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Abstract—This paper describes SOAcom, a communication
model as well as a development process to characterize and
adapt automotive network protocols to Service-based Driver
Assistance Systems (DAS). Future DAS for articulated vehicles
like a car with a caravan are characterized by a dynamic
software and hardware architecture. In these systems Service-
orientation is a promising approach. One major demand to be
able to deploy such systems in an automotive environment is the
ability to allow Service communication through the specialized
automotive networks. This paper describes a development process
to define a communication model that is built up by mechanisms
which are necessary to allow this Service communication. The
development process, consisting of four phases, is tested by
defining a communication model for a Service-based DAS on the
Controller Area Network (CAN). The result is then evaluated by
means of a set of experiments.

I. INTRODUCTION

In recent years the usage of Middleware technologies within
the domain of Distributed Embedded Systems (DES) has
risen. Middlewares have been identified to be of great use
when these systems get very complex or heterogeneous, the
time-to-market has to be reduced or the systems have to
be runtime adaptive. One of the most popular Middleware
approaches is the paradigm of Service-oriented Architecture
(SOA). This paradigm has for example been used in the
eSOA project [1] or in the SIRENA project [2]. Whereas
these projects mainly target on embedded devices that are
connected using IP-based protocols, the automotive domain,
which also relies on embedded systems, is using specialised
networks that do not allow to run Service communication
directly. These network systems such as the Controller Area
Network (CAN) or the Local Interconnect Network (LIN)
are developed to be used in static scenarios where changes
of the system are not taken into account. Furthermore they
are used to directly hand over raw data instead of being a
base for high-level protocols which is another difference from,
for instance, Ethernet. As an example we focus on Driver
Assistance Systems (DAS) for vehicles with trailers. The task
of driving a vehicle with a trailer attached has at least two
difficult situations. One of it is to stabilize the trailer when
driving forward. The other one is to back up the combination
as controlling the movements of the trailer is not intuitive
to many drivers but needs a lot of training instead. These

systems caught our attention because the components of these
DAS are distributed over both parts of the combination. Since
a trailer is typically connected and disconnected to different
trucks several times a day there is a lot of change in the system
as every combination might have a different set of hardware
and software components available for the assistance. These
changes demand the system to orchestrate itself in a functional
way to offer the driver the best assistance possible. We call
this class of systems Distributed Driver Assistance Systems
(DDAS). In order to handle the challenges these DDAS bring
up, the SOA paradigm is used. Figure 1 shows an extract of
the Architecture which is used for every single Service. It is
divided into four different layers:

1) Application Holds the implementation of the actual
Service Logic.

2) SOA Middleware Implements the SOA specific
paradigms and functionalities.

3) Communication Model Contains software components
to adjust the network used to the SOA Middleware.

4) Hardware Abstraction Layer Implements the low level
network drivers.

This paper focuses on SOAcom, a combination of a com-
munication model as well as a development process which
guides the software engineer through the development of this
component. The SOAcom communication model has to fulfil
the following requirements:

1) Runtime Adaption The communication model devel-
oped must allow connecting or disconnecting Services
at runtime and has to handle the integration of new
Services into the existing network.

2) Ensuring advantageous attributes All of the different
network systems are designed for a special class of ap-
plications and therefore have unique attributes to ensure
the efficiency, safety or timeliness demanded in these
applications. These advantageous attributes need to be
ensured and preserved wherever possible.

3) Interoperability Th communication model should be
able to connect Services using a network which is used
by other components, running traditional communication
at the same time.



4) Stability after initial configuration In the event of
adding a new Service to the communication channel,
existing nodes should not have to re-configure their
communication stack.

The rest of the paper is organized as follows. Section
II will give an overview of the SOAcom communication
model developed. Section III explains the associated SOAcom
Development Process in detail. This Development Process is
used to construct the implementation of the communication
model of an example application in section IV. Section V
summarizes the related work in this domain and section VI
concludes the paper.

II. A COMMUNICATION MODEL FOR SOA-BASED DDAS

As stated in section I, the SOAcom communication model
builds the bridge between the high-level communication in
the SOA Middleware and the low-level automotive network
drivers. Still, it is more than a simple wrapper since it has
to compensate the shortcomings of the automotive network
system related to the application requirements. It maps the
functionalities like for example discovery calls to find another
Service in the network to actual messages. Finally, it also
organizes the integration of the Service into the underlying
network and controls the fragmentation process. As shown in
figure 1 it contains four major components:

1) Addressing Scheme
This component maps the Service calls onto message
addresses and vice versa. It contains a table which holds
all the relevant information to do so. As some of the
automotive network systems link priorities directly to
message addresses this component has to be aware of
this, too.

2) Adaption
The adaption component organizes the integration of the
Service within the network. It is called when the Service
is added to a network, in order to announce the existence
of itself and reserve addresses or time slots to be able
to take part in the communication.

3) Fragmentation
As some Service calls might be larger in size as the
maximum load of a single message in the underlying
network, a fragmentation process must be available. This
component brakes down the calls into message sized
junks in order to send it over the network. As well, it
assembles incoming messages to reconstruct the Service
calls received.

4) Transmission Arbitration
Since all automotive network systems use shared seg-
ments, in order to send messages, a channel access
control mechanism has to be established. This mech-
anism can be controlled by a central device like in
some time division approaches or can be distributed over
the nodes in the network. The Transmission Arbitration
component makes sure that the network’s channel access

method keeps the priorities and scheduling defined in the
application.

Those components as listed above have to be implemented
for every assistance project depending on the requirements
set up by the application and the actual network used. As
any particular implementation of the communication model
is quite complex, we defined a well structured development
process that guides the software engineer through several
steps. Following the development process described in the
next chapter will result in an executable implementation of
the SOAcom Communication Model.

Fig. 1: Overview of the SOAcom architecture.

III. A DEVELOPMENT PROCESS FOR COMMUNICATION
MODELS IN AUTOMOTIVE SOA-BASED SYSTEMS

This section will give an overview over the SOAcom process
model. Furthermore it will describe exemplary some of the
steps in high detail.

A. Overview of the SOAcom process model

The SOAcom process model consists of four major steps.
These four steps guide the developer in creating a commu-
nication model for a specific application using a specific
automotive network. Figure 2 gives an overview over the
whole process.

The process starts with phase 1, which uses an extended
version of a process model published in [3] which, in turn,
models the functional elements of a SOA-based DDAS. As
soon as a model of the application is acquired, we are able
to extract the requirements of the application which influence
the communication. In phase 2, the network protocol used
is analysed. It can be done completely independent from
the actual application as it only concerns about the network
itself. We developed a questionnaire that guides the developer
through this phase and summarizes those characteristics of the
network which are important for designing a communication
model. Phase 3 brings together the results of the phases 1
and 2 to identify which steps have to be taken to allow
the usage of the desired network protocol in the specific



Fig. 2: Overview of the SOAcom development process.

application. Finally, phase 4 consists of the execution of the
tasks identified in phase 3 and hereby in the implementation
of the communication model. The rest of this section will
describe the four phases in detail.

B. Phase 1: Determining the requirements of the communica-
tion model set up by the application.

In [3] we describe a model-driven development process for
SOA-based driver assistance systems. This process allows to
generate a detailed description of such a system in SoaML
starting from the plain idea of a DAS. By working through the
phases of the development process described there, the used
Services are derived from the functional requirements. These
Services are enriched with descriptions about the provided and
requested functionalities, as well as the contract. A contract in
a SoaML model is an entity that describes how providers and
consumers exchange data to one another. Therefore the UML
metaclass collaboration is extended to define the roles of the
interacting partners as well as their behaviour ([4]).

This SoaML model, as presented in the publication, offers a
detailed description of the communication exchanged between
the Service and its requester. This description serves as a
formalism to derive the requirements set up by the applica-
tion that have to be fulfilled by the communication model.
However, there is still a gap within the model. Inside the
description of the communication in each contract, which is
modelled using UML Sequence Charts, messages sent by both
partners are not defined in detail. Instead, only a placeholder
lacking of any further details is used. In order to be able to
define the communication model there have to be more details
about the messages used.

To solve this issue we extended the specification phase. The
main idea is to use UML Signals as a detailed description of
a message. Now, a UML Signal is able to hold parameters
whose Type can be defined accurately.

Figure 3a presents an example of such a Signal. In this
case the name of the Signal is Sig_CameraPositionResponse.
It has three attributes defined alongside with their type. For

example, the attribute Height is a unsigned integer with 16
bits of length.

The data types used for the attributes of the Signals have
to be defined as well. We decided to set up twelve different
types which include, for example, the standard data types of
the common programming languages like int8, float32 or ascii.
Figure 3b presents one of these data types.

(a) Signal. (b) Data type.

Fig. 3: Example elements.

All Signals and data types are defined in a separate package
to retain clarity. In order to be able to use the Signals, the type
of the messages had to be changed as well. Instead of using
Synchronous Messages, we changed all the contracts in the
model to use Asynchronous Signal Messages. These messages
can directly be mapped to a Signal which carries the detailed
information. Figure 4 presents an example of a sequence chart
within a contract which uses this kind of messages.

Fig. 4: Example of a communication sequence using Asyn-
chronous Signal Messages.

With this extension to the process model we now have
enough details to derive the requirements of the application
regarding the communication aspects. These requirements are:

1) The number of Services in the application.
2) A list of Services alongside with their Service Class

Address.
3) The size in Bytes of the biggest message in the appli-

cation.
4) The presence of periodic messages in the application.
The number of Services can be easily discovered by count-

ing the number of participants in the overall architecture,
which is part of the SoaML model. For big size applications
this job could also be done using a simple program. The
second requirement, the list of Services, can be made by
inspecting the Interfaces Package within the model. This
package holds all the descriptions of the used Services and
is hereby predestined to be used to gather the needed infor-
mation. The corresponding Service Class Address on the other



hand, is part of our overall model for the usage of SOA in the
automotive domain and can be looked up in the corresponding
document.

The most convenient way to determine the biggest message
in the model is to analyse the Signals and Datatypes package
which holds all of the Signals used. Again, an automated script
program which analyses the UML model could be used to
reduce the effort of the developer. The last step, unfortunately,
takes some effort to be done. Since there is no central package
or file which offers an overview of all the communication
sequences, the developer has to go through the sequence charts
of all the contracts in the model. If there is only one periodic
message in any of the contracts, this has to be reported. This
last analysis of the SoaML model of the application completes
the step of deriving the requirements set up by the application.

C. Phase 2: Characterization of the network protocol

Simultaneously with phase 1 we execute phase 2, which
helps to provide a high-level description of the automotive
network protocol. More specifically, this description allows to
hide all the complexity of the network protocol’s implemen-
tation and focus on its capabilities.

Nowadays, most network protocols are described using
formal descriptions, like formal languages or state diagrams.
The former ones describe the data structures involved and how
they are inter-exchanged among the communication partici-
pants, whereas the second ones specify the possible states
of the subcomponents and the events causing a change of
the state. These formal descriptions provide a very low-level
specification of the network protocol’s behaviour, so they can
contain all functional details. However, these descriptions are
targeting on an easy implementation of the network compo-
nents, rather than providing a high-level description. This leads
to the fact that they cannot be used directly to derive network
characteristics in an efficient way. In order to characterize
network protocols, we developed a characterization method
based on a questionnaire.

Next, we describe the list of attributes specified to describe
a network protocol, as well as the questionnaire, which makes
possible to collect its values.

1) Characteristic attributes of a network protocol: The
newly designed network protocol description paradigm sum-
marizes the most important attributes of the network. This list
of attributes is divided in five different groups, the so-called
network characteristics. The first group, called transmission,
describes how the protocol transmits data to the channel. The
second group, called physical capabilities, details the topology
and physical medium. The third group, called network capabil-
ities, gathers the characteristics concerning the whole network.
The fourth group, called dynamic capabilities, manifests how
the protocol adapts to environment changes. Finally, the fifth
group, called dependability, describes the safety and security
mechanisms provided. Figure 5 gives an overview over the
characteristics used in our approach.

2) A questionnaire to characterize a network protocol: In
order to facilitate the collection of the attributes’ values we

Network
Characteristics

Transmission

Physical
Capabilities

Network
Capabilities

Dynamic
Capabilities

Dependability

Fig. 5: Groups of characteristics of a network system.

have set up a questionnaire, that is, a list of questions regarding
the network protocol. The answer to these questions can be of
any of the following three types:

• Checkboxes for allowing multiple answers to a question.
• Radio Buttons for restricting the possible number of

answers to one.
• Free text answers to allow for example the input of

numeric values.
An example of one of these questions is the test for the

prioritization mechanism of messages in a network. This
question is of the Radio Buttons type and offers the options
”Node-based”, ”Message-based”, ”Scheduler-based” or ”No
Prioritization”. Table I shows the corresponding extract of the
questionnaire.

Frame prioritization
o Node-based
o Message-based
o Scheduler-based
o No prioritization

TABLE I: Extract of the questionnaire to characterize a
network.

The outcome of this phase is the so-called general model
of the protocol. That is, the list of the values of the at-
tributes, from which we could extract the network protocol’s
capabilities. This information, together with the application
requirements from phase 1, is exploited in next phase.

D. Phase 3: Mapping requirements to attributes

In this third phase we identify the automotive network
protocol shortcomings, in the scope of the application, and
set up the list of tasks which must be carried out to create the
communication model. For this, the information generated in
the two previous phases is collected. On the one hand, phase 1



provides the list of application’s communication requirements
which, as explained, is composed of four different values. On
the other hand, phase 2 supplies the list of the network protocol
attributes’ values, which highlights the automotive network
protocol capabilities.

We handle these two information streams by means of a set
of flowchart diagrams. This kind of diagrams allows a software
designer to represent algorithms or processes. In our case, they
help the developer in the process of identifying the network
protocol shortcomings and, in a second step, they present the
tasks to be carried out to overcome them and, thus, construct
the communication mode.

Next, we describe these diagrams and how they should be
used. After that, a flowchart diagram example, jointly with the
extended description of all of its contained tasks, is provided.

1) Flowchart diagrams to guide the developer through the
process: Each of the flowchart diagrams is constructed from a
structured set of questions and a list of possible tasks. On the
one hand, questions relate the application’s requirements from
phase 1 with the attributes’ values from phase 2 and, thus,
guide the developer in the process. On the other hand, each
time a diagram highlights a shortcoming, the task allowing to
overcome it is presented. Each shortcoming alongside with
the task to overcome it is recorded. The outcome of this
phase is the list holding all the tasks to be executed by the
developer. Flowchart diagrams are complemented by a text
document which contains an explanation of each question, the
repercussions of each answer and an extended description of
each task.

We have constructed six different flowchart diagrams, each
of which is related to at least one attribute of the network
protocol. Moreover, a given diagram can embrace various
attributes of various groups. This is because diagrams are
directly related to communication model components and not
to questionnaire groups. Next, flowchart diagrams created for
this phase are introduced.

First, the Addressing scheme diagram helps to set up the
addressing, so messages can be delivered to the corresponding
receivers. For this, it is necessary to take into account the
characteristics of the network protocol addressing scheme, the
network protocol transmission method and the set of Services
defined in the SOA model.

Second, the Ability to assign addresses dynamically diagram
helps to extend the dynamic capabilities of the network proto-
col, so it can assign addresses at runtime to the Services and, in
some cases, to the nodes. For this, it is necessary to distinguish
between node-oriented (direct) and message-oriented (indirect)
network addressing modes.

Third, the Mode of communication diagram assists the
developer in adapting Service communication to the network’s
channel arbitration method. For this, it is necessary to know
whether the network protocol uses a master/slave or a multi-
master mode of communication.

Fourth, similarly to the mode of communication diagram,
the mode of prioritization diagram assists the developer in

checking whether the network is able to manage the prioriti-
zation of new Services dynamically or not.

Fifth, the Fragmentation diagram helps to ensure that the
network protocol is able to transmit messages when their
content overcomes the maximum payload. For this, it is
necessary to know the size of the messages, as well as the
message payload of the network protocol, and whether it
already provides a fragmentation protocol or not.

Finally, the Trigger condition diagram helps to schedule the
messages. For this, it is necessary to take into account the
possibility of periodic messages and the types of scheduling
schemes supported by the network protocol.

2) Flowchart diagram example: Here we present the ”abil-
ity to assign addresses dynamically” diagram, shown in fig-
ure 6. Note that diamonds represent conditional statements
containing the questions and, thus, are the elements that may
change the execution flow. As concerns the rectangles, white-
filled ones present important information, regarding the flow,
whereas gray-filled ones hold a short description of a task
to be carried out. Finally, the labels along together with the
diamonds refer to the specific section in the text document
which corresponds to them.

Once the network protocol shortcomings have been iden-
tified, we can define the set of tasks to be carried out. As
shown in figure 6, shortcomings are followed by a short task
description. However, the complete definition of the task, as
well as the possible options to be taken, are compiled in the
text document. Next, a summarized version of the document’s
extract corresponding to this diagram is shown.

Since we are constructing an adaptive architecture, the
communication model must allow connecting new Services
at runtime. Moreover, in order to be able to deliver messages
to these new Services, it is necessary to ensure that they can
acquire a unique address dynamically.

The first conditional statement, labelled 2.1, checks whether
the network protocol is node-oriented. In this case, messages
are directly addressed to the receiving nodes and, thus, each
node must own a unique address. In this sense, the commu-
nication model must ensure that new nodes and/or Services
installed at runtime have unique addresses.

This requirement is expressed in the second conditional
statement, labelled 2.1.1. In case the network protocol does
not provide such a mechanism, the designer must provide
a protocol which does it. This protocol should preserve the
mode of network. More specifically, the protocol should not
force to add a master node when dealing with a multi-master
scheme. One possible option is to check the existence of
high-level implementations of the network protocol. These
implementations improve the basic operation of the network
protocol and, thus, they are a good point of start when looking
for extensions. In case any of them already implement a
suitable algorithm to assign addresses at runtime, the designer
can extract it and then add it into the communication model.

Once new physical components of the network are able
to retrieve a unique address, new logical components -the
Services- must be provided with unique addresses, too. In this



Fig. 6: Example of flowchart diagram.

sense, the designer of the communication model must provide
an algorithm to assign unique addresses to the Services dy-
namically. Note that, since part of the node-oriented addressing
scheme specifies the address of the node this algorithm can
be executed locally, inside the physical device.

A completely different flow is chosen when the network pro-
tocol is message-oriented, see label 2.2 in figure 6. Messages
in such systems are sent in broadcast and receivers are the
ones responsible for filtering them. This can be done thanks
to the addressing information, which identifies the content of
each message. In our Service communication, this address
identifies a Service call. As the addressing is not node-based,
the designer does not have to assign addresses to the nodes
but directly to the Services. Consequently, an algorithm to
assign unique addresses to the Services dynamically must be
provided. One possible option is to use the algorithm presented
in [5]. This algorithm is based on an algorithm to elect a leader
in a Distributed Computing System. The main advantage of
using this algorithm is that all the address assignment process
can be carried out without a central logical component.

E. Phase 4: Implementing the components of the communica-
tion model

Finally, the communication model is constructed by defining
the content of each of its components. This is done by
executing the tasks collected in the previous phase and hereby
extending the capabilities of the network.

One important characteristic of SOAcom is its traceability.
In this sense, we are able to backtrack each implemented
component to a task and, beyond that, to the flowchart
which brought this task onto our to-do list. Furthermore,

the flowcharts can be run through backwards and hereby
the specific values of the characteristics which lead to this
implementation can be determined. The specific relation be-
tween components and flowchart diagrams and, thus between
components and tasks, is shown in Table II.

Component Flowchart diagram
Addressing scheme Addressing scheme

Adaption
Ability to assign addresses dynamically
Mode of communication
Mode of prioritization

Fragmentation Fragmentation
Transmission arbitration Trigger condition

TABLE II: Relation between communication model compo-
nents and flowchart diagrams.

IV. RUNNING EXAMPLE

In this section we assess the operability of SOAcom ap-
proach by means of an example development. Our running
example is a visual assistance application using the Controller
Area Network. More specifically, our SOAcom process model
is used to analyse the application and the network, to de-
termine its shortcomings and specify the components of the
communication model which overcomes them.

A. Example application

The example application used is a visual assistance for a
car and trailer combination as shown in figure 7. This system
helps the driver in the process of backing up a vehicle with
a one-axle trailer connected. The main idea is to calculate
the trajectories of the trailer and the overall vehicle, and to



overlay them on the picture of a rear view camera mounted
on the trailer [6]. For this purpose, it is necessary to provide
the steering angle and the angle between truck and trailer, the
so-called bending angle. This assistance system is build up by
seven different Services. Some of them are sensing Services,
like the ones used to determine the current steering angle or the
bending angle. Some others are Services which add value to
these sensor signals, like the ones used to calculate the future
path of the vehicle and its trailer, the so called trajectories.
Finally the last class of Services outputs some information to
the driver. In our example, this is done by a Service which
displays the picture of the rear view camera overlayed by the
trajectories. Figure 8 shows the interface of the system to the
driver.

Fig. 7: Overview of the prototype.

Fig. 8: Human Machine Interface of the running example.

B. The Controller Area Network

The Controller Area Network protocol, which is used in this
example, is a field bus developed by Robert Bosch GmbH
in the 1980s for automotive applications. Its main benefits
are: low cost, electric robustness, prioritised medium access
arbitration mechanism, good real-time performance, as well as
error- detection and containment mechanisms. Consequently,
although it was primarily designed for automotive systems,

it soon became widely popular in other types of distributed
embedded control systems, like factory automation, robotics
or medical equipment. CAN defines the lower two layers
of the ISO/OSI communication reference model, that is, the
physical layer and the data link layer. On the one hand, the
physical layer defines the physical medium, as well as the
bit synchronisation mechanisms. On the other hand, the data
link layer defines how nodes can exchange data even in the
presence of errors.

C. Applying the SOAcom process
In phase 1, we determine the requirements of the commu-

nication set up by the application. For this, the application
previously introduced is analysed. This example application
is composed of seven different Services, listed in Table III,
alongside with their Service Class Address.

Name of Service Service Class Address
SteeringAngleService 290
BendingAngleService 291
TrajTractiveUnitService 300
TrajTrailCombService 301
RearViewService 295
OutputVideoService 310
OverlayService 311

TABLE III: List of Services in the example application.

In a next step, the message with the biggest size within the
application is identified, in this case, eight bytes. Besides that,
from the sequence charts within the contracts of the seven
Services, we distinguished event-triggered messages, as well
as periodic messages which, as explained earlier, has also to
be taken into account in the ongoing development process.

In phase 2, we use the questionnaire to characterise the
network protocol. First, regarding the values collected from
the transmission group, we observed that one of its main
characteristics is its message orientation. Moreover, it has
no central master, but is doing the bus arbitration one a
multi-master base instead. As concerns the structure of the
message, it has a relatively large identifier field, which offers
to address more 536 million messages. Also, the identifier of
each message is directly defining the priority of the message
and therefore is a critical point in its communication model.
Second, from the network capabilities group, we could identify
the maximum payload offered by CAN, that is, eight bytes.
A third point is the lack of mechanisms to add or remove
nodes to the network at runtime. Finally, the attributes related
to the physical capabilities and dependability groups are not
interesting in the scope of this DAS and, thus, they are not
taken into account.

Continuing with phase 3, we are using the information got
through the two previous phases and the flowchart diagrams.
In doing so, we are now able to identify the shortcomings of
the CAN protocol in this specific scenario, and to determine
the tasks to be undertaken to overcome them. The outcome of
the flowchart diagrams is a list of four different tasks presented
next.



1) Set up the SOA-based addressing scheme
The communication model must allow to deliver SOA-
based messages in CAN which, as explained, is a
message-based network protocol. For this, each CAN
message must identify the Service providing the content,
as well as the command executed by this Service. As
the addressing scheme has a relatively high number of
addresses, the CAN identifier can be directly used for
addressing the Services.

2) Make the address scheme encoding consistent with
the priority scheme used
In CAN, the message identifier directly defines the
priority of the message. Thus, it has to be set up with
care. The priority rules of CAN specify that the higher
the number of the identifier, the lower the priority of the
message. When setting up the addressing encoding this
priority scheme, as well as the priority of the Service
must be taken into account.

3) Provide a communication protocol to assign ad-
dresses dynamically to the Services.
The communication model must allow to add or re-
move nodes at runtime which, in SOA-based driver
assistance system, also involves the dynamic assignment
of addresses to the Services. In CAN there is no such
mechanism and, thus, it is necessary to provide one.

4) Schedule periodic messages using event-driven
scheduling
The communication model must ensure that each SOA-
based message is scheduled using the most suitable
scheduling policy, so time constraints are fulfilled. The
CAN protocol is designed to be an event-based bus,
which means that there is no in-build mechanism that
allows to trigger messages on a periodic base. Unfortu-
nately, as explained previously, the example application
contains periodic messages. In this sense, it is necessary
to ensure that, although these messages are scheduled
using an event-driven policy, the periodicy is kept and no
deadline is violated. Finally, note that is has been proven
by Davis et al. in [7] that it is possible to constitute
periodic messages using CAN.

Finally, in phase 4, we implement the components of the
CAN communication model by adding the modules generated
from the execution of the four tasks determined in phase 3. In
the example application these modules are:

1) Addressing Scheme The two first tasks, ”Set up the
SOA-based addressing scheme” and ”Make the ad-
dressing encoding consistent with the priority scheme
used” lead to the modules which form the Addressing
Scheme component. It basically manages the addressing
of the Services and hereby controls the priority of each
message.

2) Ability to assign addresses dynamically By executing
the task ”Provide a communication protocol to assign
addresses dynamically to the Services” the Adaption
component is created. The main goal of this component

is to provide mechanisms to manage dynamically the
addresses of Services when they are added or removed
from the system.

3) Trigger condition The task ”Schedule periodic mes-
sages using event-driven scheduling” leads to the Trans-
mission Arbitration component. This component ensures
that any Service is able to sent out periodic messages in
an event-triggered network protocol such CAN.

The fourth component of the communication model is not
touched in this running example as the biggest message within
the application fits into a single CAN message.

D. Assessment of the running example

The SOAcom approach has proven to be a structured
development process for constructing a communication model
for CAN. Compared to the unguided development which led
to the communication model described in [5], the process has
now been much clearer and led to traceable requirements and
well structured components.

In fact, SOAcom identified all the issues which have been
addressed by the CAN Communication Model published ear-
lier. Besides that, one feature, the possibility to send out
messages periodically, is missing in that original model.

In order to confirm the correct operation of the implemented
communication model we set up a prototype. This prototype
is a CAN network running at a transmission rate of 500
Kbit/s using the 29 Bit Identifier. The seven nodes that run the
Services are implemented on two different platforms. Four of
the nodes were embedded boards with an Atmel ATmega88
microcontroller running at 18.432 MHz, as well as a Mi-
crochip MCP2515 CAN controller and a Philips PCA82C251
transceiver. Additionally, the software was implemented using
the C programming language. The three remaining nodes
were implemented as simulated nodes on a Laptop running
the automotive network testing and simulation environment
CANoe 7.6.84 (SP4) from Vector. The Laptop is connected
to the CAN network using a CANcase XL bus interface also
from Vector. We did some experiments using the described set
up and the CAN communication model implemented using
the SOAcom process model. As the implementation of the
communication model showed that the adaption component
is the most critical one, we focused on different scenarios to
evaluate it’s capabilities. The used scenarios were reproducing
real world events such as powering up all devices at the same
time, which simulates turning on the ignition. The system took
an average of 430ms until all seven nodes were integrated
into the network. This relatively long period is mainly due to
the simulated nodes. Running the same scenario with only the
four embedded boards, it took only 50ms. The second scenario
included the activation of the first four nodes at the beginning,
and adding the remaining three ones some time later. This
is an anticipation of the scenario when an already running
car is connected to a trailer. As all the nodes activated later
were embedded boards the system took a relatively short time
of about 60ms to reconfigure itself. A third scenario extends
scenario two. After starting up four nodes at the beginning and



adding three mores later, two of the nodes were disconnected
and replaced by two other nodes offering the same Services as
the original ones. This scenario determines whether the system
is reusing the Identifiers of nodes that already left the network,
as it is important to avoid having a number of dead Identifiers.
The re-configuration of the system was again quit short being
only 45ms long. All the experiments succeeded as in each
scenario the system was able to integrate all nodes and get
into a stable state were all Services could be reached through
the Identifiers assigned by the algorithm.

V. RELATED WORK

As stated before, there have been several other Middleware
approaches in the domain of Distributed Embedded Systems
in recent years. The eSOA project for example used the
SOA paradigm to build systems that control smart buildings
([1]). However, the approach makes use of several traditional
technologies of the Web Services domain such as the Web Ser-
vice Description Language (WSDL). This fact, for example,
requires to send XML files through the network to exchange
information between Services which is a big drawback when
a small network system like, for example, CAN or LIN is
used. Another approach called the SIRENA project, which is
explained in [2], has the same drawbacks of not being usable
in low-performance networks. This is because it uses the
Device Profile for Web Services standard, which is based upon
IP-based communication. Lopez et al. present a Middleware
concept in [8] which is targeting on the avionics domain.
However, it also uses IP-based communication, which makes
it not directly usable in today’s cars. Two other approaches
are directly aiming on automotive networks. Jahnich et al.
present an approach in [9] which uses a Middleware to carry
out load balancing in the events of ECU failures or overloads.
As being designed for automotive infotainment systems low-
performance ECUs are not taken into account. One of the
most interesting projects on Middleware technologies in the
automotive domain in recent years is the DySCAS project.
It targeted at self-configuring automotive systems and de-
signed an extensive architectural model. However our specific
use case, namely the connection of devices distributed over
a car and trailer combination, is explicitly excluded from
the approach [10]. This is because of communication issues
between car and trailer. We are committed that our project
will be able to close this gap. There has been some work
on high-level protocols for automotive networks, too. Many
of this projects eventually became an industrial standard.
Most of these approaches have been targeting on the CAN
network. For example, the ISO TP standard defines a transport
layer that allows to send frames of a maximum of 4095
bytes on CAN ([11]). The two competing standards CANopen
([12]) and DeviceNet ([13]) also aim on adding higher layers
to CAN to offer some extended features. Unfortunately, all
of these standards have been developed for being used in
only one of the several different automotive networks. In
our approach of implementing Service-based technologies,
we want to use the whole spectrum of automotive network

systems. Other high-level protocols like for example the XCP
protocol ([14]) that enables engineers to calibrate ECUs within
a car to offer interoperability throughout a higher number of
network systems. Unfortunately they are very restricted in their
purpose. Summing up one can say that none of the Middleware
approaches or high-level protocols developed recently has all
the features of SOAcom.

VI. CONCLUSIONS AND FUTURE WORK

The Service-oriented Architecture paradigm provides high
flexibility when designing distributed driver assistance sys-
tems, since it allows to hide all the complexity involving the
connection and communication among logical components.
However, these systems require a high grade of physical and
logical adaptability, which is not provided by standard auto-
motive network protocols. In this sense, we have constructed
SOAcom, a development process to design communication
models in the scope of automotive network protocols. We
hereby extended the development process presented in [3]
which originally did not include the development of the
network components. We also took the step from a commu-
nication model exclusively designed for CAN, as explained
in [5], towards a more flexible model theoretically capable of
designing communication models for all automotive network
systems. Specifically, this process allows us to extend the
capabilities of an automotive network protocol, in order to
adapt it to SOA-based DDASs.

SOAcom has proven to be suitable for identifying the
shortcomings of automotive network protocols, in the scope of
SOA-based DDASs and for specifying the components which
should be added in order to overcome them. We have tested
SOAcom using an example SOA-based DDAS application
jointly with the Controller Area Network protocol. The experi-
ments conducted showed that the implemented communication
model was running stable.

In a next step, we plan to implement the SOAcom process
as a software. It will automate some of the steps of SOAcom
like for example the determination of the requirements set up
by the application in phase 1. The usage of such a software
will also help to keep all the information consistent. It is also
planned to implement a communication model developed for
LIN. Furthermore, we plan to add the generation of a FIBEX
file that describes the network directly from SoaML model.
The overall SOA approach for DDAS will be integrated and
validated in a full scale prototype.
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of SOA-based Driver Assistance Systems,” in Proc. of the 4th
Workshop on Adaptive and Reconfigurable Embedded Systems
(APRES ’12) in conjunction with the IEEE / ACM CPSWeek
’12. Beijing, China: IEEE, 2012, pp. 27–32. [Online]. Available:
http://cps.kaist.ac.kr/apres2012/apres12.pdf

[4] OMG, “Service oriented architecture Modeling Language ( SoaML
) - Specification for the UML Profile and Metamodel for Services,”
Needham, MA, 2009.

[5] M. Wagner, A. Meroth, and D. Zöbel, “A CAN-based Communication
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