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Abstract

It has already been reported that the CAN protocol pro-
duces data inconsistencies in some scenarios that violate
the Atomic Broadcast properties. It has been proposed a
set of higher level protocols to achieve Atomic Broadcast
on CAN based systems. This approach causes consider-
able overhead. We propose a more efficient solution through
small modifications to CAN. Our first proposal of modified
protocol is called MinorCAN. Unfortunately we have iden-
tified new inconsistency scenarios in which both CAN, Mi-
norCAN and the mentioned higher level protocols still vio-
late the Atomic Broadcast properties. Inspired in the Minor-
CAN ideas we propose a protocol, called MajorCAN, that
really implements Atomic Broadcast.

1. Introduction

The Controller Area Network (CAN) protocol, a field-
bus first developed for automotive applications, is widely
used in the automation industry as well. The main reason
for its success is its real-time and dependable behaviour.
Among the dependability properties, the specification of
this standard [5] claims that CAN presentsdata consistency.
This means that within a CAN network it is guaranteed that
a frame is either simultaneously accepted by all nodes or
by none. This roughly corresponds to theAtomic Broadcast
definition, and has lead many authors to assume that CAN
provides this service of capital importance in fault-tolerant
and real-time distributed systems. But it is well known that
CAN does not always accomplish the pretended data con-
sistency. One impairment is the presence of a special state
in the CAN nodes, callederror-passive. A CAN node in the
error-passivestate signals the transmission errors in a way
that cannot force the other nodes to see the error. If this node
is the only one suffering the error an inconsistency appears
in the network. Many authors have proposed avoiding this
state to improve the dependability in CAN based systems
[2, 4, 10]. Even assuming no node is error-passive, CAN
presents other inconsistency problems. On the one hand it

may be the case that a node receives a frame twice (double
reception of frames) [11]. On the other hand Rufinoet al.
have recently identified a much more dangerous situation:
scenarios in which some nodes receive a frame and some
others do not. In [10], they introduce specifically designed
higher level protocols to cope with these inconsistencies.

In this paper we identify new scenarios, in which both
CAN and the mentioned higher level protocols [10] still vi-
olate the Atomic Broadcast properties. Fixing these prob-
lems using higher level protocols introduces considerable
overhead. Many distributed control systems, especially in
automotive applications, have to be constructed with mini-
mum memory and CPU power requirements [1]. So we take
the more efficient approach of modifying the CAN proto-
col. We propose two modified protocols. The first and more
simple is called MinorCAN, and works in the scenarios in-
troduced in [10] but not in the new scenarios. We explain
MinorCAN because it helps to understand the second pro-
tocol. This second is called MajorCAN, and works in all the
identified scenarios implementing Atomic Broadcast in the
presence of up tom randomly distributed errors per frame.

2. CAN and data consistency

The CAN protocol does not implement Atomic Broad-
cast. In this work we use the same adaptation of the defini-
tion of Atomic Broadcast used in [10]. This definition as-
sumes that the nodes can only presentbenign failures, that
includescrash, omissionand timing failures [3]. A node
presenting a crash failure stops prematurely doing nothing
from that point on. A node presenting omission failures
either intermittently omits to send/receive messages it was
supposed to send/receive, or stops prematurely doing noth-
ing from that point on, or both. Finally a node present-
ing timing failures can fail in one or more of the following
ways: it commits omission failures, its local clock drift ex-
ceeds the specified bound (clock failure), or it violates the
bounds on the time required to execute a step (performance
failure).

With these failure assumptions, a protocol presents



Atomic Broadcast when it exhibits the following properties:

AB1 - Validity : if a correct node broadcasts a message1, then
the message is eventually delivered to a correct node.
AB2 - Agreement: if a message is delivered to a correct node,
then the message is eventually delivered to all correct nodes.
AB3 - At-most-once Delivery: any message delivered to a cor-
rect node is delivered at most once.
AB4 - Non-triviality : any message delivered to a correct node
was broadcast by a node.
AB5 - Total Order : any two messages delivered to any two
correct nodes, are delivered in the same order to both nodes.

The first pointed impairment to Atomic Broadcast is
the existence of the error-passive state in CAN nodes.
CAN protocol provides several error detection mechanisms.
When a node in the so callederror-activestate detects an
error, this is signalled to the rest of the nodes and the trans-
mitter starts an automatic retransmission of the erroneous
frame. Any CAN node has a transmit error counter and
a receive error counter. Whenever any of these counters
reaches the value 127 the node enters in the error-passive
state. When in this state, the node signals the errors in a way
that cannot force the transmitter to retransmit the incorrectly
received frame [11]. As an example of the consequences
this can have, let us consider the case of an error-passive
node being the only one to detect an error in a received
frame. The transmitter will not be forced to retransmit and
the error-passive node will be the only one never receiving
the message. In this case property AB2 is not satisfied.

Many authors have proposed avoiding this state to im-
prove the dependability in CAN based systems [4, 2, 10].
This is easily achieved using a signal provided in most mod-
ern CAN circuits, called the error warning notification. This
signal is generated when any error counter reaches the value
96, that is considered as an indication of a heavily disturbed
bus [7]. This is a good point to switch off the node before it
goes into the error-passive state, assuring that every node is
either helping to achieve data consistency or disconnected.

In the rest of this section, we will describe other incon-
sistency problems reported in the literature that are more
difficult to solve. All these problems appear even if no node
is in the error-passive state. Prior to the description of the
problems, we explain the related CAN protocol concepts.

2.1. CAN protocol fundamentals

As justified above the error-passive state must be avoided
to achieve data consistency. So in the CAN networks we
consider during the rest of the paper no node is in that state.
All the fundamentals we are going to explain in this section
correspond to nodes in the error-active state.

1In CAN a messageis the information unit that can be transmitted in
a singleframe, but that can also need several frame retransmissions to be
eventually transmitted

A CAN bus can take one of two values:dominantor
recessive. The dominant value represents the logical ’0’ and
the recessive value represents the logical ’1’. If two nodes
simultaneously transmit two bits with different values, the
resulting bus value will be dominant.

The claimed data consistency in the CAN protocol is
achieved thanks to its special error detection and error sig-
nalling mechanisms. CAN presents five error detection
mechanisms that lead to five different kinds of errors called
bit error, stuff error, CRC error, acknowledgment error and
form error. Any node detecting an error by any of these
mechanisms will signal this situation to the rest of nodes by
sending what is called an error flag. This flag starts the bit
after the error was detected. An error flag consists of six
consecutive dominant bits. This flag violates CAN proto-
col rules,e.g. destroys the bit fields requiring fixed form
producing a form error. As a consequence all other nodes
detect an error condition too and start transmitting an er-
ror flag as well. After transmitting an error flag, each node
sends recessive bits and monitors the bus until it detects a
recessive bit. Afterwards, it starts transmitting seven more
recessive bits. The eight recessive bit chain resulting on the
bus is called error delimiter. This error delimiter together
with the superposition of error flags contributed from dif-
ferent nodes constitute what is called an error frame. Af-
ter the error frame transmission, the frame that was being
sent is automatically retransmitted. This simple mechanism
allows the globalization of local errors and is supposed to
provide data consistency.

All the data frames finish with eight recessive bits that
is the same as the error delimiter of an error frame. So all
frames, error or data, finish with the same bit pattern to per-
mit node synchronization. The last seven of the eight reces-
sive bits form the end of frame field (EOF). After the EOF a
chain of recessive bits of variable length, called interframe
space separates a frame from the next one. During the first
three bits of this interframe, slow nodes can introduce an
extra delay between frames. This is done using a special
flag, called overload flag, that has the same format as the
error flag. The rest of the nodes react exactly as with error
flags by sending their own overload flags and the overload
delimiter. So if an error is detected in these bits all the nodes
will consider it as an overload condition.

In the last bit of the EOF the behaviour in the presence
of errors is special to cope with specific error situations. If
a transmitter detects an error in this bit it will handle it as if
it was detected in any other bit: an error flag will be started
in the next bit, frame transmission will be considered er-
roneous and the frame will be retransmitted. If a receiver
detects an error in this last bit it will accept the frame as
correct and, instead of an error flag, it will generate an over-
load flag. The reason of this behaviour is illustrated by the
scenario in Fig. 1a. A set of receiving nodes, called the



X set, detect an incorrect dominant value in the last bit of
the EOF, while the transmitter and another set of receiving
nodes, called theY set, see a correct recessive bit. The
nodes ofX start transmission of an overload flag in the bit
after the error. The rest of nodes see the first dominant bit
of the overload flag at the first bit of the interframe space
and start the transmission of their overload flags as well. So
both transmitter and the nodes belonging toY will consider
the frame as correctly transmitted. Thanks to the last bit
rule the nodes belonging toX will also accept the frame
and consistency will be achieved.

no error (error flag seen as overload condition)
gets the framed overload flagReceivers ( Y) rr

EOF

no error (error flag seen as overload condition)
does not retransmitd overload flagTransmitter rr

X set obliged to accept
gets the framed overload flagReceivers ( X) r

r

Y set obliged to accept
gets the frame twiced overload flagReceivers ( Y) rr

EOF

detects the error and schedules retransmission
successfully retransmitsTransmitter rr

X set rejects the frame
gets the frame onced error flagReceivers ( X) r

d error flag

r

r

Y set obliged to accept
gets the frame onced overload flagReceivers ( Y) rr

EOF

detects the error and schedules retransmission
fails before retransmissionTransmitter rr

X set rejects the frame
does not get the framed error flagReceivers ( X) r

d error flag

a

b

c

Figure 1. Error scenarios discussed [10]

2.2. Inconsistency scenarios

Unfortunately this last bit behaviour is also responsible
for nodes receiving twice the same frame—the mentioned
double reception of frames. Fig. 1b shows a scenario where
this happens. A disturbance corrupts the last but one bit
of the EOF of the nodes belonging toX. In the next bit
these receivers start the transmission of an error frame. The
dominant first bit of this error flag is seen by the transmitter
and the nodes belonging toY as an error in the last bit of
their EOF. The nodes belonging toX will reject the frame,
the transmitter will retransmit it, and the nodes belonging
to Y will accept the frame following the last bit rule. As a
result the nodes belonging toY will receive the frame twice.

The double reception of frames is a well known phe-
nomenon that has lead to a set of common recommendations
[11], e.g. not to transmit messages that toggle the state of
the receivers. Beyond the double reception, Rufinoet al.
have identified [10] new error scenarios in which the last bit
behaviour producesinconsistent message omissions(IMO):
some nodes receive a frame and others never do. This is
illustrated in Fig. 1c. This is essentially the same case as in

Fig. 1b, the difference being that in Fig. 1c after the frame’s
first transmission the transmitter suffers a failure that im-
pedes the retransmission of the frame. So the nodes belong-
ing toY receive the frame whereas those ofX do not.

Rufino et al. have evaluated the probability of occur-
rence of the inconsistent message omissions [10]. They
have obtained values of the order of10−6 incidents/hour.
Those are larger than the reference value of10−9 inci-
dents/hour, the safety number of the aerospace industry [8],
that is being adopted by the automotive industry as well [6].

According to [10] the described inconsistencies are the
cause that CAN protocol properties differ from the Atomic
Broadcast requirements. To establish the CAN properties
they make some assumptions on the failure semantics of
the system. Each node consists of a CAN controller and a
process that communicates with the processes in the other
nodes. The processes are considered fail-silent (they can
show either crash or omission failures). The CAN con-
trollers avoid the error passive state and never reach the
number of errors necessary to enter the bus-off state (crash)
in an interval of referenceTrd . Finally there is no perma-
nent failure of shared network components (e.g. medium
partition). Given these assumptions the CAN properties are:

CAN1 - Validity : if a correct node broadcasts a message, then
the message is eventually delivered to a correct node.
CAN2 - Best-effort Agreement: if a message is delivered to
a correct node, then the message is eventually delivered to all
correct nodes, if the transmitter remains correct.
CAN3 - At-least-once Delivery: any message delivered to a
correct node is delivered at least once.
CAN4 - Non-triviality : any message delivered to a correct
node was broadcast by a node.
CAN5 - Total Order not ensured.
CAN6 - Bounded Inconsistent Omission Degree: in a known
time intervalTrd , inconsistent omission failures may occur in
at mostj transmissions.

CAN6 establishesj as a measure of the probability of
the inconsistent message omissions. CAN5 is explained if
we consider the following example. If a frame, labeledA,
is scheduled for retransmission when some nodes have re-
ceived it and some others have not, a second frame, labeled
B, could gain the arbitration to the retransmission. The
nodes having receivedA the first time will see the order
A,B, A, while the others will seeB,A. Proofs for the rest
of the CAN properties are straightforward.

Comparing these properties with the ones appearing at
the Atomic Broadcast definition in Section 2, it is clear that
CAN does not present Atomic Broadcast. There are two
possible approaches to obtain Atomic Broadcast on CAN
based systems. The first one is to add higher level proto-
cols specifically designed to recover from the inconsistent
message omissions. The second one is to modify the CAN
protocol to fix the problems with the minimum overhead.



The solution proposed in [10] follows the first approach.
Specifically they introduce three protocols: EDCAN, REL-
CAN and TOTCAN. In EDCAN all the receivers retransmit
the message after reception to overcome transmitter fail-
ures. This protocol satisfies all the Atomic Broadcast prop-
erties except Total Order, thus providingReliable Broadcast
[3]. In RELCAN the same properties are satisfied taking
a more efficient approach. The transmitter sends a CON-
FIRM message after the successful transmission of the main
message. Only in case the CONFIRM does not reach the
receivers in a specified timeout they start the retransmis-
sion of the main message. Finally TOTCAN satisfies all the
Atomic Broadcast properties, including Total Order. Each
time a receiver gets a duplicate of a message, it puts it at
the tail of a queue. The transmitter sends an ACCEPT mes-
sage after the successful transmission of the main message.
When the receivers get the ACCEPT message, they fix the
position of the message in the queue. In case the ACCEPT
message does not reach the receivers in a specified timeout,
they remove the corresponding message from the queue. A
detailed description of these protocols can be found in [10].

This approach is cheap because it does not require to
make any change in the CAN controllers. But it is clear
that it also wastes communication bandwidth, a scarce re-
source in CAN, requires extra program memory space and
implies a computational overhead for the nodes. Many con-
trol systems, especially in automotive applications, have to
be constructed with minimum memory and CPU power re-
quirements [1]. This justifies to propose changes in the stan-
dard CAN protocol.

3. A first solution: the MinorCAN protocol

We propose to slightly modify the CAN protocol to ob-
tain a new protocol called MinorCAN. MinorCAN provides
Atomic Broadcast avoiding both double reception of frames
and inconsistent message omissions in the scenarios de-
scribed in Fig. 1. This is done using resources already
available in standard CAN. Furthermore the performance
achieved by MinorCAN is better than that of the standard
CAN protocol. Although we have warn that MinorCAN is
going to fail in the new scenarios we are going to introduce
in Section 4, it is important to describe it because Major-
CAN is inspired in the same ideas.

The main modification in MinorCAN is the behaviour of
the protocol when processing errors detected in the last bit
of EOF. For errors detected in the bits previous to the last bit
of EOF, frames will be always rejected/retransmitted as in
standard CAN. For those detected in the bits following the
last bit of EOF, frames will be always accepted/not retrans-
mitted also as in standard CAN. Finally, for those detected
in the last bit of EOF, both receivers and transmitter will de-
cide to reject/retransmit or to accept/do not retransmit the

frame according to the same criterion: If the nodex, either
transmitter or receiver, is the first to detect an error in the
last bit of a frame then no one has yet rejected the frame
or scheduled it for retransmission, sox will not do so ei-
ther; but ifx is the second one, some other node has already
rejected the frame or scheduled it for retransmission sox
must do the same.

Using this simple criterion consistency is assured and
performance is improved: in MinorCAN if the transmitter
detects an error in the last bit of EOF retransmission might
be avoided, depending on the other nodes, while in CAN it
always takes place.

The behaviour described above can be easily imple-
mented using thePrimary error message that is inter-
changed between the Medium Access Control (MAC) sub-
layer and the Fault Confinement Entity (FCE) in the CAN
protocol. This message signals that the MAC sublayer has
detected a dominant bit after sending an error flag, corre-
sponding to the last bit of the error flag (or overload flag) of
another node. This indicates that the MAC sublayer has
detected a primary error and not an error that is caused
by the error flag of another node. In MinorCAN a node
that detects an error in the last bit of EOF signalled by
thePrimary error message accepts/does not retransmit the
frame, while a node that detects an error in the same posi-
tion but not signalled byPrimary error rejects/retransmits
the frame. Due to this implementation if all the nodes detect
an error in the last bit of EOF, MinorCAN will consider all
the errors not primary and the frame will be unnecessarily
but consistently retransmitted/rejected.

MinorCAN works properly in the critical scenarios de-
scribed before as is illustrated in Fig. 2. Furthermore, it can
be proven, by checking all the possible cases, that Minor-
CAN achieves consistency in the event of a permanent fail-
ure of any of the nodes after the bit error detection. Finally
it is important to note that thePrimary error message is not
a CAN message interchanged between the CAN nodes, but
a signal internal to the CAN controller and generated within
the CAN frame transmission time. This means that this so-
lution introduces no overhead, while any of the higher level
protocols proposed in [10] implies the transmission of more
than a CAN frame per message.

4. New inconsistency scenarios

One of our main contributions is that we have identified
new error scenarios leading to inconsistent message omis-
sions. In these situations neither standard CAN nor Minor-
CAN nor the mentioned higher level protocols fulfill the
Atomic Broadcast requirements. Let us consider the case in
Fig. 3a for standard CAN. As in Fig. 1b, a disturbance cor-
rupts the last but one bit of the EOF of the nodes belonging
to X. In the next bit these receivers start the transmission



no error (error flag seen as overload condition)
gets the framed overload flagReceivers ( Y) rr

EOF

no error (error flag seen as overload condition)
does not retransmitd overload flagTransmitter rr

X set accepts the frame (error seen as primary)
gets the framed overload flagReceivers ( X) r

r

Y set rejects the frame (error seen as not primary)
gets the frame onced overload flagReceivers ( Y) rr

EOF

sees the error as not primary and schedules retransmission
successfully retransmitsTransmitter rr

X set rejects the frame
gets the frame onced error flagReceivers ( X) r

d error flag

r

r

Y set rejects the frame (error seen as not primary)
does not get the framed overload flagReceivers ( Y) rr

EOF

sees the error as not primary and schedules retransmission
fails before retransmissionTransmitter rr

X set rejects the frame
does not get the framed error flagReceivers ( X) r

d error flag

a

b

c

Figure 2. Achieving consistency in MinorCAN

of an error frame. The dominant first bit of this error flag
is seen by the nodes belonging toY as an error in the last
bit of their EOF, while, in this case, the transmitter can not
see the error flag in the last bit of EOF due to an additional
disturbance in that bit. The nodes belonging toX will reject
the frame, the nodes belonging toY will accept the frame
following the last bit rule, and the transmitter will consider
it as correct, and no retransmission will be performed. As a
result an inconsistent message omission will happen.

Y set obliged to accept
gets the framed overload flagReceivers ( Y) rr

EOF

no error (error flag seen as overload condition)
does not retransmitd overload flagTransmitter rr

X set rejects the frame
does not get the framed error flagReceivers ( X) r

r

Y set accepts the frame (error seen as primary)
gets the framed overload flagReceivers ( Y) rr

EOF

error after last bit of EOF
does not retransmitd overload flagTransmitter rr

X set rejects the frame
does not get the framed error flagReceivers ( X) r

r

a

b

Figure 3. New scenario (CAN and MinorCAN).

Note that an additional disturbance in one single bit is
enough to produce the inconsistency. This scenario pro-
duces the same result in MinorCAN as can be seen in
Fig. 3b. After the disturbance in the last but one bit of EOF
of the nodes belonging toX, these reject the frame and start
the transmission of an error flag. The nodes belonging toY
detect an error in the last bit of EOF, transmit an overload
flag, sample the channel after this transmission, and decide
they have detected a primary error. Thus they accept the
frame. The transmitter can not see the error until the bit

after the EOF, so it assumes everybody has the frame and
does not retransmit it.

Among the higher level protocols proposed in [10] to
solve the inconsistency problems, only EDCAN operates
properly in the new scenarios. But it is important to re-
member that EDCAN does not provide Atomic Broadcast
anyway—it does not guarantee Total Order. Moreover ED-
CAN is precisely the one which has a lower performance, as
it needs at least one retransmission per frame (each frame is
transmitted at least twice). The rest of the protocols do not
work because they only perform recovery actions in case
the transmitter fails, and as we have proven, inconsistencies
can appear even if the transmitter does not fail.

To justify the importance of these new scenarios it is nec-
essary to estimate their probability of occurrence in stan-
dard CAN. The model proposed in [10] is not suitable for
our purposes, because it uses as a basic parameter thebit
error rate (ber ). This parameter indicates the probability
for a bit to be erroneous in any part of the network. In our
case it is necessary to model the probability for a node to be
affected by the error in its particular view of the bit. Accord-
ing to Charzinski[1] the spatial distribution of errors in the
network is modeled bypeff , the probability for a bit error
occurring somewhere in the network to appear at a certain
node. For each bit time the following equation holds:

peff = P{A | B}
where A = error affects considered node; and

B = error somewhere in the network (1)

Following the same assumptions of Charzinski, we
will consider the effectivity of bit errors to be randomly
distributed over the nodes withpeff = 1/N , where
N is the number of nodes. If we identifyber =
P{error somewhere in the network} it is easy to derive:

P{error affects considered node} =
1
N

ber (2)

We will consider forber the same constant values as in
[10] in order to have a common reference. Expression 2
calculates the value of the new parameter we need for our
model. We will call this parameterber∗. So:

ber∗ =
1
N

ber (3)

Now we can obtain the expression of the probability of
occurrence per frame of the scenario presented in Fig. 3a. In
this expressionτdata is the number of bits in a frame. The
expression is obtained considering all the cases in which at
least one of the receivers is affected by an error in the last
but one bit of the frame, while the rest of them—at least
one—is not affected. In all the cases the transmitter suffers



an error in the last bit that impedes it to detect the error flag.

P{new scenario in a frame} =

=
∑N−2

i=1

(
N−1

i

) (
(1− ber∗)τdata−2 ber∗

)i ×
(
(1− ber∗)τdata−1

)N−1−i ×
(1− ber∗)τdata−1 ber∗ (4)

We can estimate the number of inconsistencies that these
new scenarios produce in an hour by multiplying by the
number of frames transmitted in an hour. Again we use the
same data as in [10] for comparison purposes. So we con-
sider a network at 1 Mbps, with 32 nodes, an overall load
of 90% and frames with a length ofτdata = 110 bits. We
calculate the number of inconsistencies for bit error rates
(ber ) going from aggressive to benign environments. In Ta-
ble 1 the results of these calculations are summarized. Col-
umn IMOnew/hour shows our results for the new scenarios,
column IMO/hour shows the maximum values for the sce-
narios described in Fig. 1c obtained by Rufinoet al. using
their own model and, to make a fair comparison, column
IMO*/hour shows the corresponding values for the scenar-
ios in Fig. 1c obtained by our model based on theber∗ pa-
rameter. For these last set of values the following expres-
sion has substituted expression 4 for the probability of oc-
currence per frame:

P{old scenario in a frame} =

=
∑N−2

i=1

(
N−1

i

) (
(1− ber∗)τdata−2 ber∗

)i ×
(
(1− ber∗)τdata−1

)N−1−i ×
(1− ber∗)τdata−2 (1− e−λ∆t) (5)

where (1 − e−λ∆t) represents the probability for the
transmitter to crash impeding the retransmission of the
frame. For∆t we will take the value of 5 ms as in [10]
and forλ, 10−3 failures per hour that is the maximum value
considered in [10].

ber IMOnew/hour IMO/hour IMO*/hour
(Fig. 3a) (Fig. 1c) (Fig. 1c)

10−4 8.80× 10−3 3.94× 10−6 3.92× 10−6

10−5 8.91× 10−5 3.98× 10−7 3.96× 10−7

10−6 8.92× 10−7 3.98× 10−8 3.96× 10−8

Table 1. Probabilities of the scenarios

Analyzing the results in Table 1, it is obvious that the
model we have introduced based inber∗ permits to repro-
duce the results obtained in [10] for the old scenarios. This
legitimates the comparison of the results obtained for each
kind of scenarios. Thus it is clear that the new scenarios
have probabilities larger than the reference value (10−9),
and also larger than the previously reported scenarios. This
justifies to review the CAN properties. Making the same

failure assumptions as in Section 2.2 we propose a definitive
set of CAN properties that are listed below. Only properties
that have suffered a modification when considering the new
scenarios are listed and marked with a ’.

CAN2’ - Agreement not guaranteed: if a message is deliv-
ered to a correct node, then the message may never be delivered
to all correct nodes, even if the transmitter remains correct.
CAN6’ - Bounded Inconsistent Omission Degree: in a
known time intervalTrd , inconsistent omission failures may
occur in at mostj′ transmissions.

CAN2’ is immediately justified by the scenario in
Fig. 3a. In that scenario, discussed at the beginning of this
section, the transmitter can not see at the last bit of EOF the
error flag transmitted by some receivers, and then considers
the frame correctly transmitted while some receivers reject
it. In CAN6’ j′ is larger than previousj: the probability
of the inconsistent omission failures is larger when the new
scenarios are considered.

5. The CAN modification for Atomic Broad-
cast: the MajorCAN protocol

As seen in the previous section, the probability of multi-
ple errors affecting the nodes within the same frame is con-
siderably high. Any modification we propose to the original
protocol must consider this possibility. We first must decide
how many errors we must be able to cope with. We denote
this number asm and of course it must be larger than 2,
as with 2 errors the scenario that leads to property CAN2’
(Fig. 3a) could happen. Our proposal ism = 5 because
standard CAN uses a CRC code that allows the detection
of up to 5 randomly distributed bit errors [11]. Therefore
it makes sense to guarantee Atomic Broadcast at the same
level. In any case, this decision strongly depends on theber
value. If ber is larger then larger values ofm should be
considered. So the new protocol we propose is designed to
be parametrisable inm to make the upgrade simpler. We
call this new protocol MajorCAN [9] and we will use the
notation MajorCANm to indicate the value chosen form in
specific cases.

MajorCAN is based in the mechanism described before
for MinorCAN. Once again nodes detecting an error at the
end of the frame must check if there are nodes detecting the
error later and then accepting the frame, and nodes detecting
the error later must notify that they accept the frame through
their error flags. The main changes to cope with multiple
errors are two. First that this notification of acceptance must
be performed with an extended error flag to admit errors
during the notification. And second that to avoid situations
like the one illustrated in Figures 3a and 3b, not only the
nodes detecting an error in the last bit of the CAN’s EOF



must check if other nodes are notifying the acceptance of
the frame, but also nodes detecting errors before that.

Before describing in detail the structure of the extended
error flags, and the way the nodes check if others are ac-
cepting, it is necessary to realize that the structure of the
EOF can also be modified to better adapt to the new ap-
proach, avoiding an excessive prolongation of the Major-
CAN frames. The EOF contains no relevant data. If a frame
contains errors only in the bits of the EOF it is a correct
frame and could be accepted. Whether it is accepted or not
is just a question of agreement between the different nodes.
The MajorCAN EOF field will be divided in two sub-fields.
Nodes detecting an error in the second sub-field must accept
the frame and notify through an extended error frame, while
nodes detecting an error in the first sub-field must check if
there are nodes detecting the error in the second one and
then accepting the frame.

The number of bits of the two sub-fields of the Major-
CAN’s EOF must be chosen to be minimum. According
to the CAN specification [5] whenever a CRC error is de-
tected, transmission of an error frame starts at the bit fol-
lowing the ACK delimiter—that is at the first bit of the EOF.
This means that a node starting an error flag in the first bit
of EOF should never accept/do not retransmit that frame.
To achieve agreement between nodes, it must be impossi-
ble for other nodes to first detect this error flag in a bit of
the second sub-field which would produce the acceptance
of the frame. As in the worst casem − 1 additional errors
can delay the detection of the error flag, the first sub-field
of EOF must havem bits. On the other hand if the node
that first detects the error does it in themth bit of EOF—the
last bit of the first sub-field—and there are only two nodes
in the network, it is necessary that the other node notifies
the acceptance of the frame with an extended error frame.
Given that additional errors can delay the detection of the
error flag generated by the first node up tom − 1 bits, this
error flag can be detected by the other node at the2mth bit
that will be, in consequence, the last bit of the second sub-
field of EOF. So the second sub-field must also havem bits.

As said before, a nodey detecting an error in the sec-
ond sub-field of EOF must notify the acceptance through
an extended error frame. This extension must be enough
to permit a nodex detecting an error in the first sub-field
of EOF to know, in the presence of up tom − 1 additional
errors, thaty is notifying acceptance. If there is only one
error andx has detected it in themth bit of EOF,y will see
the x’s error flag as an error condition in the(m + 1)th.
Then forx to know some other node is accepting—likey in
this case—it would be enough to sample the last bit of the
regular 6-bit error flag that this node would generate, that is
the(m+7)th bit. This is essentially what MinorCAN does.
If there is an additional error it could affect precisely the
sampling of the(m + 7)th bit. To cope with this,x should

sample not only the(m + 7)th bit but also the(m + 8)th
bit and the(m + 9)th bit, and perform a majority voting on
these samples. Of course this implies thaty must extend
two bits its error flag. In the presence ofm errors,m− 1 of
them could affect the sampling. Sox must sample2m − 1
bits from the(m+7)th to the(3m+5)th, andy must extend
its error flag to all these bits. If instead of having detected
the error in the(m + 1)th bit, y detected it in any of the bits
from the(m + 2)th to the2mth it must also extend its error
flag up to the(3m + 5)th bit to notify the rest of the nodes
that it is accepting. Ifx detected the error in any of the bits
from the1st to the(m− 1)th, instead of in themth, it must
also sample the bits from the(m + 7)th to the(3m + 5)th
to know if any other node is accepting the frame.

It is important to remark that if any node detects its sec-
ond error during the bits corresponding to the EOF and the
extended error flags, this is not signaled with any additional
error flag. Otherwise error flags of second errors could spoil
the agreement process.

Fig. 4 shows the behaviour of a MajorCAN5 node when
an error is detected in different bits of EOF. Vertical arrows
indicate the bits where the sampling is performed.
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Figure 4. Behaviour of a MajorCAN 5 node.

To finish the description of the MajorCAN protocol it is
important to mention some details. First, errors detected af-
ter the last bit of EOF will be treated as in standard CAN.
Second, also as in standard CAN the MajorCAN frames fin-
ish with an ACK field of two bits followed by the EOF field
described above. As the ACK field ends with a recessive
bit and EOF is a sequence of2m recessive bits, any Ma-
jorCAN frame finishes with2m + 1 recessive bits. This
must match the form of the error delimiter to permit node
synchronization. So the MajorCAN error delimiter will be



a chain of2m + 1 recessive bits, instead of the8 recessive
bits of the standard CAN. This means that in the best case—
when there are no errors during the EOF—the overhead in-
troduced by MajorCAN compared with standard CAN is of
2m−7 bits. For our proposal ofm = 5 we have an overhead
of 3 bits. In the worst case—when there are errors during
the lastm bits of EOF—the MajorCAN frame is extended
2m−2 bits more. For our proposal ofm = 5 this means an
increment of8 bits, so a total overhead of11 bits. Even in
this last case, the overhead is negligible compared with any
of the higher level protocols proposed in [10] that require
the transmission of more than a CAN frame per message.

Fig. 5 illustrates the way MajorCAN5 nodes achieve con-
sistency in front of up to five errors. Nodes belonging toX
detect a dominant bit in the3rd bit of EOF and transmit a 6-
bit error flag. Nodes belonging toY detect the error flag in
the4th bit and signal it with their own 6-bit error flags. All
of them will perform the sampling to decide whether accept
or not the frame. In the meantime the transmitter suffers
two additional errors that delay the error flag detection until
the6th bit of the EOF. Then it accepts the frame and notifies
the acceptance by transmitting an extended error flag. All
the rest of the nodes perform the sampling and, even in the
presence of the remaining two errors, decide to accept the
frame.

6-bit error flag, sampling is performed, frame is accepted
Receivers (Y) r rrd error flag r rr r

d extended error flag

6-bit error flag, sampling is performed, frame is accepted
Receivers (X) r d error flag r rr r

EOFACK

extended error flag, frame is accepted
Transmitter r r rr r r r r

r

Figure 5. MajorCAN 5 consistency example.

6. Conclusions and future work

We have identified new scenarios where the CAN proto-
col violates the Agreement property of the Atomic Broad-
cast definition. Previous solutions for the until now known
inconsistencies were higher level protocols [10]. Such
an approach wastes communication bandwidth, a scarce
resource in CAN, requires extra program memory space
and implies a computational overhead for the nodes. In
many control systems, especially in automotive applica-
tions, there are systems which have to be constructed with
minimum memory and CPU power requirements. More-
over, we have shown that in the new scenarios none of
these higher level protocols fulfill the Atomic Broadcast
requirements. We take the different approach of modify-
ing the CAN protocol and we introduce a new protocol
called MajorCANm, that provides Atomic Broadcast in the
presence of up tom errors in the communication chan-

nel, when the nodes present fail-silent behaviour. We show
that the maximum communication overhead introduced by
MajorCANm compared with standard CAN is4m− 9 bits,
that for our proposal ofm = 5 means 11 bits. This over-
head is negligible compared with any of the higher level
protocols proposed in [10] that require the transmission of
more than a CAN frame per message.

We are implementing the MajorCAN protocol in VHDL
to develop a prototype for a MajorCAN controller. This
will permit to obtain experimental results on the function-
ality of the protocol. We plan to do model checking on the
VHDL description to achieve a formal verification. We are
also planning to use a more accurate model to estimate the
probability of the new scenarios introduced.
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