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Abstract. Task allocation is a complex and open problem for multi-robot systems.
In this paper, we present three strategies for dynamically allocating tasks in a colony
of mobile robots. The system is partially inspired on auction and thresholds-based
methods and tries to determine the optimum number of robots that are needed to solve
specific tasks, or sub-goals, in order to minimize the execution time of a mission.
The method has been extensively tested for a modification of the well-known foraging
task. Initial situations with different combinations of workload and work capacity have
been used to test the proposed solution on robot teams with different homogeneities.
Experimental results are presented to show the benefits of the proposed methods.

1 Introduction

Multi-robot systems can provide several advantages over single-robot systems: robustness,
flexibility and efficiency among others. To benefit from these potential aspects the robots
must cooperate to carry out a common mission. It is well known that several problems have
to be solved to archive this aim. Some tasks can be carried out by a single robot but if two
or more robots can cooperate, the task can be archive faster. In this situation, the following
question has to be answered: How many robots and which of them do we need to optimize
the execution time of this task?. As it has been demonstrated in different studies, if the num-
ber of robots is increased with wrong criteria, the execution time can increase, among other
causes, due to the interference effect. Interference is the result of competition for the shared
resources, especially the physical space and the robots themselves. In [10] it is shown how the
interference can affect the execution time of the foraging tasks and how increasing the num-
ber of robots also causes the time to finish the mission to increase. Besides, if a certain task
captures the attention of an excessive number of robots, other tasks can be forsaken. There-
fore, our challenge is to design a distributed system to coordinate a heterogeneous robot team
working in an unknown and dynamic environment. We mainly focus on the task allocation,
that is, selecting the best robot or robots to perform a specific task.

In this paper, we propose and evaluate a first version of a decentralized method of task
allocation for groups of heterogeneous robots executing foraging-like tasks. Our method is
partially inspired in both the auction-based works [7], [6] and the threshold models of the
swarm intelligence approach [4]. Thus, strategy presented here are hybrid solutions between
those approaches. Special attention will be focused on deciding the optimal number of robots
to execute a specific task. This problem is closely connected with the diversity level of the



team of robots, as will be shown later. To measure the heterogeneity of the robot collectivity
we use, among others, the social entropy proposed by T. Balch [3]. We will also study the
relation between this metric and some of our architecture parameters. Also, three different
variations or strategies of our method are presented: ”no monitoring and no preemption”,
”monitoring and no preemption” and ”monitoring and preemption”. The differences among
these three strategies lie in the capacity of monitoring the task progress and in the group
preemption ability. The preemption ability is the capacity for change the task assigned to a
robot.

In the system presented here, when a robot detects a non-assigned task tries to organize a
working group. This group consists of all the robots that will cooperate to execute the specific
task. One of the robots of this group will be the leader. The leader will decide how many
robots and which of them will be needed to execute the task. To select these robots the leader
starts an auction process, similar to [7]. The auction mechanism does not allow deciding how
many robots will form the group. Thus, to take this decision, the leader together with the
auction mechanism has to calculate the ratio between the work to do and the work capacity
of the robots in the group. One of the objectives of the leader is to create a group as reduced
as possible with the maximum work capacity. It is important to mention that the number
of robots of the group can vary during the task execution. As it will be shown, during the
mission, the leader can accept more robots as members of the group while other robots can
abandon it too. In non preemption executions a robot can only abandon its task to became
leader and create its own group. On the other hand, the preemption approach implements
an inter-group or inter-leader negotiation mechanism. During this negotiation the leader can
transfer one or more of its robots to another group. The experiments shown here are inspired
on the so-called foraging or transportation tasks. In the present case, each robot has a limited
load capacity (work capacity). If a robot can’t load the full object, it loads a portion of the
weight, goes to the delivery point and comes back for more.

The rest of this paper is organized as follows: section 2 presents some relevant work in the
field of multi-robot task allocation; section 3 describes our methods and their implementation;
section 4 shows the experiments carried out to validate the different approaches; section 5
explains some conclusions and future work is stated.

2 Related work

The computer engineering community has done a lot of research to solve the task allocation
problem. In recent years, some studies on multi-robot systems have used some similar ideas
to solve the problem of how robot teams can distribute their individual work capacity to
efficiently achieve a common task. This section shortly relates some of those researches that
have inspired us. These approaches are the marked-based systems, inspired in the economy
markets, and the threshold-based systems, inspired in the swarm intelligence paradigm.

The marked-based approaches are based in a negotiation between the robots to cooperate
[7], [6]. The robots act as self-interest agents and try to maximize their own benefits and
reduce the costs. When a robot executes a task it can obtain a benefit but it also has to pay an
execution cost. The cost may be, for example, the distance between the robot and the target
point, and the profit could be the reduction in the global work to be executed by the robots. If
each robot, as self-interest agent, reduces its own cost and maximizes its benefit, the profit for
the whole system will be maximized. The robots can subcontract part of the task execution



to other robots. The subcontracted robots can carry out the task with a lower cost or higher
benefit. Finally, the profit is distributed among all the robots which cooperated during the
execution. Thus, the overall system profit is increased thanks to the robot cooperation.

Dias and Stenz [6] have proposed cooperation mechanisms based on the marked-based
metaphor. In the same line, Gerkey and Mataric are working on auction-based mechanisms
[7]. In these systems the robots bid for the tasks. The robot with the highest bid wins the
auction process and gets the task. The bids are adjusted to the robots’ interest (capacity)
to carry out the goal. Thus, when a robot finds a task, it can start an auction process and
subcontract its execution to other robots.

Other works can be found in the literature inspired in some biology metaphors. One of the
best known are the so-called swarm intelligence paradigm systems, which are inspired in the
collective behaviour of insect colonies like ants and wasps. To implement these systems some
authors make use of the response thresholds systems [4], [9]. In these systems, each robot has
a stimuli associated with each task to execute. The stimuli value depends on some intrinsic
parameters of the robots and the tasks. When the level of the stimuli exceeds a threshold,
the robot starts its execution. A pure threshold-based system dosen’t requires communication
mechanisms between robots and therefore, there are no negotiation protocols. Recently, some
authors include a very simple communication mechanism to improve the system performance
[1] . In this system the robots can exchange the information about the task location, but any
negotiation protocol is implemented.

The pure threshold-based systems don’t require any kind of communication mechanisms.
Therefore, they are not limited by the bandwidth communication restrictions and they are very
scalable. Nonetheless, a disadvantage of these systems is the absence of knowledge about the
other robots. Thus, a robot can decide by itself to execute a task when other option could
be better. Moreover, using a pure threshold-based system the execution of plans shared by
several robots would be very difficult. The marked-based systems do not have this limitation
but they require communication mechanisms. These communication requirements limit the
system scalability. It has to be pointed out that both for threshold-methods and marked-based
methods, a function has to be designed to quantify the cost and the profit values of a task.
This function is task dependent, thus, when the robot team executes a different task, a new
functions has to be used. In [4] a comparison between biology-based and marked-based task
allocation algorithms is presented. The experiments shown in that paper are performed with
industrial manipulators and they conclude that the performance of both, biology-based and
marked-based systems is very similar.

Our approach is partially inspired in the auction mechanisms and, consequently, the best
robot for a specific task can be chosen. However, while previous works cannot determine the
optimal number of robots to execute a task, our method allows deciding this number as a
function of both the amount of work required to complete the task and the work capacity of
the robots involved in the auction process. Moreover, during the leader to leader negotiation
the robots bid using a threshold-based like equation. Thus, this paper try to shows the initial
works to create an hybrid system which will combine the advantages of both, threshold and
market-based systems.



3 Working group leading, formation and updating

The coordination mechanisms description, including the groups’ formation, the leading, the
membership policy, the task assignment and the preemption strategies is described in the
following paragraphs.

3.1 Single robot to leader negotiation

This section describes the negotiation that is carried out between each single robot and one
group’s leader. This negotiation level corresponds to a non preemption strategy, and therefore
it doesn’t allow the exchange of robots (work capacity) between groups.

In an initial stage, each robot is looking for a task. When a robot finds a new task by itself,
it will try to lead it. As there can be only be one leader per task, the candidate will first check
if this task is assigned to any other robot or not. If there are two or more robots requesting
the leadership of the same task, it will be assigned to the ’best’ robot. To determine their
suitability, we evaluate each candidate using a measure that depends on the specific task to
do. During our experiments this measure is the robots’ load capacity.

When a robot is promoted to leader of a task, it evaluates the work needed to carry it out.
Then, it will create, if necessary, the work group; that is, the set of robots that will cooperate
to execute this specific task. In that case, the leader must decide which is the optimum group
size. In this paper, we propose the leader to decide, as it will be exposed in the auction
mechanism, using the following equation:

THg =
taskWorkLoad∑

1≤i≤N workCapacityi

< TH (1)

WheretaskWorkLoad is the amount of work required to finish the assigned task that is
calculated by the leader.N is the number of robots of the group andworkCapacityi is the
individual work capacity of the ith robot. Finally,TH is the group threshold; this value is a
parameter that will be used to compare the efficiency of the group formation policy. Using
equation (1) the leader fixes the maximum ratio between work to do and available work
capacity and, therefore, it fixes the maximum number of robots that will be part of the group.
This concept is similar to the response threshold of the swarm intelligence algorithms, where
the stimulus for each robot is a combination of its load capacity and the taskWorkLoad. In
the present case, the decision process is also centralized on the leader.

The leader monitors the task execution, thus, in any time the leader knows the current
value of the taskWorkLoad parameter of the equation (1). Obviously, the value must decrease
as the execution progress. The practical problem is how can the leader monitor this progress?,
and is it necessary to monitor the progress?. Section 4 shows the impact of the monitor process
over the execution time.

To select the robots that will be part of its group the leader uses an auction process. Unlike
other auction-based methods, we use the inequality (1) to select the robots. This process is as
follows:

• Auction beginning: the leader sends a massage to inform that it has found a new task and
needs to form a working group.

• Bids: each robot without any assigned task (robots that are not part of any group) sends
to the leader its work capacity.



• Auction finishing: after a fixed time has passed, the leader closes the auction and doesn’t
accept more bids.

• Selecting the robots: the leader selects the robots with the highest work capacity provided
the inequality (1) is verified.

• Agreement and refuse negotiation: The leader sends an agreement massage to the selected
robots and, if the offer is accepted, they start to work for the group. The robots that do not
accept to be part of the group reply with a refuse message and the leader subtracts their
work capacity from the group capacity. A robot can refuse an offer if it joined another
group or it became a leader task during the auction process.

If after this process the equation (1) is not fulfilled, the leader starts a new auction round.
This new auction round will include a leader to leader negotiation as will be explained in
section 3.2. When the task is finished, the working group is dissolved immediately.

Using only this kind of negotiation, the size of the group can vary during the execution
of the task by means of two mechanisms. Group size can be reduced by a robot segregation
process. If a non-leader robot, which is part of a group, finds a new task, it will try to leave its
present group and become a leader of the new task. When this situation occurs, the segregated
robot communicates this circumstance to its old leader which will recalculate equation (1)
for the new situation of its group and, eventually, can initiate a new auction process. On
the other hand, the size of the group can increase thanks to a robot aggregation process.
This process takes place when after a certain time has passed a robot does not have any
task to execute. Then, it sends a message asking for a task. If a leader receives one of these
messages, it accepts the robot in its group if the group size is less than a fixed number. Using
this mechanism, the inactive robots are avoided. A new mechanism to modify the group size
will be included thanks to the leader to leader negotiation.

3.2 Leader to leader negotiation: Preemption

The leader to leader negotiation allows the exchange of robots between groups. If after the
single robot to leader negotiation the equation (1) is not fulfilled, the group’s leader tries to
contract the robots which are working in another task. To select these robots, each leader bids
for the task using both its robots load capacity, as in the previous negotiation, and its working
group energy. Using the operating systems vocabulary, during the experiments this kind of
algorithm will be called strategies with preemption.

The working group energy is a measure to indicate the group’s tendency to send its robots
to another group. A group with a high energy value is a potential sender of robots to other
tasks and, on the other hand, a low energy value indicates that this group is a receptor of new
robots. The energy is calculated using the following equation:

Eg =
GroupSize

THg

(2)

WhereGroupSize is the number of group robots andTHg is obtained from equation (1).
A high value ofTHg indicates that the group has a low value of work capacity compared
with the task to carry out. In this case the group needs more robots and, therefore, the energy
is low. Moreover, the leader has to try to create a group with the minimum number of robots



to reduce the interference effect between robots. Thus, a group with a lot of robots needs to
reduce this number, and this means a higher energy value.

The energy concept is similar to the stimulus intensity value used by some threshold based
algorithms [4]. Using stimulus the robots have to belong to a specific cast or group with its
particular characteristics. Nevertheless, using the energy concept, each robot has its own load
capacity and it is not necessary a preliminary division in groups. Finally, the main difference
between the threshold and energy strategies lies in the fact that the energy value will be used
as the bid value in an action process, and therefore, the decisions will be taken knowing its
impact over the others groups. In a pure threshold based system this decision is reactive and
it is taken in independence from the others groups.

To select robots from other groups the leader uses another auction process. This process
is as follow:

• Auction beginning: if the equation (1) is not fulfilled after the previous auction process,
the leader sends a ’leader to leader’ negotiation request.

• Bids: each leader sends the value of its energy and the information about the robots of
the group; this is, the identification of each robot and its load capacity. A robot only can
abandon a group after a fixed time passed since its incorporation. During the experiments
this time is equal to 85 units. As in the previous auction process, if a robot without any
assigned task received this message, it sends its load capacity.

• Close Auction: after a fixed period of time the leader closes the action and doesn’t accept
more bids.

• Selecting robots without assigned task: first of all the leader selects the robots without any
assigned task and with the higher load capacity.

• Selecting robots associated to a previous group: if the equation (1) is not fulfilled, the
leader selects the robots sent by the others leaders. The goal of this selection is create a
more stable system. By the way, a system where the groups have low energy will be more
stable than a system made up of groups with high energy. A more appropriate definition
of system stability is now under study.

The leader, before starting the auction process, pre-selects the robots that will participate
in the auction process. A robot from another group is pre-selected if reassigning it to the
new group produces a reduction of the maximum value of the global energy; that is, if the
following condition is verified:

MAX(Eg1, Eg2) > MAX(E
′
g1, E

′
g2) (3)

WhereMAX(v1, v2) returns the maximum value of v1 and v2.Eg1 is the energy of the
acceptant group andEg2 is the energy of the requesting group before the transaction.E

′
g1 and

E
′
g2 are the predicted energies after the transaction. Therefore, the left side of the equation

(3) is the current state of the system and the right side represents the situation after the robot
selection. Finally,O is the perceptual overhead produced by the group change. This factor
avoids the robot selection when the benefit obtained by the group is very low. During the
experiments the overhead is equal to 50% and, therefore, theO value is equal to 1,5. The



selected robots bid during the auction process not only using its work capacity, like in the
single robot to leader negotiation, but using the following value:

B = workCapacity ∗ E
′
g2 (4)

WhereWorkCapacity is the individual work capacity of the robot andE
′
g2 is the energy

of the robot’s group if this robot is selected. The robot with a higher bid is selected. The
action process finished when the equation (1) is fulfilled or when no more robots validate the
equation (3). This auction process allows selecting the best robot between all the pre-selected
candidates. If after this process the equation (1) is not fulfilled another auction process is
started.

4 Experiments and validation

This section explains the experiments carried out to validate our approach. It is also shown
how the value of the group threshold and the social entropy of the group affect the execution
time. We have also evaluated the impact of the task work load monitoring and the effects of
the leader to leader negotiation over the team. All the experiments have been done using the
RoboCoT environment. The mission to be carried out by the robots is a modification of the
classical foraging task.

4.1 Measure of the homogeneity of the collective

It has to be emphasized that each robot can have a different work capacity. Thus, we have
focused part of our study on the measure of the performance of the collective while its ho-
mogeneity is changed. To characterize the homogeneity of the collective of robots we use
two entropy measures. On the one hand, the simple entropy measure based on the Shannon’s
information entropy:

H =
∑

1≤i≤M

pi log2(
1

pi

) (5)

whereM is the number of classes of robots andpi is the proportion of robots in the ith
class. On the other hand, social entropy as formulated by Balch [3] extends simple entropy
to take into account the quantitative differences between groups. In our experiments, these
differences are the work capacity of each robot; therefore, two robots belong to the same
group if they have the same work capacity.

4.2 Platform and task description

We use as test bed a multi-robot simulator called RoboCoT (Robot Colonies Tool). RoboCoT
is a software tool developed and used by the authors at the University of the Balearic Is-
lands that allows testing the performance of individual or colonies of mobile robots in a very
flexible, fast and non-expensive way. This simulator implements robots that work according
to a control architecture based on behaviours, as they were introduced by Ronald C. Arkin
[2]. It has been widely proved that efficient robot navigation capabilities can be obtained at



Figure 1: Example of initial situation of the experiments.

Table 1: Robots’ load capacities used during the experiments. R1..R5 represent the robots’ load capacities. The
H represents the simple entropy of the configuration and SH the social entropy.

Configuration R1 R2 R3 R4 R5 H HS

1 (Homogeneous) 3 3 3 3 3 0 0
2 1 1 1 1 11 0,72 7,22
3 1 1 3 5 5 1,52 4,49
4 1 2 3 4 5 2,32 2,32

a reasonable low computational cost with such architectures. A detailed discussion about the
RoboCoT architecture can be found in [8].

The task to be carried out by the robots is described as follows: some randomly placed
robots must locate objects, randomly placed too, and carry them to a common delivery point.
Figure 1 shows a typical initial situation, where the squares represent the objects to collect,
the delivery point is the big circle in the middle of the image and the robots are the little
circles. Each object to gather has a weight and each robot has a load capacity. The robot load
capacity is the amount of weight that it can carry. If a robot cannot carry the entire object
at once, it takes a part of it, goes to the delivery point and comes back to the object for
more bits. Therefore, unlike a classical foraging task, the objects can be transported by the
robots in little transportable bits. It is obvious that in this kind of experiments, a robot can
always complete any specific task, carrying bit by bit all the objects to the delivery point.
However, if several robots cooperate, the task can be done faster. During the experiments, the
taskWorkLoad value is the object weight and the workCapacity of a robot is its load capacity.

In all the experiments presented here, we have used seven objects to load and five robots.
The objects’ weights are: 1, 3, 5, 5, 8, 10 and 15 units. All the robots have the same sensorial,
behavioral and communication capabilities, and they only differ in their load capacity. To
study the impact of the robots’ homogeneity over the execution time we have used four dif-
ferent configurations or combinations for the load capabilities of the robots. Table 4.2 shows
these configurations, the load capacities of the robots, and the value of simple (H) and social
(SH) entropy of the robot community. For each configuration, we have used as values for the
group threshold (TH): 0, 1, 2, 3. In addition, we have executed the experiments without com-
munication between robots. In the case TH=0, equation (1) has not been used, and therefore
the number of robots per group is not limited. We have repeated each experiment 56 times us-
ing 14 different environments. The environments are different because of the initial placement



Table 2: Mean of the execution time for the experiments using a no monitoring and no preemption strategy.
The ”No Comm.” row represents the experiments executed without communication. C1..C5 represent the robots
configurations

- C1 C2 C3 C4

No Comm. 996,6 1384,3 1002,3 1079,8
TH=0 934,4 1060,6 948,3 947,5
TH=1 919,2 1047,3 964,1 886,5
TH=2 878,7 1043,4 852,7 970,3
TH=3 892,4 1081,5 886,2 893

Figure 2: Execution time as a function of robot configuration for a no monitoring and no preemption strategy.

of the robots and the objects. To evaluate the impact of both, work load monitoring and leader
to leader negotiation (preemption), three different strategies have been tested: no monitoring
and no preemption, monitoring and no preemption and monitoring and preemption.

4.3 No monitoring and no preemption strategy

Using a no monitoring and no preemption strategy the group’s leader can not monitor the
progress of the task. It only can detect when the task is finished. Therefore, the value of
the task work load of equation (1) is fixed during all the execution. Also, the leader to leader
negotiation, presented in section 3.2 is not implemented. As it can be seen, this is the simplest
strategy presented in this paper.

Table 4.3 and figure 2 show the mean of the execution time of the experiments. As it can
be seen in this table, in most cases equation (1) involves the reduction of the execution time
compared to the system with null threshold (TH=0). The configuration with the highest social
entropy (SH) presents the lowest benefits due to the use of threshold. In this configuration the
highest benefit reaches the 1,6% (TH=2), but when TH=3 the time is increased a 2%. On the
another hand, the configuration 3 presents the highest benefit (10,1%) when TH=2 and the
configuration 4 presents the highest increase (2,4%) when TH=2. As it can be seen, the use of
communication produces a considerable reduction of the execution time in all the cases, and
this time increases as the social entropy (SH) grows. The figure 2 also shows that the worst
case is always the configuration with the highest social entropy value (configuration 2).



Table 3: Mean of the execution time for the experiments using a monitoring and no preemption strategy. C1..C5
represent the robots configurations

- C1 C2 C3 C4

TH=0 934,4 1060,6 948,3 947,5
TH=1 869,9 1019,4 930,3 863,7
TH=2 905,8 996,8 880,8 950,5
TH=3 904,1 1044,3 922,8 910,1

Figure 3: Execution time as a function of robot configuration for a monitoring and no preemption strategy.

4.4 Monitoring and no preemption strategy

Figure 3 and table 4.4 show the mean of the execution time of our monitoring and no pre-
emption strategy experiments. If these results are compared with the no monitoring and no
preemption strategy results, it can be seen that for all configurations the worst execution time
is reduced. This effect is more evident in the configuration 2. Nonetheless, the better execu-
tion time is increased in some cases. For example, for the configuration 3 the better case is
880,8 but during the no monitoring experiments this time was 852,7. Therefore, the monitor-
ing task produces a ”smoothing” effect over the execution time, but, in general, it seems that
a little reduction of the execution time is produced.

4.5 Monitoring and no preemption strategy

Monitoring and preemption strategy implements both the leader monitoring capacity and
the leader to leader negotiation process. Thus, this is the most sophisticate strategy that we
present here. Figure 4 and table 4.5 show the execution time for the experiments and, as it can
be seen, the results are similar to those of the previous strategy. The main difference appears
during the configuration with the highest simple entropy (configuration 4) where, in general,
the execution time is reduced. Also, a reduction of the execution time is produced when the
threshold is equal to 2. We expect that the leader to leader negotiation is especially useful if
a priority is associated to each task. Thus, if a robot finds a high priority task, it can negotiate
the temporary cession of some robots that are executing lower priority tasks using the leader
to leader negotiation mechanism.



Table 4: Mean of the execution time for the experiments using a monitoring and preemption strategy. C1..C5
represent the robots configurations

- C1 C2 C3 C4

TH=0 944,4 1099,8 957,9 955,6
TH=1 930,1 1026,6 969,4 874,8
TH=2 917,6 996,5 891,1 885,8
TH=3 890,9 1066,9 910,2 881,9

Figure 4: Execution time as a function of robot configuration for a monitoring and preemption strategy.

5 Conclusion and future work

This paper presents a simple and efficient way to solve the task allocation problem and, more
specially, to decide how many robots are needed to execute a specific task. Our algorithms
adapt the classical auction using some threshold-based systems concepts to find the optimal
number of robots. In addition, our method allows both changing the robots assigned to a task
as new objectives are found and interchanging robots between working groups. Thus, we
have provided a faster and flexible way to regulate the optimal number robots as a function
of the kind of the task and the available robots. Three versions of our mechanism have been
proposed and tested using several environments. All the cases have been tested using a mod-
ification of the classical foraging task to allow a higher cooperation degree between robots.
The execution results of this task prove that our mechanism reduces the mission’s execution
time.

This paper presents a work in progress that has some challenging aspects to add and to
improve. For the time being we are focused on a deep analysis of the data available, obtained
from a huge set of experiments that should take us to a precise understanding of the relations
between heterogeneity and group thresholding as well as robot segregation, aggregation and
preemption processes or auction algorithms. We are working on developing a better definition
of system stability. As it can bee seen in section 4, the execution time of the mission is
not modified by the leader to leader negotiation. The next kind of mission to implement by
our system will include tasks with priorities. We expect that in this kind of environment the
preemption strategy will be very useful. Thus, if a leader finds a high priority task, it could ask
for help to other groups with lower priority tasks and some of their robots could temporarily



be transferred to the demanding leader. Another aspect we are working on is the replacement
of the leader mechanisms. These strategies should be activated when the leader robot faults
and should improve the robustness of the system. Finally, another aspect of the systems that
should be improved is the use of a non fixed threshold. Dynamic thresholding techniques in
the line of those exposed in [5] will be tested.
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