Stereo Graph-SLAM for Autonomous
Underwater Vehicles *

Pep Lluis Negre Carrasco, Francisco Bonin-Font, and Gabriel Oliver Codina

Systems, Robotics and Vision Group, University of the Balearic Islands (UIB), Palma
de Mallorca, 07122 (Spain)
pl.negre@uib.cat, francisco.bonin@uib.es, goliverQuib.es,
home page: http://srv.uib.es, Telephone:+34971171391

Abstract. The increasing use of Autonomous Underwater Vehicles (AUV)
in industrial or scientific applications makes the vehicle localization one
of the challenging questions to consider for the mission success. Graph-
SLAM has emerged as a promising approach in land vehicles, however,
due to the complexity of the aquatic media, these systems have been
rarely applied in underwater vehicles. The few existing approaches are
focused on very particular applications and require important amounts
of computational resources, since they optimize the coordinates of the
external landmarks and the vehicle trajectory, all together. This paper
presents a simplified and fast general approach for stereo graph-SLAM,
which optimizes the vehicle trajectory, treating the features out of the
graph. Experiments with robots in aquatic environments show how the
localization approach is effective underwater, online at 10fps, and with
very limited errors. The implementation has been uploaded to a public
repository, being available for the whole scientific community.
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1 Introduction and Related Work

Thanks to recent technological advances, the sub-aquatic world is more accessible
for exploration, scientific research and industrial activity. At present, Remotely
Operated Vehicles (ROVs) are commonly used in a variety of applications, such
as surveying, scientific sampling, rescue operations or industrial infrastructure
inspection and maintenance. AUVs are progressively being introduced especially
in highly repetitive, long or hazardous missions, since they offer an important
independence from support vessels and permit to reduce operational costs and
resources.

* This work is partially supported by the Spanish Ministry of Economy and Com-
petitiveness under contracts PTA2011-05077 and DPI2011-27977-C03-02, FEDER
Funding and by Govern Balear (Ref 71/2011). The authors are grateful to the mem-
bers of the CIRS (University of Girona) for making available their facilities, including
the AUV Girona500, used for some experiments.



An accurate robot localization becomes a crucial issue to assure the success of
missions programed in AUVs, since, for example, errors in orientation generate
large drifts on the estimated trajectory thus in the detection of the goal points.

The pose of an underwater vehicle can be estimated by means of, for instance,
(a) inertial sensors, (b) acoustic or visual odometers, or (c) combining both,
fusing all the sensorial data in navigation filters that smooth trajectories and
errors ([1]). However, inertial and odometric methods are prone to drift, being
necessary their periodical correction.

Simultaneous Localization And Mapping (SLAM) [2] techniques constitute
the most common and successful approach to perform precise localization in
unknown environments. SLAM approaches support on environmental landmarks,
reinforcing the localization process by recognizing regions previously visited by
the robot, in a process known as loop closing (image registration for visual
systems).

Although the quality of images in sub-aquatic environments is strongly lim-
ited by the water and the illumination conditions, cameras present larger spatial
and temporal resolutions than acoustic sensors, being more suitable for certain
applications such as surveying, object identification or intervention [3].

Lately, researchers are focusing their efforts on the enhancement of visual
SLAM techniques. Some of these solutions integrate, in an Extended Kalman
Filter (EKF) context, the dead-reckoning data, the landmark locations and the
loop-closings. These systems increase the running time with the size of the map,
being too slow for long routes [4]. However, the running time can be reduced
by either excluding landmarks from the filter state or performing the image
registration in a limited portion of the surveyed environment [5].

EKF-based approaches require the definition of stochastic models for the ve-
hicle motion and for the external measurements, implying errors inherent to their
subsequent linearizations. Furthermore, the covariance matrices become dense
over time, increasing the system uncertainty. To overcome these limitations,
other authors approach the visual SLAM problem from the graph-optimization
point of view: the vehicle odometry and the landmarks constitute the subsequent
nodes of a graph. Nodes are linked by edges which represent the homogeneous
transformation between nodes. When a loop is closed, the complete graph is op-
timized by applying, for instance, Gauss-Newton or Levenberg Marquardt tech-
niques to minimize non-linear error functions based on least-squares or stochastic
gradient descent [6] [7] [8] [9]. This last step means a complete graph adjustment
entailing all nodes and transformations between them.

However, due to the inarguable difficulties that the aquatic environments
present (light attenuation, flickering, scattering, lack of structured frameworks
and the difficult to find and match image features), these techniques have been
rarely applied to underwater field robotic systems. Very occasionally, some AUVs
have used VSAM (Smoothing and Mapping) [6] for localization during the in-
spection of coral reefs [10] or in large vessel hull inspection applications [11].

This paper presents an evolved stereo-SLAM procedure especially adapted
for underwater vehicle navigation and based on the g?o [9] library. The main



contribution of this work lies in the particular design and assembly of the main
modules, its speeding up with respect previous solutions, and its application
for AUV localization, obtaining noticeable results. Visual stereo odometry de-
fines the initial guess for the graph nodes/edges and image registrations provide
additional pose constraints needed to adjust and optimize the graph.

Section 2 outlines the theoretical background of the graph-optimization prob-
lem; section 3 explains the navigation software architecture; section 4 shows the
experimental setup and some significant results, and section 5 concludes the

paper.

2 Problem Formulation

Let © = (21,29, ..., i, -..., T ) be the absolute poses of the robot, associated to
each graph node 4, from the starting point (x;) to the current point (z,).

Lets define o0, ; as the observed pose constraint, calculated as the odomet-
ric displacement, between two consecutive nodes i and j, and let be O;; its
uncertainty matrix. In general, o;,, represents the odometric displacement be-
tween two non-consecutive nodes ¢ and m, defined as the composition of the
successive odometric displacements o; ; from i to m: 0; ;m = 0j541 @ 0i41,i42... D
Om—2,m—1 @D Om—1,m- Lets define f; ,,(r) as the function that measures the, in
principle, noise-free transformation of node i to node m (the idea is illustrated
in figure 1).

Fig. 1. A direct and indirect transformation from z; to T, .

Lets define the zero mean Gaussian error e;.,(z) = fim(z) — 0;m and
lets define the cost function F;,,(x) = eZmOi7mei7m . Assuming also that the
observations and measurements are independent, the global likelihood function
can be defined as:

Fl@)= Y Fin(), (1)
Y(i,m)eC

where C represents the set of node pairs with an existing constraint o; ,,. The
goal of the optimization problem is to find the value T such as



T = argmin F(z). (2)

To solve this non-linear least-squares problem, one can apply either Gauss-
Newton or Levenberg Marquardt, approximating e; ,,, () by its first order Taylor
expansion [9]. The result of the optimization process is x, which means that all
the graph nodes can be recalculated simultaneously, anytime, during the mission.

3 Navigation Architecture

Consecutive stereo pairs are inserted into the navigation architecture. From each
stereo pair, the system extracts image features, matches them reciprocally, and
computes their 3D coordinates using the stereoscopy principle.

The features corresponding to each stereo pair are stored in a database,
together with their corresponding 3D points, and a node identification number.
The current pose associated to the vehicle is calculated composing the pose
of the last graph node with the camera displacement computed by a stereo
odometer. The system creates a new node with the computed raw pose and
adds one edge between the last graph node and the new one, labeled with the
odometric displacement. Afterwards, the algorithm searches for loop-closings
between the image of the new node and the image of all previous nodes located
inside a spherical Region of Interest (ROI), centered at the current camera pose.
Limiting this search in a ROI saves running time and it is coherent with the fact
that, although the robot passes through an already visited area, the overlap will
be limited by the camera FOV (Field of View), being smaller as the distance
between the current pose and the poses of the camera when imaged this area
increases.

The Perspective N-Point (PNP) problem is adapted to perform the image
registration. This method does not need any training data set, contrarily to
systems based on, for instance, Bag-of-Words (BoW) [12], saving time and com-
putational resources. This PNP problem refers to the process of computing the
absolute camera pose given its intrinsic parameters and a set of 2D-3D point
correspondences, and can be found in the literature formulated in a wide range
of applications such as structure from motion, object recognition and localiza-
tion [13]. This method was adapted as follows: (a) recover and match the 2D
features of the current node and the node candidate for loop-closing; (b) if the
number of matches is below a certain threshold, reject that node as a candidate;
(c) elsewhere, extract the 3D points of the current node; (d) back-project the 3D
points of the current node onto the 2D features of the candidate node, assuming
the existence of a rotation and a translation, and applying RANSAC [14] to
eliminate outliers:
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where (u, v, 1) are the homogeneous image coordinates of the re-projected point,
(X,Y,Z,1) defines the 3D world point to be re-projected, (fl, fl,) is the fo-
cal length, (cz,c¢y) is the principal point, and [R|t] turns out to be the matrix
that describes the camera motion between both static scenes and minimizes the
total re-projection error as: [R[t] = argming,, Ziil |pi — si||”, being p; the re-
projected image point and s; its corresponding original feature on the image of
the candidate node. If [R]t] exists, both scenes are very likely to present strong
similarities or to view common parts of the environment (although they can
be rotated or/and translated), and the system assumes the presence of a loop-
closing. Although [R]t] is not error-free, it is taken as the measurement f;
defined in section 2.

The identification of a loop-closing entails a new direct edge between both
nodes, labeled with [R|¢], contrasting with the already existing indirect connec-
tion between the same nodes, calculated as the composition of the successive
odometry displacements (0; ,,) between them.

At this point, the graph is optimized according to equation 2, recomposing
simultaneously all nodes and edges with their respective labels in order to have
a minimum quadratic error (see figure 2).
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Fig. 2. Flow chart of the whole localization and mapping process.

Contrarily to the SAM-based [6] solutions, here, feature locations are not
included in the graph, reducing its complexity and saving computation time and
resources. Location of features can be improved later using their relative position
with respect to the camera and the improved robot poses.

4 Experimental Results

Experiments were conducted with two different robots, Girona500 and Fugu-C,
both equipped with one stereo rig looking downwards. Gironab00 is a reconfig-
urable multipurpose AUV, designed by the CIRS (Centre for Research in Under-
water Robotics-University of Girona) [15], and Fugu-C is a low-cost micro-AUV



developed at the University of the Balearic Islands, including also in its sensor
suit an additional stereo rig looking forward, a MEMS-based Inertial Measure-
ment Unit and a pressure sensor. The down-looking camera was used for the
incoming localization experiments. Figure 3 shows an image of each robot.

Both robots use Linux as operating system and ROS [16] as middleware. The
present approach, installed and executed in both robots, has been also imple-
mented in ROS, and it has been uploaded and published in a public repository
[17].

The General Graph Optimization library (g20) [9] was used as the framework
for graph management, including, graph and node creation/addition, graph up-
date and graph optimization. This approach deserves special attention since: a)
it offers a ROS wrapper, b) it covers all different particular issues addressed in
other approaches ([6] [18] [7] [8]), ¢) outperforms [6] [8] in running time and it
achieves a similar performance than [7], and d) it is extensible to a wide range
of optimization problems.

Fig. 3. (a): Fugu-C. (b) Girona500. (c) UIB pool bottom. (d) CIRS pool bottom.

All executions were run online with a frame rate of 10fps. The radius for loop-
closing search was set to 7m-8m. LibViso2 [19] was used as a stereo odometer and
SIFT features/descriptors were chosen to compute the image registrations. The
sparse Cholesky decomposition (CHOLMOD) was used as the linear solver and
Levemberg-Marquardt with 40 iterations as the algorithm for the optimization
[9]. Odometry samples were queued and synchronized with the last image, and
the SLAM samples were computed for each queued image/odometry pair and
also synchronized with them. The user can trust the last robot pose given by
the last graph optimization although this might not be the corresponding to the
last gathered image.

As a sample of the obtained results, four representative experiments are
shown next: three conducted with Fugu-C, two of them moving in a pool located
at the UIB and another one in an artificial pond, and a fourth one corresponding
to a survey conducted with Gironab00 in a pool located at the CIRS. The bot-
tom of both pools was covered by printed digital posters of real marine contexts.
Both posters were used to compute the trajectory ground truth by registering
each image grabbed online during the trajectory with the whole figure of the
corresponding poster. In some of the experiments, several objects such as am-
phoras and rock mockups were deployed inside the pool in order to simulate a



realistic, non flat, sea floor with 3D structures. Figures 3-(c) and 3-(d) show two
images captured by the robots during the respective trials in the pools. See how
in figure 3-(c) the poster of the bottom is occluded by the objects (amphoras
and an orange box) deployed on it.

Plots 4-(a), 4-(c) and 4-(e) show the three trajectories in the (x,y) plane,
done in the pools. The ground truth is depicted in green, the SLAM trajectory
with the graph nodes in blue, and the odometry trajectory in red. Additionally,
the plots on the left show, also in blue, all the detected loop closings as lines
linking nodes. All plots show how the SLAM trajectory is close to the ground
truth while the odometry drifts in all cases.
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Fig. 4. Trajectory and errors: (a)-(b) CIRS pool with Girona500, (c)-(d) Fugu-C: UIB
pool survey, (e)-(f) Fugu-C: UIB pool loop with amphoras and boxes on the bottom.



Plots 4-(b), 4-(d) and 4-(f) show the trajectory error for the three experi-
ments, computed as the euclidean distance between each 3D ground truth point
and its corresponding odometry or SLAM 3D point, according to the common
timestamp. It is noticeable that the SLAM error, in all cases, is bounded between
0 and 30cm during the whole trajectory, meaning that, the localization of the
vehicle will be close to the ground truth, regardless the length and duration of
the robot mission. Conversely, the odometry error grows unbounded and it can
reach peaks up to 2.7m. Although in the third experiment (4-(e)-(f)) the pool
bottom is covered, in some points, by objects that occlude the poster, the SLAM
trajectory error is still very low.

Table 1 shows, for each experiment, the trajectory length and the mean error
for the odometry and for the SLAM estimates. Results show that the SLAM
mean error is clearly much lower than the odometry mean error.

| Experiment | odometry | SLAM |
| |mean error(m)/traj. dist(m)/[mean error(m)/traj. dist(m)]
CIRS pool Girona500 0.85/46.9 0.17/46.0
Fugu-C pool/survey 0.25/22.7 0.06/23.0
Fugu-C pool/amphoras 1.81/8.4 0.07/7.0

Table 1. Trajectory length and mean errors for the odometry and SLAM.

Fugu-C was also programmed to perform a zig-zag survey in an artificial
pond, starting and finishing at the same point where a marker was placed for
the unique purpose of identification. Although the presence of mud on the pond
bottom and regardless the marker placed at this initial/final point, the system
was able to find many loop-closings along the route. Figure 5 shows four loop
closings corresponding to nodes quite distant in time. Features are shown in red
and the inlier matchings in blue. In practice, the PnP problem was solved posi-
tively with a minimum of 7 inliers. See as image 5-(b) shows the correspondences
between two frames that visualize part of the marker, one grabbed at the start
(node 2) and the other at the end of the trajectory (node 89). Figure 6 shows
the route followed by the robot according to the stereo odometry estimates (in
red) and to the SLAM (blue bullets as the nodes and discontinuous lines to rep-
resent the loop-closing edges). Although the lack of ground truth impedes the
computation and comparison of trajectory errors it is evident how the odometry
drifts considerably and the SLAM estimates follow the zig-zag trajectory, ending
at the same point where it started.

5 Conclusions

This paper has presented an evolved stereo graph-SLAM algorithm especially
addressed to improve the localization of underwater robots equipped with a
stereo rig. The graph management is based on the g%o library and the image
registration process is reinforced by minimizing the 3D-2D re-projection error



Fig. 5. Four loop closings emerged during the experiment in the pond

of environmental landmarks. This type of visual SLAM approaches is scarcely
applied in underwater field robotic applications, and they normally implement
variations of the SAM approach, which includes in the graph the robot pose and
landmark coordinates. Contrarily, our process graphs only the robot displace-
ments, which is conceptually simpler and faster. Experimental results obtained
with underwater robots moving in aquatic scenarios show how the error of the
SLAM estimates is bounded, meaning that the approach maintains the same
range of errors, regardless the duration and length of the trajectory. Finally, the
implementation is available to the scientific community in a public repository.
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Fig. 6. Trajectory corresponding to the experiment in the pond: (a) in 2D, (b) in 3D.
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