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Abstract

Reactive navigation strategies for mobile robots base
their success on the ability to discriminate obstacles from
the ground in the vicinity of the robot and many of these
strategies are based uniquely on the computation of quan-
titative information. In this paper we describe a new
method to build qualitative local occupancy grids that are
used in a new vision-based navigation strategy addressed
to mobile robots to explore safely unknown environments.
The process includes a new feature classifier based on the
Inverse Perspective Transformation to discriminate object
from ground points and a method to determine angle and
range with respect to the camera in the world coordinate
system.

1. Introduction

Vision-based navigation techniques can be roughly di-
vided in map-based (normally labeled as deliverative) and
mapless systems (labeled as reactive). Map-based systems
plan routes and performance while mapless systems use
the on-line analysis of the perceived environment to deter-
mine the route to follow [3]. Reactive vision-based sys-
tems can include the implementation of local occupancy
grids, updated on-line and used to navigate avoiding ob-
stacles located in the proximity of the robot [1][8]. Some
researchers explored the idea of visual sonar, which pro-
vides range data and depth measurements using visual
sensors but in an analogous way to ultrasound sensors [5].
In various cases the concept of visual sonar is strongly
related with the computation of local occupancy grids to
perform reactive navigation and obstacle avoidance strate-
gies [7] [10]. This paper presents a new method to build
occupancy maps to qualitatively register the presence of
obstacles inside a Region of Interest (ROI), centered on
the robot and with a fixed radius. The method has been in-
spired on the visual sonar-based reactive solutions and it
implements a new version of the Vector Field Histogram
[4] method, but here it has been adapted for vision-based
∗This work is partially supported by DPI 2008-06548-C03-02 and

FEDER funding.

systems. First, image main features are detected, tracked
across consecutive frames, and classified as obstacles or
ground using a new algorithm based on the Inverse Per-
spective Transformation (IPT). Next, the edge map of the
processed frames is computed, and edges comprising ob-
stacle points are discriminated from the rest, emphasizing
the obstacle boundaries. Range and angle with respect to
the robot are estimated computing the orientation and dis-
tance of those obstacle points that are in contact with the
floor. This results in a qualitative occupancy map that dis-
plays the position of obstacles in the space with respect to
the robot. Finally, the algorithm computes a vector which
steers the robot towards the world areas into which it can
move safely.

The rest of the paper is organized as follows: the
method is outlined in Sections 2 and 3, experimental re-
sults are exposed and discussed in Section 4, and finally,
conclusions and forthcoming work are given in Section 5.

2. Inverse Perspective Transformation, Fea-
ture Detection and Feature Classification

The process of taking a picture is usually modeled by
the Perspective Transformation. The inverse process, that
is, the projection of every image point back to the world
is modeled by the IPT. The back projected point will be
somewhere in the line that connects the image point with
the center of projection. It is possible to compute the
world coordinates of an image point either if the distance
between the camera and the point in the space is known
or, for example, if the point is lying on the ground. Refer-
ences [6] and later [9] described the Direct and the Inverse
Perspective Transformations assuming a pinhole camera
model and a flat ground.

Our obstacle detection method makes use of features
matched across consecutive frames and the IPT to dis-
criminate features lying on the ground from features cor-
responding to scene obstacles. More specifically, once
a feature is matched between two frames, we assume it
lies on the floor and we backproject the corresponding
image points: the resulting world coordinates from both
frames must coincide when the hypothesis is true, but they
must be different when the feature comes from an elevated
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scene point. A threshold (β) can be defined as the max-
imum difference admissible between the backprojections
on the floor [2].

The first step of the algorithm is thus to detect a suf-
ficiently large and relevant set of image features, track
them on consecutive frames and classify them using the
aforementioned criteria. We chose SIFT features [11] as
the features to track because of their robustness to scale
changes, rotation and/or translation as well as changes in
illumination and view point. Wrong correspondences be-
tween points in consecutive frames are filtered out using
RANSAC and imposing the epipolar constraint (x′pFxp =
0 where x′p and xp are the point image coordinates in two
consecutive frames, and F is the fundamental matrix).

3. The Navigation Strategy

3.1. Finding the Obstacle Profiles
SIFT features are usually detected at regions of high

intensity variation [11]. Thus, it is likely they are near
or belong to an edge. Besides, obstacle points are most
likely to be contained or near a vertical edge belonging to
an obstacle. Consequently, once SIFT points have been
classified, the algorithm computes the edge map of the
second frame of every pair of consecutive images, and
then searches for all edge pixels which are inside a win-
dow centered at every obstacle point. Then, every edge is
tracked down starting from the object point position until
the last edge pixels or a ground point is found, considering
them to be the point(s) where the object rests on the floor.
This permits discriminating the obstacle boundaries from
the rest of the edges.

3.2. Building the Local Occupancy map
Knowing the camera position and the world coordi-

nates of a point on the floor, the distance dcp between
them and the angle φ defined by the direction of motion
and the relative orientation of the point with respect to the
camera, can be calculated as:

dcp =
√

(x−X0)2 + (y − Y0)2

φ = arccos

(
~a ·~b
|~a||~b|

)
(1)

where (x, y, 0) are the point world coordinates,
(X0, Y0, Z0) are the camera world coordinates at the
moment of evaluating the distance between the camera
and the ground point, ~a is a vector with the same direction
as the vector from the world coordinate system origin to
point (X0, Y0, 0), ~b is the vector from point (X0, Y0, 0) to
point (x, y, 0), and ~a · ~b is the dot product between both
vectors. The idea is illustrated in figure 1.

The orientation and distance of obstacles with respect
to the robot can then be qualitatively estimated using (1) to
compute the distance and orientation between the camera
and those obstacle points in contact with the floor.

A histogram accounting for the number of obstacle-to-
ground contact points at each polar direction of the ROI

Figure 1. Distance and orientation of an ob-
stacle point respect to the camera

is used next to determine those polar directions free of ob-
stacles. Our ROI is a semicircular area on the ground
plane, of a fixed radius and centered at the robot posi-
tion. Angles corresponding to regions occupied by a set
of obstacle-to-ground contact points are labeled as forbid-
den and those free of obstacles are included in the set of
possible next movement directions. The next movement
direction is selected as the direction corresponding with
the center of the widest polar obstacle-free zone.

4. Experimental results

To test the proposed strategy, a Pioneer 3DX robot with
a calibrated wide angle camera was programmed to navi-
gate in different scenarios, such as environments with ob-
stacles of regular and irregular shape, with textured and
untextured floor, and environments with specularities or
with low illumination conditions. The ROI radius was
1.5m, the camera height was 430mm and the robot veloc-
ity was set to 40mm/sec. For each scene, the complete
navigation algorithm was run over successive pairs of
0.86-second-separation consecutive frames. These frame
rate was empirically found to be adequate so that the ef-
fect of the IPT was noticeable. Increasing the frame rate
minimizes the IPT effect over the obstacle points, while
decreasing the frame rate delays the execution of the al-
gorithm. Frames were recorded and down-sampled to a
resolution of 256×192 pixels, in order to reduce the com-
putation time. All frames were undistorted to correct the
error in the image point position due to the distortion in-
troduced by the lens. For a varied set of scenes differ-
ing in light conditions and/or floor texture, the optimum β
had a coincident value of 20mm [2]. The window used to
find edge pixels near an obstacle point and to track down
the obstacle contours is longer in the vertical direction to
overcome possible discontinuities in the obstacle vertical
borders.

The camera world coordinates were calculated for each
frame by dead reckoning, taking into account the relative
camera position with respect to the robot center.

Figure 2 shows some examples of the navigation algo-
rithm tested on the moving robot. Pictures (ai) and (ei)
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(i = 1, 2, 3 and 4) show, each one, the second frame of
two different pairs of consecutive images. These two im-
ages are two examples extracted from the image sequence
recorded and processed on-line during the route followed
by the robot through scenarios 1, 2, 3 and 4, respectively.
Every image was taken before the robot had to turn to
avoid the frontal obstacles; obstacle points are shown in
red and ground points in blue. Scenario 1 presents inter-
reflections, specularities, and a lot of obstacles with regu-
lar and irregular shapes. Scenario 2 shows a route through
a corridor with a very high textured floor, columns and
walls. Scenarios 3 and 4 present bad illumination con-
ditions, a lot of inter-reflections on the floor, and some
image regions (walls) with almost homogeneous intensi-
ties and/or textures, resulting in few distinctive features
and poorly edged obstacles which can complicate its de-
tection.

Pictures (bi) and (fi) show the vertical contours (in or-
ange) comprising obstacle points for scenes 1, 2, 3 and 4.
Obstacle contours have been highlighted over the rest of
the edges. The points where the obstacle rests on the floor
are computed tracking down the obstacle boundaries from
the position of an obstacle point until the edge finishes or
a ground point is found. Then, the algorithm computes
the world coordinates of these obstacle-to-ground contact
points and their distance and orientation with respect to
the camera. Only those points that are closer than 1’5m to
the robot are highlighted in pink in the image.

Histograms of plots (ci) and (gi) account for the num-
ber of obstacle-to-ground contact points in each polar di-
rection for scenes 1, 2, 3, and 4. Plots (di) and (hi) show
the local occupancy grids in a bird’s-eye view of a cir-
cular floor portion with a radius of 1’5m. These maps
show the world polar coordinates with respect to the cam-
era position (which is in the center of the semicircle) of
those obstacle points in contact with the floor. The grid
gives a qualitative idea of which part of the robot vicin-
ity is occupied by obstacles. The algorithm analyzes the
polar histograms and defines the direction of the center
of the widest obstacle-free polar zone as the next steering
vector (shown in green). In all scenes, all features were
well classified, obstacle profiles were correctly detected
and the robot navigated through the free space avoiding
all obstacles.

5. Conclusions and Future Work

We have presented a novel navigation strategy which
employs an IPT-based feature classifier to distinguish be-
tween ground and obstacle points. The system finally
builds a qualitative radial model of the robot’s vicinity to
determine the location of nearby obstacles. The algorithm
was tested on a robot equipped with a wide angle cam-
era and showed to tolerate scenes with shadows, inter-
reflections, and different types of floor textures or light
conditions.

Errors in the obstacle-to-ground contact point estima-

tion are transmitted from the image to the range and angle
calculation, and thus the qualitative local occupancy map
can be slightly distorted. It might be necessary to analyze
those errors to calculate the uncertainty of the range and
angle estimation.

The exposed algorithm does not restrict the method
used for feature detection and tracking. Depending on this
method, the number of detected features can change, fea-
tures can be detected in different image points, their clas-
sification can change and the algorithm execution time can
also be different. It becomes necessary to explore different
choices for detecting and tracking features to optimize our
algorithm in terms of: a) number of necessary features, b)
their location in the image, and c) execution time.

The exposed work is the base for a more complex robot
system that has to be programmed for missions, like the
exploration of unknown environments for map-building
tasks, navigation between two defined points or even, for
example, as a guiding robot.
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Scenario 1 (a1) (b1) (c1) (d1) 49◦

(e1) (f1) (g1) (h1) −42◦

Scenario 2 (a2) (b2) (c2) (d2) −44.5◦

(e2) (f2) (g2) (h2) −44◦

Scenario 3 (a3) (b3) (c3) (d3) 49◦

(e3) (f3) (g3) (h3) 0◦

Scenario 4 (a4) (b4) (c4) (d4) 49◦

(e4) (f4) (g4) (h4) 47◦

Figure 2. Examples of experiments in different environments
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