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Abstract: Task allocation is one of the main problems in multi-robot systems, very
specially when the robots form coalitions. To get a good task allocation, we have
to take into account, among other factors, the interference effect or the interaction
between robots. Interference is not easy to modelize because it depends on a lot of
dynamic factors. This paper models the interference impact using auction methods
and support vector regression. We will show how the performance of the auction
utility function can be improved if the interference impact is included in it. This
method has been tested using transport like tasks taking into account an specific
interference called physical interference.
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1. INTRODUCTION

Multi-robot systems can provide several advanta-
ges over single-robot systems: robustness, flexibi-
lity and efficiency among others. To benefit from
these potential aspects several problems have to
be solved. Among all these problems, we focus
on task allocation issues, that is, selecting the
best robot or robots to execute a task. Some
tasks require that two or more robots cooperate
to execute them creating coalitions. In this case,
we have to calculate the utility of the coalition.
Moreover, when the tasks must be executed before
a deadline we also need to know, how much time
will the coalition need to finish the task. If we
assign too few resources (robots) to a task, then
the deadline can not be verified. On the other
hand, if a certain task captures the attention of
an excessive number of robots, other tasks can be
forsaken.

1 This work has been partially supported by project
CICYT-DPI2005-09001-C03-02 and FEDER fundings.

A lot of research has been done to solve the task
allocation and coalition formation problems but
they are still open problems. One of the most
used and well studied task allocation solutions are
auction methods (Dias and Stentz, 2003). Only
a few auction strategies allow to allocate several
robots to the same task, but these methods don’t
take into account the interference effect. Some
other authors, that don’t use auction, like (Fua
and Ge, 2005), also suppose that the utility of a
coalition of robots is the sum of the utilities of
its members, which in general is not true because
of the interference. Therefore, our challenge is to
model the interference to get a coalition utility
function as good as possible. In our case this
utility function will be the time required by the
set of robots to finish the task. Thus, we can
assign the appropriate number of robots to fulfil
the task before the deadline. Another problem
that this paper tries to analyze is how does the
monitoring of the task progress affects the sys-
tem performance. The monitoring process can be
a so complex task which requires sophisticated



sensorial and communication resources. To our
knowledge this is the first time that a study like
this has been made in a multi-robot environment.

Extending our previous work (Guerrero and Oli-
ver, 2006), we use support vector regression
(SVR)to tune the interference of a coalition. This
learning method has been used by other authors
(Jones et al., 2006) with an auction process, but in
a very different environment. There are different
kinds of interferences, among all of them we focus
on physical interference effect, produced when two
or more robots need to reach the same point at
the same time. As it has been demonstrated in
different studies (Lerman and Galstyan, 2002), the
physical interference has an important impact on
the system performance. To test our system we
use a foraging like task, where multiple robots can
cooperate to transport the same object.

The rest of this paper is organized as follows:
the section 2 formalizes this problem; section
3 presents the task allocation algorithm used;
section 4 explains the SVR technique that has
been used; section 5 presents how to use SVR
to model the physical interference effect; section
6 shows the results of the experiments; section
7 explains some conclusions and future work is
stated.

2. PROBLEM STATEMENT

During this section we will formalize the task
allocation problem explained in the previous sec-
tion and will explain the main problems that it
presents.

The task allocation is defined as follows: we want
to allocate a set of tasks to a set of robots.
Each task ti has a workload (taskWorkLoadi)
that represents the amount of work required to
finish the task. For example, if the robots must
transport an object, this value will be the weight
of that object, or if the robots must clean a
surface, the workload will be the area to clean.
Moreover, each task must be executed, if it is
possible, before a deadline DLi. Each robot (ri)
has an individual work capacity (workCapacityi)
that represents the amount of task work load that
the robot can process per time unit. The tasks
can be executed by a group of robots, which form
a coalition. Thus, we have to know if the group
of robots can fulfil the deadline. To that end, we
need to calculate the work capacity of the group
as a whole (groupCapacity), that is, the amount
of work that the group can perform per time unit.
In general, it is not true that the work capacity
of the group is the sum of the work capacity of
each single robot. Thus, the real value of the group
capacity is:

groupCapacity = idealModel + I (1)

Where idealModel is the model of the group capa-
city without interference and I is the interference
factor. This additive model is very simple and
efficient. The idealModel can be easily represen-
ted when the individual capabilities of the robots
are known. As it has been explained before, the
sum of the individual utilities of each robot is
often used. Usually, these utilities are independent
of the interference factor and therefore they can
be added. On the other hand, I is not easy to
calculate because it depends on a lot of dynamic
factors: the number of robots, the environment,
etc.

3. TASK ALLOCATION

The task allocation mechanisms, including the
groups’ formation, membership policy and task
assignment is briefly described in the following
paragraphs. This new mechanism extends our
previous work (Guerrero and Oliver, 2004) to
take into account deadlines and it also introduces
the concept of partial knowledge about the task
progress. Here we only expose in a very concise
way the main aspects of the method to understand
the interference model that will be explained in
the ”Task Allocation Experiments” section.

A classical auction method has been modified to
select which robots, and very specially, how many
of them are needed to execute a task. In an initial
stage, each robot is looking for a task. When a
robot finds a new task, it will try to lead it. There
is only one leader for each task. The details about
how a robot can be promoted to leader, can be
found in (Guerrero and Oliver, 2004). If a robot
is promoted to leader, it will create, if necessary,
a work group; that is, a set of robots that will
cooperate to execute a specific task. In that case,
the leader must decide which the optimum group
size is and what robots will be part of the group.
To take this decision, the leader uses an auction
like mechanism. During this process the leader will
be the auctioneer and the other robots will bid
using their work capacity. The work capacity is
the amount of work that a robot can execute per
time unit, thus, this value is the utility function
of the auction method or the price that the robots
want to pay to participate in the task. The leader
selects the robots with the highest work capacity
using a greedy algorithm, until it detects that the
group is able to reach its deadline, that is, until
this condition is verified:

DLg =
taskWorkLoad

groupCapacity
≤ DL (2)

Where DL is the deadline of the task. As it can
be seen, DLg is the expected time required to



finish the task. If during the task execution the
leader detects that the deadline (DLg) can not
be fulfilled, it starts a new auction process to get
new robots, if it’s possible. From now on, we will
consider the robot utility and the group utility
synonymous of robot’s work capacity and work
capacity of the group.

4. INTERFERENCE ESTIMATION:
SUPPORT VECTOR REGRESSION

This section describes the process to predict or to
learn the value of the interference using support
vector regression (SVR) (C.Chang and Lin, 2001).
The goal of this method is to find a function as flat
as possible f(x) that fits a given set of training
data (xi, yi), i = 1..l where xi ∈ Rn represents
the input data of f(x) and yi ∈ R are the results.
In our case, the xi vectors represent the coalition
characteristics including both coalition robot and
environment features. From this point forward, we
will call to this coalition vectors. Of course, the
dimension of these vectors can be very large, but
as it will be explained, this dimension can be redu-
ced if we include some previous knowledge about
the interference characteristics. To implement the
support vector regression we have used the libsvm
library developed by National Taiwan University
(C.Chang and Lin, 2001). This library creates a
model file from a given set of training data. We
have use the ε − SV R method and and a radial
basis function as the kernel function.

E. Jones in (Jones et al., 2006) also applies the
same SVR library to allocate tasks in the Robocup
Rescue Simulation League but in that case, only
a single robot can be assigned to the same task.
Moreover, Jones’ method doesn’t want to get the
expected time to finish a task, it only tries to
find the individual utility function for each agent
taking into account the expected incoming tasks
and the their deadline.

5. PHYSICAL INTERFERENCE: THE
TRANSPORT TASK

In this section we will analyze the specific kind
of interference that we want to solve that is, the
physical interference. This interference appears
when two or more robots want to reach the same
point at the same time. As it has been explained
earlier, this situation has a great impact on the
system performance. As an example of how to
model the interference using SVR, a transport
like task is used. This task is described as fo-
llows: some randomly placed robots must locate
objects, randomly placed too, and carry them to
a common delivery point. Figure 1 shows a typical
initial situation, where the squares represent the

Fig. 1. Example of initial situation of transport
task

objects to collect, the delivery point is the big
circle at the right of the image and the robots
are the little circles. Each object to gather has a
weight and each robot has a load capacity. This
weight is the taskWorkLoad of equation 2. The
robot load capacity is the amount of weight that
it can carry at once. Thus, if a robot cannot
carry the entire object at once, it takes a part
of it, goes to the delivery point and comes back
to the object for more bits. Of course, this is a
very simple environment but it allows us to isolate
the interference effect from other factors that can
appear in more complex tasks.

In the next subsections we will describe how to
get the individual utility for each robot, how the
idealModel of equation 1 is calculated and, finally,
how to model the physical interference in these
transport tasks.

5.1 Individual Utility Function

We will now describe how to find the individual
utility or the individual work capacity of each
single robot. The transport task explained earlier
will be used as an example. The work capacity of
a robot is the amount of object’s weight that this
robot can transport to the delivery point per time
unit. Under ideal conditions, that is, assuming an
open environment without any obstacle or robot
between the object and the delivery point, the
robot’s work capacity is easy to calculate. Let
ri be a robot and Ci the load capacity of the
robot. Vi is the maximum velocity, d the distance
between the object and the delivery point and
C the weight of the object. The number of trips
between the delivery point and the object that
the robot must do to transport the full object is
2 ∗ C

Ci
. If the acceleration and deceleration time

is neglected, for each one of these trips the robot
needs d

Vi
time units. We also consider that a robot

needs one time unit to load and to unload each
weight unit. For example, if the robot has to load
2 weight units it will require 2 time units to load
all this weight and 2 time units more to unload it
when it arrives to the delivery point. Thus, to load
and to unload the full object, the robot will spend
2C time units. Therefore, the total time required



to transport the full object is T = 2 C
Ci

(Ci + d
Vi

)
and the work capacity C

T is:

workCapacityi =
CiVi

2(CiVi + d)
(3)

Thus, the idealModel of equation 1 will be equal
to

∑
1≤i≤N workCapacityi, where N is the num-

ber of robots of the group. Of course, this value of
work capacity is only an estimation with several
errors, but these errors will be included into the
interference effects.

5.2 Group utility: Interference Effect

During this section we will analyze how to calcu-
late or to learn the physical interference between
robots, the I value of equation 1. To analyze the
interference effect we have executed a task where
several robots must transport a single object and
the total weight transported by the robots after
40000 time units is calculated. All the robots have
the same load capacity (2 weight units) and the
same velocity (3 distance units/time unit), and
therefore, they all have the same work capacity.
Moreover, the environment doesn’t have any obs-
tacle but the robots, the object and the delivery
point. Ten different distances between the object
and the delivery point have been tested and the
number of robots varied from 1 to 8. All these
experiments have been executed using a multi-
robot simulator called RoboCoT (Robot Colonies
Tool). RoboCoT is a software tool developed by
the authors at the University of Balearic Islands.

Figure 2 shows the total transported weight du-
ring these experiments when the number of robots
varies from 1 to 8 and for the following values
of distance between object and delivery point:
D1 = 140 units, D2 = 180 units, D3 = 250 units,
D4 = 280 units, D5 = 330 units, D6 = 360 units
and D7 = 400 units. As it can be seen, and as
has been pointed by other authors, the relation
between the number of robots and the transported
weight is not linear. The difference between the
expected transported weight, calculated as the
sum of the individual robot’s work capacity, and
the real transported weight can only be due to the
interference. The interference effect can modify
significantly the group utility, for example, when
the distance is D7 and there are 8 robots, the
interference decreases the work capacity of the
group down to a 58%.

Using the data of figure 2 and knowing the
idealModel we can calculate the value of inter-
ference I for each situation. This value only take
into account the interference between robots of
the same working group, as it will be explained
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Fig. 2. Total transported weight during the expe-
riments to model interference effect

later, in future works we will include the interfe-
rence between groups. All this information is now
included in the training data of the SVR method.
The coalitions vectors (xi values) will include 2
features: the idealModel value, calculated using
equation 3, and the number of robots of the group.
The calculated values of I are used as the expected
results of f(x) (yi). A total of 80 training data
pairs (xi, yi) has been used. All the information
is used by the libsvm library to create the model
of the system.

As it has been explained, the leader selects the
best robots (robots with the highest bids) until the
equation 2 is verified. Now, using the interference
information, the leader of the group will only
include a new robot if this operation increases
the work capacity of the group. Therefore, the
auction process will finish when the equation
2 or when this condition is verified. Thus, the
bidding process will now consist on the evaluation
of workCapacityi + (I

′ − I) for each robot ri.
Where I

′
is the predicted interference if this robot

is selected by the leader and I is the current
interference. Using this extra information about
interference, and as it will be seen during the next
section, the leader can find a better set of robots.

5.3 The Monitoring Process

During the execution of a task the leader can
periodically receive information about the remai-
ning weight of the object (taskWorkLoad) to be
transported. If available, the leader of the task
uses this information to make a guess about the
actual taskWorkLoad using a simple linear equa-
tion like:

WL(t) = WL(tm)− groupCapacity ∗ (t− tm)(4)

Where tm is the time when the leader receives
information about the task process and WL(t) is
the expected taskWorkLoad at instant t.

During a continual monitoring task progress exe-
cution, the leader knows in each moment the exact
value of the taskWorkLoad, and therefore, it can



start another auction process if inequality 2 is not
verified. In a no monitoring task process execu-
tion, the leader only knows the taskWorkLoad
at the beginning of the task, and then it uses
equation 4 to predict the taskWorkLoad, with
a unique constant WL(tm) during the whole pro-
cess. Similar experiments have been carry out with
different monitoring periods but their results are
not included in this paper.

6. TASK ALLOCATION EXPERIMENTS

In this section we will show the results of several
experiments performed to study the impact of the
physical interference on our auction method using
SVR. We will also analyze how the monitoring
process affects to the system performance. During
all the experiments RoboCoT has been used. The
robots must execute the transport task explained
in the second section. The main objective is to
transport each object before its deadline. If the
fulfilment of this objective is not possible, the
robots continue their execution until the object
is fully transported. The time to deadline starts
when the object appears in the environment.
Thus, we give priority to the accomplishment of
the tasks’ deadline over the increment of the total
transported weight. To simplify the analysis, the
robots know the situation of each object in the
environment. Moreover, when a robot has no task
to execute it stops.

During all the experiments we use 10 robots
and 3 objects to gather. All the robots have
the same characteristics as in the experiments
of the last section. All the tasks have a weight
equal to 40 weight units. Three different kind
of experiments have been executed: greedy robot
selection, continual monitoring task progress and
no monitoring task progress. In greedy robot
selection experiments all the leaders try to create
a working group as great as possible without
taking into account the deadline value or the
task characteristics. Robots carry out the mission
during 30000 time units. After this period, we get
the time required to transport each object and the
number of object gathered. Despite having only 3
objects in the environment, when an object is fully
transported to the delivery point, it immediately
appears another one in a random place. Three
different values of deadline have been tested: 1500
time units, 1200 time units, and 900 time units.
All the tasks have the same deadline value.

Figure 3 shows the percentage of tasks that fulfill
a deadline equal to 900 time units during the exe-
cution of the greedy robot selection experiments.
The bar with a label 0.6 represents the percentage
of tasks that its execution time exceeds a 60% of
the deadline. The bar with a label 0.5 represents

the percentage of tasks that require less than a
60% and more than 50% of the deadline time, etc.
The negative numbers represent the tasks that
have been fulfilled the deadline. For example, the
bar with -0.2 represents the tasks that require to
finish less than a 20% and more than a 30% of the
deadline time. During these experiments a 43,3%
of the tasks were executed before the deadline.
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Fig. 3. Deadline fulfilment during greedy robot
selection experiments and with a deadline
equal to 900 time units

The results of the experiments without monitoring
the task progress can be seen in figures 4 and 5.
As in the previous cases, the deadline is equal
to 900 time units. Figure 4 shows the results
without modeling the interference effect, that is
to say, only taking into account the idealModel
of the task. In this case only a 23,9% of the
tasks fulfilled the deadline, less tasks than during
the greedy experiments. On the other hand, the
number of tasks that require a lot of time to finish
has decreased with regard to greedy experiments.
For example, now there are about a 7% of the
task that require more than a 50% of the deadline
time to finish, but during the greedy experiments
a 21,2% of tasks required this time. Moreover,
the total distance covered by all the robots has
decreased a 10.8%. Figure 5 shows the results
of the no monitoring task progress experiments,
but taking into account the interference effect.
During these experiments the percentage of tasks
that fulfill the deadline was equal to 54,3%. Thus,
the number of tasks that fulfill the deadline has
been increased a 30,5% with regard to the system
that don’t use interference model. Therefore, the
interference factor I seems to be useful. Also, the
total distance covered by the robots decreases a
18,9% with regard to the greedy strategy.

Figure 6 shows the results of the continual moni-
toring task progress experiments with a deadline
equal to 900 time units, taking into account the
interference effect. In this case there are less tasks
that fulfil the deadline, a 30,3%, with regard to
greedy experiments. This effect may be because
the task progress evolution is not constant over
the time and can exist local minimums. This effect
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Fig. 4. Deadline fulfilment during no monitoring
the task progress without using interference
effect and with a deadline equal to 900 time
units
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Fig. 5. Deadline fulfilment during no monitoring
the task progress, using interference effect
and with a deadline equal to 900 time units

make the problems of the monitoring processes
clear.
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Fig. 6. Deadline fulfilment during continual mo-
nitoring task progress experiments, using in-
terference effect and with a deadline equal to
900 time units

During the execution of the experiments with a
deadline equal to 1200 time units, the interference
value only increases a 10,1% the number of tasks
that fulfil the deadline. Finally, we have to note
that when we a deadline equal to 1500 was used,
there was no significant differences between the
experiments executed with and without interfe-
rence, or between with or without monitoring.
The main result is that with regard to a greedy
algorithm our method can decrease the total dis-
tance covered by the robots up to a 19,3%.

7. CONCLUSION AND FUTURE WORK

This paper analyzes the impact of the interference
effect on the utility function used in an auction
like system. It also studies how monitoring the
task progress can affect to our method. We model
the interference between the robots in a coalition
using support vector regression. The experiments
show that with this off-line learning method the
robots can better fulfil the tasks’s deadline. Our
method has been tested with transport task mo-
deling the physical interference effect.

The work presented is in progress and has some
challenging aspects to add and to improve. We are
working to use a preemption auction method, that
is a method that allows the exchange of robots
between working groups. We will also study the
interference effect between robots that belong to
different groups and we will modify our system to
allow on-line learning. Moreover, we will analyze
other regression techniques without parameters to
improve our results. Finally, we will extend these
experiments using real robots and other kind of
tasks, like exploration, cleaning, etc.
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