach. It can
be observed how isolated readings disappear after filter-
ing. It can also be observed how spurious readings, espe-
cially those corresponding to artifacts, also disappear af-
ter filtering. The ability of RANSAC/GF to deal with ar-
tifacts can be explained as follows. Usually, artifacts are
produced by small objects, such as door frames, located
close to bigger environment structures, such as walls. When
computing the Normal that better fits the readings in a
cell containing an artifact, RANSAC/GF will most likely
fit the Normal to the true obstacle rather than to the arti-
fact. This is because the true obstacle produces more read-
ings, which spread along one single dominant direction, than

the artifact, which usually spreads in more than one direc-
tion.

This fact suggests two possible benefits from using this
technique. On the one hand, to select only the reading be-
longing to Scur that make the generative process assump-
tion valid and allow the use of such readings in the sNDT
while, on the other hand, to filter sonar readings so that
clean sets could be used in other contexts, such as map-
ping or SLAM. Burguera et al. proposed in (Burguera et
al. 2007a) a probabilistic approach to filter sonar data and
demonstrated the benefits that could be provided in the
context of ICP-based sonar scan matching (Burguera et al.
2007b). Barshan (Barshan 2007) proposed an approach to
process ultrasonic arc maps and reviews other related tech-
niques. Although some problems may appear in grid cells
with a high amount of artifacts, the experimental results
suggest that the RANSAC/GF approach could also be ap-
plied to process and filter sets of sonar readings in contexts
similar to those of (Burguera et al. 2007a) and (Barshan
2007).

After building the sNDT grid using RANSAC/GD and
filtering Scur by means of RANSAC/GF, the matching
process can be performed in the same way as in the orig-
inal NDT (Biber and Straßer 2003).
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7 The likelihood field/sum of Gaussians (LF/SoG)

The LF/SoG is an application of the Likelihood Field ap-
proach to scan matching. It approximates one of the scans
by a sum of Gaussians. Thus, it builds a continuous and
differentiable Likelihood Field. Although it involves more
computations than the sNDT, a simplification is proposed
to reduce the computational cost. The results provided by
LF/SoG are better than those obtained with sNDT and NDT,
as will be shown in Sect. 8.

7.1 Building the likelihood field

The Likelihood Field f (p) is defined as follows:

f (p) =
∑

qj ∈Sref

exp(−((px − qxj )
2 + (py − qyj )

2)) (16)

where p = [px,py]T and qj = [qxj , qyj ]T . The exponent is
minus the squared Euclidean distance between p and each
point in Sref . Thus, the function decreases with the distance
to the points in Sref . This fact is consistent with the Likeli-
hood Field definition: the farther from an obstacle, the less
likely one will have a reading. The reader should notice that
each term in Eq. 16 corresponds to the not normalized PDF
of a Normal distribution with covariance the identity ma-
trix. Thus, the proposed Likelihood Field models the envi-
ronment as a sum of Gaussians. That is why this Likelihood
Field, as well as the Scan Matching technique that makes
use of it, are called LF/SoG. Figure 9a shows an example of
the Likelihood Field defined in Eq. 16.

Given the set of points pi in Scur , the correctness of a cer-
tain displacement and rotation x = [xx, xy, θ ]T between the
two scans can be evaluated by the following score function:

s(x) = −
∑

pi∈Scur

f (x ⊕ pi). (17)

The minus sign is used only to make further computations
easier. The lower the value of s(x), the better the transfor-
mation x is. Thus, the problem of scan matching using the
Likelihood Field defined in Eq. 16 can be formulated as the
problem of minimizing the score function shown in Eq. 17.
It is important to point out that, in order to evaluate the score
function s(x), the Likelihood Field has to be computed only
at m points, where m is the number of readings in Scur .

7.2 Resampling

As the exponentials in Eq. 16 are summed, the value of the
Likelihood Field is influenced by the density of the readings.
The value of the Likelihood Field would be higher in the re-
gions of Sref with higher densities of readings. However, this
is not a desirable situation, especially with sonar sensors. If
sonar sensors have been used to gather the scan, the scan
density strongly depends on parameters such as the robot
speed or the material of the obstacle. To avoid this problem,
it is necessary to resample the scan.

In this paper, we propose the replacement of small sub-
sets of readings in Sref by their center of gravity (Gutmann
and Schlegel 1996). This approach is able to resample a scan
with a minimal loss of information and has very low compu-
tational requirements. The idea behind this filter is to move a
circular window over Sref and substitute the readings inside
the window with their center of gravity. Figures 9b and 9c
exemplifies the effect of the resampling step. The radius
of the window defines the minimum distance between the
points in the resampled scan. This radius has to be defined
experimentally. Low values for this parameter do not solve
the influence of the readings density, while high values may
render the resulting scan too sparse. By experimentally test-
ing this parameter, we have observed that a value of 5 cm is
a good choice.

Fig. 9 (Color online) (a) Example of Likelihood Field (grayscale image) generated from a set of sonar readings (red dots). (b) Set of sonar
readings before resampling. (c) Set of sonar readings after resampling. A window radius of 20 cm has been used to provide a clear representation
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Fig. 10 Likelihood Field of a 12 m long fragment of a corridor using,
from top to bottom, υ = 0.2 m, υ = 0.6 m and υ = 1 m

7.3 Improving computations

One important advantage of the Likelihood Field approach
with respect to ICP-based algorithms is that no correspon-
dences are established. The whole set of points in Sref is
used. Thus, the contribution of each point pi ∈ Scur to the
overall matching process is influenced by the whole set of
points in Sref .

However, the value of f (p) is barely influenced by those
qi ∈ Sref that are far from the point being evaluated. Thus,
in order to reduce the computational cost, the addends of
Eq. 16 involving points farther than a certain threshold υ

from p could be neglected. Figure 10 shows the effect of
different threshold values. In general, we have observed that
the differences between the Likelihood Fields obtained with
υ ≥ 0.6 m are not appreciable. This fact can be observed in
Fig. 10 where there is not an appreciable difference between
the Likelihood Fields corresponding to υ = 0.6 m and υ =
1 m. Consequently, from now on, the value of υ is set to
0.6 m.

7.4 Optimization

The estimated displacement and rotation is computed by
minimizing Eq. 17. Our proposal is to minimize the men-
tioned score function by means of Newton’s algorithm, de-
scribed in Sect. 5.2.

The score function s(x) is defined as a sum of expo-
nentials. Thus, both the gradient vector and the Hessian

matrix can be computed by summing the gradient vectors
and the Hessian matrices of the addends respectively. Fol-
lowing explanations will focus on an addend involving pi

and qj . To ease notation, in the context of this section we
define α = [α1, α2]T = [p′

xi − qxj ,p
′
yi − qyj ]T and x =

[xx, xy, θ ]T = [t1, t2, t3]T . Now, one addend of the score
function s(x) can be written as follows:

g(x) = − exp(−αT α) = − exp(−(α2
1 + α2

2)). (18)

Then, one addend of the gradient vector is as follows:

∇g(xk) = ∂g

∂x

∣∣∣∣
xk,pi ,qj

= 2 exp(−αT α)αT J
∣∣
xk,pi ,qj

(19)

where J is the Jacobian matrix.

J = ∂α

∂x

∣∣∣∣
xk,pi

=
[

1 0 −pxi sin θ − pyi cos θ

0 1 pxi cos θ − pyi sin θ

]

xk,pi

. (20)

One addend of the Hessian matrix is a matrix of the form:

H =




H11 H12 H13
H21 H22 H23
H31 H32 H33





xk,pi ,qj

. (21)

Each term Hrc is as follows:

Hrc = 2 exp(−αT α)

((
−2

(
αT ∂α

∂tc

)(
αT ∂α

∂tr

))

×
(
αT ∂2α

∂tr tc
+

(
∂α

∂tr

)T (
∂α

∂tc

)))
(22)

where the terms ∂α
∂t1

, ∂α
∂t2

and ∂α
∂t3

correspond to the three col-
umn vectors in the Jacobian matrix of Eq. 20. The second
partial derivatives of α are as follows:

∂2α

∂tr tc
=






[−pxi cos θ+pyi sin θ
−pxi sin θ−pyi cos θ

]
, r = c = 3,

[ 0
0

]
otherwise.

(23)

The reader should notice that g(x) (and, consequently,
f (p)) are of class C1 (i.e. continuously differentiable).
Thus, the Hessian matrix is symmetric. Thanks to that, al-
though the asymptotic complexity of the algorithm stays the
same, the amount of computation required at each iteration
can be slightly reduced.

There are some considerations regarding this minimiza-
tion process. A requirement of Newton’s method is that s has
continuous first and second order partial derivatives in each
region containing the xk . As the score function s is a sum of
exponentials, it meets the mentioned requirements. Thus, if
all the points in Sref are used to build the score function, s(x)

meets all the requirements of Newton’s algorithm. However,
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when using the method described in Sect. 7.3 to reduce the
computational cost, the number of addends in s(x) depend
on the parameter x, rendering the score function non contin-
uous. If Newton’s method is applied in this situation, each
iteration of the algorithm may be performed over different
functions. This situation, where the function to be mini-
mized changes, is similar to the minimization approach of
ICP-based algorithms. However, if values of υ greater than
0.6 m are used as stated in Sect. 7.3, an addend is included or
neglected from s(x) only if its value is close to zero. Thus,
the functions being minimized in two consecutive iterations
would be similar, making possible in practice, the use of
Newton’s algorithm.

8 Experimental results

8.1 Overview

In this paper, two approaches to LF-based scan matching
have been described: the sNDT and the LF/SoG. In order to
evaluate these approaches, we compare them with other scan
matching algorithms. On the one hand, they are compared to
three ICP-based algorithms: sICP (sonar ICP), sIDC (sonar
IDC) and spIC (sonar probabilistic Iterative Correspon-
dence). On the other hand, they are also compared to the
original NDT because it is a non ICP-based algorithm that
has proved to be very effective when used with laser sensors.

Regarding the ICP-based algorithms, sICP and sIDC are
the sonar versions of the well known and widely tested ICP
and IDC algorithms. The only difference between the orig-
inal versions and the sonar versions of ICP and IDC is that
the Measurement Grouping and the Trajectory Correction
steps, described in Sect. 4, are used.

The spIC is a probabilistic, ICP-based, sonar scan match-
ing algorithm, which has proved to be more robust and accu-
rate than sICP and sIDC. The main idea behind spIC is that
correspondences are established if statistical compatibility
exists between them. Also, spIC makes use of sonar models.
To provide a fair comparison, exactly the same implemen-
tation of Measurement Grouping and Trajectory Correction
has been applied to all the algorithms.

All the experiments discussed in this section have been
carried out using real sonar data obtained with a Pioneer
3-DX mobile robot endowed with 16 Polaroid ultrasonic
range finders. Data sets gathered in four different environ-
ments of our university have been used. The first environ-
ment has smooth stone walls, combined with glass walls and
multiple door frames. The second environment has wooden
walls. The NDT grid shown in Fig. 4 corresponds to this en-
vironment. The third environment is a corridor with rough
walls and multiple entrances to offices. The Likelihood Field
shown in Fig. 10 has been built using data gathered in this

environment. Finally, the fourth environment is an unstruc-
tured room with cardboard boxes, chairs and tables. In con-
sequence, the obtained data sets include structured and un-
structured areas, posing different difficulties both to sonar
sensing and odometry.

Two scans have been gathered along the same robot tra-
jectory in each environment. Therefore, the displacement
and rotation between both scans is perfectly known to be
[0,0,0]T . In other words, the ground truth is available. It is
important to point out that although both scans have been
gathered in similar conditions, they are not identical. Thus,
they constitute a realistic test bench for sonar scan matching
algorithms. Moreover, by gathering two scans at the same
robot pose, the experiments concentrate specifically on the
matching capabilities of the algorithms. In other words, by
choosing a different rototranslation between two scans, the
Measurement Grouping, the Trajectory Correction, and the
errors involved in measuring the ground truth, would all in-
fluence the results.

Five experiments have been carried out introducing dif-
ferent initial location errors. Each experiment has been per-
formed in each of the four described environments. The
mentioned initial location errors correspond to the values
assigned to the initial estimate, both in Newton’s method
and in ICP-based algorithms. These values have been ran-
domly selected according to a uniform distribution between
−0.05 m and 0.05 m in x and y, and between −9◦ and 9◦

in θ in Experiment 1. The amount of initial error increases
with the experiment, up to random errors between −0.25 m
and 0.25 m in x and y and between −45◦ and 45◦ in θ in
Experiment 5. The procedure is repeated 1000 times per ex-
periment and scan, which means a total of 20000 trials per
algorithm. By analyzing the data obtained from these exper-
iments, the algorithms are evaluated in terms of robustness,
accuracy and convergence speed.

In all the experiments, the standard parametrization both
for sNDT and NDT has been used (L = 1 m and λ = 0.5).
The LF/SoG has been executed with υ = 0.6.

8.2 Robustness

In order to evaluate the robustness of the algorithms, the re-
sults provided by each algorithm in each of the five experi-
ments have been classified in four categories: true positives,
false positives, true negatives and false negatives. A true
positive appears when the algorithm converges to the right
solution. A false positive describes those situations where
the algorithm converges to a wrong solution. True negatives
appear when the algorithm does not converge and the esti-
mate generated in their last iteration was wrong. Finally, the
situations where the algorithm does not converge, but where
their last estimation was correct is described by false nega-
tives. Although some ICP-based algorithms are convergent,
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Fig. 11 Robustness of previously existing methods: (a) sICP, (b) sIDC, (c) spIC and (d) NDT. True positives (black), false positives (gray), true
negatives (white) and false negatives (lines) are shown

Fig. 12 Robustness of the
methods presented in this paper:
(a) sNDT without applying
RANSAC/GF, (b) sNDT and
(c) LF/SoG. True positives
(black), false positives (gray),
true negatives (white) and false
negatives (lines) are shown

the term convergence, in the context of this section, refers to
the ability of the algorithm to meet a numerical convergence
criteria in a limited number of iterations.

To decide whether the solution provided by an algorithm
is correct or not, the ground truth with a certain tolerance
is used. We define as correct those results that are below
0.075 m in x and y, and below 0.075 rad in θ .

Figure 11 shows the robustness results for sICP, sIDC,
spIC and NDT. These are previously existing methods, and
the robustness results are only provided to compare them
with those of the novel approaches discussed in this paper.
It can be observed how sICP is a robust method in the case
of very low initial errors. However, its robustness strongly
decreases as the initial error increases. On the contrary, sIDC
does not provide a number of true positives as high as sICP
in presence of low initial error, but it tolerates bigger initial
errors much better than sICP. The probabilistic approach,
the spIC, is the best in terms of robustness, of all the tested
ICP-based methods. Regarding the non ICP-based method
(the NDT) it can be observed how it is even better in terms
of robustness than spIC in the presence of low initial error.
However, it is not able to cope with bigger errors and the
robustness strongly decreases as the initial error increases.

Figure 12 shows the robustness results for the methods
presented in this paper, the sNDT and the LF/SoG. The re-
sults regarding sNDT are divided in two blocks. First, those
obtained when RANSAC/GD is applied to build the grid but
no scan filtering is performed. Second, the results obtained
using RANSAC/GD to build the grid and RANSAC/GF to
filter Scur . In this way, the effect of scan filtering can be ob-
served.

It can be observed how, if scans are not filtered, the sNDT
results are close to those of NDT. In presence of low and
moderate initial errors, the NDT robustness is similar and
even slightly better than the non filtered sNDT results. How-
ever, for larger initial errors, sNDT is shown to be signifi-
cantly more robust than NDT. Thus, although in the presence
of small initial errors the NDT seems to be slightly better
than the non filtered sNDT, the non filtered sNDT provides
a better global behavior in terms of robustness.

As described in Sect. 6.3, the use of RANSAC/GD clas-
sifies some of the readings in Sref as outliers. These out-
liers are, consequently, not used in the grid building process,
thus improving the grid’s quality. However, by discarding
readings in Sref but not in Scur , the generative process as-
sumption is not valid. Then, RANSAC/GF was proposed.
By applying RANSAC/GF, both Scur and Sref are treated un-
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der identical conditions. The advantages of performing the
mentioned filtering are clear when examining Fig. 12b. The
filtered sNDT is remarkably more robust than the non fil-
tered approach and the NDT. Moreover, the sNDT results are
slightly better than those produced by spIC. For instance, in
Experiment 5, the sNDT achieves a 89.07% of true positives
whereas the percentage of spIC true positives is 82.07%.

A big advantage of the LF/SoG with respect to the sNDT,
is that LF/SoG uses a continuous likelihood field. The effect
of this fact on the robustness of the algorithm can be appre-
ciated in Fig. 12c. It can be appreciated how LF/SoG is more
robust than any other tested algorithm.

8.3 Accuracy

The accuracy is measured by means of the standard devia-
tion of the errors of the positive estimates. By focusing on
positive estimates, the experiment evaluates the accuracy in
real situations where no ground truth is available and the
algorithm only can distinguish between positives and nega-
tives. A low standard deviation represents that each trial has
produced results close to the ground truth, which means that
good accuracy has been achieved. Higher standard devia-
tions represent variations in the results obtained during the
experiment, so that less accuracy has been achieved.

Figure 13 shows the standard deviations of the angular er-
rors for different sonar scan matching algorithms. The angu-
lar error has been selected as it is commonly accepted that it

Fig. 13 Standard deviation of the errors. (a) Previously existing meth-
ods. (b) Methods presented in this paper

constitutes a critical issue in localization. It can be observed
in Fig. 13a how the most accurate of the previously existing
algorithms is the spIC. Moreover, spIC has better accuracy
than any of the algorithms presented in this paper.

Both the filtered and the non filtered approaches to sNDT
provide higher accuracy than the original NDT. It is also
clear that the use of RANSAC/GF to filter the scans in the
sNDT strongly improves the accuracy. The LF/SoG algo-
rithm is the best, in terms of accuracy, of the scan matching
algorithms discussed in this paper. Moreover, LF/SoG accu-
racy is close to the spIC accuracy in presence of low and
moderate initial error.

8.4 Convergence speed

The convergence speed is measured by means of the num-
ber of iterations required to achieve global convergence. Of
course, the lower the number of iterations, the better the al-
gorithm’s performance.

The convergence speed results are shown for NDT, sNDT
and LF/SoG, but not for ICP-based algorithms. An iteration
in an LF-based algorithm corresponds to one step in New-
ton’s algorithm. To the contrary, an iteration in an ICP-based
algorithm corresponds to the minimization of one specific
function. Thus, the number of iterations in an LF-based al-
gorithm can not be compared to those of ICP-based algo-
rithm. For this reason, only LF-based results are shown and
analyzed here. Results regarding ICP-based algorithms are
available in (Burguera et al. 2008).

Figure 14 shows the mean and the standard deviation
of the true positive estimates for each of the five experi-
ments. The graphical representation of the standard devi-
ation has been reduced to 20% to provide a clear repre-
sentation. Results show how even the non filtered sNDT
achieves convergence faster than NDT in all the experiments
when fed with sonar data. It can be observed how the use
of RANSAC/GF to filter the scans makes the filtered sNDT
converge faster than the non filtered approach. Finally, it is
clear that the LF/SoG approach is able to achieve conver-
gence much faster than any other of the presented methods.

Fig. 14 Number of iterations to achieve convergence
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Fig. 15 Execution times (Matlab). (a) Previously existing methods.
(b) Methods presented in this paper

In order to illustrate the previous convergence profiles
and compare them to the ICP-based approaches, the exe-
cution times have also been measured. The mean and the
standard deviation of the execution times of the true pos-
itive estimates for each of the five experiments have been
computed. These results are shown in Fig. 15. The graphical
representation of the standard deviation has been reduced to
20% in order to provide a clear representation. These execu-
tion times correspond to non optimized Matlab implemen-
tations. In addition, the results corresponding to NDT and
sNDT do not include the time spent to build the grid. Thus,
the interest of these results is not their absolute values but
the relation between them, so that different algorithms can
be compared.

Figure 15a shows the execution times for the previously
existing algorithms. It can be observed how spIC and NDT,
although being much more robust than sICP and sIDC also
have higher time requirements. The results for the scan
matching methods presented in this paper are shown in
Fig. 15b. The Filtered sNDT is able to significantly re-
duce the computation time with respect to the NDT. This
is due not only to the lower number of iterations required
to achieve convergence, but also to the reduction of the
number of readings in Scur thanks to RANSAC/GF. Fi-
nally, it can be observed how the LF/SoG, which has shown
to be the most robust of the tested algorithms and has a
good accuracy also has very low computational require-
ments.

8.5 Visual examples

The presented experiments are aimed to provide a quanti-
tative evaluation of the presented algorithms and to com-
pare them to other existing, well known approaches to scan
matching. One last experiment has been performed so that
the algorithms can be evaluated qualitatively, by visual in-
spection. In this experiment, the robot moved inside a build-
ing of our university campus. Sonar scans were built by
grouping the sonar readings along trajectories of 1.5 m. The
results of performing localization using different algorithms
are shown in Fig. 16. It can be observed how all the al-
gorithms improve in some way the trajectory provided by
odometry. However, sNDT and LF/SoG are the methods that
provide better results. The LF/SoG is able to produce an al-
most straight corridor, thus, being closer to the real environ-
ment.

9 Conclusion

This paper presents a new approach to sonar scan matching.
This approach requires a measurement grouping process,
prior to the matching, to build dense sonar scans. Further-
more, after the matching process is completed, the whole
trajectory involved in the grouping process is corrected as a
result of a trajectory correction process.

The main contribution of the paper refers to the matching
process. Our proposal is not to establish point to point corre-
spondences. Thus, the algorithms discussed in this paper are
not ICP-based. Instead, a function modeling the likelihood
of having sonar readings at each spatial coordinate is built.
This function is constructed according to the readings of
one of the scans. As likelihood functions are being used, the
new approach is called Likelihood Field Based scan match-
ing (LF-based for short). After building the LF function, the
readings in the other scan are matched against the LF func-
tion to find the displacement and rotation that better explains
the robot motion.

Three different applications of the LF-based approach
are presented. First, the non filtered sNDT: This application
constitutes an improvement on the previously existing NDT
to be used with sonar sensors. Second, the filtered sNDT:
This application is similar to the non filtered sNDT, except
that the sonar readings are filtered previous to the matching.
Finally, the LF/SoG is proposed: This application defines a
simple but effective Likelihood Field, having the advantage
of being continuous and differentiable.

Experimental results evaluating the robustness, the accu-
racy and the convergence speed have been presented. The
results demonstrate the validity of our approach by compar-
ing it to well known ICP-based algorithms.
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Fig. 16 Sonar readings for visual inspection. (a) Raw odometry, (b) sICP, (c) sIDC, (d) NDT, (e) sNDT, (f) LF/SoG

From our point of view, the LF-based approach consti-
tutes a robust and accurate way to perform sonar scan match-
ing. Moreover, this approach could easily be adapted to
other range sensors. In particular, some noisy sensors, such
as infrared range sensors, could benefit both from sNDT and
LF/SoG, including the Measurement Grouping and the Tra-
jectory Correction. Laser based scan matching could also
profit from the LF/SoG. In that case, neither the Measure-
ment Grouping nor the Trajectory Correction would be nec-
essary. Also, as laser sensors are able to provide a complete
scan from a single robot pose, the resampling step would not
be necessary. Nevertheless, the LF/SoG Likelihood Field, as
well as the whole formulation provided in the paper are of
direct application to laser scan matching.
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