Towards Preventing Error Propagation in a Real-Time Ethernet Switch

Alberto Ballesteros, David Gessner,
Julian Proenza, Manuel Barranco
DMI - Universitat de les Illes Balears, Spain
a.ballesteros @uib.es

Abstract

Flexible Time-Triggered communication (FTT) allows a
distributed embedded system (DES) to adapt to changing
real-time requirements at runtime. This facilitates the con-
tinuous operation of the DES under dynamic environments
that change over time. However, for continuous opera-
tion, high reliability in the nodes of the DES is also cru-
cial. This can be achieved using node replication, as long
as failure independence between replicas is ensured, which
calls for preventing the propagation of errors. Our goal is
to prevent the propagation of Byzantine node behaviours
and to ensure that local errors in the channel cannot dis-
turb the global communication. For this, we construct the
HaRTES/PG switch, a new switch based on the HaRTES
implementation of FTT for Ethernet. This paper presents
as a first step a study of the possible errors that may lead
to Byzantine node behaviours and a global communication
disturbance in HaRTES, as well as some ideas on how to
prevent the propagation of these errors in HaRTES/PG.

1 Introduction

Traditionally, distributed embedded systems (DES)
have been designed to operate in environments that do not
change over time. This has led to static approaches that
are inadequate for continuous and correct operation un-
der dynamic environments. The alternative are flexible ap-
proaches. However, flexibility alone is not enough to guar-
antee continuous operation—reliability is also essential.

The goal of the project Fault Tolerance for Flexible
Time-Triggered communication (FT4FTT) is to show that
it is possible to build a highly reliable DES that can adapt
its real-time operation upon changing requirements im-
posed by a dynamic environment. For this, the commu-
nication subsystem of FT4FTT, currently under develop-
ment, uses the Flexible Time-Triggered communication
paradigm (FTT) [6], which is a bandwidth efficient ap-
proach to achieve flexibility. Specifically, it replicates a
switch based on the Hard Real-Time Ethernet Switching

*(©2013 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redis-
tribution to servers or lists, or reuse of any copyrighted component of this
work in other works. doi:10.1109/ETFA.2013.6648140

Paulo Pedreiras
DETUIT - Universidade de Aveiro, Portugal
pbrp@ua.pt

(HaRTES) architecture, which implements FTT for Eth-
ernet [7]. However, for FT4AFTT to achieve its goal, it
must also provide high reliability for the nodes of the DES.
In fact, the reliability of the nodes is particularly impor-
tant since the nodes, compared with the communication
subsystem, have the greater impact on the final reliabil-
ity [1]. Thus, FT4FTT proposes to also use node replica-
tion. Node replication, must ensure failure independence
between replicas, which is achieved by preventing error
propagation [5] from one node to another, by which we
mean preventing an error generated in a given node from
creating other new errors in another node. Specifically, er-
ror propagation can be prevented by preparing non-faulty
replicas to cope with the failure of another replica. The
difficulty of this coping mechanism depends on how that
failure can manifest, i.e., it depends on the failure seman-
tics [3] of the faulty replica.

If the node replicas have non-Byzantine failure seman-
tics, then replica failures can be handled much more easily.
Enforcing such failure semantics can be achieved by local
mechanisms at each node or by enhancing the communica-
tion subsystem appropriately [2]. The latter approach has
the advantage that it can keep the internal design of the
nodes simpler. Moreover, if switches are used such that all
communication must pass through them, then their global
view of the communication can be exploited. This is the
case in the communication subsystem of FT4FTT.

Moreover, independently from node replication, to
make FT4FTT highly reliable, it is also necessary to ensure
that local errors occurring at any location in the communi-
cation channel cannot propagate in such a manner that they
disturb the global communication.

Furthermore, since switches act as intermediaries for all
communication, it is necessary to ensure that they do not
fail by forwarding internal errors.

This paper presents a first step towards designing the
FT4FTT fault-tolerance mechanisms. Specifically, we con-
sider how a single switch should handle the errors gener-
ated in the nodes. For this, we design HaRTES/PG, a mod-
ified HaRTES switch with Port Guardians that (G1) ensures
non-Byzantine behaviours for the nodes and (G2) prevents
the propagation of node errors that can disturb the global
communication. Regarding switch’s internal errors, they
will be dealt with in future work.

[
—[ome

Figure 1. HaRTES architecture.

nea]-

In the next Section the hardware and software details of
the HaRTES architecture are briefly reviewed. Section 3
presents the fault model of HaRTES. In Sections 4 and 5
we study the value and timing errors that may manifest in
the nodes and propose some solutions to prevent the prop-
agation of those that are relevant for achieving the goals.
Finally, Section 6 concludes the paper by summing up the
contribution and pointing out future work.

2 An overview of HaRTES

HaRTES uses a microsegmented switched-Ethernet
topology, in which embedded nodes, or slaves, are inter-
connected by a custom Ethernet switch called HaRTES
switch (see Fig. 1). This switch incorporates a component
called master that makes it possible for slaves to exchange
real- and non-real-time traffic.

Specifically, the master organizes the communication in
fixed duration slots called Elementary Cycles (ECs), each
of which is divided into a synchronous window (for time-
triggered traffic) and an asynchronous window (for event-
triggered traffic). A given EC is triggered by the master
through a Trigger Message (TM). This message synchro-
nizes the slaves, conveys the EC-schedule for the time-
triggered messages, and defines the window durations.
Event-triggered traffic, in contrast, can be transmitted au-
tonomously by a slave without being polled by a TM.

Real-time traffic is confined into virtual communication
channels called streams following a publisher-subscriber
messaging pattern where publishers attach to the streams as
transmitters and subscribers as receivers. In HaRTES each
stream has a set of real-time attributes that are enforced
by the master and the switch itself. Example attributes are
periods, minimum inter-arrival times, priorities, and dead-
lines. Note that streams are managed by the master, but all
the changes are triggered by slaves through update request
messages. In this sense, the concept of flexibility in FTT
protocols refers to the ability of the slaves to ask for the
modification of the stream attributes at runtime.

3 New HaRTES fault model

The HaRTES architecture (see Fig. 1) can be divided in
terms of the location in which errors are generated. We
have identified two types of error regions: slave (or exter-
nal) regions and a swifch (or internal) region. Each slave
region comprises one slave and the Ethernet link that con-
nects it to the switch. Within such a region errors may cor-
rupt the frames, which, in turn may provoke unwanted be-
haviours in other network participants (the master or other
slaves). As to the switch region, it encompasses all the in-
ternal components of the switch, which may fail by gener-
ating incorrect outputs. These failures may alter the correct

behaviour of the switch and, thus, make it deliver an incor-
rect service to the slaves. As the reliability of the switch can
be simply increased by using, e.g., a duplication with com-
parison approach, the containment of internal errors will be
addressed in future work. Therefore, we will only focus on
handling errors produced in the slave regions.

Frames sent by a slave may be corrupted arbitrarily, ei-
ther by a slave malfunction or a fault in the channel. In this
regard, the HaRTES switch includes mechanisms to ensure
that synchronous messages are consistent with the sched-
ule and that asynchronous messages respect their minimum
inter-arrival time. However, other behaviours preventing a
reliable communication, like the ones described in G1 and
G2 (see Sec. 1), are not treated by the HaRTES switch.

To achieve goal G1, we identified node behaviours that
are specifically Byzantine, i.e., two-faced and imperson-
ation behaviours. The former occurs when a slave sends
different versions of the same message to different slaves;
the latter occurs when the message is forged pretending to
be from another network participant.

Regarding goal G2, we distinguish two types of be-
haviours that can disturb the communication. A bandwidth
theft happens when a faulty slave sends traffic outside the
space or time window reserved to it, in a way that it takes
some bandwidth from another slave. This can cause sub-
sequent messages to be delayed and the violation of dead-
lines. Moreover, if this behaviour is repeated many times,
it is called babbling-idiot behaviour and it can provoke the
starvation of the other slaves. A corrupt request occurs
when an update request contains errors, which can result in
the incorrect deletion of a stream or the unfair modification
of the resources assigned to it.

4 Analysis of errors

In this Section we identify the scenarios that need to be
dealt with to achieve goals G1 and G2. For this, we study
how value and time deviations in a frame affect other net-
work participants. For value errors we follow a layered
approach in which we distinguish the Ethernet layer, the
FTT layer, and the Application layer. For each layer we
examine the protocol data unit (PDU) field where the data
corruption appears (see Fig. 2). Afterwards we consider
errors related to the time at which the PDU is received, i.e.,
whether it is delivered in advance or delayed with respect
to the instant of time in which it is expected.

header data section footer
—
—
Ethernet Source Destination
frame MAC address | MAC address Ethertype DEi CRC
FTT Message Stream id | Fragment | Data/Reqs
message type
~ e p—
——

header

Figure 2. Diagram of PDUs.

payload

Errors in Ethernet PDUs Ethernet frames [4] have a
header, a data section, and a footer. The header contains
the source and destination MAC addresses of the frame,

and the ethertype. The latter identifies the type of upper-
layer message encapsulated in the data section. Note that,
since we currently only consider FTT messages to be ex-
changed over HaRTES/PG, the ethertype has for all Ether-
net frames the same value, i.e., the one corresponding to
FTT messages. The data section contains the payload of
the frame. Finally, the footer carries a Cyclic Redundancy
Check (CRC) code for the header and the data sections.

e Source MAC address. This field is used by the master
to identify the source of a message and, thus, any value
error can have severe consequences, which depend on
the final value and the moment in which the error oc-
curs. The most important error to prevent occurs when
the source address is altered in a way that it corresponds
to another network participant, i.e., an impersonation.

e Destination MAC address. In HaRTES, messages are
delivered to their destinations based on the information
provided by the FTT layer, and not based on the desti-
nation MAC address. However, the value of this field is
still used by receivers to discard those messages that are
not addressed to them. Consequently, a corruption may
cause an omission.

e Ethertype. An error in this field can lead a receiving node
to reject the frame since it would have an un-recognized
type. The error would thus become an omission.

Errors in FTT PDUs As can be seen in Fig. 2, a message
transmitted by an FTT slave always has a header containing
three fields: the type of the message, the stream through
which it is sent, and the fragment number. This latter field
is part of the fragmentation protocol of FTT, which makes it
possible to transmit a big FTT message in various Ethernet
frames. The rest of the message’s content depends on its
type. Data messages have a section containing the data that
belongs to the application layer; whereas update request
messages contain the group of slave requests.

e [n general. These are errors that affect all message fields,
i.e., they violate the format of an FTT message. These
errors, in turn, may cause a failure in the receiving slave.

e Message type. An error in this field may manifest in such
a way that the corrupted message type identifies the mes-
sage as a master message, even if the message was trans-
mitted by a slave. This results in an impersonation that
can provoke unwanted resynchronizations or protocol in-
formation inconsistencies in the receiving slaves.

o Stream id. The value of this field is used by the switch to
forward messages to their destinations. Thus, any cor-
ruption can provoke a message to be delivered to the
wrong slave, resulting in a bandwidth theft. Moreover,
in those cases in which the slave accepts the message,
i.e., the destination MAC address corresponds with the
slave’s MAC address, an impersonation occurs.

e Fragment. This value is used by receivers as an index
to the specific chunk of data being conveyed. There-
fore, a corruption may cause the fragment to be mis-
placed or even omitted when the value is out of range. In

both cases, this error provokes a value error in the pay-
load, which can only be handled at the application layer,
where the joined fragments become structured data.

e Data. Although the content of this field cannot be vali-
dated with the information provided by this layer, its size
can be incorrect according to the scheduling. Specifi-
cally, if the message’s payload exceeds the volume au-
thorised by the master, a bandwidth theft may occur.

e Group of requests. In update request messages, any
modification in the value of the requests is considered
a corrupted request. Note that, as explained, these mes-
sages allow slaves to demand stream-management oper-
ations, which may wrongly modify or even prevent the
communication of other slaves.

Errors in application PDUs The Application layer man-
ages the data exchanged between applications. The struc-
ture of this data depends on the specific purpose of the ap-
plication and, thus, this layer is out of the scope of this
work. Note that, since all the timing issues are handled
by the underlying time-triggered communication protocol,
these errors only affect the value of the data.

Timing related errors These are errors leading to un-
timely receptions, i.e., errors hastening or delaying the re-
ception of a frame:

e Early reception. A frame received in advance with re-
spect to the time window in which it should be trans-
mitted can cause a bandwidth theft error in the time do-
main. Moreover, a frame repeatedly delivered too early
provokes a babbling idiot error, which can also provoke
the omission of other messages.

e Late reception. A frame that is slightly delayed and,
thus, is delivered outside the time window in which it
should be transmitted, may result in a bandwidth theft
error. Note that, in this case, the late reception of a real-
time frame does not only occupy some reserved space of
time, but also violates the real-time constraints defined
for that frame. Additionally, a frame that is infinitely
delayed results in its omission.

5 Preventing error propagation

In this Section we propose some solutions to contain
Byzantine behaviours (goal G1) and behaviours avoiding a
correct communication among slaves (goal G2). Note that,
for the sake of brevity, we will focus on the errors related
to these behaviours. However, the other ones, except for
omissions and application-layer errors, can also be handled
by means of the mechanisms described here. For this, we
add a set of port guardians to the switch ports, which make
it possible to detect and discard all those real-time frames
transmitted from slaves that are incorrect, considering the
error model. Finally, errors that cannot be detected are left
for a future discussion, as they demand important restric-
tions in the protocol flexibility.

Regarding two-faced behaviours, note that the switch
acts as an intermediary for all communication. Therefore,

they can be eliminated by preventing their existence in the
HaRTES/PG switch itself. As explained in Sec. 3, this can
be achieved, for instance, by using an internal duplication
and comparison mechanism within the switch.

Impersonations can be produced in different ways. Con-
sequently, to completely avoid them, various different
mechanisms have to be deployed. First, an error in the
source address could be easily detected if we restrict the
protocol by enforcing a static assignment of MAC ad-
dresses to the switch’s ports. In this sense, guardians
could discard frames whose source address does not corre-
spond with the MAC address of the slave connected to the
port. The second type of impersonations can be handled by
guardians if they discard master-exclusive messages com-
ing from the slaves. Finally, the correctness of the stream
id in the received message must be assessed. For this, we
propose to check its correspondence with the frame’s MAC
destination address. In this sense, note that, as described
in Sec. 4, the destination MAC address identifies the slaves
that should receive the message. Since the stream id and the
destination MAC address contain redundant information
we can implement a duplication with comparison scheme.
More specifically, guardians can discard all those frames
whose destination address does not correspond with the
destination address assigned to the stream through which it
is being sent. Note that this error-detection approach has a
100% coverage for one of the two values, since in HaRTES
a stream is always bound to a unique multicast address.

Bandwidth theft behaviours can occur in different situ-
ations. First, wrong addressing in frames can be avoided
using the stream id error-detection mechanism described in
the previous paragraph. Second, messages containing more
data than the one authorized by the master can be discarded
by guardians as long as they gather from the master the ex-
pected size of each message. Finally, ordinary untimely
messages can be discarded taking into account the syn-
chronization information provided by the switch. However,
babbling idiot behaviours must be specifically managed for
each kind of message. Unexpected synchronous messages
can be readily identified and removed by guardians thanks
to the TM, which explicitly specifies the ones that shall be
transmitted in each EC. Regarding asynchronous messages,
their associated minimum inter-arrival time can be used by
the guardians for this purpose.

Corrupted requests deserve a special discussion, as the
switch does not have enough information to determine the
correctness of a list of update requests. Therefore, these
behaviours can only be prevented by avoiding their exis-
tence, which demands important restrictions in the proto-
col. More precisely, they involve a decrease in the flexi-
bility of the protocol. Since flexibility is one of the main
advantages of FTT, this decision has to be further studied
and, thus, we leave this issue for a future work.

Finally, note that the solutions proposed are based on
port guardians, which address the containment of transient
errors. However, the operation of guardians can be gener-
alized to cope with permanent failures. For this, we pro-

pose to deploy a set of error counters, which would allow
to monitor the slaves’ behaviour and, in presence of a per-
manently faulty node, the switch itself can disconnect the
port and/or request external help to replace the node.

6 Conclusions and future work

In this paper we proposed some design ideas for
HaRTES/PG, an enhanced HaRTES switch with advanced
error-handling capabilities for replicated environments.
The main goal of this switch is to prevent the propaga-
tion of Byzantine failures and global communication dis-
turbances. To characterize the sources of these behaviours
we presented a systematic study in the value and time do-
mains of the errors that can be generated by slaves, while
we discussed their consequences on the system.

We proposed some solutions to contain these errors,
considering the information the switch can provide. In this
sense, detectable errors can be avoided at the entrance of
the switch’s ports by means of guardians. A special case of
detectable errors are impersonations, which require addi-
tional restrictions in the FTT protocol to be fully detected.
Non-detectable errors, like errors affecting update requests,
are left for future work as they can only be prevented by
means of protocol restrictions.

This ongoing research will assess the completeness of
the results here presented. Moreover, the focus will move
to the internal region, to also investigate how to handle
switch’s internal errors. After that, the fault tolerance of
replicated topologies will be considered. Finally, we will
construct a prototype to prove the feasibility of the design.

Acknowledgements

This work was supported by project DP12011-22992
and grant BES-2012-052040 (Spanish Ministerio de
economia y competividad), by the Portuguese Govern-
ment through FCT - Fundagdo para a Ciéncia e a Tec-
nologia in the scope of project Serv-CPS -PTDC/EEA-
AUT/122362/2010 and by FEDER funding.

References

[1] M. Barranco, J. Proenza, and L. Almeida. Reliability im-
provement achievable in CAN-based systems by means of
the ReCANcentrate replicated star topology. In Factory
Communication Systems (WFCS), 2010 8th IEEE Int. Work-
shop on, pages 99-108. leee, May 2010.

[2] G. Bauer, H. Kopetz, and W. Steiner. The Central Guardian
Approach to Enforce Fault Isolation in the Time-Triggered
Architecture. Proc. 6th Int. Symposium on Autonomous De-
centralized Systems, 2003.

[3] E. Cristian. Questions to ask when designing or attempting
to understand a fault-tolerant distributed system. In Proc. 3rd
Brazilian Conference on Fault-Tolerant Computing, 1989.

[4] IEEE. IEEE Std 802.3-2002 - Part 3: Carrier Sense Mul-
tiple Access with Collision Detection (CSMA/CD) Access
Method and Physical Layer Specifications, 2002.

[5] J.-C. Laprie. Dependability: Basic Concepts and Termi-
nology. Dependable computing and fault-tolerant systems.
Springer-Verlag, 1992.

[6] P. Pedreiras and L. Almeida. The flexible time-triggered
(FTT) paradigm: An approach to QoS management in dis-
tributed real-time systems. In Proc. Int. Parallel and Dis-
tributed Processing Symposium. IEEE Comput. Soc, 2001.

[7]1 R. Santos. Enhanced Ethernet Switching Tecnology for
Adaptibe Hard Real-Time Applications. PhD thesis, Univer-
sidade de Aveiro, 2010.

