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Abstract

Task allocation is one of the main problems in multi-
robot systems. To get a good task allocation, we have
to take into account, among other factors, the physical
interference effect between robots, that is, when two or
more robots want to access the same point at the same
time. This paper analyzes the interference impact using
auction methods. We will show how the performance
of the auction utility function can be improved if the in-
terference impact is included in it. We will also analyze
the impact of the knowledge about the progress of the
task on the auction process. It will be shown that, using
the interference impact, the monitoring of the task pro-
cess is not so necessary. This method has been tested
using transport like tasks, where each object must be
transported to a delivery point before a deadline. This
is a simple task that allow us to isolate the interference
effect under study.

Introduction
Multi-robot systems can provide several advantages over
single-robot systems: robustness, flexibility and efficiency
among others. To benefit from these potential aspects se-
veral problems have to be solved. Among all these pro-
blems, we focus on task allocation issues, that is, selec-
ting the best robot or robots to execute a task. Some
tasks require that two or more robots cooperate to exe-
cute them creating coalitions. In this case we have to
find the best set of robots to execute the task and also
the optimum number of these robots. As it has been de-
monstrated in different studies (Lerman & Galstyan 2002;
Hayes 2002), the number of robots has an important impact
on the system performance due to the physical interference
effect, among other factors. Interference appears when two
or more robots need to reach the same point at the same time.
This factor has only been modeled and analyzed using very
simple environments and using a specific architecture, like
for example in (Lerman & Galstyan 2002). On the other
hand, our method is based on external observations of the
system behavior, and thus, it doesn’t make any assumption
about the architecture of the robots.
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A lot of research has been done to solve the task allocation
and coalition formation problems but they are still open pro-
blems. One of the most used and well studied task allocation
solutions are auction methods (Dias & Stentz 2003; 2002;
Gerkey & Mataric 2002; Kalra, Ferguson, & Stentz 2005).
Only a few auction strategies, like (Vig & Adams 2005;
Chaimowicz, Campos, & Kumar 2002), allow to allocate
several robots to the same task, but these methods don’t
take into account the interference effect. Moreover, one
of the main problems of all auction methods is to find or
to learn a good utility function. The utility function de-
pends on a lot of factors, and very specially on the inter-
ference effect. On the other hand, several work has been
done to reduce the interference effect but without using
auction mechanisms (Zuluaga & Vaughan 2005; Goldberg
& Mataric 1997; Ostergaard, Sukhatme, & Mataric 2001;
Agassounon & Martinoli 2002).

In this paper we analyze how to introduce the interference
effect in the auction’s utility functions, extending our previ-
ous work (Guerrero & Oliver 2006). We study the impact
of this factor showing that the system performance can be
improved when the interference is taken into account. Anot-
her problem that this paper tries to analyze is how does the
monitoring of the task progress affects the system perfor-
mance. The monitoring process can be a so complex task
which requires sophisticated sensorial and communication
capacities. The first experimental results show that using
our interference model with the auction process, the robots
don’t need to monitor the task to know how to bid. This bid
only depends on the initial conditions of the task. To our
knowledge, this is the first time that this kind of analysis is
made using auction strategies.

This paper also proposes a framework to reduce the com-
plexity on finding utility functions when robots must create
coalitions. This framework divides the learning process in
three stages. During the first phase, only the knowledge of
individual robots is included in the utility function. The se-
cond phase includes the knowledge about robots that form
the coalition. Finally, the last stage includes the information
of other coalitions. One of the most importat piece of infor-
mation that should be included in the second phase is a me-
asure of the physical interference produced between robots
of the same group. To test our system we use a foraging like
task, where the robots must find a set of objects and carry



them to a delivery point. During this task, multiple robots
can cooperate to transport the same object. In this case we
have to decide how many robots and which ones we need to
transport each object according to the object weight and to
the robots characteristics. Each task, or object, must be exe-
cuted before a deadline, and the goal of our auction method
is to maximize the number of tasks executed before their
deadline. The results show that including the interference
information in the utility function, the system performance
can be significantly improved.

The rest of this paper is organized as follows: the second
section presents the task allocation algorithm used; the next
section exposes the designed framework to simplify the se-
arch of good utility functions; section ”Group utility func-
tion: interference effect” analyzes the effect of the physical
interference on the utility functions; section ”Task Alloca-
tion Experiments” shows the results of the task allocation
system using the interference effect; finally, the last section
exposes some conclusions and future work.

Task Allocation Method
Our task allocation mechanisms, including the groups’ for-
mation, membership policy and task assignment is briefly
described in the following paragraphs. This new mecha-
nism extends our previous work (Guerrero & Oliver 2004;
2006) to take into account deadlines and it also introduces
the concept of partial knowledge about the task progress.
Here we only expose in a very concise way the main aspects
of our method to understand the interference model that will
be explained in the ”Task Allocation Experiments” section.

A classical auction method has been modified to select
which robots, and very specially, how many of them are ne-
eded to execute a task. In an initial stage, each robot is lo-
oking for a task. When a robot finds a new task, it will try
to lead it. There is only one leader for each task. The details
about how a robot can be promoted to leader, can be found in
(Guerrero & Oliver 2004). If a robot is promoted to leader, it
will create, if necessary, a work group; that is, a set of robots
that will cooperate to execute this specific task. In that case,
the leader must decide which the optimum group size is and
what robots will be part of the group. To make this decision,
the leader uses an auction like mechanism. During this pro-
cess the leader will be the auctioneer and the other robots
will bid using their work capacity. The work capacity is the
amount of work that a robot can execute per time unit, thus,
this value is the utility function of our auction method or the
price that the robots want to pay to participate in the task.
The leader selects the robots with the highest work capacity
using a greedy algorithm, until it detects that the group is
able to reach its deadline, that is, until this condition is veri-
fied:

DLg =
taskWorkLoad

groupCapacity
≤ DL (1)

WheretaskWorkLoad is the amount of work required
to finish the assigned task that is calculated by the leader;
groupCapacity is the work capacity of the group, that is,
the amount of work that the group can process each time unit

and, finally,DL is the deadline of the task. As it can be seen,
DLg is the expected time required to finish the task. The-
refore, the selection process is a very simple greedy method
with a computational complexity ofO(n), wheren is the
number of robots.

If during the task execution the leader detects that the de-
adline (DL) can not be fulfilled, it starts a new auction pro-
cess to get, if it’s possible, new robots. This can happen if
the leader monitors the task execution progress, that is, it
knows at any time the current value of thetaskWorkLoad
parameter, and, also, the initialgroupCapacity has not
been correctly calculated. In general, it’s not easy to get
this value because the work capacity of the group is not
the sum of the work capacity of each single robot, that is
groupCapacity 6= ∑

1≤i≤N workCapacityi, whereN is
the number of robots of the group. This inequality is mainly
due to the interference effect. During the following secti-
ons we will propose a method to calculate the individual uti-
lity of each robot and specially the group utility. From this
point, we will consider the robot utility and the group utility
synonymous of robot’s work capacity and work capacity of
the group.

A Framework to Get Utility Functions
This section describes a framework that will help us to get a
good utility function for auction methods when robots must
create coalitions. Getting a good utility function is a difficult
process, very specially when the robots must form coalitions
or when the utility of a robot depends on the utility of other
robots. We can use learning algorithms to get this function,
but these algorithms require a lot of time, and moreover, it
is not clear what the robot has to learn. Also, in general,
utility functions are not linear, so the learning process can be
very hard. To simplify the process, some parameters can be
previously analyzed, using an ideal environment, and then
modified during the execution of the task. We will do this in
3 steps:

• Individual utility: during the first stage, we evaluate the
characteristics of each single robot without taking into ac-
count the others. Here it will be include some characteris-
tics like velocity, acceleration, etc.

• Group utility: in this step, the robot will take into account
the other ones to create a coalition or working group. Here
some parameters, like interference effect, will be inclu-
ded. That is, the robots will calculate the utility function
of the group.

• Inter-Group utility: finally, just the leaders have to take
into account that the decision of one group can affect other
groups. This inter-group dependency must be included in
the utility function during the final step.

In this paper we analyze the first and second step paying
special attention to the interference effect. As an example of
how to use the framework proposed, a transport like task will
be used. The task to be carried out by the robots is described
as follows: some randomly placed robots must locate ob-
jects, randomly placed too, and carry them to a common de-
livery point. Figure 1 shows a typical initial situation, where



Figure 1: Example of initial situation of transport task

the squares represent the objects to collect, the delivery point
is the big circle at the right of the image and the robots are
the little circles. Each object to gather has a weight and each
robot has a load capacity. The robot load capacity is the
amount of weight that it can carry at once. Thus, if a ro-
bot cannot carry the entire object at once, it takes a part of
it, goes to the delivery point and comes back to the object
for more bits. To maintain the initial conditions, when an
object is fully transported to the delivery point, immediately
appears another one, with identical characteristics in a ran-
dom place. Of course, this is a very simple environment but
it allows us to isolate the interference effect from other fac-
tors that can appear in more complex tasks. It is under study
whether a similar reasoning can be made for different kind
of tasks, like exploration, surface cleaning or mapping for
example.

Individual utility function

We will now describe the first step of our framework, called
individual utility, to find the utility function of each single
robot. The transport task explained during the last section
will be used as an example. The work capacity of a robot is
the amount of object’s weight that this robot can transport to
the delivery point per time unit. Under ideal conditions, that
is, assuming an open environment without any other obsta-
cle or robot between the object and the delivery point, the
robot’s work capacity is easy to calculate. Letri be a robot
andCi the load capacity of the robot.Vi is the maximum
velocity, d the distance between the object and the delivery
point andC the weight of the object. The number of trips
between the delivery point and the object that the robot must
do to transport the full object is2∗ C

Ci
. If the acceleration and

deceleration time is neglected, for each one of these trips the
robots will needd

Vi
time units. We also consider that a robot

needs one time unit to load and to unload each weight unit.
For example, if the robot has to load 2 weight units it will
require 2 time units to load all this weight and 2 time units
more to unload it when it arrives to the delivery point. Thus,
to load and to unload the full object, the robot will spend2C
time units. Therefore, the total time required to transport the
full object isT = 2 C

Ci
(Ci + d

Vi
) and the work capacityCT is:

workCapacityi =
CiVi

2(CiVi + d)
(2)
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Figure 2: Total transported weight during the experiments to
model interference effect

Group Utility Function: Interference Effect

During this section we will analyze the second step of our
framework to get the utility function of the group. We will
also use the transport task to show how to get this function
value. The utility of the group will be defined as the ex-
pected amount of work that the set of robots can execute
per time unit. This value is not the sum of each indivi-
dual robots’ work capacity because of the interference ef-
fect, among other factors. Thus, first of all, we will model
the interference effect and then we will show how to use
this information to get the utility function of the group. All
the experiments carried out to model the interference have
been executed using a multi-robot simulator called Robo-
CoT (Robot Colonies Tool). RoboCoT is a software tool de-
veloped by the authors at the University of Balearic Islands
(Guerrero & Oliver 2001).

Interference Effect Analysis

To analyze the interference effect we have executed a task
where several robots must transport a single object and the
total weight transported by the robots after 40000 time units
is calculated. All the robots have the same load capacity (2
weight units) and the same velocity (3 distance units/time
unit), and therefore, they all have the same work capacity.
Moreover, the environment doesn’t have any obstacle but
the robots, the object and the delivery point. Seven diffe-
rent distances between the object and the delivery point have
been tested:D1 = 140 units,D2 = 180 units,D3 = 250
units,D4 = 280 units,D5 = 330 units,D6 = 360 units and
D7 = 400 units. Figure 2 shows the total transported weight
during these experiments when the number of robots varies
from 1 to 8. As it can be seen, and as has been pointed by
other authors, the relation between the number of robots and
the transported weight is not linear. The difference between
the expected transported weight, calculated as the sum of
the individual robot’s work capacity, and the real transpor-
ted weight can only be due to the interference. Figure 2
also shows that the interference effect increases as the dis-
tance between the object and the delivery point decreases.
To analyze the interference effect, a polynomial fit model
has been used.



The polynomial fit model suposes that the work capacity
of the group follows this equation:

groupCapacity =
∑

1≤i≤N

workCapacityi − I(N) (3)

whereworkCapacityi is the individual work capacity of
the ith robot of the group, calculated using equation 2;N is
the number of robots of the group andI(N) is a polynomial
of degree 2 that fits the interference effect as a function of
the number of robots. We have used this function because
of its simplicity and because it fits with a very low error the
experimental results. Moreover, due to its simplicity, only 3
parameters must be adjusted. We have also tested polyno-
mials of higher degrees, but the results do not improve sig-
nificantly the performance of the system. Thus, we assume
that this polynomial models the difference between the ex-
pected work capacity without interference and the results of
our simulations. FunctionI(N) has the following form:

I(N) = αN2 + βN + γ (4)

Table 1 shows the values of the parameters of function
I(N), and figure 3 shows the form of theI(N) function
that fits the real results. To improve the quality of the fi-
gure, only some distances have been represented (D1, D2,
D3 andD7). The crosses correspond to real data. The y
axis represents the interference effect for every 1000 time
units, that is,1000 ∗ I(N). The resulting parameters seem
to be very low, but it should be pointed out that the utility
of each robot is also very low because of the high values
of the distance value (d) of the individual utility equation,
as expressed in equation 2. However, the interference effect
can modify very significantly the group utility. For example,
when the distance isD7 and there are 8 robots, the interfe-
rence decreases the work capacity of the group down to a
58%. Moreover, as it can be seen in table 1, as the distance
between the object and the delivery point increases, the va-
lues ofα andβ decrease. For the time being, a new function
which relates the interference to the distance and the num-
ber of robots is under study. Finally, we have to note that the
errors between the real results and the interference function
fitted are, in general, very low but they increase as the num-
ber of robots is reduced. In fact, our equation is not suitable
when the distance between the object and the delivery point
is very low andN = 1.

- α β γ
D1 0.3589 7.5029 -12.3571
D2 0.3476 2.964 -4.2857
D3 0.2432 1.3347 -2.0107
D4 0.2006 1.062 -1.6321
D5 0.1619 0.4737 -0.6071
D6 0.1494 0.37337 -0.5071
D7 0.1071 0.405 -0.5

Table 1: Parameters of the interference function for each
1000 time units(I(N))
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Figure 3: Polynomial fit ofI(N) for different values of dis-
tance between the object and the delivery point

Using all this information, the utility function of a robot,
calculated in equation 2 must be modified. In fact, for a
group with N robots, this new utility measure can be defined
as the difference between the utility of the working group
with and without the Nth robot. Therefore, this equation
must be used:

utilityj = groupCapacityt(N)−groupCapacityt−1(N−1)
(5)

Where groupCapacityt−1(N − 1) is the work capa-
city of the group before the new robot is added;
groupCapacityt(N) is the group capacity with the new ro-
bot andN is the number of robots of the group including the
new one. Therefore, if this equation is calculated, we can
find that the utility of a new robot,utilityj , is:

utilityj = workCapacityj − (α(2N − 1)− β) (6)

Using the market based system vocabulary (Dias & Stentz
2003), we can say that the left side of the equation 6 is the
benefit that the robot will get if it executes the task and the
right side is the cost of this execution. We can also note that
the utility of each single robot only depends on two values,
α andβ. Thus, future learning algorithms will only need to
tune this two parameters, instead of making large searches
in unknown state spaces.

Interference and Task Allocation
This section will show how to modify the auction process
explained in ”Task Allocation Method” section to take into
account the interference effect.

As it has been explained in the second section, the leader
selects the best robots (robots with the highest bids) until the
equation 1 is verified. Now, using the interference informa-
tion, the leader of the group will only include a new robot
if this operation increases the work capacity of the group.
Therefore, the auction process will finish when the equation
1 or when this condition is verified. Thus, the bidding pro-
cess will now consist on the evaluation of 6. The first term
(workCapacityj) will be sent by each robot and the final
term will be calculated by the leader. Using this extra infor-
mation about interference, and as it will be seen during the



next section, the robot can find a better set of robots to verify
the deadline.

The Monitoring Process
During the execution of a task the leader can periodically
receive information about the remaining weight of the object
(taskWorkLoad) to be transported. If available, the leader
of the task uses this information to make a guess about the
actualtaskWorkLoad using a simple linear equation like:

WL(t) = WL(tm)− groupCapacity ∗ (t− tm) (7)

Where tm is the time when the leader receives infor-
mation about the task process andWL(t) is the expected
taskWorkLoad at instantt.

During a continual monitoring task progress execution,
the leader knows in each moment the exact value of the
taskWorkLoad, and therefore, it can start another auc-
tion process if inequality 1 is not verified. In a no mo-
nitoring task process execution, the leader only knows the
taskWorkLoad at the beginning of the task, and then it
uses equation 7 to predict thetaskWorkLoad, with a uni-
que constantWL(tm) during the whole process.

Task Allocation Experiments
In this section we will show the results of several experi-
ments performed to study the impact of the physical interfe-
rence on our auction method. We will also analyze how the
monitoring process affects to the system performance. Du-
ring all the experiments RoboCoT has been used, which is
the same simulator used in the last section. The robots must
execute the transport task explained in the second section.
The transport tasks have a deadline. The main objective is
to transport each object before its deadline. If the fulfilment
of this objective is not possible, the robots continue their
execution until the object is fully transported. The time to
deadline starts when the object appears in the environment.
Thus, we give priority to the accomplishment of the tasks’
deadline over the increment of the total transported weight.
To simplify the analysis, the robots know the situation of
each object in the environment.

During all the experiments we use 10 robots and 3 ob-
jects to gather. All the robots have the same characteristics
as in the experiments of the last section, that is, their load
capacity is 2 and the maximum velocity is 3. All the tasks
have a weight equal to 40 weight units. Three different kind
of experiments have been executed: greedy robot selection,
continual monitoring task progress and no monitoring task
progress. In all the cases the value of the deadline is equal
to 1200 time units, other deadline values have been tested in
our previous work (Guerrero & Oliver 2006). This deadline
value is the same for all the tasks, so if there is a long dis-
tance between the object and the delivery point, this task will
require more robots than a nearer one. In greedy robot selec-
tion experiments all the leaders try to create a working group
as great as possible without taking into account the deadline
value or the task characteristics, that is, the leader tries to
get as many robots as possible. Robots carry out the mission

during 30000 time units. After this period, we get the time
required to transport each object and the number of object
gathered. Despite having only 3 objects in the environment,
when an object is fully transported to the delivery point, it
immediately appears another one in a random place. There-
fore, the number of objects gathered can be greater than 3.
Each experiment has been repeated 4 times.

Figure 4 shows the percentage of tasks that fulfill a de-
adline equal to 1200 time units during the execution of the
greedy robot selection experiments. The bar with a label
0.6 represents the percentage of tasks that its execution time
exceeds a 60% of the deadline. The bar with a label 0.5 re-
presents the percentage of tasks that require less than a 60%
and more than 50% of the deadline time, etc. The negative
numbers represent the tasks that have been fulfilled the de-
adline. For example, the bar with -0.2 represents the tasks
that require to finish less than a 20% and more than a 30%
of the deadline time. During these experiments 297 objects
were fully transported to the delivery point. A 72,7% of the
tasks were executed before the deadline.
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Figure 4: Deadline fulfilment during greedy robot selection
experiments and with a deadline equal to 1200 time units

Figure 5 shows the results of the continual monitoring
task progress experiments with a deadline equal to 1200 time
units, taking into account the interference effect in the ro-
bot’s work capacity. Thus, to calculate the work capacity of
the group, equation 3 has been used. In this case a 98,8% of
the tasks have been executed before the deadline, a 26,1%
more objects than during the greedy robot selection experi-
ments. Moreover, during the experiments, 323 objects were
fully transported, a 8,8% more objects than with the last
experiments. Another set of experiments has been execu-
ted only taking into account the continual monitoring of the
task, but not using the interference effect model. The re-
sults obtained are not presented here but they are extremely
similar to these previously shown in figure 5

The results of the experiments without monitoring the
task progress can be seen in figures 6 and 7. As in the pre-
vious cases, the deadline is equal to 1200 time units. Figure
6 shows the results without modeling the interference effect,
that is to say, to calculate the work capacity of the group
equation 2 has been used. In this case only a 66,8% of the
tasks fulfilled the deadline, less tasks than during the greedy
experiments. On the other hand, the number of tasks that
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Figure 5: Deadline fulfilment during continual monitoring
task progress experiments, using interference effect and with
a deadline equal to 1200 time units

require a lot of time to finish has decreased with regard to
greedy experiments. For example, now there are no tasks
requiring more than a 50% of the deadline time to finish, but
during the greedy experiments a 5,4% of tasks required this
time. The total number of objects transported during these
experiments was equal to 286. Finally, figure 7 shows the
results of the no monitoring task progress experiments, but
taking into account the interference effect. During these ex-
periments the percentage of tasks that fulfill the deadline was
equal to 93,2%. Thus, the number of tasks that fulfill the de-
adline has been increased a 26,4% with regard to the system
that don’t use interference effect. Therefore, the interference
factorI(N) seems to be useful. On the other hand, we can
see that the monitoring process can improve the system per-
formance, but it doesn’t produce a great benefit. The number
of tasks that fulfill the deadline has been increased a 5,6%
using continual monitoring compared to the system that do
not uses it. Therefore, using an interference model the moni-
toring process can be avoided. The reader should remember
that for the continual monitoring the robots need to be con-
tinuously sensing the task state, while the interference effect
can be modeled off-line.
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Figure 6: Deadline fulfilment during no monitoring the task
progress without using interference effect and with a dead-
line equal to 1200 time units
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Figure 7: Deadline fulfilment during no monitoring the task
progress, using interference effect and with a deadline equal
to 1200 time units

Conclusion and Future Work
This paper analyzes the impact of the interference effect on
the utility function used in an auction like system. It also
studies how monitoring the task progress can affect to our
method. First of all, an auction method has been presented
that, unlike most of other auction methods, allows to assign
multiple robots to the same task creating coalitions. More-
over, our method includes the concept of deadline, that is,
the idea that a task should be executed, if possible, before a
certain period of time. One of the main problems of all the
auction systems is to find a good utility function. To sim-
plify this problem when the robots must create coalitions,
we propose a framework that divide the search in 3 steps.
The first and the second step of this framework have been
studied for the execution of transport like tasks. One of the
main aspects that we have to take into account to calculate
the utility function is the physical interference between ro-
bots. This influence has been analyzed and fitted using a
polynomial function. The experiments carried out show that,
including interference in the utility functions, the robots can
better fulfil the tasks’s deadline. Thus, the importance of in-
terference has ben showed. Moreover, it seems that using
the interference factor during the auction process, the leader
can predict better the evolution of the task and, thus, a moni-
tor system is not required. We have to take into account that
monitoring the task progress can be a very hard process.

The work presented is in progress and has some challen-
ging aspects to add and to improve. We are working to use
a preemption auction method, that is a method that allows
the exchange of robots between working groups. We will
also study the interference effect between robots that belong
to different groups, and thus, complete the last step of the
framework presented in ”A Framework to Get Utility Func-
tions” section. Also, a deeper analysis of the monitoring
effect over the system, using different deadline values, is ne-
cessary. Moreover, learning algorithms will be introduced
to find out other parameters of our system. Finally, we will
extend these experiments using real robots and other kind of
tasks, like exploration and environments with obstacles. Du-
ring these new experiments other factors, like the energy of
the robot, will be taken into account to select the best robots



for each task. We hope that some concepts from the classical
real time systems literature will help us to formalize and to
improve the system performance.
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