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Abstract: Regenerative braking is presented in many electric traction applications such as electric and hybrid vehicles, lifts and 
railway. The regenerated energy can be stored for future use, increasing the efficiency of the system. This paper outlines the benefits 
of the MMC (modular multilevel converter) in front of the cascaded or series connection of converters to achieve high voltage from 
low voltage storage elements such as supercapacitors. The paper compares three different solutions and shows that the MMC can 
benefit from weight and volume reduction of the output inductance when shifted switching modulation strategy is used. Using this 
modulation strategy, not only the output frequency is increased, but also the magnitude of the inductor applied voltage is reduced, 
reducing inductor size and volume. 
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1. Introduction 

The main advantage of using electric traction is that 

the motor that uses the energy is reversible. The 

braking energy can be stored for future use, instead of 

being dissipated in heat as in traditional mechanical 

braking systems. Regenerative braking is presented in 

many applications, such as battery or hybrid power cars 

and bikes [1], railway [2], lifts [3, 4] and many others. 

Batteries are mainly used in mobile applications as 

energy storage devices instead of flywheels and 

superconductive magnetic storage systems because 

there are no moving components [5], whilst for high 

energy dynamics (or high power), as in regenerative 

braking applications, SC (supercapacitors) are 

preferred to batteries because of their higher power 

density and reliability [5, 6]. 

In battery powered applications, hybridization with 
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supercapacitors is a choice in order to not degrade 

battery life and increase energy efficiency [7, 8]. 

Supercapacitors provide instant power while batteries 

provide constant energy. However, direct 

parallelization of supercapacitor and batteries has 

many drawbacks. To start with, there is no control on 

where the energy is being drawn as it depends on the 

resistance of the cables connecting one storage system 

to the other and to the regenerative power system. Also, 

as the batteries have a constant voltage, the 

supercapacitors will be kept at the same voltage level 

and, thus, without being able to store neither use the 

energy stored they have. To achieve higher energy 

management capabilities, a converter must be 

interfaced between supercapacitors and batteries in 

order to control the energy flux [9]. 

The regenerative system would be connected on the 

DC bus side before the inverter that drives the electric 

motor and would store the energy while maintaining 

the DC voltage constant. 

D 
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In regenerative braking applications, the connection 

of SC to the DC bus has to be studied and several 

possibilities can be taken into consideration. 

SC are low voltage devices. To achieve the high 

voltages needed in traction applications, a large 

number of elements must be connected in series as 

depicted in Fig. 1. Moreover, with the direct series 

connection of SC cells depicted in Fig. 1, constant 

voltage at input stage of traction inverter is not 

achieved, and there is no capability of energy 

management in SC. Direct series connection of SC of 

different capacitance value can lead to voltage 

unbalances between cells because of the common 

series current. These voltage unbalances can produce 

overvoltage and destruction of cells. Passive and 

active, power electronics based, devices have been 

proposed in the literature to balance these voltages 

[10-13]. 

To reduce the number of serialized elements and to 

increase energy management capabilities, a two 

quadrant, bidirectional in current, converter can be 

placed between the traction converter and the SC as 

depicted in Fig. 2. By using this topology, less number 

of series connected SC is needed, there is control on the 

charge and discharge of the SC and the voltage at the 

DC bus can be kept constant [9]. 

However, this converter needs a big inductor in 

order to reduce current ripple at the SC side. 

Higher efficiency can be obtained using an 

interleaved converter topology as depicted in Fig. 3 [14, 

15]. This solution is widely implemented for low 

voltage high-current applications, but for traction 

applications, where high voltages are needed, cascaded 

DC/DC converters can be used [6, 16, 17]. 

This paper presents the comparison and design of a 

MMC (multilevel modular converter) for regenerative 

applications using supercapacitors. The proposed 

converter is compared in terms of inductor weight and 

size with two cascaded converters. Using MMC with 

shifted switching strategy significantly reduces 

inductor size and weight. 

 
Fig. 1  Direct connection of supercapacitors to the high 
voltage DC link. 
 

 
Fig. 2  Use of a boost converter to interface supercapacitors 
and the high voltage DC link. 
 

 
Fig. 3  Use of interleaved boost to interface SC and the high 
voltage DC link. 

2. Cascaded and MMC Converters 

Cascaded DC/DC converters split the power source 

in small parts, allowing multiple low voltage inputs and 

giving high voltage output. The energy management 

can be improved, because it can be independent for 

each energy source [7]. Cascaded buck and cascaded 

boost connection are depicted in Figs. 4 and 5, 

respectively, for the connection of three cells. 

2.1 Cascaded Buck Converter (CBk) 

In the cascaded buck the SC are placed on the high 

voltage side (U11, U12 and U13), while the SC bus is on 

the low side U2. The operation of this converter is the 

same as for one of each cells that it holds, a half bridge 

buck converter, in which its output is controlled by the 
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Fig. 4  3-cell cascaded buck. 
 

 
Fig. 5  3-cell cascaded boost. 
 

duty cycles imposed. The whole converter output is the 

sum of every cell output voltages, allowing several 

redundancies that make this topology reliable and 

robust. However, if it is compared to a one cell 

converter of the same power, it can be seen that even if 

the inductance has been split in several inductances, the 

total weight and volume is the same if the switching 

frequency and ripple are equal. Thus, the benefits of 

this topology are the modularity and the high voltage 

achieved. 

2.2 Cascaded Boost Converter (CBt) 

In the cascaded boost, the SC are placed on the low 

voltage side (U21, U22 and U23), whilst the DC bus is on 

the high side U1. Each cell of this converter is a half 

bridge boost converter that varies its output voltage 

depending on the duty cycle applied to its transistors. 

The whole converter output voltage is the sum of each 

cell output voltage. 

To achieve the same DC voltage and power, in this 

converter double current is needed in contrast to CBk, 

and half the voltage in the SC. However, if it is 

compared to a one cell equivalent converter, as done 

with CBk, the total inductance will be the same, and the 

benefits of multiple cascaded cells are the same as 

before. 

2.3 MMC (Multilevel Modular Converter) 

The multilevel buck converter is the series 

connection of half bridge cells as depicted in Fig. 6. 

The SC are connected on the high voltage side (U11, 

U12 and U13) while the DC bus is on the low voltage 

side U2. The output voltage can be synthesized as the 

addition of the output voltage of each cell, but in this 

case a modulation strategy can be used in order to 

increase the output frequency. 

Using shifted switching modulation strategy [18], 

the frequency of the voltage applied to the inductor is 

multiplied by the number of series connected 

converters, reducing inductors’ size. 

Every triangular carrier of each one of the 

comparators is delayed 360º/N respect the cell before, 

where N is the number of cells. Thus, at the output of 

the converter it can be seen a frequency of N × Fs (ܨ௦ is 

the switching frequency). Its behaviour can be seen in 

Fig. 7. 

The output inductance can be computed as: 

ܮ ൌ
ሺܷ௫ െ ܷሻ൫1 െ ௫ܦ௫൯ܦ

ଶܫ∆ ൈ ܨ
ሺ1ሻ 
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Fig. 6  3-cell
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Fig. 10  Magnetic energy as a function of series connected 
cells for the three proposed topologies. 
 

cell converter and the inductor needed for a six cell 

multilevel buck converter, both inductances have been 

sized and calculated for a converter working between 

ଵܷ ൌ 97.2 V and ܷଶ ൌ 42 V with a nominal current 

of ܫଶ ൌ 5 A. 

For the one cell, half bridge converter (HB) the 

inductance value can be computed assuming a ripple of 

the 15% of the nominal current and a switching 

frequency of 20 kHz. 

ܮ ൌ
భሺଵିሻ

Δூమிೞ
ൌ  (12)           ܪ݉ 1.26

On the other hand, for the six cell multilevel buck 

(MBk) the value needed is depicted by: 

ܮ ൌ
భሺଵିሻ

NమΔூమிೞ
ൌ  (13)         ܪߤ 45

The number of turns needed in the inductor with a 

saturation current of 6 A can be obtained with: 

ܰ ൌ ቒ
 ூೞೌ

ೞೌ
ቓ                       (14) 

For the HB, 58 turns are needed if E55/28/21 ferrite 

core is used, but for the MBk eight turns are needed if 

the RM10/ILP ferrite core is used. Computing the 

amount of copper wire needed, Table 1 can be obtained. 

The mass of copper has been calculated supposing a 

current density of 5 A/mm2 and four wires of 0.25 mm2 

for each turn, with copper density and the average 

perimeter stated in the cores datasheet. 

The RM10 inductor is 13 times lighter and needs 19 

times less volume than the needed for E55. As seen in 

Fig. 10, the relationship between 1 and 0.088(which is 

the value at 6-cell MBk) is kept by the relationship 

between the two ferrite masses, which is 0.079. 

Table 1  Comparison between inductors. 

Model N (turns) ݒ (mm3) ݉ி (g) ݉௨ (g) 

RM10 8 4,247 17 3.72 

E55 58 81,670 216 60.15 

5. Conclusions 

This paper shows that multilevel converters can be 

used in mobile DC/DC applications not only to 

increase the efficiency of the power electronics system 

itself, but to reduce the weigh and volume of the system. 

The paper presents and compares three topologies in 

terms of magnetic energy, which is directly related 

with the volume of the magnetic components. This 

comparison shows that the best topology is the 

multilevel buck converters, because it beneficiates not 

only from voltage reduction, but also from frequency 

increase if shifted switching strategy is used. 
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