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Abstract

Task allocation is one of the main problems in multi-
robot systems. Among other factors, to get a good task
allocation, we have to take into account the physical in-
terference effects between robots, that is, when two or more
robots want to access to the same point at the same time.
This paper analyzes interference impact using auction met-
hods, one of the most popular task allocation systems. We
will show how the performance of the auction utility func-
tion can be improved if interference impact is included in
it. We also provide a framework to simplify one of the main
problems of all auction systems which is finding a good uti-
lity function. Our method has been tested using transport
like tasks, where each object must be transported to a de-
livery point before a deadline. This is a simple task that is
very useful to isolate the interference effects.

1. Introduction

Multi-robot systems can provide several advantages over
single-robot systems: robustness, flexibility and efficiency
among others. To benefit from these potential aspects seve-
ral problems have to be solved. Among all these problems,
we focus on task allocation issues, that is, selecting the best
robot or robots to execute a task. Some tasks require that
two or more robots cooperate to execute them creating co-
alitions. In this case we have to find the best set of robots
to execute the task and also the optimum number of these
robots. As it has been demonstrated in different studies [4],
the number of robots has an important impact on the sys-
tem performance, among other factors, due to the physical
interference effect. Interference appears when two or more
robots need to reach the same point at the same time. This
factor has only been modeled and analyzed using very sim-
ple environments [4]. A lot of research has been done to
solve the task allocation and coalition formation problems
but they are still open problems. One of the most used and

well studied task allocation solutions are auction methods
[1]. Only a few auction strategies, like [5], allow to allocate
several robots to the same task, but these methods don’t take
into account the interference effect. Moreover, one of the
main problems of all auction methods is to find or to learn a
good utility function. The utility function depends on a lot
of factors, and very specially on the interference effect.

In this paper we analyze how to introduce the interfe-
rence effect in the auction’s utility functions. We study the
impact of this factor showing that the system performance
can be improved when interference is taken into account. To
our knowledge, this is the first time that this kind of analysis
is made using auction strategies. This paper also proposes a
framework to reduce the complexity on finding utility func-
tions when robots must create coalitions. This framework
divides the learning process in three stages. During the first
phase, only the knowledge of individual robots is included
in the utility function. The second phase includes the know-
ledge about robots that form the coalition. Finally, the last
stage include the information of other coalitions. One of the
most importat information that should be included in the se-
cond phase is a measure of the physical interference produ-
ced between robots of the same group. To test our system
we use a foraging like task, where the robots must find a set
of objects and carry them to a delivery point. During this
task, multiple robots can cooperate to transport the same
object. In this case we have to decide how many robots and
which ones do we need to transport each object according
to its weight and to the robots characteristics. Each task,
or object, must be executed before a deadline, and the goal
of our auction method is to maximize the number of tasks
executed before their deadline. The results show that inclu-
ding the interference information in the utility function, the
system performance can be significantly improved.

The rest of this paper is organized as follows: section 2
presents the task allocation algorithm used; sections 3 expo-
ses the designed framework to simplify the search of good
utility functions; section 4 analyzes the effect of the physi-
cal interference on the utility functions; section 5 shows the



results of the task allocation system using the interference
effect; finally, section 6 exposes some conclusions and fu-
ture work.

2. Task allocation

Our task allocation mechanisms, including the groups’
formation, membership policy and task assignment is bri-
efly described in the following paragraphs. This new mec-
hanism extends our previous work [3] to allow deadlines.
Here we only show very briefly the main aspects of our
method to understand the interference model that will be
explained during section 5.

Classical auction methods has been modified to select
which robots, and very specially, how many of them are
needed to execute a task. In an initial stage, each robot is
looking for a task. When a robot finds a new task, it will try
to lead it. There is only one leader for each task. If a robot
is promoted to leader, it will create, if necessary, a work
group; that is, a set of robots that will cooperate to execute
this specific task. In that case, the leader must decide which
the optimum group size is and what robots will be part of
the group. To take this decision, the leader uses an auction
like mechanism. During this process robots bid using their
work capacity. The work capacity is the amount of work
that a robot can execute per time unit, thus, this value is the
utility function of our auction method. The leader selects
the robots with the highest work capacity, until it detects
that the group is able to reach its deadline, that is, until this
condition is verified:

DLg =
taskWorkLoad

groupCapacity
≤ DL (1)

Where taskWorkLoad is the amount of work required
to finish the assigned task that is calculated by the leader;
groupCapacity is the work capacity of the group, that is,
the amount of work that the group can process each time
unit and, finally, DL is the deadline of the task. As it
can be seen, DLg is the expected time required to finish
the task. In general, the work capacity of the group is not
the sum of the work capacity of each single robot, that is
groupCapacity �= ∑

1≤i≤N workCapacityi, where N is
the number of robots of the group. Among other factors,
this inequality is due to the interference effect. During the
following sections we will try to find a good method to
calculate individual utility of each robot and specially the
group utility. From this point, we will consider robot utility
and group utility synonymous of robot’s work capacity and
work capacity of the grup. As it has been said earlier, the
details of this task allocation method, like how a robot can
be promoted to a leader, can be found in [3].

3. A framework to get utility functions

This section describes a framework that will help us to
get a good utility function for auction methods when robots
must create coalitions. Getting a good utility function is a
difficult process, very specially when the robots must form
coalitions or when the utility of a robot depends on the uti-
lity of other robots. We can use learning algorithms to get
this function, but these algorithms require a lot of time, and
it is not clear what the robot has to learn. Also, in gene-
ral, utility functions are not linear, so the learning process
can be very hard. To simplify the process, some parameters
can be analyzed previously, using an ideal environment, and
then modified during the execution of the task. We will do
this in 3 steps:

• Individual utility: during the first stage, we evaluate
the characteristics of each single robot without taking
into account the others. Here it will be include some
characteristics like velocity, acceleration, etc.

• Group utility: in this step, the robot will take into ac-
count the other ones to create a coalition or working
group. Here some parameters, like interference effect,
will be included. That is, the robots will calculate the
utility function of the group.

• Inter-Group utility: finally, the robots have to take into
account that the decision of one group can affect to
other groups. This inter-group dependency must be in-
cluded in the utility function during the final step.

In this paper we analyze the two firsts steps paying spa-
cial attention to the interference effects. As an example of
how to use the framework proposed, a transport like task
will be used. The task to be carried out by the robots is des-
cribed as follows: some randomly placed robots must locate
objects, randomly placed too, and carry them to a common
delivery point. To maintain the initial conditions, when an
object is fully transported to the delivery point, it immedi-
ately appears another one, with identical characteristics in
a random place. Figure 1 shows a typical initial situation,
where the squares represent the objects to collect, the de-
livery point is the big circle at the right of the image and
the robots are the little circles. Each object to gather has a
weight and each robot has a load capacity. The robot load
capacity is the amount of weight that it can carry at once.
Thus, if a robot cannot carry the entire object at once, it
takes a part of it, goes to the delivery point and comes back
to the object for more bits. Of course, this is a very simple
environment but it allows us to isolate the interference ef-
fects of other factors that can appear in more complex tasks.
It is under study whether a similar reasoning can be made
for different kind of tasks, like exploration, surface cleaning
or mapping for example.



Figure 1. Example of initial situation of trans-
port task

4. Individual utility function

Now we will describe the first step of our framework,
called individual utility, to find the utility function of each
single robot. As an example, the transport task explained
during the last section will be used. The work capacity of
a robot is the amount of object’s weight that this robot can
transport to the delivery point per time unit. Under ideal
conditions, that is, we supose an open environment without
any other obstacle or robot between the object and the de-
livery point, the robot’s work capacity is easy to calculate.
Let ri be a robot and Ci the load capacity of the robot. Vi

is the maximum velocity, d the distance between object and
delivery point and C the weight of the object. The number
of trips between the delivery point and the object that the
robot must do to transport the full object is 2∗ C

Ci
. If we ne-

glect the acceleration and deceleration time, for each one of
these trips the robots will need d

Vi
time units. We also consi-

der that a robot needs one time unit to load or to unload each
weight unit. For example, if the robots has to load 2 weight
units it will require 2 time units to load all this weight and
2 time units more to unload when it arrives to the delivery
point. Thus, to load and to unload the full object, the robot
will spend 2C time units. Therefore, the total time required
to transport the full object is T = 2 C

Ci
(Ci + d

Vi
) and the

work capacity is C
T , that is:

workCapacityi =
CiVi

2(CiVi + d)
(2)

5. Group utility function: interference effect

During this section we will analyze the second step of
our framework to get the utility function of the group. We
will also use the transport task to show how to get this func-
tion value and, therefore the utility of the group will be the
expected amount of work that the set of robots can exe-
cute per time unit. This value is not the sum of each in-
dividual robots’ work capacity because of the interference
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Figure 2. Total transported weight during the
experiments to model interference effect

effect, among other factors. Thus, first of all, we will mo-
del this interference effect and then we will show how to use
this information to get the utility functions of the robots. All
the experiments carried out to model the interference have
been executed using a multi-robot simulator called Robo-
CoT (Robot Colonies Tool). RobotCoT is a software tool
developed by the authors at the University of Balearic Is-
lands [2].

5.1. Interference effect analysis

To analyze the interference effect we have executed a
task where several robots must transport a single object
and the total weight transported by the robots after 40000
time units is calculated. All the robots have the same load
capacity (2 weight units) and the same velocity (3 distance
units/time units), and therefore, all they have the same work
capacity. Moreover, the environment doesn’t have any obs-
tacle, only exists the robots, the object and the delivery
point. Seven diferent distances between object and deli-
very point have been tested: D1 = 138 units, D2 = 184
units, D3 = 247 units, D4 = 282 units, D5 = 329
units, D6 = 359 units and D7 = 399 units. Figure 2
shows the total transported weight during these experiments
when the number of robots varies from 1 to 8. As it can be
seen, and as has been pointed by other authors, the relation
between the number of robots and the transported weight is
not linear. The difference between the expected transported
weight, calculated as the sum of the individual robot’s work
capacities, and the real transported weight can only be due
to the interference. This figure also shows that the interfe-
rence effect increases as the distance between the object and
the delivery point decreases. To analyze the interference ef-
fect, two models have been used: a polynomial fit and an
exponential fit.

The polynomial fit model suposes that the work capacity
of the group follows this equation:



groupCapacity =
∑

1≤i≤N

workCapacityi − I(N) (3)

where workCapacityi is the individual work capacity
of the ith robot of the group, calculated using equation 2; N
is the number of robots of the group and I(N) is a polyno-
mial of degree 2 that fits the interference effect as a func-
tion of the number of robots. We have used this function
because of its simplicity and it fits with a very low error the
real results. Moreover, due to its simplicity, only 3 parame-
ters must be adjusted. We have also tested polynomials of
higher degrees, but the results do not improve significantly,
and due to their complexity they have not been used during
the experiments. Thus, this polynomial models the diffe-
rence between the expected work capacity without interfe-
rence and the results of our simulations. Function I(N) has
the following form:

I(N) = αN2 + βN + γ (4)

Table 1 shows the values of the parameters of function
I(N), and figure 3 shows the form of the I(N) function
that fits the real results. To improve the quality of the fi-
gure, only some distances have been represented (D1, D2,
D3 and D7). The crosses correspond to real data. The y
axis represents the interference effect for each 1000 time
units, that is, 1000 ∗ I(N). The resulting parameters seem
to be very low, but it should be pointed out that the utility
of each robot is also very low because of the high values of
the distance value (d) of the individual utility equation, as
expressed in equation 2. However, the interference effect
can modify very significantly the group utility, for exam-
ple, when the distance is D7 and there are 8 robots, the in-
terference decrease the work capacity of the group about a
76%. Moreover, as it can be seen in table 1, as the distance
between the object and the delivery point increases, the va-
lues of α and β decrease. For the time being, a new function
which relates the interference to the distance and the num-
ber of robots is under study. Finally, we have to note that the
errors between the real results and the interference function
fitted are, in general, very low but they increase as the num-
ber of robots is reduced. In fact, our equation is not suitable
when the distance between the object and the delivery point
is very low and N = 1.

Using all this information, the utility function of a robot,
calculated in equation 2 must be modified. In fact, for a
group with N robots, this new utility measure can be defined
as the difference between the utility of the working group
with and without the Nth robot. Therefore, this equation
must be used:

utilityj = groupCapacityt(N)−groupCapacityt−1(N−1)
(5)

- α β γ
D1 0.3589 7.5029 -12.3571
D2 0.3476 2.964 -4.2857
D3 0.2432 1.3347 -2.0107
D4 0.2006 1.062 -1.6321
D5 0.1619 0.4737 -0.6071
D6 0.1494 0.37337 -0.5071
D7 0.1071 0.405 -0.5

Table 1. Parameters of the interference func-
tion for each 1000 time units(I(N))
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Figure 3. Polynomial fit of I(N) for different
values of distance between the object and the
delivery point

Where groupCapacityt−1(N − 1) is the work capa-
city of the group before the new robot was added;
groupCapacityt(N) is the group capacity with the new ro-
bot and N is the number of robots of the group included the
new one. Therefore, if this equation is calculated, we can
find that the utility of a new robot, utilityj , is:

utilityj = workCapacityj − (α(2N − 1) − β) (6)

Using the market based system vocabulary [1], we can
say that the left side of the equation 6 is the benefit that the
robot will get if it executes the task and the right side is
the cost of this execution. We can also note that the utility
of each single robot only depends on two values, α and β.
Thus, future learning algorithms only will need to tune this
two parameters, instead of making large searches in unk-
nown state spaces.

The second model that has been tested to fit the interfe-
rence is the exponential fit, where we supose that the group
work capacity can be modeled using this equation:

groupCapacity =
∑

1≤i≤N

workCapacityi(1 − ep(N))

(7)
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the group using different values of distance
between the object and the delivery point

Where N is the number of robots of the group;
workCapacityi is the work capacity of the ith robot and
p(N) is the polynomial that we have to find. After several
experiments we found that the best polynomial was a 2 de-
gree one, that is, p(N) has the same form of I(N) but with
other parameters α, β and γ. Again, this function only is
valid for N > 1. This is not a serious problem because it
doesn’t exist interference when there is only a robot. Figure
4 shows the form of the groupCapacity using equation 7.
In this figure only some distance has been represented (D1,
D2, D3 and D7) and the crosses are the real data. In all the
cases the error of the estimated work capacity of the group
is lower than a 5.3%.

5.2. Interference and task allocation

This section will show how to modify the auction process
explained in section 2 to take into account the interference
effect. We only will use the polynomial fit explained during
the last section due to its simplicity and good results. The
eventual benefits of the exponential fit are under study.

As has been explained in section 2, the leader selects the
best robots (robots with the highest bids) until the equation
1 is verified. Now, using the interference information, the
leader of the group will only include a new robot if this ope-
ration increases the work capacity of the group. Therefore,
the auction process will finish when the equation 1 or when
this condition is verified. Thus, now the robots will not only
bid using their work capacity, but also including the inter-
ference factor. In the bidding process, the robot only bids
to the group leader its work capacity, and then this leader
calculates the correct bid with equation 5. Using this extra
information about interference, and as will be seen during
the next section, the robot can find a better set of robots to
verify the deadline.

6. Task allocation experiments

During this section we will show the results of several
experiments performed to study the impact of the physical
interference on our auction method. During all the experi-
ments RoboCoT has been used, which is the same simulator
used during section 5. The robots must execute the trans-
port task explained in section 2. The transport tasks have
a deadline. The main objective is to transport each object
before its deadline. If the fulfilment of this objective is not
possible, the robots continue their execution until the object
is fully transported. The time to deadline starts when the
object appears in the environment. Thus, we prioritize the
accomplishment of the tasks’ deadline over the increment
of the total transported weight. To simplify the analysis, the
robots know the situation of each object in the environment.

During all the experiments we use 10 robots and 3 ob-
jects to gather. All the robots have the same characteristics
than during the experiments of section 5, that is, their load
capacity is 2 and the velocity is 3. All the tasks have a
weight equal to 40 weight units. Different values of dead-
line have been tested: 1500 time units, 1200 time units, and
900 time units. Deadline value is the same for all the tasks,
so if there is a long distance between the object and the de-
livery point, this task will require more robots than a nearer
one. Robots carry out the mission during 35000 time units.
After this period, we get the time required to transport each
object and the number of object gathered. Each experiment
has been repeated 4 times.

Figures 5 shows the results when the deadline is equal to
1200 time units without taking into account the interference
effect in the robot’s work capacity. Thus, to calculate the
work capacity of the group it only has been used equation 2
and not the interference effect of equation 3. In this figure
it can be seen the percentage of robots that fulfil the dead-
line. A bar with the label 0.6 represents the percentage of
tasks that its execution time exceeds a 60% of the deadline.
A bar with the label 0.5 represents the percentage of tasks
that require less than a 60% and more than 50% of the de-
adline time, etc. The negative numbers represent the tasks
that have been fulfilled the deadline. For example, the bar
with -0.2 represents the task that requires to finish less than
a 20% of the deadline time. As it can be seen, 63,4% of
the objects have been executed before the deadline. During
all the experiments the robots transported 557 objects. On
the other hand, figure 6 shows the results of the same expe-
riment but including the interference effect into the utility
function. Now, the number of tasks that fulfil the deadline
is a 88,7%, a 25,3% more tasks than during the experiments
without interference. Therefore, interference has a clear im-
pact on the system performance, and it can be used to fit
better the number of robots needed to fulfil the tasks’s de-
adline. Moreover using interference the robots transported



604 objects, a 8,4%more than without using interference.
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terference effect and with a deadline equal to
1200 time units
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Figure 6. Deadline fulfilment using the inter-
ference effect into the utility functions and
with a deadline equal to 1200 time units

The experiments using a deadline of 1500 time units do
not present significant differences between including and
not including the interference effect. This is because the
robots have enough time and work capacity to reach the de-
adline in both cases. On the other hand, when the deadline
is set to 900 time units, the results (not shown graphically
here) demonstrate that, if the interference factor is not used,
only a 24% of the tasks fulfil the deadline. Once again, this
percentage is increased up to a 42,6% when the new propo-
sed method is used.

7. Conclusion and future work

This paper analyzes the impact of the interference ef-
fect on the utility function used in an auction like system.
First of all, an auction method has been presented that, un-
like other auction methods, allows to assign multiple robots
to the same task creating coalitions. Moreover, our met-
hod includes the concept of deadline, that is, the idea that
a task should be executed, if possible, before certain pe-
riod of time. One of the main problems of all the auction

systems is to find a good utility function. To simplify this
problem when the robots must create coalitions, we propose
a framework that divide the search in 3 steps. The first and
the second step of this framework have been studied for the
execution of transport like tasks. One of the main aspects
that we have to take into account to calculate the utility
function is the physical interference between robots. This
influence has been analyzed and fitted using a polynomial
function. The experiments carried out show that including
interference in the utility functions the robots can better ful-
fil the tasks’s deadline. Thus, the importance of interference
has ben showed. To our knowledge, this is the first time that
this study has been made for this kind of tasks.

The work presented is in progress and has some challen-
ging aspects to add and to improve. We are working to use
a preemption auction method, that is a method that allow
the exchange of robots between working groups. We also
will study the interference effect between robots that belong
to different groups, and thus, complete the last step of the
framework presented in section 3. Moreover, learning al-
gorithms will be introduced to find other parameters of our
system, and a deeper analysis of the exponential fit function
will be done. Finally, we will extend this experiments using
real robots and other kind of tasks, like exploration and ot-
her environments with more obstacles. During these new
experiments other factors, like the energy of the robot, will
be taken into account to select the best robots for each task.
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