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Visual Navigation for Mobile Robots: a Survey

Abstract Mobile robot vision-based navigation has been the source of countless research contribu-
tions, from the domains of both vision and control. Vision is becoming more and more common in
applications such as localization, automatic map construction, autonomous navigation, path following,
inspection, monitoring or risky situation detection. This survey presents those pieces of work, from the
nineties until nowadays, which constitute a wide progress in visual navigation techniques for land, aerial
and autonomous underwater vehicles. The paper deals with two major approaches: map-based naviga-
tion and mapless navigation. Map-based navigation has been in turn subdivided in metric map-based
navigation and topological map-based navigation. Our outline to mapless navigation includes reactive
techniques based on qualitative characteristics extraction, appearance-based localization, optical flow,
features tracking, plane ground detection/tracking, etc... The recent concept of visual sonar has also
been revised.

1 Introduction

Navigation can be roughly described as the process of determining a suitable and safe path between
a starting and a goal point for a robot travelling between them [18, 72]. Different sensors have been
used to this purpose, which has led to a varied spectrum of solutions. In particular, in the last three
decades, visual navigation for mobile robots has become a source of countless research contributions
since navigation strategies based on vision can increase the scope of application of autonomous mobile
vehicles. Among the different proposals, this paper surveys the most recent ones. In many cases, the
performance of a good navigation algorithm is deeply joined to an accurate robot localization in the
environment. Therefore, some vision-based localization solutions applied and developed for autonomous
vehicles have also been included in this survey.

Traditionally, vision-based navigation solutions have mostly been devised for Autonomous Ground
Vehicles (AGV), but, recently, visual navigation is gaining more and more popularity among researchers
developing Unmanned Aerial Vehicles (UAV). UAVs offer great perspectives in many applications,
such as surveillance, patrolling, search and rescue, outdoor and indoor building inspection, real-time
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monitoring, high risk aerial missions, mapping, fire detection or cinema recording. Since UAVs move
in 3D space they do not have the limitations of ground robots, which usually cannot overcome rocks,
climb stairs or get access to ceilings. Nevertheless, UAVs need to exhibit a notable degree of awareness
and exactness to accomplish their navigation and obstacle avoidance tasks successfully. Besides, the
typically reduced size of UAVs limits their payload capabilities so that they cannot carry sensors
available for ground vehicles, such as lasers or certain brands of sonars. In contrast, cameras used in
robot vision-based navigation strategies are light and provide a perception of the environment in a
single shot. However, the image resolution can be restricted due to the fact that UAVs fly at high
altitude.

For underwater environments, there is still a preference for more traditional navigation solutions (i.e.
acoustic-based) because of the special characteristics of light propagation undersea. Dalgleish et al [22]
considered that, according to the state of the art in underwater autonomous navigation solutions, sonar
based systems are limited in resolution and size. These limits are imposed by the acoustic frequency
used and the need of accommodation space. Vision systems reduce space and cost and increase the
resolution, although their range dramatically decreases in muddy or turbid waters. At present, a
number of solutions for Autonomous Underwater Vehicles (AUV) can already be found for many
undersea critical applications: undersea infrastructures or installations inspection and maintenance,
for any of power, gas or telecommunications transport cases, sea life monitoring, military missions, sea
bed reconstruction in deep waters, inspection of sunken ancient ships, etc. Vision has become essential
for all these applications, either as a main navigation sensor or as a complement of sonar. Consequently,
there exists a good motivation to improve AUVs navigation techniques by expanding their autonomy,
capabilities and their usefulness.

Regardless of the type of vehicle, systems that use vision for navigation can be roughly divided in
those that need previous knowledge of the whole environment and those that perceive the environment
as they navigate through it. Systems that need a map can be in turn subdivided in metric map-
using systems, metric map-building systems and topological map-based systems [28]. Metric map-using
navigation systems need to be provided with a complete map of the environment before the navigation
task starts. Metric map-building navigation systems build the whole map by themselves and use it in
the subsequent navigation stage. Other systems that fall within this category are able to self-localize in
the environment simultaneously during the map construction. Other sorts of map-building navigation
systems can be found, as for example visual sonar-based systems or local map-based systems. These
systems collect data of the environment as they navigate, and build a local map that is used as a
support for on-line safe navigation. This local map includes specific obstacle and free space data of a
reduced portion of the environment, which is usually a function of the camera field of view. Finally,
topological map-based systems build and/or use topological maps which consist of nodes linked by lines
where nodes represent the most characteristic places of the environment, and links represent distances
or time between two nodes.

Mapless navigation systems mostly include reactive techniques that use visual clues derived from
the segmentation of an image, optical flow, or the tracking of features among frames. No global repre-
sentation of the environment exists; the environment is perceived as the system navigates, recognizes
objects or tracks landmarks.

As for sensors, the different visual navigation strategies proposed in the literature make use of several
configurations to get the required environmental information to navigate. Most systems are based on
monocular and binocular (stereo) systems, although systems based on trinocular configurations also
exist. Another structure that is gaining popularity because of its advantages is that of omnidirectional
cameras. Omnidirectional cameras have a 360◦ view of the environment, and are usually obtained
combining a conventional camera with a convex conic, spherical, parabolic or hyperbolic mirror. With
this kind of cameras it is easier to find and track features, since they stay longer in the field of view.

The progress made in vision-based navigation and localization for mobile robots up to the late 90’s
was widely surveyed by DeSouza and Kak in [28]. After the late 90’s, some authors have hardly surveyed
this area: examples are Kak and DeSouza [66], whose work is restricted to navigation in corridors, and
Abascal and Lazcano [1], whose work is restricted to behaviour-based indoor navigation. A remarkable
outline of navigation and mosaic-based positioning solutions for Autonomous Underwater Vehicles
(AUV) can be found in [22,23] and a wide list of underwater vision tracking techniques was surveyed
in [141]. Our survey mostly covers the work performed from the late nineties until the present day, and
includes all the topics related to visual navigation. The scope of robotics as a discipline and the huge
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number of existing contributions make almost impossible to make a complete account, so that only the
ones that had a higher impact (to the authors’ view) have been included in the survey. Furthermore,
instead of grouping navigation strategies in indoor and outdoor categories, as DeSouza and Kak [30] did,
this survey distinguishes between map-based and mapless navigation, since some navigation systems
proposed for indoor could also be properly adapted to work in outdoor environments and vice versa.

The rest of the paper is organized as follows: first, section 2 revises the most prominent approaches
until the late 90’s, mostly coincident with the ones surveyed in [30]; second, section 3 reviews new
approaches presented after the submission of [30]; finally, section 4 concludes the paper.

2 From the primary techniques to the advances in the late 90’s

De Souza and Kak in [28] structure robot visual navigation in two main subjects: indoor navigation and
outdoor navigation. Outdoor navigation is in turn subdivided in structured and unstructured environ-
ments, while indoor navigation is subdivided in map-building-based navigation and mapless navigation.
This section of the paper summarizes visual navigation techniques until the late 90’s. Therefore, it is a
selection of the most outstanding contributions surveyed in the work by De Souza and Kak, although
some references not considered there have also been included. Table 1 shows the references surveyed
in this section. (In order to make compatible this section of the survey with the one by De Souza and
Kak, the rest of this section is structured in the same way as De Souza and Kak’s survey, maintaining
thus the same category labels.)

2.1 Indoor Navigation

From the first robot developments in 1979 by Giralt [44], many control systems have incorporated, in
a lesser or greater extent, some information about the environment where the robot had to navigate.
The navigation and localization systems proposed fall mainly within one of the following three groups:

– map-based navigation systems
– map-building-based navigation systems
– mapless navigation systems

2.1.1 Map-based Navigation

These techniques are based on providing the robot with models of the environment, with different
degrees of detail depending on the study.

The first approaches made use of an occupancy map with a 2D projection of each prominent feature
situated in the environment. Later, the Virtual Force Fields [10, 68] associated every cell containing
an obstacle with a repulsive force towards the robot. Other authors incorporated uncertainties in
occupancy maps to account for sensor errors [12,103].

The combination of different sensors has also been employed in other approaches to increase the
robustness and reliability of the map building procedure. In [16], range finders and cameras work in
collaboration to create occupancy grids 1. Once the robot has acquired the map, it can navigate in the
environment, matching the landmarks found in the on-line image with the expected landmarks of a
database. This process is known as self-localization and is fundamental for a correct navigation. The
main steps are:

– acquire image information,
– detect landmarks in current views (edges, corners, objects),
– match observed landmarks with those contained in the stored map according to certain criteria,

and
– update the robot position, as a function of the matched landmarks location in the map.

1 An occupancy grid represents an observed region and each cell of the grid is labeled with the probability
of being occupied by an object.
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To solve the localization problem, absolute localization methods contrast with relative localization
strategies. In absolute localization methods, the initial position of the robot is unknown. This self-
localization problem has been solved either using deterministic triangulation [130], Markov [129] or
Montecarlo [34] localization. Atiya and Hager [5] presented in 1993 a remarkable method based on the
recognition, in the on-line images, of those features (or connecting lines between features) that stay
invariant with respect to the moving robot. This is sufficient to set up correspondences between the
environment and the images. These authors also propose to define the sensor errors as a tolerance
measurement.

In relative localization, it is assumed that, at the beginning of the navigation, the position of the
robot is approximately known. Matthies and Shafer [91] used stereo vision to reduce errors. Tsubouchi
and Yuta [144] used a CAD model for environment representation. Later on, Christensen et al [19]
also used CAD models for space representation combined with stereo vision to reduce errors. FINALE
[69] self-localizes using a geometrical representation of the environment and a Gaussian model for
location uncertainty. Position uncertainty equations prove that location at the end of motion depends
on previous positions. A model-based Kalman filter is used to compute landmark position and to
project robots location uncertainty into the image.

NEURO-NAV [94, 95] is a representative example of map-based navigation strategies based on
topological space representations. These navigation techniques use a nodes-and-lines graph that layouts
the most representative points of the hallway. Both, nodes and lines, are attributed with information
about what they represent (central corridor, door, corner, junctions for nodes, and distances between
linked nodes for lines). NEURO-NAV has two main modules built up with neural networks: a hallway
follower module and a landmark detector module. These two modules compute edges, detect walls and
output the proper steering commands to drive the robot at a distance of a wall or centered in a corridor.
Most of those neural network outputs are vague and have a degree of confidence. FUZZY-NAV [104]
sophisticates the NEURO-NAV system using fuzzy functions that work with blurred variables.

Finally, in order to self-locate, landmark tracking algorithms determine the position of the robot,
detect landmarks on the camera image and track them in the consecutive scenes. Landmarks can be
artificial or natural. In both cases the robot needs to know the identity of the landmarks to be able
to track them. This method has been used in map-based navigation systems and in some reactive
navigation architectures. Kabuka and Arenas [65] were the first using artificial landmark tracking. An
example of natural landmark tracking-based navigation system can be found in [57]. This approach
selects landmarks, uses correlation techniques to track them, computes their 3D position using stereo
vision information and selects new landmarks to keep on moving towards the goal point.

2.1.2 Map-building-based Navigation

This section includes all the systems that can explore the environment and build its map by themselves.
The navigation process starts once the robot has explored the environment and stored its representa-
tion. The first to consider this possibility was Moravec with his Stanford Cart [96]. This system was
improved by Thorpe for the robot FIDO [134], and was used to extract features from images. These
features were then correlated to generate their 3D coordinates. The features were represented in an oc-
cupancy grid of two square meter cells. Although this technique provided a representation of obstacles
in the environment, it was not good enough to model the world. Occupancy grid-based strategies can
be computationally inefficient for path planning and localization, specially in complex and great indoor
environments. Furthermore, the validity of these grids for navigation depends on the accuracy of the
motion detection robot sensors during the grid construction process. A topological representation of
the environment is an alternative to an occupancy grid. These systems are based on generating a graph
of nodes representing the space, and storing metrical information for every node recognized during the
navigation process. The different approaches differ from what constitutes a node, how a node may be
distinguished from others, the possibility of using sensor uncertainties or how these uncentainties are
computed. One of the major difficulties is the recognition of previously visited nodes.

Thrun [137] went one step further with a remarkable contribution, combining the best of occupancy
grids and topological maps for navigation.
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2.1.3 Mapless Navigation

This category includes all navigation approaches that do not need knowledge of the environment to
run. The movements of the robot depend on the elements observed in the environment (walls, features,
doors, desks, etc...). Two main techniques should to be cited: optical-flow- and appearance-based
navigation.

Optical-flow-based solutions estimate the motion of objects or features within a sequence of images.
Researchers compute optical flow mostly using (or improving) pioneering techniques from Horn [59]
and Lucas and Kanade [79].

An interesting approach developed by Santos-Victor [114] emulates the bees’ flying behavior. The
system moves in a corridor using two cameras to perceive the environment, one camera on each side
of the robot, pointing to the walls. Bees keep flying centered in a corridor by measuring the difference
of velocities respect to both walls. If both velocities are equal, bees fly straight ahead in the center of
the corridor. If velocities are different, they move to the wall whose image changes with minor velocity.
The robot calculates the differences in optical flow computed from the images of both sides. The robot
always moves in the direction of the optical flow minor amplitude. The main problem of this technique
is that the walls need to be textured enough to present an optimum optical flow computation.

Appearance-based matching techniques are based on the storage of images in a previous recording
phase. These images are then used as templates. The robot self-locates and navigates in the environment
matching the current viewed frame with the stored templates. Examples of these approaches are:

– Matsumoto et al [88] VSRR (View Sequenced Route Representation), where a sequence of images
is stored to be used as a memory. The robot repeats the same trajectory comparing the on-line
scene with all stored images using correlation. This approach basically focuses on how to memorize
the views.

– Jones et al [64], where a sequence of images and associated actions are stored in the robot memory.
During navigation, the robot recovers the template that best matches the on-line frame. If the
match is above a threshold, the robot runs the action associated to that template.

– Ohno et al’s [101] solution is similar but faster than Jones’: it only uses vertical lines from templates
and on-line images to do the matching. It saves memory and computation time.

2.2 Outdoor Navigation

2.2.1 Outdoor navigation in structured environments

Outdoor navigation in structured environments refers to road following. Road following is the ability
to detect the lines of the road and navigate consistently.

Pioneer on these techniques was Tsugawa [143], where a pair of stereo cameras were used to detect
obstacles in an automatic car driving approach. One of the most outstanding efforts in road following is
the NAVLAB project, by Thorpe [135,136]. The NAVLAB road following algorithm has three phases: in
the first phase, a combination of color and texture pixel classification is performed defining a Gaussian
distribution for each road and non-road pixels; in the second phase, a Hough transform and a subsequent
votin process is applied to road pixels, to obtain the road vanishing point and orientation parameters;
finally, pixels are classified again according to the determined road edges, and this classification is used
for the next image in order to have a system adaptable to changing road conditions.

VITS [142] is a road following framework for outdoor environments equipped with an obstacle
detection and avoidance sub-system. This system was firstly developed for the autonomous land vehicle
ALVIN, which used a CCD color camera combined with a laser range scanner to gather images of the
environment. The vision module of VITS generated a description of the road, either from the image
data, from range information, or from both. This road description is transformed by the reasoning
module into world coordinates to calculate the trajectory of the robot. The most robust element of the
VITS system was the module to segment road pixels and non-road pixels.

Later, Pomerleau et al developed ALVINN, a new neural network-based navigation system, used
also in the NAVLAB navigation architecture. There are several versions, from the initial one [106] dated
from 1991 to the last one [63] dated from 1995 and known as ALVINN-VC. ALVINN is trained watching
a human drive during several minutes with the aim at learning his/her reactions when driving on roads
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with varying properties. The human movements and turns when driving were incorporated to the robot
behavior. The architecture consisted of a pre-trained network made of three inter-connected layers.
Each layer had a pre-defined function. Mainly: the first one was a 30×32 node layer that contained
recorded images, the third one was a 30 node layer that contained all steering angles represented by
nodes, and finally the second one was a 5 node layer that was used as an interface to combine the
first and second layer nodes. Instead of assigning specific node outputs for robot steering, values were
determined from Gaussian distributions centered in each node associated to the road orientation. This
guaranteed finer steering angles and slight changes in the output activation levels if the orientation of
the road changed slightly.

A prominent and successful project for road-following was the EUREKA project Prometheus [47–
50]. The goal of this project was to provide trucks with an automatic driving system to replace drivers in
monotonous long driving situations. The system also included a module to warn the driver in potential
or imminent dangerous situations.

2.2.2 Outdoor navigation in unstructured environments

In unstructured environments there are no regular properties that can be tracked for navigation. In
these cases, two kind of situations can be found:

– The robot randomly explores the vicinity, like planetary vehicles. An example can be found in
Wilcox’s et al vehicle [146].

– The robot executes a mission with a goal position. In this case, a map of the areas in which the
robot moves has to be created and a localization algorithm is also needed. A remarkable example
of a mapping and positioning system is RATLER (Robotic All-Terrain Lunar Explorer Rover),
proposed by Krotkov and Herbert [71] in 1995.

Another highly notable development is the planetary vehicle Mars Pathfinder [90], launched in
December 1996 and landed in July 1997. The Mars Pathfinder consists of two components, a lander
and a rover. The lander is a static component in which a stereo camera is fitted to shoot images of
the Mars surface, while the rover is the mobile component which explores the environment. The rover
mission path is determined by human operators in the Earth control station by selecting the goal point
in 3D representations of previously captured images of the terrain. The position is determined using
dead reckoning techniques and, to avoid cumulative errors, the rover navigation is limited to 10 m/day.
Computation of differences between highest and lowest points of the inspected terrain permits cliff
detection.

3 Visual Navigation: from the late 90’s up to present

In the last decade, the techniques mentioned so far have matured into more refined versions, or have
evolved into other more accurate and efficient systems. This variety of old and new techniques have
extended the amount and quality of research in this area and their applications. This section surveys
most of these studies distinguishing between map-based and mapless solutions.

3.1 Map-based Systems

This section considers techniques that build and/or use metric or topological maps. Navigation tech-
niques which need a certain knowledge of the environment included in this paper are: metric map-using
navigation systems, metric map-building navigation systems and topological map-based navigation sys-
tems. Systems that are able to build maps by themselves can perform this function from the complete
environment or just from a portion of it. Therefore, this section also includes local map-based navigation
systems and visual sonar techniques, given their potential relationship with producing metric maps,
although some authors use them just to reactively avoid obstacles.
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Table 1 Summary of the most outstanding visual navigation studies from 1987 to late 1990’s

Authors Indoor-Outdoor Category Method

[10,68] Indoor Map based Force Fields

[12,103] Indoor Map based Occupancy Grids

[16] Indoor Map based Occupancy Grids

[34,129,130] Indoor Map based Absolute Localization

[5] Indoor Map based Absolute Localization

[91] Indoor Map based Incremental Localization

[144] Indoor Map based Incremental Localization

[19] Indoor Map based Incremental Localization

[69,94,95,104] Indoor Map based Topological Map. Incremental Lo-
calization

[65] Indoor Map based Landmark Tracking

[57] Indoor Map based Landmark Tracking

[96] Indoor Map building stereo 3D reconstruction

[134] Indoor Map building Occupancy Grid

[11] Indoor Map building Occupancy Grid

[137] Indoor Map building Grid and Topological Representa-
tion

[114] Indoor Mapless Optical Flow

[9] Indoor Mapless Optical Flow

[29] Indoor Mapless Optical Flow

[88] Indoor Mapless Appearance-based Navigation

[64] Indoor Mapless Appearance-based Navigation

[101] Indoor Mapless Appearance-based Navigation

[143] Outdoor Structured Environments Road Following

[47–50] Outdoor Structured Environments Road Following

[142] Outdoor Structured Environments Road Following

[136] , [135] Outdoor Structured Environments Road Following

[106], [63] Outdoor Structured Environments Road Following

[146] Outdoor Unstructured Environments Random Exploration

[71] Outdoor Unstructured Environments Given Mission Exploration

[90] Outdoor Unstructured Environments Random Exploration

3.1.1 Metric Map-using and -building Navigation Systems

This group includes systems that need a complete map of the environment before the navigation starts.
There are systems that are unable to map the environment and need to be equipped with it (map-using
systems). Other systems explore the environment and automatically build a map of it (map-building
systems). The navigation phase starts only if the map of the environment is available for the robot or
after the map has been built. The map information can be directly used for navigation, or it can be
post-processed to improve the map accuracy, and thus, achieve a more precise localization. This is the
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navigation technique that requires more computational resources, time and storage capability. Since
outdoor environments can be large in size and extremely irregular, visual navigation techniques based
on maps are in most occasions applied to indoor environments.

Map building and self-localization in the navigation environment are two functionalities that non-
reactive systems tend to incorporate. In map-building standard approaches, it is assumed that the
localization in the environment can be computed by some other techniques, while in pure localization
approaches, the map of the environment is presumably available. Robots using this navigation approach
need to track their own position and orientation in the environment in a continuous way.

This section focuses on metric map-based systems. Metric maps include information such as dis-
tances or map cell sizes with respect to a predefined coordinate system, and, in general, are also
more sensible to sensor errors. Accurate metric maps are essential for good localization, and precise
localization becomes necessary for building an accurate map.

If the exploration and mapping of an unknown environment is done automatically and on-line, the
robot must accomplish three tasks: safe exploration/navigation, mapping and localization, preferably
in a simultaneous way. Simultaneous Localization and Mapping (SLAM) and Concurrent Mapping and
Localization (CML) techniques search for strategies to explore, map and self-localize simultaneously
in unknown environments. This paper surveys those SLAM and CML systems which use only vision
sensors to perform their task. Davison and Kita discuss in [27] about sequential localization and map
building, review the state of the art and expose the future directions that this research domain should
take. Furthermore, they present a tutorial of first-order relative position uncertainty propagation and
a software to perform sequential mapping and localization.

Sim and Dudek propose in [121] a framework to learn a set of landmarks and track them across
the sequence of images maximizing the correlation of the local image intensity. Landmark features are
characterized with position parameters and subsequently used by the robot for self-localization. Sim
and Dudek [122] extended their previous work with a new strategy for environment exploration and
map building that maximizes coverage and accuracy and minimizes the odometry uncertainties. This
proposal maps image features instead of performing a geometrical representation of the environment,
operating and managing a framework presented in [121] and adapting an Extended Kalman Filter
localization framework described in [125] and [74]. In the following stage, exploration policies are
chosen among a great number of possibilities: (1) seed spreader, by which the robot follows a predefined
navigation pattern throughout the environment; (2) concentric, where the robot follows concentric
circular trajectories, with their center in the starting point, and the direction of movement changes
at every circle; (3) figure eight, by which the robot follows eight-shaped concentric trajectories; (4)
random, where the robot moves randomly; (5) triangle, by which the robot moves in concentric closed
triangular trajectories; (6) star, where the robot moves along a set of rays that emanate from the
starting point. Experimental results in [122] show that exploration efficiency, measured in observed
images definitely inserted in the map divided by the total number of processed images, was maximum
for the concentric policy, and minimum for the star policy. Besides, the mean error in odometry was
maximum for the random policy and minimum for the concentric policy.

Sim et al [123,124] outstanding work solves the SLAM problem with a stereo pair of cameras and
a Blackwellised particle filter. The system implements a hybrid approach consisting of 3D landmark
extraction for localization, and occupancy grid construction for safe navigation. AQUA is a visually
guided amphibious robot developed by Dudek et al [30,43]. This system runs on land and swims into
the water. Using a stereo trinocular vision system, it is capable of creating 3D maps of the environment,
locate itself and navigate.

In [25], Davison reports a new Bayesian framework that processes image information of a single
standard camera to perform localization. Weak motion modeling is used to map strong distinguishable
features, which are used to estimate the camera motion.

Wide angle cameras present a much wider field of view than standard lens cameras. Therefore,
features are visible longer and are present in more frames. Due to the distortion introduced by a wide
angle camera, a previous calibration process has to be performed in order to get corrected images from
original frames. In [26], Davison et al extend their previous work by substituting the 50◦ standard
camera with a 90◦ calibrated wide angle camera, leading to a significative improvement in movement
range, accuracy and agility in motion tracking. Camera calibration improves the calculation of relative
positions, and consequently improves the accuracy of the localization process. On the other hand,
the Shi and Tomasi algorithm [119] is adopted in [26] to extract the position of the image features,
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which are used as landmarks to guide the navigation process. Experimental results prove that with a
wide angle camera some aspects are improved: camera motion can be better identified, with particular
improvements on rotational and translational movements estimation, the range of movements increase,
and large motions or motions with great acceleration are better dealt with, since they appear much
less abrupt. Therefore, the cases with trackable acceleration increase. Schleicher et al [115] use a
top-down Bayesian method-based algorithm to perform a vision-based mapping process consisting in
the identification and localization of natural landmarks from images provided by a wide-angle stereo
camera. Simultaneously, a self-localization process is performed by tracking known features (landmarks)
of the environment. The position of these features is determined through the combination of the
epipolar line concept, characterisic from stereo theory, and the calculation of the fundamental matrix.
The authors prove that using the redundancy of the information extracted from the images of both
cameras increases the robustness and accuracy, and decreases the processing time of the procedure.
The system with a wide-angle stereo camera is compared with a SLAM system that uses an single
wide-angle camera to prove the improvements of the stereo-based system.

As for map-building systems that do not explore the possibility of simultaneous localization, we
report systems that build 3D metric environment representations or, in some cases, use already existing
maps in order to perform a safe navigation. Some researchers have focused their work on approaches
to recover 3D environment structures and/or estimate robot motion models from vision information
[92,140].

Manessis et al address the 3D environment reconstruction problem using image sequences captured
from n different camera views [82]. The two main contributions of this proposal are a new geometric
theory for surface recovery from 3D sparse data and an algorithm based on a recursive structure from
motion (SFM) method, which is used to estimate the location of 3D features and then to reconstruct
the scene.

The classic process of building a 3D map using stereo images was refined by Wooden [148] under
the DARPA-sponsored project Learning Applied to Ground Robots (LAGR), and particularly applied
on its robot LAGR. The map building process consisted of four main steps:

– the captured stereo images were transformed into a three-dimensional representation by matching
small patches in the two images,

– the real possible position of image points were deduced from the geometrical characteristics of the
camera,

– a derivative was applied to the 3D map points to detect abrupt changes in slope, as for example,
trees, rocks, etc..., and,

– in order to decrease the resolution of the map and smooth some variations, the result of the
derivative was transformed into a cost map, where every point value was the average of the values
over a defined 1.2 m × 1.2 m region.

Once the map had been created, a process of path planning is used to navigate through the envi-
ronment.

When a robot explores an environment and constructs an occupancy grid, it makes approach of
where the free space is. In this case, the object shape is not important, only the certainty that a fixed
location is occupied by an object. In some cases, it is important to recognize the objects because they
have to be picked up or manipulated, and, in other cases, it is paramount to recognize if the objects
are on a table or lying on the floor. Following this trend, Tomono [139] proposed a high density indoor
map-based visual navigation system on the basis of on-line recognition and shape reconstruction of 3D
objects, using stored object models. A laser range finder was also used to complement the information
provided by the camera. The proposed method contemplated three main issues:

– advanced objects model creation, before the navigation starts,
– on-line object recognition and localization, during the navigation stage and,
– placement of recognized objects in the 3D map of the environment.

Other map-based navigation techniques are those that impose a human-guided pre-training phase.
Kidono et al [67] developed an approximation to this type of systems. In their contribution, a human
guides the robot through an environment and during this guided route, the robot records images with
a stereo camera and constructs the 3D map on-line, incrementally, frame by frame. After the map is
built, the robot can repeat the same route from the starting point to the goal point, tracking features
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and computing the closest safe path. In this solution, odometry is used to support the stereo vision
sensor.

An outstanding evolution of this technique using a calibrated wide angle camera came up from
Royer et al [111]. The robot was guided by a human in a pre-training navigation stage, recording
images from the trajectory. A complete 3D map of the environment was constructed off-line, using
the information extracted from the pre-recorded images. A collection of useful landmarks and their
3D position in a global coordinate system were used for localization purposes, during the navigation
stage. In the beginning of navigation, the robot had to self-localize in the starting point where it had
been left, by comparing the current image to all stored key frames to find the best match. The selected
subsequent images had to present a certain movement perception between them, to provide the system
with trackable feature information. Losing perceptual movement caused problems to the algorithm. In
these terms, the robot was able to follow the same complete pre-recorded trajectory, saving a lot of
time in the positioning process. This approximation was basically directed to city navigation, rich in
visual features, and where kinematic GPS can present a lot of places with hidden visibility.

Several undersea map construction techniques combined with a proper and accurate algorithm of
position estimation can also be considered to belong to the CML category. In major cases, undersea
bottom mosaics can be used by AUVs for navigation purposes. Haywood designed a system to mosaic
underwater floors using images attached with accurate position coordinates [58]. Marks et al [83]
developed a technique to implement real-time mosaics using correlation between on-line images and
stored images. In a subsequent work, and following the same trend, Fleischer et al [36] improved the
previous work [83] focusing on dead-reckoning error reduction. Previous systems often assumed that
the seafloor was plane and static, and that the camera was facing it, making the image plane almost
parallel to the seafloor plane. Gracias et al [46] proposed a method for mosaicing and localization that
did not make any assumption on the camera motion or its relative position to the sea bottom. The
system was based on motion computation by matching areas between pairs of consecutive images of a
video sequence. Finally, an interesting contribution to underwater mosaicing and positioning was that
by Xu and Negahdaripour in [149]. The vehicle position was computed integrating the motion of the
camera from consecutive frames using Taylor series of motion equations, including the second order
terms, which in previous research was usually ignored.

3.1.2 Topological Map-based Navigation Systems

A topological map is a graph-based representation of the environment. Each node corresponds to
a characteristic feature or zone of the environment, and can be associated with an action, such as
turning, crossing a door, stopping, or going straight ahead. Usually, there are no absolute distances, nor
references to any coordinate frame to measure space. This kind of maps are suitable for long distance
qualitative navigation, and specially for path planning. In general, they do not explicitly represent
free space so that obstacles must be detected and avoided on line by other means. Topological maps
are simple and compact, take up less computer memory, and consequently speed up computational
navigation processes.

Winters and Santos-Victor [147] use an omnidirectional camera to create a topological map from the
environment during a training phase. Nodes are images of characteristic places and links are sequences
of various consecutive images between two nodes. During the navigation, the position is determined
matching the online image with previously recorded images. The matching process is performed with an
appearance-based method which consists in projecting every online image onto an eigenspace defined
by the covariance matrix of a large image training set.

More recently, Gaspar et al use [147] to map indoor structured environments and emulate insect
vision-based navigation capabilities [42]. The robot must be able to advance along corridors, recognize
their end, turn into the correct directions and identify doors. The division of the map into nodes
allows splitting the navigation task along an indoor environment into sub-goals. Every sub-goal is
recognizable with landmarks and covers the movement between two nodes; for instance, two doors
joined by a corridor. Navigation between two nodes works through detection of the corridor parallel
sides and generation of the adequate control signals.

Another topological map-based navigation strategy for indoor environments comes from Košecka
et al [70]. In a previous exploration stage, video is recorded and, for each frame, a gradient ori-
entation histogram is computed. After that, a set of view prototypes are generated using Learning
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Vector Quantization over the set of histograms gathered. Each histogram corresponds to a node in
the topological map. During the navigation phase, the gradient orientation histogram of each frame
is compared with the view prototypes to determine the location it most likely comes from using the
nearest neighbour classification. In case the quotient of the distances with the nearest and the second
closest histograms/views is below a certain threshold, the classification is considered correct and a
location is obtained; otherwise, the classification is refined by comparing sub-images of the new image
and the images in the database closest to the view prototypes.

In recent years, Remazeilles et al propose a system based on environment topological representation
and a qualitative positioning strategy [108]. Nodes are represented by views captured in a training phase
and edges represent the possibility of moving from one scene towards another. The robot navigates
tracking landmarks over consecutive frames and keeping them inside the field of view. The localization
strategy used in this approach is qualitative since it informs that the robot is in the vicinity of a node,
instead of giving exact world coordinates.

One of the map-building robot applications that has proved to be greatly useful is that of museum
guiding robots (in contrast to other solutions that need the museum map to navigate). These robots
need to be autonomous in their missions, recognize people, guide them through different environments
and also avoid static and dynamic obstacles, such as chairs, bookcases or other people. Because of the
growing interest on this application, two relevant contributions are reviewed in the following. Thrun
et al [138] developed MINERVA, a robot that uses two cameras combined with a laser sensor to build
a complete map of the environment for the navigation process. Shen and Hu [118] presented ATLAS,
a museum guiding robot that combines topological map building and appearance-based matching
algorithms for localization. ATLAS also incorporates a human face detection algorithm [8] used to
actively approach to new visitors.

3.1.3 Local Map-building Navigation Systems and Obstacle Avoidance

The strategies seen so far base their strength in a global description of the environment. This model can
be obtained automatically by the robot, or in a previous human guided stage, but it has to be acquired
before the robot begins the navigation. Since the early nineties, some authors have developed solutions
where visual navigation processes are supported by the on-line construction of a local occupancy grid.
In vision-based navigation, the local grid represents the portion of the environment that surrounds the
robot and the grid size is determined by the camera field of view. This local information can be used
for a subsequent complete map construction or simply updated frame by frame and used as a support
for on-line safe navigation. Since robot decisions depend, to a large extent, on what the robot perceives
at every moment in the field of view, these navigation techniques arise a debate about what can be
considered deliberative and what can be considered reactive vision-based navigation techniques.

Badal et al reported a system for extracting range information and performing obstacle detection
and avoidance in outdoor environments based on the computation of disparity from the two images
of a stereo pair of calibrated cameras [6]. The system assumes that objects protrude high from a flat
floor that stands out from the background. Every point above the ground is configured as a potential
object and projected onto the ground plane, in a local occupancy grid called Instantaneous Obstacle
Map (IOM). The commands to steer the robot are generated according to the position of obstacles in
the IOM.

Gartshore et al [39] developed a map building framework and a feature position detector algorithm
that processes images on-line from a single camera. The system does not use matching approaches.
Instead, it computes probabilities of finding objects at every location. The algorithm starts detecting
the objects boundaries for the current frame using the Harris edge and corner detectors [56]. Detected
features are back projected from the 2D image plane considering all the potential locations at any
depth. The positioning module of the system computes the position of the robot using odometry data
combined with image feature extraction. Color or gradient from edges and features from past images
help to increase the confidence of the object presence in a certain location. Experimental results tested
in indoor environments set the size of the grid cells to 25 mm × 25 mm. The robot moved 100 mm
between consecutive images.

Goldberg et al [45] introduced a stereo vision-based navigation algorithm for the rover planetary
explorer MER, to explore and map locally hazardous terrains. The algorithm computes epipolar lines
between the two stereo frames to check the presence of an object, computes the Laplacian of both
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images and correlates the filtered images to match pixels from the left image with their corresponding
pixels in the right image. The work also includes a description of the navigation module GESTALT,
which packages a set of routines able to compute actuation, direction, or steering commands from the
sensor information.

Gartshore and Palmer presented in [40] a novel approach for complete unknown environment visual
exploration and map construction with a limited field-of-view vision system. Afterwards they extended
this work to more complex environments [41]. No landmarks or way-markers are used, and once the
navigation has started, there is no human interaction. The exploration agent has to act as a human
might do, observing the current view of the environment, exploring it, and deciding in which direction
to advance to explore new areas. The main issues of the incremental map building process are:

– Vertical edges are extracted from the current frame to define obstacle boundaries. In some cases,
these edges do not correspond to obstacles, but to shadows or specularities.

– To discriminate shadows or specularities from real obstacles, a confident measure is assigned to
every edge point. Such a measure is a function of the number of times the object has been seen
and the number of times the same area has been viewed.

– Features are connected with lines. These lines could either correspond to objects or just be con-
necting lines traced for triangulation purposes.

– Lines are also labeled with a confidence of being an obstacle. According to [81]: a candidate point
to be labeled as an obstacle can not intersect the line that joins the camera with a real obstacle.
The confidence measures are recalculated when points labeled as obstacles are viewed from another
point of view as occluding other real obstacles.

– Obstacles and triangulation information are stored in discrete grids.

3.1.4 Visual Sonar

In recent years, visual sonar has become an original idea to provide range data and depth measurements
for navigation and obstacle avoidance using vision in an analogous way to ultrasound sensors. Therefore,
the originality of the concept is not in the navigation process itself, but in the way the data is obtained.

Martens et al were pioneers in using the concept of visual sonar for navigation and obstacle
avoidance [84]. Their ARTMAP neural network combined sonar data and visual information from a
single camera to obtain a more veridical perception of indoor environments. Real distance to obstacles
was calculated from distances measured in pixels between obstacle edges and the bottom of the image.
This distance computation is based on Horswill’s idea [60]: the image is divided in eight columns, and
the distance, measured in pixels from the bottom of the image to the object edge in every column, is
proportional to the real world distance from the robot to the detected object.

Lenser and Veloso exposed a new visual sonar-based navigation strategy for the ROBOCUP compe-
tition and the AIBO robots [32,73]. AIBOs are dog-shaped robots that have a single camera mounted
on their heads. The system segments color images to distinguish floor, other robots, goals, the ball
and other undefined objects. Once objects are defined, lines are radiated from the center of the image
bottom, every 5◦. An object is identified if there exists a continuous set of pixels in a scan line which
corresponds to the same item class. Distance from object edges to the focus of the radial lines defines
the real distance from the robot to the obstacle. The system builds a local grid of the environment with
the robot centered on it, and avoids obstacles using contour following techniques. Since error increases
with distance, anything separated more than 2 m can not be measured properly and, consequently,
the algorithm only considers obstacles closer than 0.6 m.

Choi and Oh detect obstacle boundaries in images where the diagonal Mahalanobis color distance
changes abruptly over points situated in radial lines, emanating from the calibrated camera to the rest
of the image [17]. The system assumes that floor color and lighting conditions are constant. Odometry
information is used to transform position coordinates on the image plane into world coordinates over
a local occupancy grid, whose cells are labeled with a probability of being occupied by an obstacle.
Experimental tests have been performed on cluttered offices and the local grid is constructed to support
safe navigation. The paper also introduces the idea of omni-directional observation with a standard
camera.

Martin computes depth from single camera images of indoor environments using also the concept
of visual sonar [85]. The novelty of this method is the use of genetic programming to automatically
discover the best algorithm to detect the ground boundaries in a training phase. These algorithms
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are then combined with reactive obstacle avoidance strategies, initially developed for sonar, and later
adapted.

3.2 Mapless Navigation

This section includes a representative collection of mainly reactive visual navigation techniques. Reac-
tive systems usually do not need any previous knowledge of the environment but they make navigation
decisions as they perceive it. Those strategies process video frames as they gather them, and are able to
produce enough information about the unknown and just perceived environment to navigate through
it safely.

Prominent mapless visual navigation techniques here included are classified in accordance with the
main vision technique or clue used during navigation: optical flow, feature detection and tracking,
environment appearance, and extraction of qualitative information from an image.

3.2.1 Optical Flow-based Navigation Systems

Optical flow can be roughly defined as the apparent motion of features in a sequence of images.
During navigation, the robot movement is perceived as a relative motion of the field of view, and, in
consequence, it gives the impression that static objects and features move respect to the robot. To
extract optical flow from a video stream, the direction and magnitude of translational or rotational
scene feature movement must be computed at every pair of consecutive camera frames. Optical flow
between two consecutive frames is usually represented by a vector for every pixel, where its norm
depends on the motion speed and its direction represents the movement of the corresponding pixel
in consecutive images. In some cases, the execution time and the computation resources required can
be optimized by first extracting the image prominent features, such as corners or edges [56, 119], and
then computing the optical flow only for these features. Image optical flow has been used by some
researchers to implement reactive mobile robot navigation strategies, either for indoor or for outdoor
environments. Object boundaries appear as regions with significant optical flow, and thus as regions to
be avoided. Specularities or irregularities on the floor and textured floors also appear as regions with
optical flow and therefore can be wrongly considered as obstacles causing errors during navigation.

Variations in the optical flow pattern or direction are used by Santos-Victor and Sandini to detect
obstacles in a reactive, fast and robust approach for plane ground environments using a single camera
[113]. Objects that arise from the ground plane cause variations in its normal flow pattern. To analyze
and determine the presence of obstacles, the image flow field must be projected inversely onto the
horizontal world plane. For translational motion, the projected flow must be constant for every point
on the ground plane. Obstacles alter this assumption, presenting higher magnitudes or changes in the
vector direction.

Camus et al [14] compute on-line the optical flow divergence from sequential wide angle frames
to detect and avoid obstacles. Flow divergence is used for computing time to contact to obstacles in
a qualitative way. To command the robot safely, one-dimensional maps are computed, where every
heading direction is labeled with a potential risk of encountering obstacles.

Talukder et al [131] implemented a novel and robust optical flow-based solution to detect the
presence of dynamic objects inside the camera field of view . It is applicable to robots with translational
and/or limited rotational movement. The algorithm assumes that moving objects cause a discontinuity
in optical flow orientation and changes in its magnitude with respect to the background pixels optical
flow direction and magnitude. The system is developed and first tested using a single camera, and then
using a stereo camera which provides depth information.

Some authors have proved that the combination of stereo vision, to obtain accurate depth informa-
tion, and optical flow analysis provides better navigation results. Talukder and Matties extended [131]
combining the stereo disparity field and optical flow to estimate depth, to model the robot egomotion
and to detect moving objects of the scene [132]. In [13], stereo information is combined with the optical
flow from one of the stereo images, to build an occupancy grid and perform a real-time navigation
strategy for ground vehicles.

A simple and preliminary qualitative visual-based navigation system was proposed in [133] by
Temizer and Kaelbling, under the DARPA-Mobile Autonomous Robot Software (MARS) program.
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Although, to the best of the authors knowledge, this work does not represent a real progress in the
field, it deserves to be included in a survey due to its simplicity and efficiency. The starting point for
this strategy is the computation of image edge maps by detecting Laplacian of Gaussian (LOG) zero
crossings. A patch matching procedure is subsequently applied using the edge maps of consecutive
frames to compute the corresponding optical flow. Finally, the system turns away from zones of high
optical flow, since they likely correspond to obstacles.

Visual navigation techniques based on optical flow have proved to be specially useful for Unmanned
Aerial Vehicles (UAV) because optical flow gives the scene qualitative characteristics that can not be
extracted in detail from single low quality images. Within this research trend, an important effort
has been devoted to imitate animal behavior as far as the use and processing of apparent motion is
concerned. Particularly, insects present a high degree of precision in their navigation and guidance
systems, despite the simplicity of their nervous systems and small brains. Many authors have studied
the way honeybees and other insects use optical flow to avoid obstacles and/or to navigate centered
in the middle of corridors or narrow long ways. Experimental results found by Srinivasan et al [126]
proved that bees fly balancing the path in the middle of tunnels, evaluating the apparent motion of
images that perceive from both sides.

Van der Zwaan and Santos-Victor [145] implemented a UAV with a camera eye equivalent to an
insect compound eye. The camera eye consisted of an array of photoreceptors each one connected to
an electronic Elementary Motion Detector (EMD), which was able to calculate the local optical flow
at its particular position. Contrast on optical flow calculations determined the presence of obstacles,
while identifying the EMD polar coordinates that gave the changes on optical flow measures permitted
to construct a local map with the location of the obstacles.

Netter and Franceschini [100] also implemented a UAV with a camera eye assembled with an array
of photosensors and their corresponding EMDs. The information given by the set of EMDs was used to
determine the presence of obstacles. Furthermore, when the UAV flew at a constant speed and altitude,
a reference optical flow distribution was calculated from the equation that models the velocity of the
artificial retina. To follow the terrain, the system varied thrust and rudders position to adjust the
online computed optical flow with the optical flow reference.

Nonetheless, the use of optical flow information in terrain following applications for UAV presents
limitations if the aircraft flies at low altitude, at high speed or if it is landing, even more if the camera is
facing the ground. In these cases, optical flow estimation loses accuracy. Recently, Srinivasan et al [127]
presented a new system to increase accuracy in the optical flow estimation for insect-based flying
control systems. A special mirror surface is mounted in front of the camera, which is pointing ahead
instead of pointing to the ground. The mirror surface decreases the speed of motion and eliminates
the distortion caused by the perspective. Theoretically, the image should present a constant and low
velocity everywhere, simplifying the optical flow calculation and increasing its accuracy. Consequently,
the system increases the speed range and the number of situations under which the aircraft can fly
safely. Particularly interesting is the work developed by Green et al [53], which describes the design
of a UAV prototype called Closed Quarter Aerial Robot (CQAR) that flies into buildings, takes off
and lands controlled by an insect-inspired optical flow-based system. This aerial vehicle incorporates
a microsensor which weighs 4.8 grams, and is able to image the environment and compute the optical
flow. The minimum flying speed of CQAR is 2 m/s, the turning radius is about 2.5 m and to avoid
a detected obstacle it needs to turn about 5 meters before. Later, Green et al again emphasized the
relevance of insect-based navigation strategies in an optical flow-based navigation system for UAVs
that fly in near ground environments such as tunnels, caves, inside buildings or among trees [52]. The
navigation principles applied in both [52] and [53] come from equation 1:

F = (v/d) sin(θ)− ω, (1)

where F is the optical flow, v is the translational velocity, d is the distance between the robot and an
object, w is the angular velocity, and θ is the angle between the direction of travel and the aforemen-
tioned object. Equation 1 models the fact that optical flow of close obstacles has greater magnitude
than the optical flow of obstacles that are at longer distances. Furthermore, optical flow magnitude is
maximum for obstacles situated orthogonally to the robot motion direction.

To finish with this research line, Srinivasan et al presented an overview of illustrative insect-inspired
navigation strategies for different situations, and the implementation of those strategies in several
robots to test their feasibility [128].
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Following a different research line, Cornall and Egan pointed out preliminary results corresponding
to the analysis of optical flow patterns. Images were recorded during the UAV flight and transmitted
to a ground station to be stored and analyzed. Optical flow example images of translation, pitch, roll
to left/right and yaw motion were computed off-line and primary conclusions presented in [20].

In urban missions, UAVs have to fly usually among buildings and at low altitude, avoid obstacles
situated at both sides or at the front, and make very steep turns or even U-turns at dead ends. This
increases the possibility of crashing, thus the need of a very precise and safe navigation strategy. Hrabar
et al present in [62] a novel navigation technique for UAVs to fly in between of urban canyons. The
authors report a high degree of effectiveness of the system combining stereo forward-looking cameras for
obstacle avoidance and two sideways-looking cameras for stable canyon navigation. Since the method
is applied on UAVs, everything detected at the front is considered an obstacle. The system projects 3D
stereo data onto a 2D map and performs a growing region process to extract obstacles. The robot stops
keeping constant the altitude or simply changes direction depending on its distance to the obstacle.
Besides, the robot always tries to balance the optical flow from both sides, moving to the direction
of larger optical flow magnitude. The system implements a hierarchical architecture. Collisions with
obstacles in the front are more probable than on the sides, therefore the stereo output is given priority
over the optical flow output. The authors also expose an alternative for implementing this kind of
hybrid systems, using two forward-facing fisheye cameras that have lenses with a 190◦ field of view.
In this last case, the central part of an image can be used for stereo front obstacle avoidance, and the
peripheral part can be used for computing the optical flow.

3.2.2 Appearance-based Navigation

Appearance-based strategies consist of two procedures. First, in a pre-training phase, images or promi-
nent features of the environment are recorded and stored as model templates. The models are labeled
with a certain localization information and/or with an associated control steering command. Second,
in the navigation stage, the robot has to recognize the environment and self-localize in it by matching
the current on-line image with the stored templates. The main problems of appearance-based strategies
are finding an appropriate algorithm to create the environment representation and defining the on-line
matching criteria.

Deviations between the route followed in the guided pre-training phase and the route navigated
autonomously yield different sets of images for each case, and thus differences in the perception of the
environment. Main researchers have focused their contributions on improving the way how images are
recorded in the training phase, as well as on the subsequent image matching processes. There are two
main approaches for environment recognition without using a map [87]:

– Model-based Approaches. They utilize pre-defined object models to recognize features in complicated
environments and self-localize in it.

– View-based Approach. No features are extracted from the pre-recorded images. The self-localization
is performed using image matching algorithms.

Matsumoto et al presented in [87–89] research results focusing on indoor route construction with
standard or omnidirectional images, definition of correlation equations to model the concept of dis-
tance between images, and view creation using stereo divergence for outdoor environments where light
conditions change most often.

Zhou et al [150] utilize histograms to describe the appearance of pre-recorded indoor images.
Color, gradient, edge density and texture histograms are extracted from images, and stored in a multi-
dimensional histogram database. The recognition of the environment during the navigation stage is
reached by matching the multi-dimensional histogram of the current image with the multi-dimensional
histogram of the stored templates. Working with histograms has two main advantages: it saves com-
putation resources and it is simpler and quicker than entire images-based correlation processes.

Borenstein and Koren presented one of the first navigation and obstacle avoidance strategies for
mobile robots based on building certainty grids and using the concept of potential fields [10]. Pioneers
on applying potential fields in vision-based navigation and obstacle avoidance strategies were Haddad
et al in [54]. Remazeilles et al use the concept of potential fields integrated in an appearance-based
navigation method [107]. This system differs from typical appearance-based navigation strategies in
the way that navigation is performed. The method defines an image database, which is a set of views
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built off-line, representing the whole navigable environment. When a navigation mission is defined, an
image sequence corresponding to what the robot camera should see during the motion is extracted
from the image database. The robot motion is the result of the on-line detection and matching process
between the models included in the sequence and the perceived scenes. To navigate the environment,
the robot tracks recognizable previously cataloged features. To fit these scene features in its field of
view it uses the attractive potential fields to approximate them.

Morita et al reported in [97] a novel appearance-based localization approach for outdoor navigation.
They extended their Support Vector Machine (SVM) -based algorithm, proposed in [98], to a novel
SVM-based localization architecture that uses vision information from panoramic images. The SVM lo-
calization process consists of two main stages: feature or object learning, recognition and classification,
and scene locations learning based on the previous feature classification. In this work, the authors show
how panoramic images improve considerably training, matching and localization procedures, since the
scenes are less dependent on the variation of the robot heading.

3.2.3 Image Qualitative Characteristics Extraction for Visual Navigation

Reactive visual techniques for robot navigation and obstacle avoidance are often devised around the
extraction of image qualitative characteristics and their interpretation. There are two main types of
reactive visual obstacle avoidance systems: model-based obstacle avoidance systems, which need pre-
defined models of known objects, and sensor-based obstacle avoidance systems, which process every
on-line sensor information to determine what could be an obstacle or what could be free space. These
strategies can be included in what is known as qualitative navigation. Reactive navigation systems
based on qualitative information avoid as much as possible using, computing or generating accurate
numerical data such as distances, position coordinates, velocity, projections from image plane onto
real world plane, or contact time to obstacles. In general, a coordinated behavior-based architecture is
needed to manage all qualitative image information and the subsequent reactions [4].

Of particular relevance to this sort of navigation systems, due to their critical dependence on
unprocessed sensorial data, is the change of the imaging conditions: illumination intensity, position
of light sources, glossiness of the scene materials, etc. As a consequence, and mostly for outdoor
applications, depending on time, weather conditions, season, etc. the performance of certain visual
navigation systems can be seriously limited. One of the earliest solutions to these problems came
from [135]. In 1997, Lorigo et al proposed a very low resolution vision-based obstacle avoidance system
for unstructured environments [76]. The novelty of the solution was the construction of three simple
modules that based the object detection criteria on brightness gradients, RGB color and HSV (hue,
saturation, value) information. The goal of this approach was to navigate safely, with no destination
point or pre-designed mission. The method assumed that all objects stayed on the plane ground, and
that closer objects were in the bottom of the image while further objects were on the top of the
image. Apart from the three modules working on brightness, RGB and HSV, a fourth one analyzed
simultaneously their results to extract possible object boundaries. Afterwards, this information was
used to generate motion commands.

The combination of a camera and other sensors such as laser or sonar has been applied in some
reactive approaches to increase safety and the capabilities of the navigation process. CERES [15] is a
behavior-based architecture that combines seven ultrasound transducers and a single grayscale camera.
The vision module applies a Canny filter to extract edges from images. Edges are a clear evidence of
the presence of obstacles. However, the floor carpet texture of the author’s test environment generates
edges that could be wrongly considered as obstacles. To avoid this misbehaviour, a threshold is imposed
to eliminate false edges. The system transforms distances over images to real world distances using
a rough camera calibration algorithm. For this particular case, the authors knew that the first fifth
portion of the image, from bottom to top, corresponded to the closest 20 cm of the scene and that
the other four fifths portion corresponded to the next real world 26 cm. Consequently, all those edges
found in the first fifth of the image (bottom) were considered as obstacles to be avoided while the
edges on the rest of the image (top) were considered to be far enough so as to be taken into account.
Sonar is used to keep distance to the walls.

Other authors prefer to use a bi-level image segmentation process to segregate floor from ob-
jects [80]. Floor detection permits determining where the free navigable space is. In the ROBOCUP
competition, the detection of the opponent robot and the ball becomes a challenging task to play the
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game properly. Fasola and Veloso [33] propose to use image color segmentation techniques for object
detection, and gray-scale image processing for detecting the opponent robots.

The concept of fuzzy navigation, and particularly using visual sensors, has been used by several
authors, combining the extraction of qualitative information from video frames with qualitative navi-
gation algorithms based on fuzzy rules. One example of these techniques comes from Howard et al [61].
Their system is focused basically on ensuring a safe navigation through irregular terrains. It is assumed
that the terrain can present rocks and variations on its slope. A region growing method based on edge
detection and obstacle identification is used to detect rocks on the ground, while the terrain slope is
calculated using existing techniques to retrieve 3D information and real Cartesian coordinates from a
stereo pair of images. The size and number of rocks and the slope of the terrain are then classified by
an algorithm that uses fuzzy terms such as big, small, rocky terrain, flat, sloped, steep, etc... Since
the final goal of this system is to mimic as much as possible the human criteria used to classify a
terrain, the system is trained by an expert which evaluates images taken from the robot point of view
and judges the ability of the robot to navigate through the terrain. The difference between the human
classification and the one done by the robot is an indication of the optimality of the system.

3.2.4 Navigation Techniques Based on Feature Tracking

Techniques for tracking moving elements (corners, lines, object outlines or specific regions) in a video
sequence have become robust enough so as to be useful for navigation. Many times, the systems divide a
tracking task into two sub-problems [141]: first, motion detection, which, given a feature to be tracked,
identifies a region in the next frame where it is likely to find such a feature, and second, feature
matching, by which the feature tracked is identified within the identified region.

In general, feature tracking-based navigation approaches do not comprise an obstacle avoidance
module, but this task has to be implemented by other means. Although video tracking and mobile robot
navigation belong to separate research communities, some authors claim to bridge them to motivate
the development of new navigation strategies. Some authors center their research in detecting and
tracking the ground space across consecutive images, and steering the robot towards free space.

Pears and Liang use homographies to track ground plane corners in indoor environments, with a
new navigation algorithm called H-based Tracker [105]. The same authors extend their work in [75]
using also homographies to calculate height of tracked features or obstacles above the ground plane
during the navigation process.

The accuracy of the navigation strategy must be a strategic point in aerial motion where the speed is
high, the processing time must be reduced and the tracking process needs to be more accurate. In [102],
Ollero et al propose a new image tracking strategy that computes and uses a homography matrix
to compensate the UAV motion and detect objects. This system improves their previous work [35]
maintaining the tracking success despite the number of attempts is reduced. Zhou and Li [151], and
Dao [24] compute and use the homography matrix to detect and track the ground plane over previously
tracked image corners or edges using the Harris corner detector [56]. In a more recent work, other
authors prefer to combine the concept of feature tracking with stereo 3-D environment reconstruction.
In [112], stereo vision is used in a novel navigation strategy applicable to unstructured indoor/outdoor
environments. This system is based on a new, faster and more accurate corner detector. Detected
features are 3D positioned and tracked using normalized mean-squared differences and correlation
measurements.

Support vision information with GPS data in outdoor environments is another possibility of in-
creasing reliability in position estimation. Saripalli and Sukhatme combine a feature tracking algorithm
with GPS positioning to perform a navigation strategy for the autonomous helicopter AVATAR [93].
The vision process combines image segmentation and binarization to identify pre-defined features, such
as house windows, and a Kalman filter-based algorithm to match and track these windows.

The scale invariant feature transform (SIFT) method, developed by Lowe [78], stands out among
other image feature or relevant points detection techniques, and nowadays has become a method
commonly used in landmark detection applications. SIFT-based methods extract features that are
invariant to image scaling, rotation, and illumination or camera view-point changes. During the robot
navigation process, detected invariant features are observed from different points of view, angles,
distances and under different illumination conditions and thus become highly appropriate landmarks to
be tracked for navigation, global localization [117] and robust vision-based SLAM performance [116].
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Several techniques have been developed for underwater environments. Some of them are of general
application, such as image mosaicing systems, and others are more application oriented, such as the
systems for pipeline or cable tracking. Mosaicing of the sea floor based on feature identification and
tracking using texture-based operators and correlation-based procedures permits the robot to self-
localize and thus identify its motion model [38]. Pipeline or cable tracking is an essential issue for
accurate maintenance of thousands of kilometers of telecommunication or power cables between islands,
countries and continents. In particular, unburied cables can be tracked using vision techniques. The
first approaches to cable tracking were based on edge detectors and Hough transform, but they were
unable to perform real-time cable tracking at video rates [55, 86, 110] by that time. Grau et al [51]
propose a system that generates different texture groups and segment images in regions with similar
textural behavior to track underwater cables or pipes. Foresti and Gentili [37] implemented a robust
neural-based system to recognize underwater objects. Balasuriya and Ura [7] increased and improved
the robustness of the existing systems by solving the eventual loss of the cable with dead-reckoning
positioning prediction combined with 2D models of the cable. In a recent work, Antich and Ortiz [2]
present a control architecture for AUV’s navigation based on a cable tracking algorithm that looks
for edge alingments related with the cable sides. Finally, the same authors include a new sonar-based
algorithm in the vision-based cable tracking architecture to escape from trapping zones [3].

Moving-target vision-based tracking strategies have also become a motivating research trend, spe-
cially to improve current fish shoal detection and tracking techniques. Between 2000 and 2001 some
relevant solutions were presented by Silpa-Anan et al [120] and Fan and Balasuriya [31] respectively.
Fan and Balasuriya [31] presented a process based on two parallel stages: object speed calculation
represented with optical flow, and moving objects positioning with template-matching techniques.
Rife and Rocks went a step forward implementing a system capable of recognizing and tracking only
jellyfish [109].

Estimation of camera motion in underwater unstructured environments, where there are no pipes or
cables to track, in other words, an environment with no defined references, becomes another complicated
and challenging navigation problem. In this type of navigation strategies, references have to be found in
the image, defined and tracked. There are fundamentally three methods that are used for this purpose:
optical flow, feature tracking or gradient methods. Optical flow-based methods and feature tracking-
based methods can cause failure in algorithms due to scattering effects, bad image quality or deficient
illumination under the sea. Gradient methods use scene properties such as depth, range, shapes or
color intensity, that are computationally more efficient and more accurate [23]. Station keeping is one
of the problems that can be solved estimating the motion of the camera. Station keeping consists in
holding the robot around a fixed position on the undersea floor that has a special interest at that
moment. The AUV will hover around the point maintaining the center of the camera pointing on it.
Examples of outstanding related solutions can be found in [77,99] and [21].

4 Conclusions

In the last decades, vision has become one of the most cheap, challenging and promising via for robots
to perceive the environment. Accordingly, the number of prominent navigation approaches based on
vision sensors have increased exponentially. Visual navigation techniques have been applied on almost
all environments and in all kind of robots. The most outstanding pieces of work related with visual
navigation from the early nineties until nowadays have been included in this paper to be used as a
reference for novel and experienced researchers that want to first explore the possibilities of this domain.
Map-based navigation techniques have been contrasted with those systems that do not need a map for
navigation in an attempt to proceed gradually from the most deliverative navigation techniques to the
most pure reactive solutions.

Tables 2 and 3 show an overview of the most outstanding publications referenced in this survey,
from the late nineties to present. The list has been sorted by type of vehicle to facilitate analysis
and comparison of the different strategies used in each of these vehicles during the last decade. The
following conclusions can be drawn from the aforementioned tables:

– Ground robots do not span the whole amount of applications revised in this survey but cover
almost all the strategies considered. Apparently, some strategies seem to be exclusive of ground
robots because they are rarely found in aerial or underwater vehicles. This is the case of:
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Table 2 Summary of the most outstanding visual navigation studies from the late 90’s to the present

Authors Type of vehicle Category Strategy Type of visual sensor

[121,122] Ground Map building Visual SLAM. Land-
marks localization and
tracking

Single standard camera

[123,124] Ground Map building Visual SLAM. Land-
marks extraction and
occupancy grids

Stereo cameras

[25] Ground Map building Visual SLAM. Map fea-
ture extraction

Single standard camera

[26] Ground Map building Visual SLAM. 3D sparse
mapping of interest
points

Single wide angle camera

[81] Ground Map building 3D construction of an oc-
cupancy grid

Single standard camera

[139] Ground Map building 3D high density map and
object recognition

Single standard camera

[67] Ground Map building Human guided pre-
training

Stereo cameras

[111] Ground Map building Human guided pre-
training

Single wide angle camera

[147] Ground Map building Topological map Omnidirectional camera

[42] Ground Map building Topological map Omnidirectional camera

[70,108] Ground Map building Topological map Single standard camera

[6] Ground Map building Local occupancy grid Stereo cameras

[39] Ground Map building Local occupancy grid Single standard camera

[45] Ground Map building Local occupancy grid Stereo cameras

[40] Ground Map building Local occupancy grid Single standard camera

[17,32,73,84,85] Ground Map building Visual sonar Single standard camera

[113] Ground Mapless Optical flow Single standard camera

[14] Ground Mapless Optical flow Single wide angle camera

[131,132] Ground Mapless Optical flow combined
with stereo information

Stereo cameras

[133] Ground Mapless Optical flow Single standard camera

[87,89,107] Ground Mapless Appearance-based
method

Standard or omnidirec-
tional single camera

[98] Ground Mapless Appearance-based
method

Panoramic camera

– visual SLAM systems, because the computation of the environtment model seems to be feasible
only for indoor scenarios,

– homography-based navigation systems, because of their dependency on floor detection and track-
ing and finally,

– visual sonar systems and human pre-guided map building systems.

– The use of UAVs has generalized during the last decade and, as a consequence, navigation solutions
for this kind of vehicles have improved in safety, accuracy and scope. The vast majority of UAVs
use mapless navigation systems. We should highlight here the insect-inspired solutions for optical
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Table 3 Summary of the most outstanding visual navigation studies from the late 90’s to the present: contin-
uation

Authors Type of vehicle Category Strategy Type of visual sensor

[138] Ground Map building Museum guiding robot:
complete 3D map

Single standard camera

[118] Ground Map building Museum guiding robot:
topological map

Single standard camera

[15,76] Ground Mapless Image qualitative charac-
teristics extraction

Single standard camera

[80] Ground Mapless Image qualitative charac-
teristics extraction

Single standard camera

[61] Ground Mapless Image qualitative charac-
teristics extraction

Stereo cameras

[24,75,105,151] Ground Mapless Features tracking; ho-
mography

Single standard camera

[112] Ground Mapless Features tracking; ho-
mography

Stereo cameras

[78,116] Ground Mapless Features tracking: SIFT Single standard camera

[100,145] UAV Mapless Optical flow: insect in-
spired (EMD)

Camera eye

[127] UAV Mapless Optical flow: insect in-
spired (EMD)

Single standard camera

[52,53] UAV Mapless Optical flow: insect in-
spired (EMD)

Single mini wireless cam-
era

[62] UAV Mapless Optical flow: insect in-
spired

Stereo cameras looking
forward combined with
two sideways looking
cameras

[93] UAV Mapless Features tracking Single wide angle camera

[30,43] Amphibious Map building Visual SLAM. 3D total
map building

Trinocular stereo cam-
eras

[102] AUV Mapless Features tracking; ho-
mography

Single standard camera

[2, 3, 51, 55, 86,
110]

AUV Mapless Cable tracking Single standard camera

[21,77,99] AUV Mapless Station keeping Single standard camera

[36, 46, 58, 83,
149]

AUV Map building Underwater floor mosaic-
ing

Single standard camera

flow processing as well as for feature tracking and detection. Some of these aerial robots have also
gained in accuracy, operativity and robustness incorporating compound cameras or camera eyes.

– Visual navigation systems for AUVs have to cope with the special characteristics of light prop-
agation undersea. Researchers have mostly focused on developing and/or evolving general visual
navigation techniques based on feature tracking, mainly for mosaicing applications. Researchers
have also focused on devising application-oriented navigation strategies, in many cases for tracking
underwater cables or pipelines.

– Finally, very few amphibious solutions have been proposed.

To conclude this review, it is convenient to note that during the last decade new vision techniques
have been applied to vision-based navigation systems, such as those systems based on homographies,
visual sonar or visual SLAM. But, it is also important the impulse and progress of other techniques only
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used in the past by a minority, and that have revealed to be essential for UAVs navigation. Examples
of these last techniques are those inspired on insect behavior.
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