
Universitat de les Dies Balears

Departament de Ciencies
Matematiques i Informatica

Vision-Based Topological Mapping and Localization
by means of Local Invariant Features and Map Refinement

E. GARCIA-FIDALGO and A. ORTIZ

July / 2013 TECHNICAL REPORT A-04-2013

Vision-Based Topological Mapping and Localization by
means of Local Invariant Features and Map Refinement

Emilio Garcia-Fidalgo and Alberto Ortiz∗

Abstract

An appearance-based approach for topological visual mapping and local-
ization using local invariant features is proposed in this paper. To optimize
running times, matchings between the current image and previous visited
places are determined using an index based on a set of randomized KD-trees.
A discrete Bayes filter is used for predicting loop candidates, whose obser-
vation model is a novel approach based on an efficient matching scheme be-
tween features. In order to avoid redundant information in the resulting maps,
in this work, we also present a map refinement framework, which takes into
account the visual information stored in the map for refining the final topol-
ogy of the environment. These refined maps save storage space and improve
the execution times of localizations tasks. The approach has been validated
using image sequences from several environments.

1 Introduction

Mapping and localization are essential problems in mobile robotics. In order to
solve them, several approaches have been proposed to perform both tasks at the
same time, creating an incremental map of an unknown environment while lo-
calizing the robot within this map. These techniques are generically known as
SLAM [1] (Simultaneous Localization and Mapping). In SLAM, loop closure de-
tection is a key challenge to overcome. It implies the correct detection of previously
seen places from sensor data. This allows generating consistent maps and reducing
their uncertainty.

Ultrasounds and laser sensors have been used for years for SLAM and loop
closure detection. Nevertheless, in the last decades there has been a significant
increase in the number of visual solutions because of the low cost of cameras, the
richness of the sensor data provided and the availability of cheap powerful com-
puters. This naturally guides us to an appearance-based SLAM, where the envi-
ronment is represented in a topological way by a graph. Each node of this graph

∗E. Garcia-Fidalgo and A. Ortiz are with the Department of Mathematics and Computer Sci-
ence, University of the Balearic Islands, 07122 Palma de Mallorca, Spain. {emilio.garcia,
alberto.ortiz} at uib.es.

1

represents a distinctive visual location visited by the robot while the edges indicate
connectivities between locations. Using this representation, the loop closure prob-
lem can be solved comparing images directly, avoiding to maintain and estimate
the position of feature landmarks.

In the Bag-of-Words (BoW) [2] approach, local invariant features obtained
from an image are quantized into a vector according to a visual vocabulary. This
representation is one of the most used techniques in appearance-based SLAM.
However, this method presents some drawbacks. On the one hand, the percep-
tual aliasing effect [3], where two different places can be perceived as the same,
becomes likelier because of the quantization process. On the other hand, on most
occasions, an offline training phase is required to build the visual vocabulary.

Topological maps obtained from visual information tend to contain spurious
paths and nodes [4, 5]. This is because of images noise, partial invariance of image
descriptors to viewpoint, scale and/or illumination changes, or due to the map-
ping algorithm itself. The final map obtained can be very large and can contain
more nodes that are actually required to represent the environment, deriving in an
increment of the storage needs and the computational requirements. We propose
to refine the map as it is being built, instead of investing efforts in improving the
mapping algorithm.

To cope with the aforementioned issues, this paper presents a complete visual
mapping and localization framework based on raw local invariant features and a
map refinement strategy. Our framework has been assessed using multiple indoor
and outdoor datasets captured under different weather conditions and illumination
changes. Very promising results have been obtained in all cases. As main contri-
butions, we present a Bayesian framework for visual loop closure detection which
uses local invariant features as image descriptor. It comprises a novel observation
model which allows us to succeed in challenging loop closure situations. Using this
algorithm as a key component, a topological mapping and localization framework
is also proposed, which uses a map refinement strategy to remove the redundant
paths that exist in the graph. This strategy is also presented in this work, introduc-
ing a novel map refinement theory based on the visual information obtained from
the images of the environment. This refinement is done online each time a loop
closure is detected.

The rest of the paper is organized as follows: Section 2 enumerates fundamen-
tal works related to loop closure detection and visual localization and mapping,
Section 3 explains the basics of our algorithm, Section 4 shows how images are
described and matched in our approach, Section 5 exposes a Bayesian loop closure
algorithm using visual features, Section 6 presents our map refinement framework,
Section 7 shows experimental results obtained from different datasets, and Section
8 concludes the paper.

2

2 Related Work

A high number of appearance-based localization and mapping solutions have been
proposed along the last decade. Although many works assume the availability of
omnidirectional images [6, 7, 8, 9], many others make use of monocular configu-
rations [10, 11, 12, 13]. Our approach belongs to this latter class.

Although most works are based on either topological maps or metric maps,
some authors have tried to make hybrid solutions, combining both paradigms in
one. Zivkovic et al. [6] presented an algorithm for automatically generating hierar-
chical maps from images. A low-level map is built using SIFT features. Then they
cluster nodes to construct a high-level representation. Later, [5] showed a naviga-
tion system based on a topological map which used the epipolar geometry to obtain
a robust heading estimation.

Referring to the image description, the BoW approach has become quite pop-
ular. Cummins and Newman developed FAB-MAP [10], where a Chow-Liu tree is
used for modelling the dependencies between visual words. Angeli et al. [11, 12]
extended the BoW paradigm to incremental conditions and relied on Bayesian fil-
tering to estimate the probability of loop closure. Their work was expanded con-
structing a complete topological SLAM system [4] and including robot odometry
information [14]. Fraundorfer et al. [15] present a highly scalable vision-based
localization and mapping method using image collections. Local geometric infor-
mation is used to navigate in the topological map. Despite its well-known gen-
eral performance, the BoW paradigm is more affected by perceptual aliasing [3].
For this reason, our loop closure detection algorithm follows an approach similar
to [11, 12], but using local invariant features for image description and matching.

Other approaches make use of global descriptors, such as Gist [16]. Singh
and Kosecka [17] computed Gist descriptors in omnidirectional images of urban
environments for detecting loop closures. They presented a novel image matching
strategy for panoramas. Bayes filtering is not considered in this work. Liu and
Zhang [18] applied Principal Component Analysis (PCA) to Gist descriptors in
order to compute the likelihood in a particle filter. This filter is used for detecting
loop closures. Siagian and Itti [19] presented a biologically-inspired system to
scene classification using Gist as image representation.

Rather than BoW or global descriptors, some authors have used local invariant
features for visual localization and mapping as well as for loop closure detection [3,
20, 21, 13]. Zhang [3] presented a method for selecting a subset of Scale-Invariant
Feature Transform (SIFT) [22] keypoints extracted from an image. These features
are used for matching consecutive images. A location is represented by a set of
features that can be matched consecutively in several images. The problem of this
approach is that the number of features to manage increases while new images are
added, and a linear search for matching becomes intractable. In order to overcome
this issue, in this work, we index features using a set of randomized KD-Trees.

In a previous work [23], we developed an appearance-based mapping and lo-
calization method. This paper improves that work with a better observation model,

3

with regard to loop closure detection, and with a novel map refinement strategy.

3 Algorithm Overview

The main goal of our approach is to construct a clean visual representation of the
robot environment using a single monocular camera while localizing the robot
within this map. In a real scenario, storing all images taken by the camera is
impossible. We need to reduce the number of images to manage without losing
visually distinct locations found in the robot environment. This subset of images
are called keyframes [21]. Our approach is also based on the keyframe concept, as
it is outlined in Fig. 1 and Alg. 1. In our map, each node represents a keyframe
image, and each keyframe is represented by its SIFT [22] features. In order to se-
lect these keyframes, we discard: (a) images similar to the current location of the
robot (keyframe), since they do not provide distinct visual information about the
environment and therefore are redundant; and (b) robot camera turns, because they
are noisy and can introduce errors in the mapping and localization processes. For
the first case, SIFT features of the current image are matched applying the ratio
test [22] to the features of the current location keyframe. If the number of matched
features is higher than a threshold, the image is considered similar to the current
location.

The same matching step is applied between the current image and the last re-
ceived image in the sequence: if it is not possible to match a certain number of
features, the image is considered a turn. If the image is not similar to the current
location and is not a turn, it is considered useful and needs to be processed in or-
der to determine whether a loop can be closed or whether a new keyframe has to
be added to the map. Otherwise, the image is discarded. This keyframe selection
policy is shown graphically in Fig. 2.

Our approach makes use of a discrete Bayes filter to detect loop closures. This
filter is updated with every image irrespective of whether the image has been dis-
carded or not. If a loop closure is not found, the current image is considered as a
new keyframe and is added to the map as a new node. Otherwise, a link is created
between the current location of the robot and the loop closure candidate and, then,
a map refinement process runs, in order to determine if redundant paths have been
added. As a consequence, a set of superfluous nodes can result to be detected.
If this is the case, they are removed from the map, and the robot position within
the map is updated accordingly. In order to avoid false loop closure detections
between the current image and its neighbours in the sequence, new keyframes are
not inserted directly as a loop closure hypothesis in the filter. They are inserted in
a cache list and incorporated after a certain number of images have passed. The
image description and matching process, the loop closure detection algorithm and
the map refinement strategy are explained in detail in the following sections.

4

Figure 1: Overall algorithm diagram. See text for details.

Algorithm 1 Appearance-Based Mapping and Localization
1: /* Variables */
2: I = {I0, . . . , IN−1}: Sequence of N input images.
3: G: Graph representing the environment topology.
4: k: Current keyframe index.
5: Ft: Set of SIFT features obtained from image It.
6: c: Candidate keyframe index for closing a loop.
7: M i

j : Matchings between images Ii and Ij .
8: C: List of nodes not inserted in the filter as hypothesis yet.
9: l: Boolean variable indicating whether a loop has been detected or not.

10:

11: k = 0
12: F0 = describe(I0)
13: addToCache(C, 0)
14: for t = 1 to N − 1 do /* While there are images */
15: Ft = describe(It)
16: updateFilter(Ft)
17: Mt

k = match(Ft, Fk)
18: Mt

t−1 = match(Ft, Ft−1)
19: if useful(Mt

k,M
t
t−1) then /* Useful Image */

20: l, c = detectLoopClosure(G,Ft)
21: if l then /* Loop Closure Detected */
22: addLink(G, k, c)
23: refineMap(G)
24: k = c
25: else /* New node */
26: addNode(G, t)
27: addLink(G, k, t)
28: addToCache(C, t)
29: k = t
30: end if
31: end if
32: releaseHypotheses(C)
33: end for

5

Figure 2: Image selection policy. The current image taken by the camera (6) is matched
with the image that represents the current keyframe (0) and the last received image in the
sequence (5) in order to determine if it is a useful frame. K represents the current location
(keyframe), S and T represent images discarded because they are, respectively, similar
enough to the current location or camera turns.

4 Image Description and Matching

As commented above, in our approach each image is described using the SIFT [22]
algorithm, where interest points are defined as maxima and minima of a difference
of Gaussians function applied, in scale space, to a series of resampled images. Each
feature is then described defining a histogram of gradient orientations around the
point at the selected scale, resulting in a 128-dimensional descriptor. In this work,
these descriptors are compared using Euclidean distance.

The loop closure detection algorithm, as we will see shortly, needs to match
efficiently the features of the current image with features of all previously consid-
ered keyframes, in order to determine whether it is a revisited place. Therefore,
a method for an efficient nearest neighbour search is needed to match these high-
dimensional descriptors. Tree structures have been widely used to this end, since
they reduce the search complexity from linear to logarithmic. To the same purpose,
we maintain a set of randomized KD-trees containing all the SIFT descriptors of
previously seen keyframes. An inverted index, which maps each feature to the
image where it was found, is also created. Given a query descriptor, these struc-
tures allow us to obtain, traversing the tree just once, the top K nearest neighbours
keypoints among all keyframes.

5 Probabilistic Loop Closure Detection

Given a new image, a discrete Bayes filter is used to detect loop closure candidates.
This filter estimates the probability that the current image closes a loop with an al-
ready seen location, ensuring temporal coherency between consecutive predictions.
Given the current image It at time t, we denote zt as the set of SIFT descriptors
extracted from this image. These are the observations in our filter. We also denote
Lti as the event that image It closes a loop with image Ii, where i < t. Using these
definitions, we want to detect the image of the map Ic whose index satisfies:

c = argmax
i=0,...,t−p

{P
(
Lti|z0:t

)
} , (1)

6

where P
(
Lti|z0:t

)
is the full posterior probability at time t given all previous ob-

servations up to time t. As in [12], the most recent p images are not included as
hypotheses in the computation of the posterior since It is expected to be very sim-
ilar to its neighbours and then false loop closure detections will be found. This
parameter p delays the publication of hypotheses and needs to be set according to
the frame rate or the velocity of the camera.

Separating the current observation from the previous ones, the posterior can be
rewritten as:

P
(
Lti|z0:t

)
= P

(
Lti|zt, z0:t−1

)
, (2)

and then, using conditional probability properties, the next equality holds:

P
(
Lti|zt, z0:t−1

)
P (zt|z0:t−1) = P

(
zt|Lti, z0:t−1

)
P
(
Lti|z0:t−1

)
, (3)

from where we can isolate our final goal to obtain:

P
(
Lti|zt, z0:t−1

)
=
P
(
zt|Lti, z0:t−1

)
P
(
Lti|z0:t−1

)
P (zt|z0:t−1)

. (4)

P (zt|z0:t−1) is independent of Lti, so it can be seen as a normalizing factor. Under
this premise and the Markov assumption, the posterior is defined as:

P
(
Lti|z0:t

)
= ηP

(
zt|Lti

)
P
(
Lti|z0:t−1

)
, (5)

where η represents the normalizing factor, P
(
zt|Lti

)
is the observation likelihood

and P
(
Lti|z0:t−1

)
is the probability distribution after a prediction step. Decompos-

ing the right side of (5) using the Law of Total Probability, the full posterior can be
written as:

P
(
Lti|z0:t

)
= ηP

(
zt|Lti

) t−p∑
j=0

P
(
Lti|Lt−1j

)
P
(
Lt−1j |z0:t−1

)
, (6)

where P
(
Lt−1j |z0:t−1

)
is the posterior distribution computed at the previous time

instant and P
(
Lti|L

t−1
j

)
is the transition model.

Unlike [12], we do not model explicitly the probability of no loop closure in
the posterior. If the loop closure probability of It with Ic (P

(
Ltc|z0:t

)
) is not high

enough, we discard Ltc.

5.1 Transition Model

Before updating the filter using the current observation, the loop closure probability
at time t is predicted from P

(
Lt−1j |z0:t−1

)
according to an evolution model. The

probability of loop closure with an image Ij at time t − 1 is diffused over its
neighbours following a discretized Gaussian-like function centered at j. In more
detail, 90% of the total probability is distributed among j and exactly four of its

7

neighbours (j − 2, j − 1, j, j +1, j +2) using coefficients (0.1, 0.2, 0.4, 0.2, 0.1),
i.e. 0.9 × (0.1, 0.2, 0.4, 0.2, 0.1). The remaining 10% is shared uniformly across
the rest of loop closure hypotheses according to 0.1

max{0,t−p−5}+1 . This implies that
there is always a small probability of jumping between hypotheses far away in
time, improving the sensitivity of the filter when the robot revisits old places.

5.2 Observation Model

Once the prediction step has been performed, the current observation needs to be
included in the filter. We want to compute the most likely locations given the cur-
rent image It and its keypoint descriptors zt, but we want to avoid comparing It
with each previous keyframe image, since this is not tractable. To this end, the
structures described in section 4 are used. Note that if the robot has revisited the
same place several times and the current image It closes this loop again, each
descriptor in zt can be close to descriptors from different previous images in the
Euclidean space. This fact is taken into account in the computation of our likeli-
hood.

For each hypothesis i in the filter, a score s (zt, zi) is computed. This score
represents the likelihood that the current image It closes the loop with image Ii
given their descriptors, zt and zi respectively. Initially, these scores are set to 0
for all frames from 0 to t − p. For each descriptor in zt, the K closest descriptors
among the previous keyframe images are retrieved without taking into account the
p immediately previous frames, and each of them, denoted by n, adds a weight wn
to the score of the image where it belongs to. This value is normalized using the
total distance of the K candidates retrieved:

wn = 1− dn∑
k∈K

dk
,∀n ∈ K , (7)

where d is the Euclidean distance between the considered query descriptor in zt
and the nearest neighbour descriptor found in the tree structure. This value is
accumulated to a score according to:

s
(
zt, zj(n)

)
= s

(
zt, zj(n)

)
+ wn ,∀n ∈ K , (8)

being j(n) the index of the image where the candidate descriptor n was extracted.
The computation of the scores is finished when all descriptors in zt have been
processed. Then, the likelihood function is calculated according to the following
rule (similarly to [12]):

P
(
zt|Lti

)
=

{
s(zt,zi)−sσ

sµ
if s (zt, zi) ≥ sµ + sσ

1 otherwise
, (9)

being respectively sµ and sσ the mean and the standard deviation of the set of
scores. Only the most likely locations given the current observation zt update their
posterior. After incorporating the observation to our filter, the full posterior is
normalized in order to obtain a probability function.

8

5.3 Selection of a Loop Closure Candidate

Algorithm 2 Visual Loop Closure Detection
1: /* Variables */
2: B: Discrete Bayes filter.
3: Ft: Set of SIFT features obtained from image It.
4: c: Candidate image index for closing a loop.
5: Pc: Probability of candidate image index for closing a loop.
6: nhyp: Number of hypotheses in the Bayes filter.
7: Eij : Set of matchings surviving the epipolarity constraint-based filter.
8: L: Output boolean variable for indicating the existence of a loop.
9: Lim: Output integer with the index of the image loop closure.

10:

11: /* Thresholds */
12: Tloop: Minimum probability to consider a loop candidate.
13: Tep: Minimum number of surviving matchings after epipolar geometry validation.
14: Thyp: Minimum number of hypotheses for considering loop candidates.
15:

16: c, Pc = getCandidate(B) /* Getting the best loop candidate */
17: if Pc > Tloop and nhyp > Thyp then
18: Etc = epipolarGeometry(Ft, Fc)
19: if length(Etc) > Tep then
20: L = True; Lim = c
21: else
22: L = False; Lim = −1
23: end if
24: else
25: L = False; Lim = −1
26: end if

In order to select a final candidate, we do not search for high peaks in the
posterior distribution, because loop closure probabilities are usually diffused be-
tween neighbouring images. This is due to visual similarities between consecutive
keyframes in the sequence. Instead, for each location in the filter, we add the proba-
bilities along a defined neighbourhood. This neighbourhood is the same as defined
in section 5.1: frames (j − 2, j − 1, j, j + 1, j + 2) for image j.

The image Ij with the highest sum of probabilities in its neighbourhood is
selected as a loop closure candidate. If this probability is below a threshold Tloop,
the loop closure hypothesis is not accepted. Otherwise, an epipolarity analysis
between It and Ij is performed in order to validate if they can come from the same
scene after a camera rotation and/or translation. Using a RANSAC procedure, the
matchings that do not fulfill the epipolar constraint are discarded. If the number
of surviving matchings is above a threshold Tep, the loop closure hypothesis is
accepted; otherwise, it is definitely rejected.

Finally, another threshold Thyp is defined to ensure a minimum number of hy-
potheses in the filter, so that loop closure candidates are meaningful. This step
counteracts the fact that first images inserted in the filter tend to attain a high prob-
ability of loop closure after the normalization step, what leads to incorrect detec-
tions. The approach is outlined in Alg. 2.

9

6 Map Refinement

Visual topological maps tend to contain redundant nodes and paths due to several
reasons. On the one hand, sometimes the current image acquired by the robot is
blurred, what makes difficult to identify loop closures at the right time and there-
fore new nodes are added to the map. The loop closure is identified once the image
stream becomes stable again. The net result is that a redundant path has been gen-
erated because of these noisy images. On the other hand, the Bayes filter does not
detect a revisited place instantaneously, but needs some frames to become aware of
the loop closure: along these frames, the posterior moves from one keyframe (hy-
pothesis) to another, while a new path containing the unmatched frames is created.
In order to correct these problems and to maintain the map structure as simple as
possible in storage and computational terms, in this work, we present a map refine-
ment framework based on the visual information obtained from each node of the
environment.

Our method is executed each time a loop closure is detected. The idea is to
refine the local area of the map around the loop-closing node, since the redundant
paths are generated within its neighbourhood. To this end, the k-neighbourhood
of the loop-closing node is obtained. This is the set of nodes from which we can
reach the loop-closing node in k steps or less, where k has been set experimentally
to 10. For each element in this set, all paths to the loop-closing node are obtained
using an adjacency list. If there is only one path between the nodes, there are no
redundant paths and this route is left unaltered. Otherwise, a further analysis of the
different paths is performed. To this end, a path P between nodes i and j is defined
as:

P ij = {N0, N1, . . . , Nn} , 0 ≤ n ≤ k + 1 , (10)

being N0 the starting node of P ij and Nn the loop-closing node. We define the
erasability of a path as:

M(P ij) = (deg−(Ni) = 1) ∧ (deg+(Ni) = 1) , ∀i ∈ {1, . . . , n− 1} , (11)

where deg− and deg+ are, respectively, the input degree and the output degree of
a vertex. Therefore, a path is classified as erasable if (11) holds for each inner
node of the path. Otherwise, the path is classified as non-erasable. The meaning
of an erasable path in our context is that the route can be deleted without breaking
the topology of the environment. Examples of erasable and non-erasable paths are
shown in Fig. 3.

Once all paths have been classified according to their erasability, a decision
about which ones can be deleted is made, taking into account that real alternative
paths have to be preserved, since they correspond to parts of the environment.
To this end, we propose to generate a model path taking into account the visual
features of all paths and comparing each erasable path against this model to verify
if this is a redundant or a real path. In order to create the model path, a k-means
clustering process with 100 centroids is performed using the SIFT features of the

10

Figure 3: Example of erasability. Two paths exist between node 1 and node 8. The red
path (up) is classified as non-erasable, since the inner node 6 does not hold condition (11).
This path can not be removed without losing the path starting at node 9. The green path
(bottom) is classified as erasable and is a candidate to be removed.

keyframes that are included in all paths between the corresponding nodes. This
gives us a set of reference virtual descriptors representing all the paths as a whole.
Then, k-means is also used for quantizing the descriptors of the nodes of each
erasable path, obtaining representatives for each route. A set of randomized KD-
trees is created using the reference virtual descriptors. The virtual descriptors of
each path are matched against the model using these trees in order to obtain a
distance between each erasable path and the model path. This distance is computed
as the average distance of the matched centroids.

For each erasable path between the nodes, if the distance is below a threshold,
this path is quite similar to the others and then it can be considered as redundant. If
there is at least one route non-erasable between the nodes, the inner nodes belong-
ing to these paths are deleted. Otherwise, if all paths are classified as erasable, the
most different path (higher distance) is left unaltered, and the remaining ones are
removed. The full algorithm for map refinement is outlined in Alg. 3.

Fig. 4 shows several examples of situations that our map refinement strategy is
able to overcome. In (a), (b) and (c), the removed paths have been selected because
the distances to the model path are lower than the others. In (d), since there exists
a non-erasable path and the distances of the other paths to the model are lower than
Tp, both erasable routes are deleted. In (e), any of the routes can be deleted since
they are non-erasable paths. In (f), there exists a non-erasable path and then, the
erasable one could be deleted. However, in this case, the distance of the path to the
model is higher than Tp, indicating that this is a real alternative path, and therefore
the path can not be removed.

7 Experimental Results

In this section, we will show several experimental results for assessing our solu-
tion from different points of view. This section is organized as follows: first, the
loop closure detection algorithm is evaluated irrespective of the mapping and lo-
calization process; then, results for the full approach for mapping and localization

11

Algorithm 3 Map Refinement
1: /* Variables */
2: nl: Input loop closing node.
3: N : K-neighbourhood of a node.
4: P : The set of paths between two nodes.
5: M : Array to store the erasability of each path in a set.
6: D: Array to store the distances between each path in a set and a reference model.
7: Rm: Reference model path. It is computed using k-means clustering.
8: Pmax: Path with maximum distance to the Rm.
9: k: Maximum number of steps to consider a node as a neighbour.

10:

11: /* Thresholds */
12: Tp : Maximum distance to consider two paths similar to one another.
13:

14: N = getKNeighbours(nl, k)
15: for all nn ∈ N do
16: P = getPaths(nn, nl)
17: if length(P) > 1 then
18: M = array(length(P))
19: D = array(length(P))
20: Rm = computeModelPath(P)
21: for p ∈ indexOf(P) do
22: M [p] = computeErasability(P [p])
23: Rp = computePathDescriptor(P [p])
24: D[p] = distance(Rm, Rp)
25: end for
26: Pmax = computeMaxPath(D)
27: for p ∈ indexOf(P) do
28: if M [p] and D[p] < Tp and (existNonErasable(P) or P [p] 6= Pmax) then
29: deletePath(P [p])
30: end if
31: end for
32: end if
33: end for

12

a) b)

c) d)

e) f)

Figure 4: Examples of situations solved by our map refinement strategy. Green and red
paths are, respectively, erasable and non-erasable paths. Red nodes indicate that they will
be removed by our approach. When there are several erasable paths, the decision is taken
according to the distance of the paths to the model path, as explained in the text.

13

algorithm are shown; finally, experiments for validating our map refinement algo-
rithm are reported.

7.1 Loop Closure Detection

Several experiments have been carried out in order to validate the suitability of
our framework for loop closure detection tasks. Datasets from indoor and outdoor
environments have been processed, providing results under different environmen-
tal conditions. In the following, the main features of each dataset are presented
first. Next, results from particular cases are highlighted. Finally, global results and
considerations for the whole set of sequences are reported.

In more detail, the Lip6Indoor dataset comprises 388 images of two loops
along the corridors of a research building, what leads to a strong perceptual aliasing
conditions during the loop closure analysis. The Lip6Outdoor is a longer dataset of
1063 images that completes a large loop outdoors under sunny weather conditions.
Both datasets are publicly available1.

The UIBSmallLoop and UIBLargeLoop datasets have been recorded by our-
selves around the Anselm Turmeda building at our University campus. They con-
sist of 388 and 997 images, respectively, taken under bad weather conditions, for
verifying the performance of our approach under these situations. Finally, the
UIBIndoor dataset, also recorded by ourselves inside the Anselm Turmeda build-
ing, presents an indoor environment which means a number of difficulties for loop
closure. First of all, the camera velocity is not constant. This is due to the fact
that we needed to climb up and down the stairs during the recording. This diffi-
culty enables us to validate the ability of the filter to self-adapt under camera speed
changes. Besides, when the camera is at the stairs, a number of images of white
walls result, what gives rise to the detection of very few features. Moreover, the
dataset presents some parts where illumination changes, leading on some occasions
to overexposed images. Some examples of these problems are shown in Fig. 5.

Fig. 6 illustrates the performance of the likelihood function for detecting loop
closures through the Lip6Indoor dataset. The right picture shows the likelihood
function values for every pair of frames Ii and Ij while the left picture is the ground
truth (only the lower triangles are shown). As can be seen, our likelihood presents
high values for real loop closures, which are shown as diagonals in the images.
There are more noise in the likelihood at the beginning of the sequence because
there are less images in the trees, which implies that nearest neighbours for each
descriptor are shared between a minor number of images. This effect decreases
along the sequence.

Fig. 7 shows the suitability of the Bayes framework in a loop closure detection
situation. In this case, the camera has visited twice the same place. When it returns
to this place again, two high peaks corresponding to the previous visits can be
seen in the likelihood, representing possible loop candidates for the current image.

1http://cogrob.ensta-paristech.fr/loopclosure.html

14

Figure 5: Examples of images from the UIBIndoor environment. (Top, Left) First image
in the sequence. (Top, Right) Image taken from the stairs. (Bottom, Left) Overexposed
image. (Bottom, Right) Image after camera stabilization.

Figure 6: (Left) Ground truth loop closure matrix for the Lip6Indoor dataset. (Right)
Likelihood matrix computed using our approach.

15

Figure 7: Example of loop closure detection visiting several times the same place in the
Lip6Indoor dataset. Image 331 (Top, Left) closes a loop with image 189 (Bottom, Left)
and image 48 (not shown). As can be seen in (Top, Right), current likelihood presents two
strong peaks corresponding to each candidate. After the normalization step, the posterior
(Bottom, Right), shows a single peak in the last loop candidate. Red and green lines show
respectively sµ and sµ + sσ values.

After the prediction, update and normalization steps, the posterior presents only
one single peak at the second candidate image, i.e. the filter ensures temporal
coherency between predictions.

Fig. 8 shows an example of situation where a loop is detected despite there is
a person in the image who was not in the previous visit, what proves the ability
of the filter to detect loops when the appearance of the environment changes. The
likelihood function exhibits a clear single peak for the expected loop candidate.
After normalizing the posterior, our approach accepts the loop closure since the
epipolar constraint between the two images is satisfied. Our approach is also able
to detect loop closures under camera rotations. An example can be found in Fig. 9.

If an overexposed image or with not enough features arrives at the filter, the
full posterior does not present high peaks and a false negative is generated. When
the image stream becomes stable, the algorithm reacts and starts detecting loop
closures again. This shows that our approach is able to manage these challenging
kinds of situations. Fig. 10 shows an example of loop closure detection from the
UIBIndoor dataset. An example of loop closure detection for one of the outdoor
UIB datasets can be found in Fig 11.

In order to obtain global performance measures, each dataset has been pro-
vided with a ground truth, which indicates, for each image in the sequence, which
images can be considered as a loop closure with it. The assessment has been per-
formed against this ground truth counting for each sequence the number of true
positives (TP), true negatives (TN), false positives (FP) and false negatives (FN),
where positive is meant for detection of loop closure. Then, several metrics are
computed:

• Precision. Ratio between real loop closures and total amount of loop clo-

16

Figure 8: Example of loop closure detection with changes in the environment in the
Lip6Indoor dataset. Image 190 (Top, Left) closes a loop with image 47 (Bottom, Left).
Likelihood (Top, Right) presents a high peak despite there is a person in the current image.
(Bottom, Right) is the final posterior. Red and green lines show respectively sµ and sµ+sσ
values.

Figure 9: Example of loop closure detection under camera rotations. Despite there is a
camera rotation, image 216 (Top, Left) closes a loop with image 72 (Bottom, Left). The
likelihood (Top, Right) presents two high peaks since it is the third time the camera visits
this place. (Bottom, Right) shows the final posterior, proving that the filter ensures the
temporal coherency between loop detections. Red and green lines show respectively sµ
and sµ + sσ values.

17

Figure 10: Example of loop closure detection from the UIBIndoor dataset. Image 260
(Top, Left) closes a loop with image 73 (Bottom, Left). (Top, Right) Likelihood given the
current image. (Bottom, Right) Full posterior after the normalization step. Red and green
lines show respectively sµ and sµ + sσ values.

Figure 11: Example of loop closure detection under bad weather conditions and camera
rotations for the UIBSmallLoop dataset. Image 330 (Top, Left) closes a loop with image
139 (Bottom, Left). (Top, Right) Likelihood given the current image. (Bottom, Right)
Full posterior after the normalization step. Red and green lines show respectively sµ and
sµ + sσ values.

18

Dataset #Imgs Size TP TN FP FN Pr Re Acc
Lip6Indoor 388 240×192 191 151 0 31 100 86 91

Lip6Outdoor 1063 240×192 551 435 0 52 100 91 95
UIBSmallLoop 388 300×240 194 172 0 2 100 99 99
UIBLargeLoop 997 300×240 439 491 0 47 100 90 95

UIBIndoor 384 300×240 157 177 0 30 100 84 92
3220 1532 1426 0 162 100a 90a 94.4a

Table 1: Results for the five datasets. Precision (Pr), Recall (Re) and Accuracy (Acc)
columns are expressed as percentages. See text for details. aThese results are computed as
the average of all values.

sures detected (TP
TP+FP).

• Recall. Ratio between real loop closures and total amount of loop closures
existing in the sequence (TP

TP+FN).

• Accuracy. Percentage of correctly classified (true positive or true negative)
images (TP+TN

TP+TN+FP+FN).

The results for each sequence are shown in Table 1. As can be seen, no false
positives resulted in any case. This is essential, since false positives can induce
errors in mapping and localization tasks. As a consequence, the classifier always
reaches 100% in precision for all datasets.

In all experiments, we obtain a high rate of correct detections (TP and TN).
False negatives are due to, on the one hand, the sensitivity of the filter. When
an old place is revisited, the likelihood associated to that hypothesis needs to be
higher than the other likelihood values during several consecutive images in or-
der to increment the posterior for this hypothesis. This introduces a delay in the
loop closure detection, deriving in false negatives. This sensitivity can be tuned
by modifying the transition model of the filter. However, a higher sensitivity can
introduce loop detection errors, i.e. false positives. On the other hand, false nega-
tives are also due to camera rotations. When the camera is turning around a corner,
it is difficult to find and match features in the image, which prevents the hypothesis
from satisfying the epipolar constraint and leads to the loop closure hypothesis to
be rejected, despite the posterior for this image is higher than Tloop. In spite of the
difficulties of the UIBIndoor dataset, our approach is able to succeed, as can be
seen in Table 1.

The paths followed by the camera in the UIB datasets are shown in Fig 12 and
Fig 13. Whenever the camera explores new places, no loop closures are found.
When a place is revisited, the algorithm starts to find loop closures. Several images
are usually needed until closing the loop, due to the filter inertia. These images
correspond to the false negatives which are found.

19

Figure 12: Path followed by the camera during the UIBSmallLoop experiment. The black
point indicates the beginning of the sequence, the black lines show no loop closure de-
tections (highest posterior probability is under Tloop) and the yellow lines represent loop
closure detections (highest probability is above Tloop and the epipolar constraint is satis-
fied).

20

Figure 13: Path followed by the camera during the UIBLargeLoop experiment. The black
point indicates the beginning of the sequence, the black lines show no loop closure detec-
tions (highest posterior probability is under Tloop), the red lines show rejected hypoteses
(no epipolar geometry is satisfied) and the yellow lines represent loop closure detections
(highest probability is above Tloop and the epipolar constraint is satisfied).

21

7.2 Mapping and Localization

The same sequences used in the previous experiments have also been used to val-
idate our framework regarding mapping and localization. A real map of the en-
vironment and the topological map generated by our approach are shown for each
sequence. The main zones of these maps have been labelled with letters to simplify
the identification of each part in the topological structure, since topological maps
do not preserve the shape. The results are shown in Fig. 14 to 19.

As can be seen, maps generated by our framework represent topologically the
real scenario of the robot. Connections between each part of the topological map
are the same than in the real environment. The maps do not present redundant
paths or spurious nodes between locations, saving storage space for the map and
improving the computational efficiency of the localization process, since less nodes
represent the same visual environment. Our map refinement strategy help us to
clean the final structure, correcting the problems generated by the blurred images
and the delays inherent to the loop closure detection process.

Although this work focuses on mapping and localization, our maps could also
be used for navigating if they are tagged with metric information in order to know
the relationships between the locations and the actions to perform for reaching one
node from another.

Maps are mainly created during the first exploration of the environment. Re-
visiting a place normally turns into reassigning the current location of the robot to
an existing node of the map. However, sometimes maps are completed with new
nodes corresponding to images which are visually in-between two nodes. Gener-
ally, they provide unregistered information about the robot scenario, as can be seen
for example in Fig. 17.

To finish, it is typical that a few nodes at the beginning of the sequence do not
close any loop, generating a short tail in the map. This is due to the prediction of
the Bayes filter, which tends to move the probability away from the beginning of
the sequence, producing that the first loop is closed with the subsequent frames.
Notice that this, however, does not affect the final result of the localization process.

7.3 Map Refinement

The main goal of this last section is to verify the quality of the refined maps, in
terms of storage space, computational times and usefulness/efficiency. We want
to assess that the generated maps are representative of the environment and can
be used for localization without compromising the original performance. To this
end, we compare the maps of the five datasets used in this work with and without
refinement. These maps are shown in Fig. 20 to 24. As can be seen, the original
maps contain spurious nodes and alternative redundant paths between nodes, in-
crementing the execution time for mapping and localization processes, since more
nodes need to be considered at each step. The refined maps shown in section 7.2

22

Figure 14: (Top) Reference map for the Lip6Indoor dataset. (Bottom) Topological map
generated using our approach. Each part of the map is identified with a letter in both maps.
The red node is the beginning of the sequence. The reference image has been obtained
from http://cogrob.ensta-paristech.fr/loopclosure.html.

23

Figure 15: (Top) Reference map for the Lip6Outdoor dataset. (Bottom) Topological map
generated using our approach. Each part of the map is identified with a letter in both maps.
The red node is the beginning of the sequence.

24

Figure 16: (Top) Reference map for the UIBSmallLoop dataset. (Bottom) Topological map
generated using our approach. Each part of the map is identified with a letter in both maps.
The red node is the beginning of the sequence.

25

Figure 17: Example of adding intermediate nodes in the Lip6Indoor dataset. Images 13
(Left) and 86 (Right) were added to the map at the first loop. Image 228 (Center), was
added to the map the next time the camera visits the same place. As can be seen, image
228 is visually in-between the left and right images.

present better the environment.
An additional experiment has been performed in order to verify whether refined

maps can be employed for localization with a performance similar to the original
ones. First, we create the map of the environment and, for each image, the as-
signed keyframe is stored. After that, the sequence is processed again using the
localization filter to determine, for each image, the closest location in the map. If
this location is the same as the one stored during the mapping process, this im-
age is considered as a correct localization (CL). For each sequence, we have also
obtained the total mapping and localization times, as well as the number of nodes
generated in the graph. These values have been measured for each sequence with
and without the refinement step. The results are shown in Table 2. As it is shown,
the map refinement step leads to less nodes than without. Despite the correct lo-
calization rate is slightly lower for some environments, refining the map improves
the computational speed of the mapping and localizations processes. This effect is
more significant the longer the sequence is, as is the case of the Lip6Outdoor and
the UIBLargeLoop datasets. The UIBSmallLoop dataset presents small differences
between the two versions of the map. This is because the resulting structure in the
maps are practically the same, resulting into similar processing times. From the
table we can also observe that, in general, the outdoors environments are more af-
fected by the refinement step, since the correct localization rates are lower for these
cases. In general terms, we can argue that the map refinement strategy proposed in
this work can be used for saving space in memory and for improving the speed of
the mapping and localization tasks without compromising the performance.

8 Conclusions and Future Work

In this work, a complete appearance-based mapping and localization framework
based on local invariant features has been presented. When a new useful image is
acquired, a discrete Bayes filter is used to select a loop closure candidate and decide
whether this frame is a loop closure or else is a new node to be added to the map.
This probabilistic filter presents a novel observation model based in an efficient

26

Figure 18: (Top) Reference map for the UIBLargeLoop dataset. (Bottom) Topological map
generated using our approach. Each part of the map is identified with a letter in both maps.
The red node is the beginning of the sequence.

27

Figure 19: (Top) Reference map for the UIBIndoor dataset. (Bottom) Topological map
generated using our approach. Each part of the map is identified with a letter in both maps.
The red node is the beginning of the sequence.

With Map Refinement Without Map Refinement
Dataset N M L %CL N M L %CL

Lip6Indoor 40 137.37 6.27 64 62 155.36 9.08 63
Lip6Outdoor 103 1005.52 29.05 63 141 1150.87 42.95 61

UIBSmallLoop 59 152.2 8.25 75 61 155.3 8.57 77
UIBLargeLoop 100 728.94 44.29 74 111 798.53 60.98 78

UIBIndoor 40 118.4 16.2 76 59 190.39 24.64 73

Table 2: Results for the map refinement experiment. N: number of nodes; M: mapping
time in seconds; L: localization time in seconds; %CL: ratio between correct localizations
and total number of elements. See text for details.

28

Figure 20: Map of the Lip6Indoor dataset obtained without using the map refinement
strategy. The red node indicates the beginning of the sequence.

Figure 21: Map of the Lip6Outdoor dataset obtained without using the map refinement
strategy. The red node indicates the beginning of the sequence.

29

Figure 22: Map of the UIBSmallLoop dataset obtained without using the map refinement
strategy. The red node indicates the beginning of the sequence.

Figure 23: Map of the UIBLargeLoop dataset obtained without using the map refinement
strategy. The red node indicates the beginning of the sequence.

30

Figure 24: Map of the UIBIndoor dataset obtained without using the map refinement strat-
egy. The red node indicates the beginning of the sequence.

matching scheme between the current image and the features of the current nodes
in the map, using an index based on a set of randomized KD-trees. As a result, a
topological map of the environment is obtained, which represents the scenario of
the robot as a graph.

Using probabilistic filters for mapping and localization tasks usually produces
spurious nodes and redundant paths over the graph. This is due to imperfections
in the acquired images and the delays introduced by the filter. A key contribution
of this work is a map refinement strategy for solving these problems, producing
cleaner maps and saving storage space and computation resources for the mapping
and localization tasks. This framework is executed each time a loop is closed and
a predefined neighbourhood is refined in each step. The final decision of deleting
nodes is taken according to the visual features of each path, avoiding to delete real
paths in the environment.

In order to validate our solution, results from an extensive set of experiments,
using datasets from different environments, have been reported. These results pro-
vide promising results, showing that our mapping and localization approach using
a map refinement phase can be used for generating topological maps of the envi-
ronment that, if they are provided with odometry information, can also be used for
navigating in the current scenario.

Referring to future work, we intend to explore: (a) the use of other kinds of
image descriptors based on local invariant features, such as e.g. binary descriptors,
since they can improve our approach in computational terms; (b) the execution of
the Bayes filter in a GPU to further the speed up the loop closure detection; and (c)

31

the use of the full algorithm for larger mapping and localization environments.

Acknowledgements

This work is supported by the European Social Fund through the grant FPI11-
43123621R (Conselleria d’Educacio, Cultura i Universitats, Govern de les Illes
Balears) and by FP7 project INCASS (GA 605200).

References
[1] H. Durrant-Whyte and T. Bailey, “Simultaneous Localisation and Mapping (SLAM): Part I The Essential

Algorithms,” Robotics and Automation Magazine, vol. 13, no. 2, pp. 99–110, 2006.

[2] J. Sivic and A. Zisserman, “Video Google: A Text Retrieval Approach to Object Matching in Videos,” in
International Conference on Computer Vision, pp. 1470–1477, 2003.

[3] H. Zhang, “BoRF: Loop-Closure Detection with Scale Invariant Visual Features,” in International Confer-
ence on Robotics and Automation, pp. 3125–3130, 2011.

[4] A. Angeli, S. Doncieux, J.-A. Meyer, and D. Filliat, “Incremental Vision-Based Topological SLAM,” in
International Conference on Intelligent Robots and Systems, pp. 22–26, 2008.

[5] O. Booij, B. Terwijn, Z. Zivkovic, and B. Krose, “Navigation Using an Appearance Based Topological
Map,” in International Conference on Robotics and Automation, no. April, pp. 3927–3932, 2007.

[6] Z. Zivkovic, B. Bakker, and B. Krose, “Hierarchical Map Building Using Visual Landmarks and Geometric
Constraints,” in International Conference on Intelligent Robots and Systems, pp. 2480–2485, 2005.

[7] I. Ulrich and I. Nourbakhsh, “Appearance-Based Place Recognition for Topological Localization,” in Inter-
national Conference on Robotics and Automation., pp. 1023–1029, 2000.

[8] T. Goedemé, M. Nuttin, T. Tuytelaars, and L. Van Gool, “Markerless Computer Vision Based Localiza-
tion using Automatically Generated Topological Maps,” in European Navigation Conference, pp. 235–243,
2004.

[9] D. G. Sabatta, “Vision-based Topological Map Building and Localisation using Persistent Features,” in
Robotics and Mechatronics Symposium, pp. 1–6, 2008.

[10] M. Cummins and P. Newman, “FAB-MAP: Probabilistic Localization and Mapping in the Space of Ap-
pearance,” International Journal of Robotics Research, vol. 27, no. 6, pp. 647–665, 2008.

[11] A. Angeli, S. Doncieux, J.-A. Meyer, and D. Filliat, “Real-Time Visual Loop-Closure Detection,” in Inter-
national Conference on Robotics and Automation, pp. 1842–1847, 2008.

[12] A. Angeli, D. Filliat, S. Doncieux, and J.-A. Meyer, “A Fast and Incremental Method for Loop-Closure
Detection Using Bags of Visual Words,” IEEE Transactions on Robotics, vol. 24, no. 5, pp. 1027–1037,
2008.

[13] H. Zhang, “Indexing Visual Features: Real-Time Loop Closure Detection Using a Tree Structure,” in Inter-
national Conference on Robotics and Automation, pp. 3613–3618, 2012.

[14] A. Angeli, S. Doncieux, J.-A. Meyer, and D. Filliat, “Visual Topological SLAM and Global Localization,”
in International Conference on Robotics and Automation, pp. 4300–4305, 2009.

[15] F. Fraundorfer, C. Engels, and D. Nister, “Topological Mapping, Localization and Navigation Using Image
Collections,” in International Conference on Intelligent Robots and Systems, pp. 3872–3877, 2007.

[16] A. Oliva and A. Torralba, “Modeling the Shape of the Scene : A Holistic Representation of the Spatial
Envelope,” International Journal of Computer Vision, vol. 42, no. 3, pp. 145–175, 2001.

32

[17] G. Singh and J. Kosecka, “Visual Loop Closing using Gist Descriptors in Manhattan World,” in Omnidirec-
tional Robot Vision workshop, held with IEEE ICRA, 2010.

[18] Y. Liu and H. Zhang, “Visual Loop Closure Detection with a Compact Image Descriptor,” in International
Conference on Intelligent Robots and Systems, pp. 1051–1056, 2012.

[19] C. Siagian and L. Itti, “Rapid Biologically-Inspired Scene Classification using Features Shared with Visual
Attention,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 2, pp. 300–12,
2007.

[20] A. Kawewong, N. Tongprasit, S. Tungruamsub, and O. Hasegawa, “Online and Incremental Appearance-
Based SLAM in Highly Dynamic Environments,” International Journal of Robotics Research, vol. 30,
no. 1, pp. 33–55, 2011.

[21] H. Zhang, B. Li, and D. Yang, “Keyframe Detection for Appearance-Based Visual SLAM,” in International
Conference on Intelligent Robots and Systems, pp. 2071–2076, 2010.

[22] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” International Journal of Com-
puter Vision, vol. 60, no. 2, pp. 91–110, 2004.

[23] E. Garcia-Fidalgo and A. Ortiz, “Probabilistic Appearance-Based Mapping and Localization Using Visual
Features,” in Pattern Recognition and Image Analysis, vol. 7887 of Lecture Notes in Computer Science,
pp. 277–285, 2013.

33

