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Abstract

Likelihood fields (LF) have been used in the past to
perform localization. These approaches infer the LF
from range data. However, an underwaterMechani-
cally Scanned Imaging Sonar(MSIS) does not provide
distances to the closest obstacles but echo intensity pro-
files. In this case, obtaining ranges involves processing
the acoustic data.

The proposal in this paper avoids the range extraction
to build the LF. Instead of processing the acoustic images
to obtain ranges and then using these ranges to infer a LF,
this paper proposes the use of the acoustic image itself as
a good approximation of the LF. The experimental results
show the potential benefits of using this idea to define a
measurement model to perform mobile robot localization.

1. Introduction

For a mobile robot to execute useful long-term mis-
sions, it has to keep track of its own position. This task
is known asmobile robot localization. Thrun et al. [12]
define mobile robot localization as the problem of deter-
mining the pose of a robot relative to a given map of the
environment. However, the requirement of ana priori
map limits the robot’s autonomy and the range of scenar-
ios where it can be deployed. Moreover, in a wide range
of applications, especially outdoor and underwater, it is
not possible to have ana priori map.

There are several studies in the literature dealing with
the problem of determining the robot pose with noa pri-
ori map. Some strands of research [7, 8, 2] match the
recent sensory input against a short history of previously
gathered sensor data. These approaches have the advan-
tage of reduced computational requirements, though they
suffer from drift due to their incremental nature. Some
other studies build a map of the environment simultane-
ously to the robot pose estimation and use the constructed
map to improve the pose estimates [5]. These approaches
are referred to asSimultaneous Localization and Mapping
(SLAM). Although SLAM is known to have problems of

computational complexity, different studies exist propos-
ing solutions to this issue [9]. Moreover, SLAM has the
important advantage of solving the drift problem when re-
visiting previously mapped areas.

Both incremental localization and SLAM approaches
rely on their ability to match recent sensor data against
previously gathered measurements. In some cases, this
involves the detection of features, such as straight lines
or corners, and then performing the matching at the fea-
ture level. Besides, some other studies avoid the use of
features, providing a more general approach not depend-
ing on the type of environment. Examples of matching
techniques not depending on features are those inspired on
the Iterative Closest Point(ICP) algorithm [7] and those
based on the use ofLikelihood Fields(LF) [11], both de-
signed to work with range measurements. In the context
of localization, these matching processes constitute the so
calledmeasurement model.

A LF is defined as a function of(x, y) coordinates
depicting the likelihood of obstacle detection. They are
often built from a priori maps, though different studies
show that local LF can be constructed from local sets of
range readings [3]. For example, theNormal Distributions
Transform(NDT) [1] builds the LF as a grid of Gaussians,
each of them being computed from spatially disjunct sub-
sets of range measurements. Also, theLF with Sum of
Gaussians(LF/SoG) [3] models each reading in a given
set as a Gaussian and then defines the local LF as the sum
of these Gaussians. In this context, matching two sets of
readings involves building a LF from one of the sets and
then maximizing a likelihood function that computes how
much the second set of readings fits onto the LF given a
certain displacement and rotation between both sets.

The sensors providing range information, such as laser
and ultrasonic range finders, are very common in ter-
restrial robotics. However, in underwater environments,
which are the scope of this paper, it is more frequent the
use of imaging sonars and profilers. Instead of provid-
ing ranges to the closest obstacles, these sensors provide
acoustic profiles or acoustic images of the environment.

This paper proposes a measurement model based on
LF. Our proposal uses the acoustic images provided by an
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Figure 1. (a) Acoustic image. (b) Obtained ranges. (c) Inferred LF.

underwaterMechanically Scanned Imaging Sonar(MSIS)
as the LF itself. The paper is structured as follows. Firstly,
Section 2 motivates the approach. Then, the problem is
stated in Section 3. Afterwards, Section 4 describes the
acoustic image building process. The measurement model
is presented in Section 5. Finally, Section 6 shows some
experimental results and Section 7 concludes the paper.

2. Motivation

Figure 1-a shows an example of acoustic data provide
by a MSIS. Some studies process these acoustic data in
order to compute ranges [6]. Figure 1-b shows an exam-
ple of ranges extracted from an acoustic image. This ap-
proach has proved to be useful when using measurement
models based on ICP. However, when using measurement
models based on LF, computing ranges may not be the
best choice. In this case, computing ranges means dis-
carding some information from the acoustic image data
that has to be somehow inferred when building the LF.
Figure 1-c shows a LF obtained from range data. It has
been constructed using an interpolated NDT. By compar-
ing this image to the original acoustic image, it is clear that
valuable information has been lost during the process.

Our proposal is based on this idea. Instead of process-
ing the acoustic images to obtain ranges and then using
these ranges to infer a LF, this paper proposes the use of
the acoustic image itself as a good approximation of the
LF. This idea is supported by the experimental evidence
in [10], where it is shown that the different echo intensity
levels are related to the uncertainty in the detected object
location. That is, uncertain detections spread the echo in-
tensities around the detected object, while good detections
provide clear echo intensity peaks nearby the detected ob-
ject.

3. Problem statement

The experiments conducted in this paper have been
performed using the sensor data gathered by theIctineu
AUV. This Autonomous Underwater Vehicle(AUV) was
designed and developed at the University of Girona (see
[10] for more details). Among other sensors, the AUV is

Figure 2. The proposed framework.

endowed with aDoppler Velocity Log(DVL) which mea-
sures the velocities of the unit with respect to bottom and
water, aMotion Reference Unit(MRU) that provides abso-
lute attitude data by means of compass and inclinometers,
and aMechanically Scanned Imaging Sonar(MSIS).

The MSIS obtains 360o scans of the environment by
rotating a sonar beam through 200 angular steps in about
13.8 seconds. At each angular position, a set of 500 val-
ues, namedbins, is obtained representing a 50 m long echo
intensity profile with a resolution of 10cm. Each of these
sets of 500 bins will be referred to asbeam. By accumulat-
ing this information, anacoustic imageof the environment
can be obtained.

Our proposal is summarized in Figure 2. First, DVL
and MRU readings are fused by means of anExtended
Kalman Filter (EKF) to obtaindead reckoningestimates.
Also, thebeam segmentationprocess [4] extracts range in-
formation from the MSIS beams. The raw MSIS beams,
the obtained ranges and the dead reckoning estimates are
stored in three buffers, calledbeams history, ranges his-
tory and transformations historyrespectively. When the
MSIS has performed two360o rotations, thescan build-
ing combines the information in the transformations his-
tory and the readings history corresponding the the sec-
ond MSIS rotation and builds the range scanSk. Also,
the transformations history and beams history obtained
during the first MSIS rotation is used by theacoustic im-
age buildingprocess to construct the acoustic imageIk−1.
The transformations history data is needed to compensate
the robot motion during the MSIS data gathering. After-
wards, the measurement model is in charge of computing
the displacement and rotation between the acoustic image
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Figure 3. Robot motions and MSIS beams

and the range scan.
There are two points to be emphasized. On the one

hand, the raw MSIS beams used to constructSk can be
used later to buildIk and, thus, the measurement model is
able to operate every scan rotation. On the other hand, it
is straightforward to see that the measurement model does
not require that the acoustic image and the range scan have
been consecutively gathered. That is, the measurement
model can be used to estimate the rotation and displace-
ment betweenSi and Ij , for all 1 ≤ i ≤ k, 1 ≤ j ≤
k, i 6= j. However, without loss of generality, the rest of
the paper will assume a measurement model operating on
Sk andIk−1, to ease notation.

The rest of the paper is devoted to describe the acoustic
image building and the measurement model. A descrip-
tion of the beam segmentation and the scan building is
available in [4]. The dead reckoning EKF is explained in
[10].

4. Building the acoustic image

Let us assume that the data corresponding toIk−1 has
been gathered between the time stept1 and the time step
t2. The relative robot motions during this time interval are
stored in the transformations history and are as follows:

M = {xt1
t1+1, x

t1+1

t1+2, ..., x
t2−1

t2 } (1)

Let zt denote the MSIS beam obtained at time stept.
The set of beams involved in the construction ofIk−1 is
defined as

Z = {zt1, zt1+1, ..., zt2} (2)

This notation is summarized in Figure 3. As a beam
is composed of 500 bins, eachzt is a vector containing
500 echo intensity values corresponding to distances up
to 50 m with a resolution of 0.1m. Thuszt(i) contains
the echo received for obstacles in an interval ranging from
(i − 1)/10m to i/10m. Let xR

t = [x, y, θ]T denote the
relative pose a coordinate frame located at the MSIS and
aligned with the beam orientation at timet with respect to
the robot’s coordinate frame. The endpoints of the afore-
mentioned intervals with respect to the robot are as fol-
lows:

zR
t (i) =

[

x + (i/10) cos θ
y + (i/10) sin θ

]

(3)

By using the information inM , zR
t can be represented

with respect to the robot pose at timej, t1 ≤ j ≤ t2 while
taking into account the robot motion as follows:

(a) (b)

Figure 4. (a) First approximation. (b) Includ-
ing interpolated values.

zj
t =







zR
t t = j

xj
j+1

⊕ xj+1

j+2
⊕ ... ⊕ xt−1

t ⊕ zR
t t > j

xj
j−1

⊕ xj−1

j−2
⊕ ... ⊕ xt+1

t ⊕ zR
t t < j

(4)

wherexk
k−1

≡ 	xk−1

k , and⊕ and	 denote the com-
pounding and inversion operators, commonly used in
stochastic mapping.

By means of this equation, all the end points of the
mentioned intervals can be represented with respect to a
single coordinate frame while correcting the motion in-
duced distortions. Let us define this coordinate frame at
the central position of the trajectory stored inM , although
other positions could be used. In this way, a first approx-
imation of the acoustic image can be built by assigning
to each end point the echo intensity corresponding to the
whole interval. Figure 4-a shows the resulting image. The
effects of the range resolution cannot be appreciated due
to the figure resolution. However, the effects of the dis-
crete angular sampling of the MSIS are clearly visible. It
is important to emphasize that the angular separation be-
tween consecutive beams is not identical due to the robot
motion.

In order to alleviate the problems of the discrete MSIS
sampling, both in angle and range, it is necessary to in-
terpolate the echo intensity values for those points where
no samples are available. For example, the echo intensity
for each point could be selected as the one corresponding
to the closest sample. Figure 4-b shows the result of this
simple interpolation. Also, the interpolated value could be
the result of combining the closest samples. The acoustic
image shown in Figure 1-a performs the interpolation by
combining the sample values within an angular window.
Let Ik−1(x) denote the function providing the interpo-
lated echo intensity corresponding to a given coordinate
x. Let us call this function the acoustic image.

5. The Measurement Model

This section proposes a method to compute the dis-
placement and rotation between the coordinate frame of
the range scanSk and the one of the acoustic imageIk−1.
It is straightforward to derive a method to compute dis-
placement and rotation fromIk−1 and Ik, avoiding the
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Figure 5. Evaluation of the score function

range extraction. However, this would result in much
higher computational requirements.

Let Sk = {p1, p2, ..., pN}, where thepi are the points
belonging to the range scan represented with respect to
the scan coordinate frame. Let the score functions(x) be
defined as follows:

s(x) =

N
∑

i=1

Ik−1(x ⊕ pi) (5)

wherex represents a displacement and rotation fromIk−1

to Sk. This function provides higher values for thosex
that project the scan points onto large echo intensity val-
ues. As the scan points have been extracted from large
echo intensities, the closer the value ofx to the right dis-
placement and rotation, the larger the score value. Ac-
cordingly, the motion estimate from the acoustic image to
the scan is as follows:

xI
S = argmax s(x) (6)

Due to the sample based nature ofIk−1, maximiz-
ing such function requires some numerical optimization
method.

6. Experimental Results

This section shows some preliminary, yet promising,
experimental results. The tests have been performed
building the range scan and the acoustic image from the
same MSIS data. In this way, the displacement and ro-
tation between them is perfectly known to be[0; 0; 0]T ,
constituting the ground truth.

The score functions(x) has been evaluated for differ-
ent couples of scans and acoustic images, showing clear
maximums around the ground truth. Figure shows the re-
sults of one of these experiments, showing the values of
s(x) for different displacements while keeping the rota-
tion constant. The used acoustic image and range scan are
those shown in Figure 1. A clear maximum appears close
to the ground truth[0, 0, 0]T .

7. Conclusion

This paper presents a method to match two sets of
acoustic profiles provided by a MSIS. The matching

method can be used as a measurement model to perform
scan matching or scan based SLAM using underwater
sonar data. Also, the proposed score function could be
directly used to evaluate particles in Monte Carlo Local-
ization. The experimental results, although preliminary,
show the potential benefits of the approach.
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[2] A. Burguera, Y. González, and G. Oliver. A probabilis-
tic framework for sonar scan matching localization.Ad-
vanced Robotics, 22(11):1223–1241, 2008.
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