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Abstract— This paper proposes a novel approach to perform
underwater Simultaneous Localization and Mapping (SLAM)
using a Mechanically Scanned Imaging Sonar (MSIS). This
approach starts by processing the MSIS data in order to obtain
range scans while taking into account the robot motion. Then,
the relative motions between consecutively gathered scans are
stored in the state vector. Thus, the whole sequence of robot
motions between gathered scans is used to perform SLAM
using an Extended Kalman Filter (EKF). One of the novelties is
that this sequence is not represented with respect to a world-
fixed coordinate frame, but with respect to a coordinate frame
locked to the robot. Thanks to this, EKF linearization errors are
reduced. The experimental results in underwater environments
validate the proposal comparing the new robocentric approach
to the world-centric trajectory method.

I. INTRODUCTION

Keeping track of the robot position is a crucial issue in
most mobile robotic applications nowadays. The Simultane-
ous Localization and Mapping (SLAM) approach [1] has
proved to be a reliable solution, allowing to obtain accurate
pose estimates even in long-term missions.

The first attempts to perform SLAM were based on the
Extented Kalman Filter (EKF). In spite of its great success,
the robotics community soon realized that the linearization
errors introduced by EKF could not be neglected as they lead
the SLAM estimates to inconsistencies [2].

Other bayesian methods [3], such as Particle Filtering,
are widely used by the SLAM community. However, the
EKF approach is still the most popular one because of its
conceptual simplicity and relatively low computational cost.
At the present time, research in EKF-SLAM is focused on
reducing the linearization errors so that long term missions
can be successfully achieved.

It is well known that linearization errors become larger
when large covariances are involved. Approaches such as
hierarchical SLAM or submapping methods [4], [5] build
local maps of limited size, which bound the covariances and,
thus, the linearization errors. Then, by linking the local maps
through a global map or a hierarchy of global maps, EKF-
SLAM in large environments is possible.

Another approach, the robocentric SLAM [6], is concerned
with the increase of covariances with the distance from the
robot starting pose. To alleviate this problem, it proposes
an alternative representation where the map is always rep-
resented with respect to the robot itself. In this way, the
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covariances of the features close to the robot, which are those
involved in the data association and the EKF measurement
update, are small and bounded. Robocentric SLAM has also
been successfully combined with submapping techniques [7].

The Trajectory-based SLAM [8] has some points in com-
mon with submapping techniques. In this approach, the
EKF state vector contains the relative robot motions be-
tween consecutively gathered sensor scans. Because of the
local representation, the filter always operates on small and
bounded covariances. When a new range scan is gathered,
it is matched against the existing ones using scan matching
techniques and the EKF correction is applied to each in-
volved local motion. In this way, the correction is performed
at the trajectory level, instead of solely correcting the current
robot pose.

However, due to the trajectory representation, the lin-
earization errors increase with the proximity of the matched
scan to the current one. This produces some problems,
because matchings with close scans will appear during the
most part of the robot operation, whilst matchings involving
far scans will appear rarely. Moreover, matching between
close scans is more reliable than between far scans. Accord-
ingly, reducing the linearization errors for those matchings
involving scans close to the robot would increase the quality
of the pose estimates. This goal is similar to the one of
Robocentric SLAM, and it is clear that the Trajectory-based
approach can benefit from Robocentric SLAM one.

This work is focused on underwater robotics. When com-
paring to terrestrial applications, underwater robotics poses
additional problems, mainly related to the robot sensing ca-
pabilities. In our particular implementation, a Mechanically
Scanned Imaging Sonar (MSIS) has been used to observe the
environment. This kind of sensors has two problems when
it is used to perform SLAM based on range scans. First,
it does not provide range measurements but echo intensity
profiles. In addition, due to the acoustic beam’s opening, and
also to the multi-path reflections, an echo intensity profile
may contain more than one peak. Second, as the sensor
is mechanically scanned, the scan gathering time is not
negligible. In particular, gathering a full scan may take a
few seconds, which means that the robot motion during the
data gathering has to be taken into account.

This paper is concerned with the aforementioned problems
in underwater environments: how to obtain range information
from the MSIS echo intensity profiles, how to compensate
the robot motion during the data gathering by means of
a Doppler Velocity Log (DVL) sensor and finally a new
robocentric trajectory approach to underwater SLAM that
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Fig. 1. Overview of the scan-based SLAM. The notation is explained
throughout the paper.

overcomes the limitations of the trajectory based SLAM is
presented.

The problem is summarized in section II, where also
the beam segmentation and the scan building processes
are introduced. Section III summarizes the world-centric
scan based SLAM. And in section IV the new robocentric
trajectory SLAM approach is described. The experimental
results are provided in section V. The results, which are
based on real data gathered by an AUV, show the benefits of
the presented approach by comparing it with world-centric
method. Section VI concludes the paper.

II. PROBLEM STATEMENT

The experiments conducted in this paper have been per-
formed using the sensor data gathered by the Ictineu AUV.
This AUV was designed and developed at the University of
Girona (see [9] for more details). Among other sensors, the
AUV is endowed with a Doppler Velocity Log (DVL) which
measures the velocities of the unit with respect to bottom and
water, a Motion Reference Unit (MRU) that provides absolute
attitude data by means of compass and inclinometers, and an
MSIS.

The MSIS obtains 360𝑜 scans of the environment by
rotating a sonar beam through 200 angular steps in about
13.8 seconds. At each angular position, the sensor provides
a set of 500 values named bins. These values represent a
50 m long echo intensity profile with a resolution of 10 cm.
Each of these sets of 500 bins will be referred to as a beam.
By accumulating this information, an acoustic image of the
environment can be obtained.

As stated previously, different problems arise when using
an MSIS to perform scan-based localization. In order to
solve them several processes are necessary. Our proposal is
summarized in Figure 1. First, range information is extracted
from each MSIS measurement by means of the beam seg-
mentation. Also, DVL and MRU readings are fused by means
of an Extended Kalman Filter (EKF) to obtain dead reckon-
ing estimates, as described by [9]. Both the obtained range
information and the dead reckoning estimates are stored
in two buffers, called readings history and transformations
history respectively. When the MSIS has obtained a 360𝑜

view of the environment, the information in these buffers
is used by the scan building process to compensate the
robot motion and build the scan 𝑆𝑘. Also, the scan builder
computes the motion 𝑥𝑘 between the previously gathered

scan and the current one. The scans are stored in the so
called scan history and the motions are used to augment the
SLAM state vector. Afterwards, the new scan 𝑆𝑘 is matched
against the scans in the scan history to perform the SLAM
state update. This state update exploits the relations between
consecutively gathered scans, similarly to the top level in the
Hierarchical SLAM approach [4]. Finally, the robot pose 𝑥𝑊

𝑅

is computed by the pose extraction process.

A. Beam Segmentation

Our goal is to obtain range scans from the beams as
they are provided by the MSIS. Accordingly, the beam
segmentation is in charge of computing the distance from
the sensor to the largest obstacle in the beam. In some cases,
this distance corresponds to the bin with the largest intensity
value. However, in some other very frequent situations the
distance can not be computed in such way.

To deal with these situations several algorithms have been
proposed, tested and evaluated by the authors in [10]. Any of
them is able to obtain a much more accurate range scan than
a simple maximum intensity selection. However, the details
of these algorithms are out of the scope of this paper.

B. Scan Building

The MSIS data cannot be treated as a synchronous snap-
shot of the world. Instead, the sonar data is actually acquired
whilst the AUV is moving. Thus, the robot motions during
the sonar data acquisition have to be taken into account in
order to correct the induced distortion. The scan building
process epitomizes this idea.

The range readings provided by the beam segmentation
constitute the range information used to build the scans. Our
proposal is to model each measurement in a scan by a normal
distribution. In that way, the scans not only hold information
about the place where an obstacle has been detected but also
about the uncertainty in this detection.

The sonar readings have to be stored in the so called the
readings history 𝑅𝐻𝑡 so that they can be easily accessed
by the scan building process. Similarly, the transformations
history 𝑇𝐻𝑡 is defined as a history of the most recent 𝑁
robot motions.

As the AUV is moving while acquiring the scan, each
reading in the 𝑅𝐻𝑡 may have been obtained at a different
robot pose. The goal of the scan building process is to
represent each reading in one scan with respect to a common
coordinate frame. In that sense, each reading in 𝑅𝐻𝑡 can be
represented with respect to any coordinate frame referenced
in 𝑇𝐻𝑡 while taking into account the robot motion. In this
work, the chosen coordinate frame is the central position
of the trajectory followed by the robot when collecting the
readings involved in the scan, for two main reasons: the
similarity to the scans generated by a laser range finder and
the reduction of the maximum uncertainty of each reading
with respect to the reference frame.

Figure 2-a illustrates the result of the scan builder by
the raw range data before and after the scan building.
Additionally, 2-b shows the acoustic image corresponding
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Fig. 2. (a) Range data before and after the scan building process. (b)
Acoustic image of one MSIS scan after the scan building process.

to the corrected scan overlayed to a satellite view to show
the effects of the correction. More details on how to build
the scans, taking into account the robot motion, can be found
in [8].

III. WORLD-CENTRIC TRAJECTORY SLAM

This scan-based approach is based on EKF concepts.
The state vector contains the relative positions between
consecutively gathered scans.

The robot pose with respect to an earth-fixed coordinate
frame could be included in the state vector. However, for the
sake of simplicity, a state vector containing only the map is
built.

As the map stores relative poses between consecutively
obtained scans, the pose of the most recent scan with respect
to the robot’s starting pose is easily obtained using the
⊕ operator [7]. Additionally, all the information needed to
compute the current robot pose with respect to the last scan
is available in the transformations history. Using this data
the current robot pose with respect to the first robot pose,
𝑥𝑊
𝑅 , can be easily computed by the pose extraction process

(see Figure 1).
The measurement update step is performed at the scan

level, determining which ones of the stored scans sufficiently
overlap with the most recent scan. In order to measure the
displacement and rotation between each of the associated
scans, a scan matching technique is used. These scan match-
ing estimates constitute the measurements.

The observation function estimates the displacement and
rotation from 𝑆𝑖 to 𝑆𝑘 using the state vector. As it explicitly
takes into account the whole chain of motions involved in
each loop closure, it is possible to correct the whole robot
trajectories involved in loops.

By means of the measurements coming from the scan
matching, the observation function, as well as the observation
matrix, the EKF-SLAM update step can be performed.

However, the effects of the linearizations in the obser-
vation model may be problematic especially when closing
large loops. In order to alleviate this problem, this proposal
uses IEKF [11] instead of EKF. Roughly speaking, the IEKF
consists on iterating an EKF and relinearizing the system at
each iteration until convergence is achieved. Further details
on how to perform this world-centric approach can be found
in [8].

The top of figure 3 shows how the map, in the world-
centric approach, is built with respect to the world reference
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Fig. 3. Relative positions between scans. Top: World-centric. Bottom:
Robocentric.

frame. Even though this technique has advantages over the
previously existing ones, it is possible to reduce even more
the linearization errors and to improve the map consistency,
making use of the Robocentric approach, introduced by [7],
where the state is represented in a frame relative to the
current position of the robot, as it can be seen on the bottom
of the figure 3.

IV. ROBOCENTRIC TRAJECTORY SLAM

The Robocentric Trajectory SLAM is performed at the
scan level, and relies on EKF concepts. However, contrarily
to the aforementioned world-centric approach [8], the relative
positions between consecutively gathered scans are stored in
the state vector starting in the current robot pose and ending
in a world-fixed coordinate frame, throughout all the gathered
scans. Let 𝑥𝑘 = 𝑁(�̂�𝑘, 𝑃𝑘) denote the state vector at time
step 𝑘:

𝑥𝑘 =

⎡
⎢⎢⎢⎢⎣

𝑥𝑆0

𝑊

𝑥𝑆1

𝑆0

...
𝑥
𝑆𝑘−1

𝑆𝑘−2

⎤
⎥⎥⎥⎥⎦ (1)

where 𝑥𝑆0

𝑊 denotes the position of the world-fixed coordinate
frame 𝑊 with respect to firstly gathered scan 𝑆0 and 𝑥𝑆𝑖

𝑆𝑖−1

represents the position of the scan gathered at time step
𝑖 − 1 with respect to the one gathered at time step 𝑖. The
items in the state vector constitute the robocentric trajectory.
Accordingly, the pose of the world-fixed coordinate frame
𝑊 with respect to the robot can be easily computed as
𝑥𝑆𝑘

𝑊 = 𝑥𝑆𝑘

𝑆𝑘−1
⊕ ... ⊕ 𝑥𝑆0

𝑊 . Additionally, the robot pose

with respect to 𝑊 is 𝑥𝑊
𝑆𝑘

= ⊖𝑥𝑆𝑘

𝑊 , being ⊕ and ⊖ the
compounding and inversion operators [7].

A. Prediction

As soon as a new scan 𝑆𝑘 has been gathered, it is stored
in the scans history 𝑆𝐻𝑘. The scans history 𝑆𝐻𝑘 is a buffer
containing the range scans gathered up to time step 𝑘. At
the same time, the dead reckoning information 𝑥

𝑆𝑘−1

𝑆𝑘
=

𝑁(�̂�
𝑆𝑘−1

𝑆𝑘
, 𝑃

𝑆𝑘−1

𝑆𝑘
) is available. The logical step would be to

include ⊖𝑥
𝑆𝑘−1

𝑆𝑘
as a new feature in the state vector, so that

the stored trajectory remains robocentric. However, as dead
reckoning (DVL data in our case) is likely to be the less
precise component of the system, inverting it at this point
would introduce significant linearization error. Our proposal
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is, similarly to [2], to delay this inversion until the dead
reckoning estimate has been improved by the EKF update
step. To this end, the odometric estimate is simply included
into the state vector without being inverted. The previously
existing items in the state vector remain unaltered, as we
assume a static environment:

𝑥−
𝑘 =

[
𝑥𝑘

𝑥
𝑆𝑘−1

𝑆𝑘

]
(2)

B. Data association

The first step is to determine which ones of the stored
scans sufficiently overlap with the most recent scan. Our
proposal is to take this decision based on a proximity criteria.
Although our implementation uses euclidean distance, other
distances could be used.

The displacement and rotation from a scan 𝑆𝑖 ∈ 𝑆𝐻𝑘,
with 𝑖 < 𝑘, to 𝑆𝑘 can be estimated from the state vector as
follows:

𝛿(𝑖, 𝑥−
𝑘 ) = ⊖�̂�

𝑆𝑘−1

𝑆𝑘
⊕ �̂�

𝑆𝑘−1

𝑆𝑘−2
⊕ ...⊕ �̂�

𝑆𝑖+1

𝑆𝑖
(3)

Notice that the inversion in this expression is only per-
formed on the mean �̂�

𝑆𝑘−1

𝑆𝑘
and, thus, no linearization error

appears. The euclidean distance 𝑑(𝑖, 𝑘) from the coordinate
frame of 𝑆𝑖 to the one of 𝑆𝑘 is the norm of the [𝑥, 𝑦]
components of 𝛿(𝑖, 𝑥−

𝑘 ). The proposal of this paper is,
similarly to [12], to select as possible associations those
scans in 𝑆𝐻𝑘 that are at an euclidean distance below a certain
threshold 𝛾. Let the associated scans set 𝐴𝑆𝑘 be defined as
the set of possible associations as follows:

𝐴𝑆𝑘 = {𝑖∣𝑑(𝑖, 𝑘) < 𝛾} ≡ {𝑎1, 𝑎2, ..., 𝑎𝑀} (4)

C. The measurement model

The proposal of this paper to measure the displacement
and rotation between each of the associated scans is the use
of scan matching techniques. This paper proposes the use
of the sonar probabilistic Iterative Correspondence (spIC)
because it has shown to be a reliable, stand-alone, scan
matching algorithm both using terrestrial ultrasonic range
finders [13] and underwater MSIS [14]. Moreover, the spIC
has also been successfully applied to underwater SLAM [12].
The explanation of the spIC algorithm is out of the scope
of this paper. The reader is directed to the aforementioned
studies to have a full description of the algorithm.

The spIC is executed for each 𝑆𝑖 with 𝑖 ∈ 𝐴𝑆𝑘 to estimate
the displacement and rotation between 𝑆𝑖 and 𝑆𝑘. The output
of the spIC scan matcher constitute the measurements and
will be denoted by 𝑧𝑖𝑘.

The observation function ℎ𝑖
𝑘 is in charge of predicting

the spIC measurement corresponding to 𝑆𝑖 from the state
vector 𝑥−

𝑘 . In other words, the observation function estimates
the displacement and rotation from 𝑆𝑖 to 𝑆𝑘 using the
state vector. This displacement and rotation has already
been computed when selecting associated scans by means
of Equation 3. Taking advantage of this makes it possible
to spare some CPU time. In other words, ℎ𝑖

𝑘 = 𝛿(𝑖, 𝑥−
𝑘 ).

As this observation function explicitly takes into account
the whole chain of motions involved in each loop closure,
the proposed approach is able to correct the whole robot
trajectory involved in loops.

The observation matrix 𝐻𝑖
𝑘, which is defined as the

Jacobian matrix of ℎ𝑖
𝑘, is the following:

𝐻𝑖
𝑘 =

∂ℎ𝑖
𝑘

∂𝑥−
𝑘

∣∣∣∣
�̂�−
𝑘

=

[
∂ℎ𝑖

𝑘

∂𝑥𝑆0

𝑊

⋅ ⋅ ⋅ ∂ℎ𝑖
𝑘

∂𝑥𝑆𝑖

𝑆𝑖−1

⋅ ⋅ ⋅ ∂ℎ𝑖
𝑘

∂𝑥
𝑆𝑘−1

𝑆𝑘

]∣∣∣∣∣
�̂�−
𝑘

(5)

It is easy to see that only the terms depending on the state
vector components 𝑥𝑆𝑖

𝑆𝑖−1
to 𝑥

𝑆𝑘−1

𝑆𝑘−2
and 𝑥

𝑆𝑘−1

𝑆𝑘
are non-zero.

The non-zero term that depends on 𝑥
𝑆𝑘−1

𝑆𝑘
is:

∂ℎ𝑖
𝑘

∂𝑥
𝑆𝑘−1

𝑆𝑘

∣∣∣∣∣
�̂�−
𝑘

=
∂ℎ𝑖

𝑘

∂ ⊖ 𝑥
𝑆𝑘−1

𝑆𝑘

∣∣∣∣∣
�̂�−
𝑘

⋅ ∂ ⊖ 𝑥
𝑆𝑘−1

𝑆𝑘

∂𝑥
𝑆𝑘−1

𝑆𝑘

∣∣∣∣∣
�̂�−
𝑘

= 𝐽1⊕{⊖𝑥
𝑆𝑘−1

𝑆𝑘
, 𝑥

𝑆𝑘−1

𝑆𝑘
⊕ ℎ𝑖

𝑘} ⋅ 𝐽⊖{𝑥𝑆𝑘−1

𝑆𝑘
} (6)

where 𝐽1⊕ is the first Jacobian matrix of the compounding
operator and 𝐽⊖ is the Jacobian matrix of the inversion, as
described in [7]. The remaining non-zero terms of 𝐻𝑖

𝑘 are
the following:

∂ℎ𝑖
𝑘

∂𝑥
𝑆𝑗+1

𝑆𝑗

∣∣∣∣∣
�̂�−
𝑘

=
∂ℎ𝑖

𝑘

∂𝑔𝑗,𝑖

∣∣∣∣
�̂�−
𝑘

⋅ ∂𝑔𝑗,𝑖

∂𝑥
𝑆𝑗+1

𝑆𝑗

∣∣∣∣∣
�̂�−
𝑘

= 𝐽1⊕{𝑔𝑗,𝑖,⊖𝑔𝑗,𝑖 ⊕ ℎ𝑖
𝑘} ⋅ 𝐽2⊕{𝑔𝑗,𝑖 ⊖ 𝑥

𝑆𝑗+1

𝑆𝑗
, 𝑥

𝑆𝑗+1

𝑆𝑗
} (7)

where 𝑖 ≤ 𝑗 ≤ 𝑘 − 2 and 𝑔𝑗,𝑖, which is defined just to ease
notation, is 𝑔𝑗,𝑖 = 𝑥

𝑆𝑘−1

𝑆𝑘
⊕ 𝑥

𝑆𝑘−1

𝑆𝑘−2
⊕ ... ⊕ 𝑥

𝑆𝑗+1

𝑆𝑗
. 𝐽2⊕ is the

second Jacobian matrix of the compounding operator, also
described in [7].

At this point, the measurements 𝑧𝑖𝑘 coming from the scan
matching and the observation function ℎ𝑖

𝑘, as well as the
observation matrix 𝐻𝑖

𝑘 are available for all 𝑖 ∈ 𝐴𝑆𝑘. The
measurement vector 𝑧𝑘, the observation function ℎ𝑘 and the
observation matrix 𝐻𝑘, which are used by in the EKF update,
can be constructed as follows:

𝑧𝑘 =

⎡
⎢⎣

𝑧𝑎1𝑘
...

𝑧𝑎𝑀𝑘

⎤
⎥⎦ℎ𝑘 =

⎡
⎢⎣

ℎ𝑎1
𝑘
...

ℎ𝑎𝑀
𝑘

⎤
⎥⎦𝐻𝑘 =

⎡
⎢⎣

𝐻𝑎1
𝑘
...

𝐻𝑎𝑀
𝑘

⎤
⎥⎦ (8)

where 𝑎1, 𝑎2, ..., 𝑎𝑀 denote the items in 𝐴𝑆𝑘 (see Equation
4).

D. Update

By means of 𝑧𝑘, ℎ𝑘 and 𝐻𝑘 the EKF-SLAM update step
can be performed. However, the effects of the linearizations
in the observation model may be problematic especially
when closing large loops. In order to alleviate this problem,
our proposal is not to use an EKF but an IEKF [11].
Roughly speaking, the IEKF consists on iterating an EKF and
relinearizing the system at each iteration until convergence
is achieved.
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At iteration 𝑗, the mean and the associated covariance
matrix obtained from IEKF are:

𝑃 𝑗
𝑘 = 𝑃−

𝑘 − 𝑃−
𝑘 𝐻𝑇

𝑘,𝑗(𝐻𝑘,𝑗𝑃
−
𝑘 𝐻𝑇

𝑘,𝑗 + 𝑃𝑠𝑝𝐼𝐶,𝑘)
−1 ⋅

⋅ 𝐻𝑘,𝑗𝑃
−
𝑘 (9)

�̂�𝑗+1
𝑘 = �̂�𝑗

𝑘 + 𝑃 𝑗
𝑘𝐻

𝑇
𝑘,𝑗𝑃

−1
𝑠𝑝𝐼𝐶,𝑘(𝑧𝑘 − ℎ𝑘)−

− 𝑃 𝑗
𝑘 (𝑃

−
𝑘 )−1(�̂�𝑗

𝑘 − �̂�−
𝑘 ) (10)

where 𝐻𝑘,𝑗 denotes the observation matrix 𝐻𝑘 evaluated at
�̂�𝑗
𝑘 (i.e. each 𝐻𝑖

𝑘 in Equation 5 is evaluated at the value of the
state vector in the previous IEKF iteration). The term 𝑃𝑠𝑝𝐼𝐶,𝑘

is a block diagonal matrix containing the scan matching
covariances corresponding to the items in 𝑧𝑘. When the IEKF
achieves convergence, the state vector in the last iteration
constitutes the updated state 𝑥+

𝑘 .
It is important to emphasize that this step only updates

the items in the state vector involved in the detected loops.
Thus, the matrix 𝐻 in Equation 8 could be reduced by
removing all the zero valued columns on the left side of the
matrix and then updating only the part of the state vector
involved in all the detected loops. Moreover, the presented
update step makes it possible to store different loops when
they are detected and close them later simultaneously, not
necessarily at each SLAM step [4]. Thanks to this, the
loop closure can be delayed if the computational resources
are not available at a certain time step. Also, the overall
computational cost is reduced because, prior to the loop
closing, the newly gathered scans are independent and those
parts of the covariance matrix related to the new scans are
block diagonal.

E. Inversion

The dead reckoning estimate which was included in the
state vector during the prediction step has now been im-
proved thanks to the IEKF update. Thus, now it should be
inverted so that the state vector remains robocentric. The
resulting state vector is:

𝑥𝑘+1 =

⎡
⎢⎢⎢⎢⎣

𝑥𝑆0

𝑊
...

𝑥
𝑆𝑘−1

𝑆𝑘−2

⊖𝑥
𝑆𝑘−1

𝑆𝑘

⎤
⎥⎥⎥⎥⎦ (11)

The obtention of the mean �̂�𝑘+1 of the state vector is
straightforward. In order to obtain the covariance 𝑃𝑘+1, the
following Jacobian matrix has to be computed:

∂𝑥𝑘+1

∂𝑥+
𝑘

∣∣∣∣
�̂�+
𝑘

=

⎡
⎢⎢⎢⎢⎢⎣

∂𝑥
𝑆0
𝑊

∂𝑥
𝑆0
𝑊

∂𝑥
𝑆0
𝑊

∂𝑥
𝑆1
𝑆0

⋅ ⋅ ⋅ ∂𝑥
𝑆0
𝑊

∂𝑥
𝑆𝑘−1
𝑆𝑘

...
. . .

...
∂⊖𝑥

𝑆𝑘−1
𝑆𝑘

∂𝑥
𝑆0
𝑊

∂⊖𝑥
𝑆𝑘−1
𝑆𝑘

∂𝑥
𝑆1
𝑆0

⋅ ⋅ ⋅ ∂⊖𝑥
𝑆𝑘−1
𝑆𝑘

∂𝑥
𝑆𝑘−1
𝑆𝑘

⎤
⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣
�̂�+
𝑘

(12)

It is easy to see that this matrix actually is:

𝐽 ≡ ∂𝑥𝑘+1

∂𝑥+
𝑘

∣∣∣∣
�̂�+
𝑘

=

[
𝐼3𝑘×3𝑘 03𝑘×3

03×3𝑘 𝐽⊖{�̂�𝑆𝑘−1

𝑆𝑘
}
]

(13)

Using this matrix, the state covariance can be updated as
𝑃𝑘+1 = 𝐽 ⋅ 𝑃𝑘 ⋅ 𝐽𝑇 .

V. EXPERIMENTAL RESULTS

The experimental data used to validate our underwater
SLAM approach was obtained by [9] in an abandoned marina
situated near St. Pere Pescador in the Costa Brava (Spain).
A satellite view of this environment is available in [15]. The
Ictineu AUV was teleoperated along a 600m trajectory at
an average speed of 0.2m/s. The trajectory includes a small
loop as well as a 200m long straight path. The gathered data
included measurements from the DVL, the MRU and the
MSIS. Additionally, a buoy with a GPS was attached to the
robot in order to obtain the ground truth.

Figure 4-a shows the trajectories provided by dead reck-
oning (DVL+MRU) and the GPS. Also, the sonar readings
are plotted according to the dead reckoning trajectory for
visual inspection. The problems of dead reckoning can
be appreciated. For example, the entrance to the canal is
misaligned (i.e. the loop is not closed) due to the drift error.

In order to show the advantages of the Robocentric Tra-
jectory approach, the World-centric Trajectory [8] approach
has also been implemented. In the world-centric approach,
the relative motions between consecutively gathered scans
are stored starting in the first robot pose and ending in the
current one throughout all the poses where the scans have
been gathered. Because the world-centric approach stores
local robot motions, similarly to the proposal in this paper, it
also introduces significantly less linearization errors than the
standard EKF approach, where absolute landmark positions
are used.

The results provided by the World-centric Trajectory
SLAM are shown in Figure 4-b together with the ground
truth provided by the GPS. It can be observed how this
approach provides a trajectory very similar to the ground
truth, especially before entering the canal where some loop
closures have been performed. However, after more than 200
meters without revisiting known areas, the pose error sur-
passes the 6m. The ellipses shown in Figure 4-b correspond
to the 2𝜎 bounds for some scans positions with respect to
the first robot pose after the whole World-centric Trajectory
SLAM process. It can be observed that the 2𝜎 bounds are
smaller on the left side of the image where different loop
closures are performed.

The results corresponding to the Robocentric Trajectory
SLAM discussed in this paper are shown in Figure 4-c.
Similarly to the aforementioned approach, the process clearly
provides results very close to the ground truth. However,
the results in the canal, when no loops can be closed, are
significantly better in this case.

The main differences between both approaches arise when
no loop closures are available. This can be clearly appreci-
ated in Figure 4-d, where the evolution of the pose error with
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(a) (b) (c) (d)

Fig. 4. (a) Trajectories according to dead reckoning and GPS. Sonar readings positioned according to dead reckoning. (b) Trajectories according to
World-centric Trajectory SLAM and GPS. Sonar readings positioned according to SLAM. (c) Trajectories according to Robocentric Trajectory SLAM and
GPS. Sonar readings positioned according to SLAM. (d) The dead reckoning and SLAM errors.

Loop No loop Global

Robocentric 0.99m 1.51m 1.15m
World-centric 1.49m 3.3m 2.05m

TABLE I

MEAN ERRORS FOR WORLD-CENTRIC AND ROBOCENTRIC

TRAJECTORIES

time is shown. The pose error is defined here as the distance
between a pose estimation and the corresponding ground
truth. It can be observed that the main differences between
World-centric Trajectory and Robocentric Trajectory, as well
as dead reckoning, appear, approximately, from the 1800
seconds onwards.

Table I emphasizes these differences by showing the mean
errors in the loops area and in the canal area, as well as
the global mean error. The robocentric trajectory approach
mainly reduces the linearization errors when matching scans
that have been gathered close in time. As this is the most
common situation when no loops appear, that is why the
main differences appear in the canal area.

VI. CONCLUSIONS

This paper proposes a novel approach to perform un-
derwater SLAM using a MSIS. The presented approach
starts by processing the underwater sonar data so that range
information is extracted from the acoustic profiles. Also, the
range data is grouped in scans while taking into account that
the robot moves during the sonar data gathering. Afterwards,
the scans are stored and the relative robot motions between
consecutively gathered scans are included in the state vector.
Thus, SLAM is performed using the whole sequence of
robot motions where scans have been gathered. Moreover,
this sequence is stored starting in the current robot pose, so
that EKF linearization errors can be reduced, similarly to the
robocentric SLAM approach.

Different experiments have been performed, comparing
the robocentric trajectory approach with a world-centric
trajectory method. Results have shown the accuracy of the
method, providing a mean pose error of 1.15m after a 600m
underwater mission.
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[13] A. Burguera, Y. González, and G. Oliver, “A probabilistic framework
for sonar scan matching localization,” Advanced Robotics, vol. 22,
no. 11, pp. 1223–1241, 2008.
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